
Impossible Differential Cryptanalysis on
Deoxys-BC-256

Alireza Mehrdad, Farokhlagha Moazami, Hadi Soleimany

Cyberspace Research Institute
Shahid Beheshti University, G.C.

P.O. Box 1983963113, Tehran, Iran
a.mehrdad@mail.sbu.ac.ir, f moazemi@sbu.ac.ir, h soleimany@sbu.ac.ir

Abstract. Deoxys is a final-round candidate of the CAESAR competi-
tion. Deoxys is built upon an internal tweakable block cipher Deoxys-BC,
where in addition to the plaintext and key, it takes an extra non-secret
input called a tweak. This paper presents the first impossible differential
cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal
tweakable block cipher. First, we find a 4.5-round ID characteristic by
utilizing a miss-in-the-middle-approach. We then present several crypt-
analysis based upon the 4.5 rounds distinguisher against round-reduced
Deoxys-BC-256 in both single-key and related-key settings. Our contribu-
tions include impossible differential attacks on up to 8-round Deoxys-BC-
256 in the single-key model. Our attack reaches 9 rounds in the related-
key related-tweak model which has a slightly higher data complexity
than the best previous results obtained by a related-key related-tweak
rectangle attack presented at FSE 2018, but requires a lower memory
complexity with an equal time complexity.
Keywords: CAESAR competition, Deoxys-BC, Impossible Differential
Cryptanalysis, distinguisher.

1 Introduction

Recent real-world applications that need to protect both confidentiality and
authentication have led to a renewed interest in designing novel authenticated
encryption. Due to the lack of well-studied authenticated encryption schemes
with the desirable level of security and performance, an ongoing CAESAR com-
petition funded by NIST plans to identify a promising new portfolio of reliable
and efficient authenticated encryptions that are suitable for widespread appli-
cations. A total of 58 diverse proposals from international cryptographers have
been submitted on March 2014. According to the results of a public evaluation,
the CAESAR committee has announced 7 schemes as the final round candidates.

Deoxys is one of the final-round authenticated encryption candidates in the
CAESAR competition. Deoxys is built upon an internal tweakable block cipher
Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-
secret input called a tweak. Deoxys-BC is an AES-like design with the SPN
structure which is based on the TWEAKEY framework. The inner tweakable

block cipher Deoxys-BC has two variants, each with a block size of 128 bits
and a tweak size of 128 bits, but two different key lengths: 128 and 256 bits.
These variants are called Deoxys-BC-256 and Deoxys-BC-384, respectively. We
note that the specification of Deoxys-BC has been slightly changed during the
competition. In this paper, we study the last version submitted to the CAESAR
competition called Deoxys v1.41.

The security of Deoxys-BC was studied against a wide variety of cryptanal-
yses by the designers and as was proved by them, the cipher is secure against
several known attacks. However, impossible differential cryptanalysis was not
covered by the designers in the original proposal, instead, third-party experts are
encouraged to investigate the security of Deoxys-BC against impossible differ-
ential cryptanalysis in different settings. The aim of this work is to evaluate the
security of Deoxys-BC-256 against impossible differential cryptanalysis which
is an important class of cryptanalytic techniques applicable to a wide variety
of block ciphers. Impossible differential cryptanalysis was proposed by Knud-
sen and independently by Biham. Impossible differential cryptanalysis exploits
differential characteristic with a probability of (exactly) zero to eliminate the
wrong key candidates of some key bits involved in outer rounds that lead to
such impossible differences.

Previous Works and Our Contributions

Carlos Cid et al. [1], present a related-key related-tweak rectangle attack against
up to the 9 rounds of Deoxys-BC-256 with a data complexity of 2117, a mem-
ory complexity of 2117 states and a time complexity of 2118. They also present
a related-key related-tweak cryptanalysis on a particular variant of 10-round
Deoxys-BC-256 in which the key length is greater than 204 and the tweak length
is less than 52. The described cryptanalysis is not applicable to the cipher with
the key length of 128-bits. In addition, the proposed cryptanalysis on the 10-
round Deoxys-BC-256 requires 2127.58 chosen plainetexts while the maximum
permitted amount of data for a given key in the Doexys scheme is 2t−4 where t
denotes the size of the tweak.

In this paper, we present several impossible differential cryptanalysis on the
round-reduced variants of Deoxys-BC-256:

– First, we study the security of Deoxys-BC-256 in the related-tweak single-
key model. We describe how to mount an impossible differential attack on
the 8 rounds of Deoxys-BC-256 given 2118 plaintext-ciphertext pairs and 2102

memories.

– After that we propose a related-key related-tweak impossible differential at-
tack on 8-round Deoxys-BC-256 with a memory complexity of 244, a data
complexity of 2116.5 chosen plaintexts and a time complexity of 2116.5 full en-
cryptions. Then we exploit a precomputation phase to apply a similar attack
on the 9 rounds of Deoxys-BC-256 which comes with the cost of increasing
the required memory to 2102 states.

The results of our attacks compared with the previous attacks on Deoxys-BC-
256 in the single-key and related-key models are summarized in Table 1. The
designers presented an upper bound for an efficient related-key related-tweak
differential cryptanalysis on 8 rounds of Deoxys-BC-256 without proposing a
specific attack. However, our contributions include impossible differential attacks
on 8-round Deoxys-BC-256 in the related-tweak single-key model. In addition,
we present an impossible differential cryptanalysis on 9-round Deoxys-BC-256
in the related-key related-tweak model in which the required data is two times
more than the rectangle attack while the memorey complexity is decreased by a
factor of 215.

After the submission of this paper and uploaded our results in Cryptology
ePrint Archive, we noticed that Jiang and Jin presented a single-key impossible
differential cryptanalysis on 8-Round Deoxys-BC-256 in [2]. In addition, during
the preparation the final version of this paper Zong et. al published a key-
recovery attack on 10 rounds of Deoxys-BC-256 which is applicable only when
the key size ≥ 174 and the tweak size ≤ 82 [3]. However, the h permutation is
not considered correctly in both published papers and it should be interpreted
the other way. So the results are not valid. In addition, our paper includes more
results in both single-key and related-key settings.

Table 1. Results of attacks on Deoxys-BC-256.

Rds Attack Attack Key Tweak Complexity Ref.
type mode size size Time Data (CP) Memory

8 MitM SK 128 128 ≤ 2128 [4]

8 Differential SK 128 128 ≤ 2128 [4]

8 Imp. dif. SK 128 128 2118 2118 2102 section 4

8 Imp. dif. RK 128 128 2116.5 2116.5 244 section 5

9 Rectangle RK 128 128 2118 2117 2117 [1]

9 Imp. dif. RK 128 128 2118 2118 2102 section 6
CP=chosen plaintext; RK= related-key; SK= single-key.

Outline of the Paper

The paper is organized as follows: Section 2 starts with a short description of
Deoxys. This is followed by a brief introduction of the internal tweakable block
cipher Deoxys-BC-256 and some notations that are used throughout the paper.
After that we introduce a 4.5-round impossible differential characteristic which
can be utilized in both single-key and related-key settings. Then we describe
related-tweak impossible differential cryptanalysis on 8-round Deoxys-BC-256
in Section 4. We also present impossible differential characteristic of the 8-round
and 9-round of the cipher in the related-key related-tweak model in Section 5
and Section 6, respectively.We conclude the paper in Section 7.

2 Description of Deoxys and Deoxys-BC

In this section, we describe Deoxys and Deoxys-BC-256. The section starts with
a short description of Deoxys authenticated encryption. This is followed by a
specification of the internal tweakable block cipher Deoxys-BC-256. We assume
the reader is familiar with the concept of tweaks and keys for block ciphers and
also the standard block cipher AES; otherwise, we refer to [5] and [6] respectively
for the full specification details.

2.1 Deoxys Authenticated Encryption Scheme

The designers of Deoxys proposed two operating modes, called Deoxys-I and
Deoxys-II. The former mode, Deoxys-I, is a nonce-based scheme which is proven
to be secure against nonce-respecting adversaries. The latter mode, Deoxys-II, is
a nonce-based AEAD scheme that provides security in the nonce misuse model
in which the adversary can query different plaintexts while keeping the nonce
constant. In this section, we only present a brief description of Deoxys-I. We
refer the readers to the original proposal [4] for more details.

The encryption process, in the nonce-respecting mode with no padding is
described in Table 2.

Table 2. Encryption algorithm when we have no padding to associated data and
message.

Processing associated data
1 divide A to 128-bit blocks A1 to Ala

2 Auth ← 0
3 for i = 0 to la− 1 do
4 Auth ← Auth ⊕ EK(0010||i, Ai+1)
5 end
Message encryption and tag generation
6 divide M to 128-bit blocks M1 to Ml

7 Checksum ← 0
8 for j = 0 to l − 1 do
9 Checksum ← Checksum ⊕ Mj

10 Cj ← EK(0000||N ||j,Mj+1)
11 end
12 Final ← EK(0001||N ||l, Checksum)
13 tag ← Final ⊕ Auth

2.2 Deoxys-BC-256

Deoxys utilizes a dedicated tweakable block cipher, Deoxys-BC as its internal
encryption. The inner tweakable block cipher Deoxys-BC is an AES-based tweak-
able block cipher that makes use of the TWEAKEY framework. The TWEAKEY

framework is a general method to concatenate the tweak and key as a unified
state called tweakey. Deoxys-BC has two variants, each with a block size of 128
bits, but a different tweakey size of 128 and 256 bits which are called Deoxys-
BC-256 and Deoxys-BC-384, respectively. Since the aim of this paper is to study
the security of to Deoxys-BC-256 against impossible differential cryptanalysis,
we only describe Deoxys-BC-256 in this section.

Deoxys-BC-256 has 14 rounds. The round function reuses the existing com-
ponents of AES, with the main differences with the tweakeys that are used every
round as the round subkeys. One round of the Deoxys-BC (f -function in Fig 1)
consists of the following four transformations:

– AddRoundTweakey – xor the subtweakey and internal state.
– SubBytes – Apply the AES S-box to the 16 bytes of the internal state.
– ShiftRows – Rotate i-th row left by i positions, where i = (0, 1, 2, 3).
– MixColumns – Multiply the four input bytes in each column by the MDS

matrix of AES.

To achieve the ciphertext, a final AddRoundTweakey operation is performed
after the last round.

Tweakey Schedule (ρ = 2)

Fig. 1. TWEAKEY framework for Deoxys-BC.

Definition of the subtweakeys.
Let KT be the concatenation of key and tweak. In Deoxys-BC-256, we denote

the most significant 128-bit of KT by TK1
0 and the least significant 128-bit of

KT by TK2
0 . For Deoxys-BC-256, a subtweakey STKi is defined as STKi =

TK1
i ⊕ TK2

i ⊕ RCi where TK1
i is the most significant 128-bit and TK2

i is the
least significant 128-bit of the tweakey of round i.

The 128-bit words TKj
i+1 produces recursively from TKj

i by a byte permu-
tation h and an LFSR as follows:

TK1
i+1 = h(TK1

i), TK2
i+1 = h(LFSR(TK2

i)).

where the byte permutation h, is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

in which we use the byte indexing as follows:
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .

Also, the LFSR function is defined as follows:

LFSR :

 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0)
↓

(x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0 ‖ x7 ⊕ x5)

 .

2.3 Notations

We use the following notations throughout the paper:

– xI
i : The input of the round i.

– xS
i : The SubBytes output of the round i.

– xR
i : The ShiftRows output of the round i.

– xM
i : The MixColumns output of the round i.

– xO
i : The AddRoundTweakey output of the round i.

– xi,col(j): The j-th column of xi, where j= (0,1,2,3).
– STKi: The Subtweakey of the round i.
– Ki: The Subkey of the round i.
– Ti: The tweak of the round i.
– RCi: The key schedule round constant of round i.
– TRi: The result of xoring of Ti and RCi.

Also, we use the following enumeration [0, 1, 2, · · · , 15]. By this enumeration,
x[l] represents the l-th byte of the x.

Since MixColumns and AddRoundTweakey operations are linear, they can be
interchanged, that is, we can first do AddRoundTweakey and then MixColumns.
Hence, we first begin by xoring the internal state with a corresponding subkey
and after that use the MixColumns and finally, xor the obtained value with round
tweak and RCi. We indicate the corresponding subkey by wi = MC−1(ki). Let
xAw
i represent the result of the xoring of xR

i and wi of the round i.

3 4.5-round Impossible Differential Characteristic

Impossible differential attack was first introduced at [7] and [8]. This attack
mainly composed of two parts. The first section is to find impossible character-
istic with maximum length. The second part of the attack is to use this charac-
teristis to recover (part of) round subkeys, which is also called the key filtering
step. This attack has become one of the most important attacks in the field of
cryptanalysis, and has been used in several articles such as [9–13], to attack a
large number of ciphers.

By the subtweakey schedule, one can easily check that if 4STKi[15] is an
active byte then the structure of the subtweakey of other rounds is like Fig 2.
Since the difference of subtweakeys is only due to the difference between tweaks
and keys, the difference values of gray bytes can be zero in special cases.

That is to say, after eight rounds, the subtweakeys difference, is just like
the arrangement of first round difference(4STKi = 4STKi+8). This repetition
may be efficient for some future probable attack.

Fig. 2. Subtweakeys difference Schedule used for impossible differential characteristic.

Fig 3 shows an illustration of an impossible differential of 4.5-round Deoxys.
The gray boxes denote the (active) bytes in which the pair differs while the white
boxes refer to the equal (passive) bytes in the pair. The black boxes refer to the
byte that can be active or passive.

In forward direction, we use a tweakey difference with one non-zero difference
byte4STKi[0] 6= 0 that leads to one active byte, xO

i [0]. According to the process
of producing subtweakey, we know 4STKi[0] 6= 0 leads to 4STKi+1[7] 6= 0.
That leads to the five active bytes, xO

i+1[0, 1, 2, 3, 7]. This process always gives
eleven active bytes, xO

i+2[0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 15], at the end of round i+2.

In backward direction, three active bytes, xR
i+4[8, 9, 10] or xR

i+4[8, 9, 11] or
xR
i+4[8, 10, 11] afford one zero difference column in xR

i+3. This passive column
brings one zero difference byte at each column of xI

i+3 which contradicts with
4xO

i+2,col(0,1) 6= 0.

Thus, according to this 4.5-round impossible differential, a plaintext pair
which is equal at all bytes, after 4.5-round Deoxys encryption cannot convert
to the ciphertext pair which is equal at all bytes except three bytes: [8, 9, 10] or
[8, 9, 11] or [8, 10, 11].

We will use this 4.5-round impossible characteristic for both the single key
mode and related key mode. What’s important is that in single key mode, the
subtweakey differences are only caused by the difference of the tweaks (4STKi =
4Ti), but in the case of the related key attack, the subtweakey differences are
due to the both differences of the tweaks and the keys(4STKi = 4Ti ⊕4Ki).

Fig. 3. 4.5-round impossible differential characteristic of Deoxys

4 8-round Single-Key Impossible Differential Attack

We achieve a single key impossible differential cryptanalysis of 8-round Deoxys,
using impossible differential characteristic of 4.5-round Deoxys as shown in Fig 3.
We extend our impossible differential characteristic by one round at the begin-
ning and 2.5-round at the end. Fig 4 shows this attack.

In this attack, we use an improvement that is suggested by Lu et al. [14] and
is based on the following observation.

Observation I: Given a random pair (4X,4Y) as input and output dif-
ferences of the AES S-box, there is on average one pair of (X,X ′), such that
S(X)⊕ S(X ′) = 4Y .

Before we explain details of the attack, we define the concept of structure
and set of plaintexts.

A structure L consists of 240 plaintexts Pi which all of them are different in
the bytes Pi[0, 5, 6, 10, 15] and equal at other bytes. Each 232 plaintexts Pi of one
structure that have equal 6th byte value of plaintexts Pi, form a set S. The value
of T i

0[6] is equal to Pi[6], so a dedicated tweak T i
0[6] (and Pi[6]) is assigned to

each set. Clearly, there exist 28 sets in each structure. In our attack procedure,
we need the pair of plaintext-tweaks ((P, T), (P ′, T ′)) such that P⊕P ′ has active
bytes in positions [0, 5, 6, 10, 15] and P [6] ⊕ P ′[6] = T [6] ⊕ T ′[6]. We can build
about 232×(28−1)4 ≈ 264 distinct pairs that have four active bytes [0, 5, 10, 15].

Fig. 4. 8-round single key impossible differential trail

Also, we can choose
(
28

2

)
different sets from a structure to be sure that the 6th

byte is active too. Totally, we can build about
(
28

2

)
× 232 × (28 − 1)4 ≈ 279 pairs

per structure, that have five active bytes in positions [0, 5, 6, 10, 15].

The attack procedure has two phases, online phase and precomputation (of-
fline phase). Algorithm 1 illustrates a high level of the attack procedure. The
details of the attack is as follows.

4.1 Precomputation Phase

The number of pairs (xM
1,col(0), x

′M
1,col(0)) that are different only in byte position

xM
1 [1] and the difference is equal to the difference of two tweaks T1[1] and T ′1[1]

(4xM
1 [1] = 4T1[1] 6= 0), is equal to 28× (28− 1)× (28)3 ≈ 240. For all these 240

pairs, compute four bytes [0, 5, 10, 15] of xI
1 and x′I1 :

xI
1[0, 5, 10, 15] = SB−1 ◦ SR−1 ◦MC−1(xM

1,col(0)) and

x′I1 [0, 5, 10, 15] = SB−1 ◦ SR−1 ◦MC−1(x′M1,col(0)).

Then, store the pairs (xI
1, x
′I
1) in a hash table Hp indexed by (4xI

1 || 4T1[1]).
By considering the fact that 4T0[6] = T0[6] ⊕ T ′0[6] = 4T1[1] the value of
(4xI

1 || 4T1[1]) is equal to (4xI
1 || 4T0[6]). These parameters can take 240

different values (232 distinct values for 4xI
1 and 28 unequal values for 4T0[6]).

Each value represents a row in the Hp. Since, we have 240 pairs (xM
1 , x′M1), then

on average Hp has one pair (xI
1, x
′I
1) in each row; where first parameter specifies

the difference 4xI
1, and second parameter determines the difference 4T0[6].

Algorithm 1 8-round Single-Key Attack on Deoxys-BC

Precomputation Phase make a list Hp of 240 valid first round constructions.
Online Phase

for all 2118 chosen plaintexts do
keep corresponding ciphertexts which have only two active last columns xI8,col(2,3).

for all 28 possible values of 4xAw
7 [15] that leads to 4xR8 [3, 6, 9, 12] do

compute w8[3, 6, 9, 12].
for all 28 possible values of 4xAw

7 [8] that leads to 4xR8 [2, 5, 8, 15] do
compute w8[2, 5, 8, 15].
for all 3× 255 possible values of 4xAw

6,col(2) that leads to 4xR7 [8, 15] do
compute w7[8, 15].
for all 237 remaining pairs do

discard each STK0[0, 5, 10, 15] that is in Hp.
end for

end for
end for

end for
end for
Do exhaustive search for all remaining subkey bits.

4.2 Online Phase

1. We take 2n structures, which produce about 2n×279 = 2n+79 possible plain-
text pairs. Then we ask for the corresponding ciphertexts: Ci = ET i

K (Pi). The
difference of last round subtweakey 4STK8 is only dependent on the dif-
ference of tweaks 4T8 that we know. So we can invert the final subtweakey
xor and mixcolumn and compute 4xR

8 = MC−1 ◦ (4C ⊕ 4STK8). We
just select the pairs that corresponding to 4xR

8 , have eight active bytes
[2, 3, 5, 6, 8, 9, 12, 15]. Since we must have eight equal bytes 4xR

8 in posi-
tions [0,1,4,7,10,11,13,14], the expected number of remaining pairs is 2n+79×
2−64 = 2n+15.

2. Since we know the value of (C,C ′) and 4STK8, the difference 4xS
8,col(3)

can be determined. Thus, by knowing the value of 4xAw
7,col(3), we can obtain

the values of xS
8,col(3) and x′S8,col(3) according to observation I. Since we know

4xAw
7 [15] 6= 0, we have only 28 − 1 different possible values of 4xAw

7,col(3).
Therefore, this step can be done as follows:
Initialize 232 empty lists, for each guess of w8[3, 6, 9, 12].
For each remaining pair (C,C ′), and for each possible value of 4xAw

7 [15],
calculate the key w8[3, 6, 9, 12] that leads the pair (C,C ′) to 4xAw

7,col(3), and
add this pair to the list related to the guessed key.
Due to observation I, for each pair and distinction guess, on average we
have one key suggestion. Since these 2n+15 × 255 ≈ 2n+23 suggestions are
distributed over all 232 possible keys, we have about 2n+23/232 = 2n−9 pairs
for each guess of w8[3, 6, 9, 12].

3. Similar to step 2, we initialize 232 empty lists for each guess of w8[2, 5, 8, 15].
For each remaining pair (C,C ′), and for each possible value of 4xAw

7 [8],
calculate the key w8[2, 5, 8, 15] that leads the pair (C,C ′) to 4xAw

7,col(2), and
add this pair to the list related to the guessed key.
Due to observation I, for each pair and distinction guess, on average we have
one suggested key. Since these 2n−9×255 ≈ 2n−1 suggestions are distributed
over all 232 possible keys, we have about 2n−1/232 = 2n−33 pairs for each
guess of w8[2, 5, 8, 15].

4. We use Lu et al. improvement again. Since we want 4xAw
6,col(2) to have an

active byte in the 8th position and two of three other bytes, there are 3×2553

possible differences and only 3× 255 of these differences lead to a difference
of 4xM

6,col(2) where only two bytes 4xM
6 [8, 11] are active. So, for each pair

and each guess of w7[8, 15] we must check whether4xM
6,col(2) belongs to these

3 × 255 differences. According to observation I, when we have 4xAw
7 [8, 15]

as output and 4xM
6 [8, 11] as input difference of the S-box, we can compute

the values of xM
6 [8, 11] and x′M6 [8, 11] and therefore determine the value of

w7[8, 15]. At this step, we have about 3×2n−25 candidates for w7[8, 15]. From
the 2n−33 pairs and the 3 × 255 differences which are distributed over the
216 possible values of w7[8, 15]. Consequently, for a given guess of w7[8, 15],
we have about 3× 2n−25/216 = 3× 2n−41 pairs which for each guess of the
considered bytes in w8 and w7, lead the input difference to the impossible
differential.

5. First we create a list A of all 232 4-byte keys STK0[0, 5, 10, 15] and for all
remaining pairs (Pi, Pj), we compute four bytes [0, 5, 10, 15] of xI

1 and x′I1 :
xI
1 = Pi[0, 5, 10, 15]⊕ STK0[0, 5, 10, 15],

x′I1 = Pj [0, 5, 10, 15]⊕ STK0[0, 5, 10, 15].
Note that the STK0 only has one non-zero difference byte 4STK0[6] 6= 0,
and 4STK0[6] = 4P [6].
From precomputation, we know on average Hp has one pair (xI

1, x
′I
1) in each

row. For each tuple (xI
1, x
′I
1 ,4T0[6]) which is obtained at this stage, we

discard the P ⊕ xI
1 from the related indexed row of the hash table. Since

with respect to the precomputation (offline phase), we are sure that such a
a key leads to an impossible differential, resulting in a wrong key.
Finally, if A is not empty, output the remaining value(s) in A with corre-
sponding key guess of w7[8, 15] and w8[2, 3, 5, 6, 8, 9, 12, 15].

4.3 Complexity analysis

– Data Complexity
We know 2−(cin+cout) = 2−32 × 2−48 × 3 × 2−8 ≈ 2−86.4 and we guessed
32-bit of kin and (64 + 16)-bit of Kout. So, we can easily compute the data
complexity D:

(1− 2−(86.4))D < 1/2112 → e−(2
−86.4×D) < 1/2112 →

→ D ≈ 293 = 2n+15 → n = 78.

Since n = 78 then 278 × 240 = 2118 chosen plaintexts, are required for the
attack.

– Time Complexity

1. The precomputation requires about 2 × 240 × 4/16 = 239 one-round
decryptions, which is equal to 239/8 = 236 8-round decryptions.

2. Since we need n is equal to 78, step 1 requires 2(78+40) = 2118 8-round
encryptions.

3. Based on observation I, step 2 can be done by a look-up table. So, this
step needs about 255× 278+15 ≈ 2101 memory accesses.

4. We considered 255 differences of the 32-bit key guesses w8[3, 6, 9, 12] and
255 differences for 32-bit guesses of key w8[2, 5, 8, 15]. Therefore, Step 3
requires about 255× 255× 278+15 ≈ 2109 memory accesses.

5. For each 264 guesses of w8[2, 3, 5, 6, 8, 9, 12, 15], we need 278−33 × 3 ×
255 ≈ 278−23.4 memory accesses in a lookup table to achieve the guess

for w7[8, 15] from the differences 4x
M,col(2)
6 . So, step 4 requires about

264 × 278−23.4 = 2118.6 memory accesses.

6. For each remaining pair, step 5 is repeated 280 times (for each possible
values of w7 and w8), and on average for each repetition, we need to
access to hash table Hp and list A. So, this step requires about 2×280×
278−39.4 = 2119.6 memory accesses.

7. We already have obtained eight bytes of the key w8 and an exhaus-
tive search is needed to achieve the remaining key bytes which cost
28×8 = 264 encryption. But the time complexity of this step is negligible
compared to the other steps.

As a rule of thumb method adopted in most of the works (e.g look at [12]),
we assume the time complexity of 16 memory access equals to the time
complexity of one round, since in each round the Sbox is called 16 times.
Consequently, the 8 rounds are at least equal to 16×8 = 27 memory accesses.
So we can assume that each memory access is equivalent to 1/(16×8) = 2−7

8-round encryption.

Totally, time complexity is about (236 + 2118)Enc + (2101 + 2109 + 2118.6 +
2119.6)MA ≈ (2118 + 2120.2 × 2−7)Enc ≈ 2118Enc.

– Memory Complexity

The precomputation phase needs about 240 × (4 + 4 + 1) ≈ 243.2 bytes
of memory for storing xI

1[0, 5, 10, 15], xI
1[0, 5, 10, 15] and 4T0[6]. With the

simple approach, we need 28×(8+2+4) bytes to store the deleted values of
w8[2, 3, 5, 6, 8, 9, 12, 15], w7[8, 15] and K0[0, 5, 10, 15]. But if we use Lu et al.
improvement, we can apply the attack individually for each guess of the key;
and for the remaining bytes of each guess that is not discarded, perform an
exhaustive search. So, instead of the simple approach, we can store about
2n+23 = 2101 suggestions that remain after step 2. Each suggestion consists
of one pair. So, the memory complexity of the attack is about 243.2 +(2101×
2× 16) ≈ 2106 bytes or 2102 states.

5 8-round Related-Tweakey Impossible Differential
Attack

In this section, we present a related key impossible differential cryptanalysis of
8-round Deoxys by extending our impossible differential characteristic by two
rounds at the beginning and 1.5-round at the end. This attack on the reduced
8-round Deoxys requires about 2116.5 chosen plaintexts, 248 words of memory
and 2116.5 8-round Deoxys encryptions. Fig 5 illustrates this attack.

For our analysis, we consider a situation in which the value of the key differ-
ence in round 2 is exactly equal to the value of the tweak difference in the second
round (4K2[1] = 4T2[1]). In other words, we assume that two users encrypt
data with two different keys, and that these two keys have a non-zero difference
of one byte,4K0[15]. In this case, we select the tweaks in a way that the value of
the 4K2[1] exactly matches the value of the 4T2[1]. Considering this condition,
the definition of structure and set of plaintexts is a little different from what
described in section 4.

A structure L consists of 240 plaintexts Pi all of which are different in bytes
Pi[3, 4, 9, 14, 15] and equal at other bytes. Each 232 plaintexts Pi of one structure
that have equal 15th byte value of plaintexts Pi, form a set S. The value of
STKi

0[15] is equal to Pi[15], so a dedicated STKi
0[15] (and Pi[15]) is assigned to

each set. Clearly, there exist 28 sets in each structure. In our attack procedure,
we need the pair of plaintext-tweakeys ((P, STK), (P ′, STK ′)) such that P ⊕P ′

has an active byte in positions [3, 4, 9, 14, 15] and P [15] ⊕ P ′[15] = STK[15] ⊕
STK ′[15]. We can build about 232× (28−1)4 ≈ 264 distinct pairs that have four

active bytes [3, 4, 9, 14]. Also, we can choose
(
28

2

)
different sets from a structure

to be sure that the 15th byte is active too. Totally, we can build about
(
28

2

)
×

232× (28− 1)4 ≈ 279 pairs per structure, that have five active bytes in positions
[3, 4, 9, 14, 15].

5.1 Attack Procedure

Algorithm 2 illustrates a high level of the attack procedure. In what follows, we
describe the attack procedure in details:

1. We take 2n × 279 = 2n+79 possible plaintext pairs. Then we ask for the
corresponding ciphertexts: Ci = ET i

Ki
(Pi). We just select the pairs, so that

corresponding pairs (xM
8 , x′M8), have just eight active bytes in the last two

columns. So the expected number of remaining pairs is 2n+79×2−64 = 2n+15.
2. For all pairs (xM

8 , x′M8) that passed step 1, we compute 4xAw
8,col(2,3): 4xAw

8 =

MC−1 ◦ (4xM
8).

We keep pairs where only 4xAw
8 [8, 12, 13, 14, 15] are active bytes and also

the differences of bytes in the positions 4xAw
8 [12, 13, 14] are equal to the

differences of bytes in the positions 4w8[12, 13, 14]. Since we must have
three zero-difference bytes, 4xAw

8 [9, 10, 11] = 0 and three special difference
bytes 4xAw

8 [12, 13, 14] = 4w8[12, 13, 14], the number of remaining pairs is
2n+15 × (2−8)3 × (2−8)3 = 2n−33.

Fig. 5. 8-round related key impossible differential trail

Algorithm 2 8-round Related-Key Attack on Deoxys-BC

for all K2[1] = T2[1] & K′
2[1] = T ′

2[1] do
for all 2116.5 chosen plaintexts do

keep corresponding ciphertexts which have only two active last columns.
for all 291.5 remaining ciphertext pairs do

check if only two bytes xR8 [8, 15] are active.
for all 216 possible values of w8[8, 15] do

compute xO7,col(2).

for all 243.5 remaining pairs do
check if xR7,col(2) have only one passive byte at xR7 [9] or xR7 [10] or xR7 [11].
for all remaining pairs do

discard each STK0[3, 4, 9, 14] leads to passive xO1 .
end for

end for
end for

end for
end for

end for
Do exhaustive search for all remaining subkey bits.

3. We guess the 16-bit values of w8[8, 15]. Since we know the relation of sub-
tweakeys, we can compute w′8[15] easily. Then for each pairs (C,w8), (C ′, w′8)
that has passed step 2, compute four bytes of xO

7,col(2) and x′O7,col(2):

xO
7 = SB−1 ◦ SR−1 ◦ (w8 ⊕ (MC−1 ◦ (TR8 ⊕ C))),

x′O7 = SB−1 ◦ SR−1 ◦ (w′8 ⊕ (MC−1 ◦ (TR′8 ⊕ C ′))).
From step 1 we are sure that only two bytes 4xO

7 [8, 11] are active. So we
have no filtering here.

4. Consider the value of4STK7[8], check that4xR
7,col(2) has three active bytes

in positions [8, 9, 11] or [8, 9, 11] or [8, 10, 11]. At the end of this step, the
expected number of remaining pairs is about 2n−33 × 2−8 × 3 ≈ 2n−39.4.

5. We guess 32-bit values of STK0[3, 4, 9, 14] and for all remaining pairs from
the above steps, we compute four-bytes xM

1,col(1) and x′M1,col(1):

xM
1 = MC ◦ SR ◦ SB ◦ (P ⊕ STK0),

x′M1 = MC ◦ SR ◦ SB ◦ (P ′ ⊕ STK ′0).
We only consider the pairs that 4xM

1,col(1) = 4STK1,col(1). So, we only

choose pairs in which 4xM
1 [6] = 4STK1[6] and 4xM

1 [4, 5, 7] = 0. In other
word, we only choose pairs that at the end of round one, we are sure
that there is no active byte at 4xO

1,col(1). Since, we must have four zero-

difference bytes 4xO
1,col(1) = 0, the number of remaining pairs is about

2n−39.4 × (2−8)4 = 2n−71.4.
Since we initially considered the difference 4K2[1] equal to 4T2[1], then we
are sure that the differential characteristic passes the forward path correctly.
The keys that pass all above steps and lead such a difference (that is im-
possible), are wrong keys and must be discarded. We remove such a key K0

for each 16-bit guess of output corresponding key w8. Since only one of the
keys is the correct key, if we choose proper data complexity and perform the
above operation for all remaining pairs of step 4, we can be sure we have
reached the correct key.

5.2 Complexity Analysis

– Data Complexity
The bit conditions are about 2−(cin+cout) = 2−32 × 2−48 × 3× 2−8 ≈ 2−86.4

and | kin
⋃
kout | is equal to 32 + 16 = 48 so the data complexity D is:

(1− 2−(86.4))D < 1/248 → e−(2
−86.4×D) < 1/248 →

→ D ≈ 291.5 = 2n+15 → n = 76.5.

Since n = 76.5 then 276.5 × 240 = 2116.5 chosen plaintexts, are required for
the attack.

– Time Complexity

1. Step 1 requires 2(76.5+40) = 2116.5 8-round encryptions.
2. Complexity of step 3 is about 2×216×2(76.5−33) = 260.5 one-round 4/16

decryptions, which means 260.5×4/16×1/8 = 255.5 8-round encryptions.

3. Step 5 needs about 2 × 216 × 232 × 276.5−39.4 = 286.1 one-round 4/16
encryptions, which is equal to 286.1×4/16×1/8 = 281.1 8-round encryp-
tions.

Consequently , total complexity is about (2116.5+255.5+281.1)Enc ≈ 2116.5Enc.

– Memory Complexity

For storing the list of discard keys, we need 28×(2+4) = 248 bytes of mem-
ory for storing the deleted values of w8[8, 15] and K0[3, 4, 9, 14]. Therefore,
memory complexity is 248 bytes or 244 states.

6 9-round Related-Tweakey Impossible Differential
Attack

Similar to the attack that was applied to the 8-round Deoxys, we can analyse the
9-round Deoxys, using impossible differential characteristic of 4.5-round Deoxys
as shown in Fig 3. We extend our impossible differential by two rounds at the
beginning and 2.5-round at the end. Fig 6 shows this attack. In this section, we
use observation I again.

Fig. 6. 9-round related key impossible differential trail

The attack procedure has two phases, online phase and precomputation (of-
fline phase). Algorithm 3 illustrates a high level of the attack procedure. The
details of the attack are as follows.

Algorithm 3 9-round Related-Key Attack on Deoxys-BC

Precomputation Phase make a list Hp of 240 valid first round constructions.
Online Phase

for all K2[1] = T2[1] & K′
2[1] = T ′

2[1] do
for all 2118 chosen plaintexts do

keep corresponding ciphertexts which have only two active last columns
xI9,col(2,3).

for all 28 possible values of 4xAw
8 [15] that leads to 4xR9 [3, 6, 9, 12] do

compute w9[3, 6, 9, 12].
for all 28 possible values of 4xAw

8 [8] that leads to 4xR9 [2, 5, 8, 15] do
compute w9[2, 5, 8, 15].
for all 3× 255 possible values of 4xAw

7,col(2) that leads to 4xR8 [8, 15] do
compute w8[8, 15].
for all 237 remaining pairs do

discard each STK0[3, 4, 9, 14] that is in Hp.
end for

end for
end for

end for
end for

end for
Do exhaustive search for all remaining subkey bits.

6.1 Precomputation Phase

The number of pairs (xM
1,col(1), x

′M
1,col(1)) that are different only in byte position

xM
1 [6] and the difference is equal to the difference of two subtweakeys STK1[6]

and STK ′1[6] (4xM
1 [6] = 4STK1[6] 6= 0), is equal to 28× (28−1)× (28)3 ≈ 240.

For all these 240 pairs, compute four bytes [0, 5, 10, 15] of xI
1 and x′I1 :

xI
1[3, 4, 9, 14] = SB−1 ◦ SR−1 ◦MC−1(xM

1,col(1)) and

x′I1 [3, 4, 9, 14] = SB−1 ◦ SR−1 ◦MC−1(x′M1,col(1)).

Since the 4STK1[6] leads to a special 4STK0[15], we can store the pairs
(xI

1, x
′I
1) in a hash table Hp indexed by (4xI

1 || 4STK0[15]). These parameters
can take 240 different values (232 distinct values for 4xI

1 and 28 unequal values
for 4STK0[15]). Each value represents a row in Hp. Since, we have 240 pairs
(xM

1 , x′M1), then on average Hp has one pair (xI
1, x
′I
1) in each row. In which the

first parameter specifies the value of 4xI
1, and the second parameter determines

the value of 4STK0[15].

6.2 Online Phase

1. We take 2n structures, which produce about 2n×279 = 2n+79 possible plain-
text pairs. Then we ask for the corresponding ciphertexts: Ci = ET i

K (Pi).
We can invert the final subtweaky xor and compute 4xR

9 = MC−1 ◦ (4C ⊕
4STK9). We just select the pairs that corresponding 4xR

9 , have eight ac-
tive bytes [2, 3, 5, 6, 8, 9, 12, 15]. Since we must have eight equal bytes 4xR

9

in positions [0,1,4,7,10,11,13,14], the expected number of remaining pairs is
2n+79 × 2−64 = 2n+15.

2. Since we know the value of (C,C ′) and 4STK9, the difference 4xS
9,col(3)

can be determined. Thus, by knowing the value of 4xAw
8,col(3), we can obtain

the values of xS
9,col(3) and x′S9,col(3) according to observation I. Since we have

28 − 1 different values of 4xR
8 [15], because of fix subkey difference notice to

the tweak difference, finally we have only 28−1 different values of 4xAw
8,col(3).

Therefore, this step can be done as follows:
Initialize 232 empty lists, for each guess of w9[3, 6, 9, 12] we can easily obtain
the value of w′9[3, 6, 9, 12], which is different from w9[3, 6, 9, 12] only at w9[6]
due to the subtweakey difference schedule.
For each remaining pair (C,C ′), and for each possible value of 4xAw

8,col(3),

calculate the key w9[3, 6, 9, 12] that leads the pair (C,C ′) to 4xAw
8,col(3) and

add this pair to the list related to the guessed key.
Due to observation I, for each pair and distinction guess, on average we
have one key suggestion. Since these 2n+15 × 28 = 2n+23 suggestions are
distributed over all 232 possible keys, we have about 2n+23/232 = 2n−9 pairs
for each guess of w9[3, 6, 9, 12].

3. Similar to step 2, we initialize 232 empty lists for each guess of w9[2, 5, 8, 15].
For each remaining pair (C,C ′), and for each possible value of 4xAw

8 [8],
calculate the key w9[2, 5, 8, 15] that leads the pair (C,C ′) to 4xAw

8,col(2), and
add this pair to the list related to the guessed key.
Due to observation I, for each pair and distinction guess, on average we have
one suggested key. Since these 2n−9×255 ≈ 2n−1 suggestions are distributed
over all 232 possible keys, we have about 2n−1/232 = 2n−33 pairs for each
guess of w9[2, 5, 8, 15].

4. We use Lu et al. improvement again. Since we want 4xR
7,col(2) to have an

active byte in the 8th position and two of other three bytes and also the
subkey difference is fix, there are 3× 2553 possible differences for 4xAw

7,col(2)

and only 3 × 2553/2552 = 3 × 255 of these differences lead to a difference
4xM

7,col(2) so that only two bytes 4xM
7 [8, 11] are active.

So, for each pair and each guess of w8[8, 15] we must check whether4xM
7,col(2)

belongs to these 3×255 differences. According to observation I, when we have
4xR

8 [8, 15] as output and4xM
7 [8, 11] as input difference of the S-box, we can

compute the values of xM
7 [8, 11] and x′M7 [8, 11] and therefore determine the

value of w8[8, 15]. At this step, we have about 3 × 255 × 2−33 = 3 × 2n−25

candidates for w8[8, 15]. From the 2n−33 pairs and the 3 × 255 differences
which are distributed over the 216 possible values of w8[8, 15]. Consequently,

for a given guess of w8[8, 15], we have about 3× 2n−25/216 = 3× 2n−41 pairs
which for each guess of the considered bytes in w9 and w8, lead the input
difference to the impossible differential.

5. First we create a list A of all 232 4-byte keys STK0[3, 4, 9, 14] and for all
remaining pairs (Pi, Pj), we compute four bytes [3, 4, 9, 14] of xI

1 and x′I1 :
xI
1 = Pi[3, 4, 9, 14]⊕ STK0[3, 4, 9, 14],

x′I1 = Pj [3, 4, 9, 14]⊕ STK0[3, 4, 9, 14].
Note that the STK0 only has one non-zero difference byte 4STK0[15] 6= 0,
which 4STK0[15] = 4P [15].
From precomputation, we know on average Hp has one pair (xI

1, x
′I
1) in each

row. For each tuple (xI
1, x
′I
1 ,4STK0[15]) which is obtained at this stage, we

discard the P ⊕ xI
1 from the related indexed row of the hash table. Since

with respect to the precomputation (offline phase), we are sure that such a
key leads to the impossible differential, resulting in a wrong key.
Since we initially considered the difference 4K2[1] to be equal to 4T2[1],
then we are sure that the differential characteristic passes the forward path
correctly.
Finally, if A is not empty, output the remaining value(s) in A with corre-
sponding key guess of w8[8, 15] and w9[2, 3, 5, 6, 8, 9, 12, 15].

6.3 Complexity analysis

– Data Complexity
The data complexity D is:

(1− 2−(86.4))D < 1/2112 → e−(2
−86.4×D) < 1/2112 →

→ D ≈ 293 = 2n+15 → n = 78.

Where 2−(cin+cout) = 2−32 × 2−48 × 3 × 2−8 ≈ 2−86.4 and | kin
⋃
kout | is

equal to 32 + 64 + 16 = 112. Since n = 78 then 278 × 240 = 2118 chosen
plaintexts, are required for the attack.

– Time Complexity
1. The precomputation requires about 2 × 240 × 4/16 = 239 one-round

decryptions, which is equal to 239/9 ≈ 235.9 9-round decryptions.
2. Since n was considered to be 78, step 1 requires 2(78+40) = 2118 9-round

encryptions.
3. Based on Lu et al. method, step 2 can be done by a look-up table. So,

this step needs about 255× 278+15 ≈ 2101 memory accesses.
4. Step 3 requires about 255× 255× 278+15 ≈ 2109 memory accesses.
5. For each 264 guesses of w9[2, 3, 5, 6, 8, 9, 12, 15], we need 278−33 × 3 ×

255 ≈ 278−23.4 memory accesses in a lookup table to achieve the guess

for w8[8, 15] from the differences 4x
M,col(2)
7 . So, step 4 requires about

264 × 278−23.4 = 2118.6 memory accesses.
6. For each remaining pair, step 5 is repeated 280 times (for each possible

values of w8 and w9), and on average for each repetition, we need to
access to hash table Hp and list A. So, this step require about 2× 280×
278−39.4 = 2119.6 memory accesses.

7. Exhaustive search is negligible.

As it is mentioned before in Sec 4, the time complexity of 9 rounds is equal
to at least 16 × 9 memory access. So we can estimate each memory access
as 1/(16× 9) ≈ 2−7 9-round encryption.

Totally, time complexity is about (235.9 + 2118)Enc+ (2101 + 2109 + 2118.6 +
2119.6)MA ≈ (2118 + 2120.2 × 2−7)Enc ≈ 2118Enc.

– Memory Complexity

The precomputation phase needs about 240 × (4 + 4 + 1) ≈ 243.2 bytes of
memory for storing xI

1[3, 4, 9, 14], xI
1[3, 4, 9, 14] and4STK0[15]. we apply the

attack individually for each guess of the key and for the remaining bytes of
each guess that is not discarded, perform an exhaustive search. So, we store
about 2n+31 = 2109 suggestions that remain after Step 2. Each suggestion
consists of one pair. So, the memory complexity of the attack is about 243.2+
2114 ≈ 2114 bytes or 2110 states.

7 Conclusion

This paper describes several impossible differential cryptanalysis on the round-
reduced variants of Deoxys-BC-256. As a possible direction for future research,
one can investigate the security of Deoxys-BC-256 against impossible differen-
tial by considering a beyond full-codebook scenario, since the tweak in Deoxys-
BC can provide extra plaintext-ciphertext pairs in contradiction to the classical
model.

This paper describes several impossible differential cryptanalysis on the round-
reduced variants of Deoxys-BC-256. This work presents the first third-party
cryptanalysis of the tweakable block cipher Deoxys-BC-256 in the single-key
model. We also propose impossible differential attacks up to the 9-round Deoxys-
BC-256 in the related-tweak related-key model which has a lower memory com-
plexity than the best previous attack.

The cryptanalysis presented in this paper cannot be exploited to mount a
key-recovery attack on Deoxys-II authenticated encryption scheme. However, as
it is discussed in Section 6 of [1] the results can be applied on the Deoxys-I
authenticated encryption.

As a possible direction for future research, one can investigate the security
of Deoxys-BC-256 against impossible differential by considering a beyond full-
codebook scenario, since the tweak in Deoxys-BC can provide extra plaintext-
ciphertext pairs in contradiction to the classical model.

8 Acknowledgement

The work of Hadi Soleimany is partly supported by grants from Shahid Be-
heshti University and by the Iranian National Science Foundation (grant number
95835673).

References

1. C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and L. Song, “A security analysis of De-
oxys and its internal tweakable block ciphers”, IACR Transactions on Symmetric
Cryptology, 2017(3):73107, 2017.

2. Z. Jiang and C. Jin, “Impossible Differential Cryptanalysis of 8-Round Deoxys-BC-
256”, IEEE Access, Vol. 6, pp. 8890–8895, 2018.

3. R. Zong, X. Dong, X. Wang, “Related-Tweakey Impossible Differential Attack on
Reduced-Round Deoxys-BC-256”, SCIENCE CHINA Information Sciences.

4. J. Jean, I. Nikolic, T. Peyrin, and Y. Seurin, “Deoxys v1.41”, Submitted to CAE-
SAR, October 2016.

5. J. Jean, I. Nikolić, and T. Peyrin, “Tweaks and Keys for Block Ciphers : the
TWEAKEY Framework”, Advances in Cryptology - ASIACRYPT 2014 - 20th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II,
volume 8874 of Lecture Notes in Computer Science, pages 274288. Springer, 2014.

6. J. Daemen, V. Rijmen, “AES Proposal : Rijndael”, NIST AES proposal, 1998.
7. E. Biham, A. Biryukov, A. Shamir, “Miss in the middle attacks on IDEA and

Khufu”, In L. Knudsen, editor, Fast Software Encryption, 6th international Work-
shop, Volume 1636 of Lecture Notes in Computer Science, pages 124138, Rome,
Italy, Springer-Verlag 1999.

8. E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of Skipjack Reduced to 31
Rounds using Impossible Differentials”, in International Conference on the Theory
and Applications of Cryptographic Techniques, 1999, pp. 12-23.

9. M. Minier and M. Naya-Plasencia, “A related key impossible differential attack
against 22 rounds of the lightweight block cipher LBlock”, In Information Processing
Letters, Volume 112, Issue 16, 2012, Pages 624-629, ISSN 0020-0190.

10. J. Chen, Y. Wei, Y. Hu, “A New Method for Impossible Differential Cryptanaly-
sis of 7-round Advanced Encryption Standard”, Proceedings of International Con-
ference on Communications, Circuits and Systems Proceedings 2006, Vol. 3, pp.
1577-1579, IEEE, 2006.

11. C. Boura, M. Naya-Plasencia, and V. Suder,“Scrutinizing and Improving Impos-
sible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon”,
In ASIACRYPT 2014, Lecture Notes in Computer Science , volume 8873, pages
179-199, Springer, 2014.

12. B. Bahrak and M. R. Aref, “Impossible differential attack on seven-round AES-
128”, IET Information Security journal, Vol. 2, Number 2, pp. 2832, IET, 2008.

13. B. Bahrak and M. R. Aref, “A Novel Impossible Differential Cryptanalysis of AES”,
proceedings of the Western European Workshop on Research in Cryptology 2007,
Bochum, Germany, 2007.

14. J. Lu, O. Dunkelman, N. Keller, and J. Kim, “New Impossible Differential Attacks
on AES”, INDOCRYPT 2008. LNCS, vol. 5365, pp. 279293. Springer, Berlin, 2008.

15. C. Dobraunig and E. List, “Impossible-Differential and Boomerang Cryptanalysis
of Round-Reduced Kiasu-BC”, pp. 207222. Cham: Springer International Publish-
ing, 2017.

