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Abstract. Certain RSA-based protocols, for instance in the domain of group signatures, require
a prover to convince a verifier that a set of RSA parameters is well-structured (e.g., that the
modulus is the product of two distinct primes and that the exponent is co-prime to the group
order). Various corresponding proof systems have been proposed in the past, with different levels
of generality, efficiency, and interactivity.

This paper proposes two new proof systems for a wide set of properties that RSA and related
moduli might have. The protocols are particularly efficient: The necessary computations are simple,
the communication is restricted to only one round, and the exchanged messages are short. While
the first protocol is based on prior work (improving on it by reducing the number of message passes
from four to two), the second protocol is novel. Both protocols require a random oracle.

1 Introduction

A common property of cryptographic primitives in the domain of public-key cryptography (PKC)
is that there is, in most cases, a natural distinction between a secret-key holder (SKH) and a
public-key holder (PKH). For instance, in the digital signature (DS) context the SKH is the
signer, and in public-key encryption (PKE) the SKH is the receiver; the verifier and the sender,
respectively, are PKHs. The security properties of such schemes are typically focused on protect-
ing primarily the SKH: In the signature context, unforgeability means that the signer cannot be
impersonated by an adversary, and security notions for PKE require that messages encrypted to
the receiver remain confidential. Thus, naturally, the SKH has a vital interest in its keys being
properly generated, i.e., in a way covered by the security model, while this is only of secondary
importance to the PKH.

In some PKC applications, however, also parties not holding the secret key might require
assurance about that the key material has been generated in a proper way. Typical examples
arise in multi-party settings where the SKH manages a set of mutually distrusting parties who
require protection from each other. For instance, in group signature schemes there is a group
manager that issues certificates to registered parties, allowing them to sign messages on behalf
of the whole group. While the resulting signatures should in principle be anonymous (cannot
be linked to the particular signer), to prevent misuse there is often a traceability feature that
allows the group manager to revoke the anonymity of a signer by creating a publicly-verifiable
non-interactive proof that testifies that an indicated signer created a particular signature. If
such a tracing option exists, the group manager should however not be able to falsely accuse a
member of having signed some document. Many group signature schemes have been proposed
in the past, but some of them (e.g., [1]) provably provide the latter property only if the group
manager’s keys are properly formed.3 Other settings where trust in the secret keys generated

3 Concretely, the protocol from [1] is presented in the safe-prime-RSA setting where N = pq with p = 2p′+1, q =
2q′ + 1 such that p, q, p′, q′ are all primes. Some of the security properties of [1] hold in respect to the CDH
problem in Z∗N . If N = pq and thus Z∗N = Z∗p × Z∗q as it should, CDH is arguably hard. However, if the group
manager announces a malformed N that is made up of a large number of (small) prime factors, solving CDH
becomes easy.
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by other parties is required include e-cash [13], cryptographic accumulators [9], undeniable
signatures [18], double-authentication preventing signatures [27,2].

If a cryptographic scheme is solely based on the discrete logarithm problem (DLP) in a prime-
order group, checking that keys of the type X = gx are well-formed is a trivial job (because all
keys are well-formed). In the RSA setting the situation is more subtle: Given parameters (N, e),
before assuming the security of the system the PKH might want to be convinced that the
following questions can be answered affirmatively: (1) does N have precisely two prime divisors,
(2) is N square-free, (3) is e coprime to ϕ(N), i.e., is the mapping m 7→ me mod N a bijection
(rather than lossy). Further, in some settings it might be necessary to know (4) whether N = pq
is a safe-prime modulus, i.e., whether (p−1)/2 and (q−1)/2 are primes by themselves. In settings
specifically based on the hardness of factoring an additional question might be (5) whether
squaring is a bijection on QR(N), more specifically (6) whether N is a Blum integer, and even
more specifically (7) whether N is a Rabin–Williams integer.4

What are known approaches for convincing participants of the validity of predicates like the
ones listed above? In some research papers corresponding arguments are just missing [1], or they
are side-stepped by explicitly assuming honesty of key generation in the model [2]. Other papers
refer to works like [10] that propose non-interactive proof systems for convincing verifiers of the
validity of such relations. Concretely, [10] provides a NIZK framework for showing that an RSA
number is the product of two safe primes. While powerful, the NIZK technique turns out to be
practically not usable: The argument is over the intermediate results of four Miller–Rabin tests,
a large number of range tests, etc., making the resulting proof string prohibitively long. Another
approach is to pick prime numbers, moduli, and exponents in a certain way such that showing
specific properties becomes feasible with number-theoretic techniques. Working with restricted
parameter classes might however remove standard conformance and render implementations less
efficient; for instance, the authors of [23] develop tools for showing that the mapping m 7→ me

is a permutation, but these tools work only for fairly large values of e.
A third approach is tightly connected with the number-theoretic structures that motivate

the requirements for the conditions listed above. (It is less general than the NIZK approach
of [10] but usually does not require picking parameters in a specific way.) For instance, if an
application of RSA requires that e be coprime to ϕ(N) then this is for a specific reason, namely
that information shall not be lost (but remain recoverable) when raising it to the power of e.
Thus, instead of abstractly checking the e | ϕ(N) relation, a corresponding check could be
centered precisely around the information-loss property of the exponentiation operation. Our
results are based on this strategy. Our techniques are inspired by, and improving on, prior work
that we describe in detail in the following.

1.1 Interactive Zero-Knowledge Testing of Certain Relations

We reproduce results of Gennaro, Micali, and Rabin [19]. As a running example, consider the
question of whether e | ϕ(N) holds, where N is an RSA modulus and e a small prime exponent.
The relation holds if and only if the mapping x 7→ xe mod N is bijective, characterized by all
y ∈ Z∗N having an eth root. This motivates an (interactive) protocol in which a prover convinces
a verifier of relation e | ϕ(N) by first letting the verifier pick a random value y ∈ Z∗N and send
it to the prover, then letting the prover (who knows the factorization of N) compute the eth
root x ∈ Z∗N of y and return it to the verifier, and finally letting the verifier accept if and only if
xe = y mod N . Prover and verifier may run multiple repetitions of this protocol, each time with
a fresh challenge y. If the prover is able to return a valid response for each challenge, then the

4 An RSA modulus N = pq is a Blum integer if p ≡ q ≡ 3 (mod 4), and it is a Rabin–Williams integer if p ≡ 3
(mod 8) and q ≡ 7 (mod 8).
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verifier is eventually convinced of the e | ϕ(N) claim. Indeed, if e - ϕ(N), then only about one
of e elements of Z∗N have an eth root, so the protocol would detect this with high probability
and a cheating prover would be caught.

Note that if the protocol would be deployed in precisely the way we described it, it would
be of limited use. The reason is that it is not zero-knowledge; in particular, the prover would
effectively implement an ‘eth root oracle’ for values y arbitrarily picked by the verifier, and this
would likely harm the security of most applications. The proposal of [19] considers fixing this
by making sure that challenges y are picked in a sufficiently random way. Concretely, the full
protocol [19, Section 4.1] involves four message passes as follows: (1) the verifier picks y1 ∈ Z∗N
and sends a commitment to this value to the prover, (2) the prover picks y2 ∈ Z∗N and sends
this value to the verifier, (3) the verifier opens the commitment; both parties now compute
y ← y1y2, (4) the prover computes the eth root of y and sends it to the verifier. Unfortunately,
the security analysis of [19] does not cover the full protocol; rather it restricts attention to only
the last prover-to-verifier message and shows that it is zero-knowledge under the assumption
that value y “can be thought as provided by a trusted third party” [19, Section 2.3]. We stress
that a proof for the full four-message protocol is not immediate: Proving it zero-knowledge
seems to require assuming an extractability property of the commitment scheme (so that the
simulator can find ‘the right’ y2 value), and the increased interactiveness calls for a fresh analysis
in a concurrent communication setting anyway (if the protocol shall be of practical relevance).
Neither of these issues is mentioned, let alone resolved, in [19].

1.2 Our Results

We construct practical protocols for convincing a verifier that certain relevant number-theoretic
properties hold for RSA parameters. This includes statements on the number of prime factors of
the modulus, its square-freeness, etc. Concretely, we propose two generic protocol frameworks
that can be instantiated to become proof systems for many different relations: The first frame-
work is based on [19] and effectively compresses the first three messages of the full protocols
into a single one by, intuitively speaking, using a random oracle to implement the mentioned
trusted third party. Precisely, continuing our running example, we let the verifier only specify
a random seed r and let both parties derive value y as per y ← H(r) via a random oracle.
The random oracle model turns out to be strong enough to make the full protocol sound and
zero-knowledge. Because of the reduced number of message passes, concurrency is not an issue.

The second framework is similar in spirit but uses the random oracle in a different and
novel way. Here, the challenge y can be freely picked by the verifier (no specific distribution
is required), the prover again computes the eth root x of it, but instead of sharing x with the
verifier it only discloses the hash H(x) of it. Note that, unless the verifier knows value x anyway,
if H behaves like a random oracle then the hash value does not leak anything.

We highlight that the second protocol has two important advantages over the first: (1) The
first protocol requires a random oracle that maps into the ‘problem space’ (here: challenge
space Z∗N ). However, for some number-theoretic tests, e.g., whether N is a Blum integer, the
problem space we (and [19]) work with is QR(N), i.e., the set of quadratic residues modulo N ,
and for such spaces it is unclear how to construct a random oracle mapping into them. Note
that, in contrast, the second protocol does not require hashing into any particular set. (2) Some
number-theoretic relations allow for an easier check when the second framework is used. For
instance, identifying Blum integers involves the prover computing the four square roots that
quadratic residues always have. In the first protocol framework, returning all four square roots
is prohibitive as this would immediately allow for factorizing N . In the second framework,
however, hash values of all square roots can be returned without doing harm to security.
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1.3 Related Work

We note that techniques similar to ours appear implicitly or explicitly in a couple of prior works.
For instance, the validation of RSA parameters is a common challenge in password-based key
agreement; in particular, adversaries might announce specially crafted parameters (N, e) that
would lead to partial password exposure. The work of Zhu et al. [34] addresses this, but without a
formal analysis, by pursuing approaches that are similar to our second protocol instantiated with
one particular number-theoretic relation. The work of [28] provides a security analysis of [34].
(It seems, however, that the analysis is incomplete: The output length of the hash function does
not appear in the theorem statement, but for short output lengths the statement is obviously
wrong.) We conclude by noting that both [34] and [28], and also a sequence of follow-up works in
the domain of password-based key agreement, employ variants of our two protocols in an ad-hoc
fashion, and not at the generic level and for the large number of number-theoretic problems as
we do.

A higher level of abstraction, also in the domain of password-based key agreement, can be
found in the work of Catalano et al. [11]. Their work considers exclusively our first approach. Fur-
ther, while considering soundness and zero-knowledge definitions for language problems, their
constructions are not on that level but directly targeting specific number-theoretic problems.

Considering proof systems not relying on random oracles, basically any desired property
of an RSA modulus can be proven by employing general zero-knowledge proof systems for
NP languages [8,20,21]. However, these protocols are usually less efficient than proof systems
designed to establish a particular property. Thus a vast amount of papers provides systems of the
latter type. Targeted properties include that an RSA modulus N has factors of approximately
equal size [6,12,16,17,24] or is the product of two safe primes [10]. The approach of having
the prover provide solutions to number-theoretic problems is taken in several proof systems.
Concretely, there are protocols of this type proving that N is square-free [7,19], has at most two
prime factors [5,19,25,29], satisfies a weakened definition of Blum integer [5,29], is the product of
two almost strong primes [19]. A shortcoming common to the protocols deciding whether N has
at most two prime factors is that they either have a two-sided error or have to impose additional
restrictions on N , the first leading to an increased number of repetitions of the protocol in order
to achieve security, the latter to artificially restricted choices of N .

Bellare and Yung [3] show that any trapdoor permutation can be certified, i.e. they provide
a protocol to prove that a function is invertible on an overwhelming fraction of its range.
Kakvi et al. [23] show that given an RSA modulus N and an exponent e such that e ≥ N1/4

Coppersmith’s method can be used to efficiently determine whether the RSA function x 7→ xe

defines a permutation on Z∗N . However, their result does not apply to exponents of size smaller
than N1/4. A proof for RSA key generation with verifiable randomness is given in [22]. The
protocol makes use of the protocols of [7,29] as subroutines and relies on a trusted third party.
Benhamouda et al. [4] provide a protocol proving in the random oracle model that at least
two of the factors of a number N were generated using a particular prime number generator.
However, in order to achieve security the construction requires N to be the product of many
factors, which usually is prohibitive in the RSA setting.

We note that a topic in cryptography somewhat connected to our work is the fraudulent
creation of parameters. More specifically, the works in [30,31,32,33] consider Kleptography, i.e.,
the creation of asymmetric key pairs by an adversary-modified generation algorithm such that,
using a trapdoor, the adversary can recover the secret key from the public key. Preventing
such attacks is not the goal of our work, and our protocols will indeed not succeed in catching
properly performed Kleptography.

By nothing-up-my-sleeves (NUMS) parameter generation one subsumes techniques to pro-
pose parameters for cryptosystems in an explainable and publicly reproducible way. For instance,
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the internal constants of the hash functions of the SHA family are derived from the digits of
the square and cubic roots of small prime numbers, making the existence of trapdoors (e.g.,
for finding collisions) rather unlikely. While we do not advise against NUMS techniques, we
note that using them restricts freedom in parameter generation and thus might break standard
conformance and lead to less efficient systems. Moreover, and more relevantly in the context of
our work, NUMS techniques typically apply to DL-based cryptosystems and not to RSA-based
ones.

1.4 Organization

The overall focus of this work is on providing practical methods for proving certain properties of
RSA-like parameter sets. Our interactive proof systems, however, follow novel design principles
that promise finding application also outside of the number-theoretic domain. We thus approach
our goal in a layered fashion, by first exposing our proof protocols such that they work for
abstract formulations of problems and corresponding solutions, and then showing how these
formalizations can be instantiated with the number-theoretic relations we are interested in.

More concretely, the structure of this article is as follows: In Section 2 we fix notation and
recall some general results from number theory. In Section 3 we formulate a variant of the is-
word-in-language problem and connect it to problems and solutions in some domain; we further
introduce the concept of a challenge-response protocol for proving solutions of the word problem.
In Section 4 we study two such protocols: Hash-then-Solve, which is inspired by the work of [19],
and Solve-then-Hash, which is novel. Finally, in Section 5 we show how RSA-related properties
can be expressed as instances of our general framework so that they become accessible by our
proof systems.

2 Preliminaries

We fix notation and recall basic facts from number theory.

2.1 Notation

Parts of this article involve the specification of program code. In such code we use assignment
operator ‘←’ when the assigned value results from a constant expression (including from the
output of a deterministic algorithm), and we write ‘←$’ when the value is either sampled
uniformly at random from a finite set or is the output of a randomized algorithm. In a security
experiment, the event that some algorithm A outputs the value v is denoted with A ⇒ v.
In particular, Pr[A ⇒ 1] denotes the probability, taken over the coins of A, that A outputs
value 1. We use bracket notation to denote associative arrays (a data structure that implements
a ‘dictionary’). For instance, for an associative array A the instruction A[7]← 3 assigns value 3
to memory position 7, and the expression A[2] = 5 tests whether the value at position 2 is equal
to 5. Associative arrays can be indexed with elements from arbitrary sets. When assigning
lists to each other, with ‘ ’ we mark “don’t-care” positions. For instance, (a, ) ← (9, 4) is
equivalent to a ← 9 (value 4 is discarded). We use the ternary operator known from the
C programming language: If C is a Boolean condition and e1, e2 are arbitrary expressions, the
expression “C ? e1 : e2” evaluates to e1 if C holds, and to e2 if C does not hold. We further use
Iverson brackets to convert Booleans to numerical values. That is, writing “[C]” is equivalent
to writing “C ? 1 : 0”. If A is a randomized algorithm we write [A(x)] for the set of outputs
it produces with non-zero probability if invoked on input x. If u, v are (row) vectors of values,
u ‖ v denotes their concatenation, i.e., the vector whose first elements are those of u, followed
by those of v. We use symbol ∪· to indicate when the union of two sets is a disjoint union.
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2.2 Number Theory

We write N = {1, 2, 3, . . .} and P ⊆ N for the set of natural numbers and prime numbers, respec-
tively. For every natural number N ∈ N we denote the set of prime divisors of N with P(N).
Thus, for any N ∈ N there exists a unique family (νp)p∈P(N) of multiplicities νp ∈ N such that

N =
∏

p∈P(N)
pνp .

We denote with odd(N) the ‘odd part’ of N , i.e., what remains of N after all factors 2 are
removed; formally, odd(N) =

∏
p∈P(N),p 6=2 p

νp .
Consider N ∈ N and the ring ZN = Z/NZ. The multiplicative group Z∗N of ZN has order

ϕ(N) =
∏
p∈P(N)(p − 1)pνp−1, where ϕ is Euler’s totient function. By the Chinese Remainder

Theorem (CRT) there exists a ring isomorphism

ψ : ZN ∼−→ ×
p∈P(N)

Zpνp .

ForN, e ∈ N consider the exponentiation mapping x 7→ xe mod N . This mapping is 1-to-1 on Z∗N
iff gcd(e, ϕ(N)) = 1. The general statement, that holds for all N, e, is that the exponentiation
mapping is L-to-1 for

L =
∏

p∈P(N)
gcd(e, ϕ(pνp)) . (1)

We write QR(N) for the (group of) quadratic residues (i.e., squares) modulo N .

3 Challenge-Response Protocols for Word Problems

We define notions of languages, statements, witnesses, and a couple of algorithms that operate
on such objects. We then introduce the notion of a challenge-response protocol for the word
problem in such a setting.

3.1 Associating Problems with the Words of a Language

Statements, candidates, witnesses. Let Σ be an alphabet and let L ⊆ U ⊆ Σ∗ be
languages. We assume that deciding membership in U is efficient, while for L this might not be
the case. Each element x ∈ Σ∗ is referred to as a statement. A statement x is a candidate if x ∈ U .
A statement x is valid if x ∈ L; otherwise, it is invalid. (Thus, in general there coexist valid and
invalid candidates.) For all candidates x we assume a (possibly empty) set of witnessesWx such
that valid candidates are characterized by having a witness: ∀x ∈ U : |Wx| ≥ 1 ⇐⇒ x ∈ L.

Relating problems with candidates. For all candidates x ∈ U let Px be a problem
space and Sx a solution space, where we require that deciding membership in Px is efficient.
Let Relx ⊆ Px × Sx be a relation that (abstractly) matches problems with solutions. For any
problem P ∈ Px we write Solx(P) := {S | (P,S) ∈ Relx} ⊆ Sx for the set of its solutions. Not
necessarily all problems are solvable, so we partition the problem space as Px = P+

x ∪· P−x such
that precisely the elements of P+

x have solutions: P ∈ P+
x ⇐⇒ |Solx(P)| ≥ 1 and, equivalently,

P ∈ P−x ⇐⇒ Solx(P) = ∅. We extend relation Relx to Rel∗x := Relx ∪ (P−x × {⊥}) by marking
problems without solution with the special value ⊥, and we extend notion Solx to Sol∗x such
that for all P ∈ P−x we have Sol∗x(P) = {⊥}. We require that every candidate has at least one
problem-solution pair: ∀x ∈ U : |Relx| ≥ 1.
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We assume four efficient algorithms, Verify, Sample, Sample∗, and Solve, that operate on
these sets. Deterministic algorithm Verify implements for all candidates the indicator function
of Rel, i.e., decides whether a problem and a solution are matching. More precisely, Verify takes
a candidate x ∈ U , a problem P ∈ Px, and a potential solution S ∈ Sx for P, and outputs
a bit that indicates whether (P,S) is contained in Relx or not. Formally, ∀x ∈ U , (P,S) ∈
Px × Sx : Verify(x,P,S) = 1 ⇐⇒ (P,S) ∈ Relx. Algorithm Sample is randomized, takes a
candidate x ∈ U , and outputs a (matching) problem-solution pair (P,S) ∈ Relx. Algorithm
Sample∗ is randomized, takes a candidate x ∈ U , and outputs a pair (P,S) ∈ Rel∗x (note that
S = ⊥ if P ∈ P−x ). Finally, deterministic algorithm Solve takes a (valid) statement x ∈ L, a
witness w ∈ Wx for it, and a problem P ∈ Px, and outputs the subset of Sx that contains
all solutions of P. (If no solution exists, Solve outputs the empty set.) Formally, ∀x ∈ L, w ∈
Wx,P ∈ Px : Solve(x,w,P) = Solx(P).

If we write P =
⋃
Px, S =

⋃
Sx, Rel =

⋃
Relx, Rel∗ =

⋃
Rel∗x,W =

⋃
Wx, where the unions

are over all x ∈ U , a shortcut notation for the syntax of the four algorithms is

U × P × S → Verify → {0, 1}
U → Sample →$ Rel
U → Sample∗ →$ Rel∗

L ×W ×P → Solve → Powerset(S)

Number of solutions, spectrum, solvable-problem density. Note that different prob-
lems P ∈ P+ have, in general, different numbers of solutions. For any setM⊆ U of candidates,
the spectrum #M collects the cardinalities of the solution sets of all solvable problems associated
with the candidates listed inM. Formally,

#M := {|Solx(P)| : x ∈M,P ∈ P+
x } .

Consequently, max #L is the largest number of solutions that solvable problems associated with
valid candidates might have, and min #(U \ L) is the smallest number of solutions of solvable
problems associated with invalid candidates. Further, for a set M ⊆ U the solvable-problem
density distribution ∆M, defined as

∆M := {|P+
x |/|Px| : x ∈M} ,

indicates the fractions of problems that are solvable (among the set of all problems), for all
candidates inM. Most relevant in this article are the derived quantities min∆L and max∆(U \
L).
Uniformity notions for sampling algorithms. For the two sampling algorithms defined
above we introduce individual measures of quality. For Sample we say it is problem-uniform (on
invalid candidates) if for all x ∈ U \L the problem output by Sample(x) is uniformly distributed
in P+

x . Formally, for all x ∈ U \ L,P ′ ∈ P+
x we require that

Pr[(P, )←$ Sample(x) : P = P ′] = 1/|P+
x | .

Further we say that Sample is solution-uniform (on invalid candidates) if for all x ∈ U \ L and
each pair (P,S) output by Sample(x), solution S is uniformly distributed among all solutions
for P. Formally, we require that for all x ∈ U \ L, (P ′,S ′) ∈ [Sample(x)] we have

Pr[(P,S)←$ Sample(x) : S = S ′ | P = P ′] = 1/|Solx(P ′)| .

For Sample∗ we say it is problem-uniform (on valid candidates) if for all x ∈ L the problem
output by Sample∗(x) is uniformly distributed in Px. Formally, for all x ∈ L,P ′ ∈ Px we require
that

Pr[(P, )←$ Sample∗(x) : P = P ′] = 1/|Px| .
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Further we say that Sample∗ is solution-uniform (on valid candidates) if for all x ∈ L and each
pair (P,S) output by Sample∗(x), the solution S is uniformly distributed among all solutions
of P (if a solution exists at all, i.e., if S 6= ⊥). Formally, we require that for all x ∈ L, (P ′,S ′) ∈
[Sample∗(x)] we have

Pr[(P,S)←$ Sample∗(x) : S = S ′ | P = P ′] = 1/|Sol∗x(P ′)| .

3.2 Challenge-Response Protocols

In the context of Section 3.1, a challenge-response protocol (CRP) for (L,U) specifies a (verifier)
state space St, a challenge space Ch, a response space Rsp, and efficient algorithms V1,P,V2
such that V = (V1,V2) implements a stateful verifier and P implements a (stateless) prover. In
more detail, algorithm V1 is randomized, takes a candidate x ∈ U , and returns a pair (st, c),
where st ∈ St is a state and c ∈ Ch a challenge. Prover P, on input of a valid statement x ∈ L,
a corresponding witness w ∈ Wx, and a challenge c ∈ Ch, returns a response r ∈ Rsp. Finally,
deterministic algorithm V2, on input a state st ∈ St and a response r ∈ Rsp, outputs a bit that
indicates acceptance (1) or rejection (0). An overview of the algorithms’ syntax is as follows.

U → V1 →$ St × Ch
L ×W × Ch → P →$ Rsp
St ×Rsp → V2 → {0, 1}

We define the following correctness and security properties for CRPs.

Correctness. Intuitively, a challenge-response protocol is correct if honest provers convince
honest verifiers of the validity of valid statements. Formally, we say a CRP is δ-correct if for
all valid candidates x ∈ L and corresponding witnesses w ∈ Wx we have

Pr [(st, c)←$ V1(x); r ←$ P(x,w, c) : V2(st, r)⇒ 1] ≥ δ .

If the CRP is 1-correct we also say it is perfectly correct.
Soundness. Intuitively, a challenge-response protocol is sound if (dishonest) provers cannot

convince honest verifiers of the validity of invalid statements. Formally, a CRP is ε-sound if
for all invalid candidates x ∈ U \ L and all (potentially unbounded) algorithms P∗ we have

Pr [(st, c)←$ V1(x); r ←$ P∗(x, c) : V2(st, r)⇒ 0] ≥ ε .

If the CRP is 1-sound we also say it is perfectly sound. To quantity 1− ε we also refer to as
the soundness error.

Zero-knowledge. Intuitively, a challenge-response protocol is (perfectly) zero-knowledge if
(dishonest) verifiers do not learn anything from interacting with (honest) provers, beyond
the fact that the statement is valid. Formally, a CRP is (perfectly) zero-knowledge if there
exists a simulator S such that for all (potentially unbounded) distinguishers D, all valid
candidates x ∈ L, and all corresponding witnesses w ∈ Wx, we have

|Pr[DP(x,w,·) ⇒ 1]− Pr[DS(x,·) ⇒ 1]| = 0 .

Here, with P(x,w, ·) and S(x, ·) we denote oracles that invoke the prover algorithm P on
input x,w, c and the simulator S on input x, c, respectively, where challenge c is in both
cases provided by distinguisher D on a call-by-call basis.
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In Section 4 we study two frameworks for constructing challenge-response protocols of the
described type. The analyses of the corresponding protocols will be in the random oracle model,
meaning that the algorithms V1,P,V2 have access to an oracle H implementing a function
drawn uniformly from the set of all functions between some fixed domain and range. Also the
above correctness and security definitions need corresponding adaptation by (1) extending the
probability spaces to also include the random choice of H, and (2) giving all involved algorithms,
i.e., V1,P,V2,P∗,D, oracle access to H. In the zero-knowledge definition, simulator S simulates
both P and H.

4 Constructing Challenge-Response Protocols

In Section 3 we linked the word decision problem of a language to challenge-response proto-
cols (CRP). Concretely, if L ⊆ U are languages, a corresponding CRP would allow a prover
to convince a verifier that a given candidate statement is in L rather than in U \ L. In the
current section we study two such protocols, both requiring a random oracle. The first protocol,
Hash-then-Solve, is inspired by prior work but significantly improves on it, while the second
protocol, Solve-then-Hash, is novel. The bounds on correctness and security of the two pro-
tocols are, in general, incomparable. In the following paragraphs we give a high-level overview
of their working principles.

Let x ∈ U be a (valid or invalid) candidate statement. In the protocol of Section 4.1 a
random oracle H is used to generate problem instances for x as per P ← H(r), where r is a
random seed picked by the verifier. If P has a solution S , the prover recovers it and shares it
with the verifier who accepts iff the solution is valid. (If P has multiple solutions, the prover
picks one of them at random.) Note that solving problems is in general possible also for invalid
candidates, but the idea behind this protocol is that it allows for telling apart elements of L
and U \ L if the fraction of solvable problems among the set of all problems associated with
valid candidates is strictly bigger than the fraction of solvable problems among all problems
associated with invalid candidates, i.e., if min∆L > max∆(U \ L). (As we show in Section 5,
this is the case for some interesting number-theoretic decision problems.)

We now turn to the protocol of Section 4.2. Here, the random oracle is not used to gen-
erate problems as above. Rather, the random oracle is used to hash solutions into bit strings.
Concretely, the verifier randomly samples a problem P with corresponding solution S . It then
sends P to the prover who derives the set of all solutions for it; this set obviously includes S .
The prover hashes all these solutions and sends the set of resulting hash values to the verifier.
The latter accepts if the hash value of S is contained in this set. Note that finding the set of
all solutions for problems is in general possible also for invalid candidates, but the protocol
allows for telling apart valid from invalid candidates if (solvable) problems associated with valid
candidates have strictly less solutions than problems associated with invalid candidates, i.e.,
if max #L < min #(U \ L). Indeed, if the verifier does not accept more hash values than the
maximum number of solutions for valid statements, a cheating prover will make the verifier
accept only with a limited probability, while in the valid case the verifier will always accept.
(We again refer to Section 5 for number-theoretic problems that have the required property.)

Let us quickly compare the two approaches. In principle, whether they are applicable cru-
cially depends on languages L,U and the associated problem and solution spaces. Note that the
random oracles are used in very different ways: in the first protocol to ensure a fair sampling of
a problem such that no solution is known a priori (to neither party), and in the second protocol
to hide those solutions from the verifier that the latter does not know anyway. That the random
oracle in the first protocol has to map into the problem space might represent a severe technical
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challenge as for some relevant problem spaces it seems unfeasible to find a construction for such
a random oracle.5 In such cases the second protocol might be applicable.

4.1 A GMR-Inspired Protocol: Hash-then-Solve

A general protocol framework for showing that certain properties hold for a candidate RSA
modulus (that it is square-free, Blum, etc.) was proposed by Gennaro, Micali, and Rabin in [19].
Recall from the discussion in the introduction that the full version of their protocol has a total
of four message passes and involves both number-theoretic computations and the use of a
commitment scheme. In this section we study a variant of this protocol where the commitment
scheme is implemented via a random oracle. The benefit is that the protocol becomes more
compact and less interactive. Concretely, the number of message passes decreases from four to
two.

Let L ⊆ U ⊆ Σ∗ be as in Section 3.1, and let l ∈ N be a security parameter. Let (Hx)x∈U be
a family of hash functions (in the security reduction: random oracles) such that for each x ∈ U
we have a mapping Hx : {0, 1}l → Px. Consider the challenge-response protocol with algorithms
V1,P,V2 as specified in Figure 1. The idea of the protocol is that the verifier picks a random
seed r which it communicates to the prover and from which both parties deterministically
derive a problem as per P ← Hx(r). The prover, using its witness, computes the set S of all
solutions of P, denotes one of them with S , and sends S to the verifier. (If P has no solution,
the prover sends ⊥.) The verifier accepts (meaning: concludes that x ∈ L) iff S 6= ⊥ and S is
indeed a solution for P. Importantly, while the prover selects the solution S within set S in a
deterministic way (so that for each seed r and thus problem P it consistently exposes the same
solution even if queried multiple times), from the point of view of the verifier the solution S is
picked uniformly at random from the set of all solutions of P. This behavior is implemented by
letting the prover make its selection based on an additional random oracle that is made private
to the prover by including the witness w in each query. Theorem 1 assesses the correctness and
security of the protocol.

Protocol Hash-then-Solve
Verifier (on input x ∈ U)
00 r ←$ {0, 1}l
01 Send r −→

02 Receive S ←−
03 If S = ⊥: Return 0
04 P ← Hx(r)
05 Return Verify(x, P, S)

Prover (on input x ∈ L, w ∈ Wx)

06 Receive r
07 P ← Hx(r)
08 S← Solve(x, w, P)
09 S ← (S 6= ∅) ? $P(S) : ⊥
10 Send S

Fig. 1. Hash-then-Solve: Random-oracle based version of the GMR protocol from [19]. Specifications of the three
CRP algorithms can be readily extracted from the code: algorithm V1 is in lines 00–01, algorithm V2 is in lines
02–05, and algorithm P is in lines 06–10. The expression of the form S ← $P(S) in line 09 is an abbreviation for
S ← RO(x, w, P, S), where RO: {0, 1}∗ → S is a (private) random oracle.

Theorem 1. The Hash-then-Solve protocol defined in Figure 1 is δ-correct and ε-sound and
perfectly zero-knowledge, where

δ = min∆(L) and ε = 1−max∆(U \ L) ,

5 For instance if the problem space is the set of quadratic residues modulo some composite integer.
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if hash functions (Hx)x∈U are modeled as random oracles. For this result we assume that the
Sample∗ algorithm is both problem-uniform and solution-uniform.

Proof. Correctness. Let x ∈ L and w ∈ Wx. Since Hx is modeled as a random oracle, problem P
assigned in line 07 is uniformly distributed in Px. Set S from line 08 is empty if P ∈ P−x and
contains elements if P ∈ P+

x . The probability that the prover outputs a solution, and that
the verifier accepts it in line 05, is thus precisely |P+

x |/|Px|. A lower bound for this value is
δ = min∆(L).

Soundness. Let x ∈ U \ L. A necessary condition for the verifier to accept in line 05 is that
there exists a solution to problem P = Hx(r), i.e., that P ∈ P+

x . Since Hx is modeled as a
random oracle, P is uniformly distributed in Px. The probability of P having a solution is thus
|P+
x |/|Px|. This value is at most max∆(U \ L). Thus ε = 1 −max∆(U \ L) is a lower bound

for the probability of the verifier not accepting in a protocol run.
Zero-knowledge. We show that the protocol is zero-knowledge by specifying and analyzing

a simulator S. Its code is in Figure 2. The prover oracle P(x,w, ·) and the random oracle Hx(·)
are simulated by algorithms Psim and Hsim, respectively. Associative array R reflects the input-
output map of the random oracle and is initialized such that all inputs map to special value ⊥.
If Hsim is queried on a seed r, a fresh problem-solution pair is sampled using the Sample∗
algorithm, the pair is registered in R, and the problem part is returned to the caller. Note that
by the assumed problem-uniformity of Sample∗(x) this is an admissible implementation of a
random oracle that maps to set Px.

The task of the Psim algorithm is to return, for any seed r, a uniformly picked solution for
the problem P = Hx(r); if no solution exists, the oracle shall return ⊥. This is achieved by
returning the solution part of the problem-solution pair that was sampled using Sample∗ when
processing the random oracle query Hx(r). Note that this argument uses both the solution
uniformity of Sample∗ and the fact that the P algorithm from Figure 1 is deterministic and in
particular always outputs the same solution if a seed is queried multiple times to a P(x,w, ·)
prover. ut

Oracle Psim(r)
00 If R[r] = ⊥:
01 (P, S)←$ Sample∗(x)
02 R[r]← (P, S)
03 (P, S)← R[r]
04 If S = ⊥: Return ⊥
05 Return S

Oracle Hsim(r)
06 If R[r] = ⊥:
07 (P, S)←$ Sample∗(x)
08 R[r]← (P, S)
09 (P, S)← R[r]
10 Return P

Fig. 2. Simulator S. Associative array R is initialized as per R[·] ← ⊥, i.e., such that all values initially map
to ⊥. Note that lines 00–02 become redundant if one requires (w.l.o.g.) that Hsim(r) is always queried before
Psim(r).

4.2 Our New Protocol: Solve-then-Hash

We propose a new challenge-response protocol for the word decision problem in languages. Like
the one from Section 4.1 it uses a random oracle, but it does so in a quite different way: The
random oracle is not used for generating problems, but for hashing solutions. The advantage is
that constructing a random oracle that maps into a problem space might be difficult (for certain
problem spaces), while hashing solutions to bit strings is always easy.
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Let L ⊆ U ⊆ Σ∗ be as in Section 3.1. Let H be a finite set and H: {0, 1}∗ → H a hash
function (in the security reduction: a random oracle). The idea of the protocol is that the verifier
samples a problem-solution pair (P,S) and communicates the problem to the prover, the latter
then, using its witness, computes the sets S of all solutions of P and h of hash values of these
solutions, and returns set h to the verifier, and the verifier finally checks whether the hash value h
of S is contained in this set. An important detail is that the prover uses pseudorandom bit-strings
to pad the returned set of hash values to constant-size: If k = max #L is the maximum number
of solutions of problems associated with valid candidates, then the prover exclusively outputs
sets h of this cardinality. The algorithms of the corresponding challenge-response protocol are
specified in Figure 3. (Note that when transmitting h from the prover to the verifier an encoding
has to be chosen that hides the order in which elements were added to h.) The analysis of our
protocol is in Theorem 2. The main technical challenge of the proof is that it has to deal with
collisions of the random oracle (two or more solutions might hash to the same string).

Protocol Solve-then-Hash
Verifier (on input x ∈ U)
00 (P, S)←$ Sample(x)
01 h← H(P, S)
02 Send P −→

03 Receive h ←−
04 Require |h| ≤ k
05 Return [h ∈ h]

Prover (on input x ∈ L, w ∈ Wx)

06 Receive P (abort if P /∈ Px)
07 S← Solve(x, w, P)
08 {S1, . . . , St} ← S
09 h1, . . . , ht ← H(P, S1), . . . , H(P, St)
10 ht+1, . . . , hk ← $t+1

P (H), . . . , $kP(H)
11 h← {h1, . . . , hk}
12 Send h (hiding the order of elements)

Fig. 3. Solve-then-Hash: Our new challenge-response protocol. We assume k = max #L. Specifications of the
three CRP algorithms can be readily extracted from the code: algorithm V1 is in lines 00–02, algorithm V2 is in
lines 03–05, and algorithm P is in lines 06–12. In line 08, the cardinality of set S is denoted with t. Expressions
of the form h← $uv (H) in line 10 are abbreviations for h← RO(x, w, u, v), where RO: {0, 1}∗ → H is a (private)
random oracle.

Theorem 2. Let k = max #L, m = min #(U \L), and M = max #(U \L), such that k ≤ m ≤
M . Then the Solve-then-Hash protocol defined in Figure 3 is perfectly correct and ε-sound and
perfectly zero-knowledge, where

ε = 1−
(
k/m+ k/|H|+ (min(M, q))2/|H|

)
≈ 1− k/m ,

if H is modeled as a random oracle and q is the maximum number of random oracle queries
posed by any (dishonest) prover P∗. For this result we assume that the Sample algorithm is both
problem-uniform and solution-uniform.

Proof. Correctness. Let x ∈ L and w ∈ Wx. Then for (P,S) from line 00 we have S ∈ S in
line 07. Further, as x ∈ L we have t ≤ k = max #L in line 08 and thus |h| ≤ k in line 04 and
h ∈ h in line 05. Thus V2 accepts with probability 1.

Soundness. Let x ∈ U \ L be an invalid candidate and P∗ a (malicious) prover. Let Win
denote the event that P∗ succeeds in finding a response h such that verifier V2 accepts, i.e. the
event {(h,P)←$ V1(x); h←$ P∗(x,P) : V2(h,h)⇒ 1}. Recall that Solx(P) denotes the set of
solutions of problem P, and let S1, . . . ,Sl ∈ Solx(P) denote the solutions to the problem on
which P∗ queries random oracle H, i.e., the elements such that P∗ queries for H(P,Si) with
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Initialization
00 For all P ∈ Px:
01 RU[P]← ε
02 RF[P]← $1

P(H), . . . , $kP(H)

Oracle Psim(P)
03 h← RU[P]‖RF[P]
04 Return h (hiding the order of elements)

Oracle Hsim(P, S)
05 If Verify(x, P, S) = 0:
06 h←$ H; Return h
07 h1, . . . , ht−1 ‖ht, . . . , hk ← RU[P]‖RF[P]
08 RU[P]‖RF[P]← h1, . . . , ht ‖ht+1, . . . , hk
09 Return ht

Fig. 4. Simulator S for the protocol of Figure 3. We require (w.l.o.g.) that Hsim(·) is queried at most once on each
input. Expressions of the form h← $uv (H) in line 02 are abbreviations for h← RO(u, v), where RO: {0, 1}∗ → H
is a (private) random oracle. In line 07, the lengths of vectors RU[P] and RF[P] are t−1 and k−t+1, respectively.
In line 08, the new lengths of vectors RU[P] and RF[P] are t and k − t, respectively.

i ∈ {1, . . . , l}. We define Col = {∃i 6= j : H(P,Si) = H(P,Sj)} as the event that the hash values
of at least two of the queried solutions collide. We have

Pr[Win] = Pr [Win | Col] Pr [Col] + Pr [Win | ¬Col] Pr [¬Col]
≤ Pr [Col] + Pr [Win | ¬Col] .

We conclude that Pr[Win] < k/m+ k/|H|+ (min(M, q))2/|H| by showing that

a) Pr [Col] < (min(M, q))2/|H| and b) Pr [Win | ¬Col] ≤ k/m+ k/|H| .

For claim a), note that x ∈ U \L implies that the set Relx(P) of solutions of problem P has
at most max #(U \ L) = M elements. P∗ makes at most q queries to H. Hence l ≤ min(M, q).
We obtain

Pr [Col] = Pr [∃i 6= j : H(P,Si) = H(P,Sj)]
≤ l2 Pr [H(P,S1) = H(P,S2)] ≤ min(M, q)2/|H| ,

where the last two inequalities hold since H is modeled as a random oracle.
We conclude the proof by showing claim b). Recall that S is the solution sampled alongside

problem P. Since algorithm Sample is solution-uniform, S is distributed uniformly in Solx(P),
which implies that H(P,S) is uniformly distributed in {H(P,S ′) : S ′ ∈ Solx(P)}. Note that
|Solx(P)| ≥ m = min #(U \ L) and that —conditioned on ¬Col— all values H(P,S ′) that P∗
knows are distinct. Conditioned on the events S ∈ {S1, . . . ,Sl} and ¬Col, prover P∗ guesses
H(P,S) with probability at most 1/l. If, on the other hand, S /∈ {S1, . . . ,Sl}, then H(P,S) is
uniformly distributed from P∗’s point of view. Hence its best chance of guessing it is 1/|H|. Note
that Pr[S ∈ {S1, . . . ,Sl}] ≤ l/m. Summing up —conditioned on ¬Col— P∗’s chance of correctly
guessing H(P,S) is bounded by l/m ·1/l+1/|H| = 1/m+1/|H|. Event Win according to line 04
cannot occur if h contains more than k elements, so we obtain Pr [Win | ¬Col] ≤ k/m+ k/|H|.

Zero-knowledge. We show that the protocol is zero-knowledge by specifying and analyzing
a simulator S. Its code is in Figure 4. The prover oracle P(x,w, ·) and the random oracle H(·, ·)
are simulated by algorithms Psim and Hsim, respectively. For oracle H we assume w.l.o.g. that
it is not queried twice on the same input.

Core components of our simulator are the associative arrays RU[·] and RF[·] that asso-
ciate problems with used and fresh random hash values, respectively. The simulator starts with
initializing for each problem a vector of k-many fresh hash values.6 Oracle Hsim on input a
problem-solution pair (P,S) checks whether S is a solution to P. If not, a random hash value

6 Of course it is inefficient to assign to each P ∈ Px a vector of values ahead of time. However, our code can
easily be implemented in an equivalent form that uses lazy sampling.
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is returned. Otherwise the vector of (fresh) hash values RF[P] associated to P is retrieved. The
first element of this vector is taken as the response of the random oracle query; however, before
the response is output, the element is appended to the vector of (used) hash values RU[P]
associated to P. Note this procedure will never fail (i.e., never a value has to be taken from
RF[P] after the list is emptied) since there are at most k = max #L solutions to P. Queries to
Psim on input P are responded with the set h of all elements contained in RF[P] and RU[P],
which by definition of Hsim stays unchanged throughout the simulation. Since these elements
are initialized as random hash values, responses to queries to Psim have the correct distribution.
Furthermore, for every S ∈ Solx(P) we have that Hsim(P,S) is contained in Psim(P). Summing
up, the output of Psim and Hsim is correctly distributed and simulator S provides distinguisher D
with a perfect simulation of P(x,w, ·). ut

4.3 Generalizing the Analysis of the Solve-then-Hash Protocol

We generalize the statement of Theorem 2, making it applicable to a broader class of languages.
Recall that our protocol from Section 4.2 decides membership in a language L ⊆ U if for every
(invalid) candidate x ∈ U \ L and every solvable problem P ∈ P+

x the number |Solx(P)| of
solutions to P exceeds the maximum number max #L of solutions to problems associated with
valid candidates. We next relax this condition by showing that for soundness it already suffices
if the expected value of |Solx(P)| (over randomly sampled P ∈ P+

x ) exceeds max #L. In order
to do so, we associate to L and U the function εL,U : [0, 1]→ R+ such that

εL,U (γ) := min{ε′ | ∀x ∈ U \ L : Pr[P ←$ P+
x : max #(L)/|Solx(P)| ≤ ε′] ≥ γ} ,

i.e., the function that associates to each probability value γ ∈ [0, 1] the smallest factor ε′ such
that for every invalid x a uniformly sampled problem with probability of at least γ has at least
max #(L)/ε′ solutions.

In Theorem 3 we give a correspondingly refined soundness analysis of the Solve-then-Hash
protocol. Note that, as the protocol itself did not change, the correctness and zero-knowledge
properties do not require a new analysis. Note further that εL,U (1) = max #(L)/min #(U \L),
and that thus the soundness analysis of Theorem 2 is just the special case of Theorem 3 where
γ = 1.

Theorem 3. Let k = max #L and M = max #(U \ L) such that k ≤ M . Then for every
γ ∈ [0, 1] the Solve-then-Hash protocol defined in Figure 3 is perfectly correct and ε-sound and
perfectly zero-knowledge, where

ε = 1−
(
εL,U (γ) + (1− γ)/(1− c) + k/|H|+ c

)
≈ γ − εL,U (γ) ,

if H is modeled as a random oracle, q is the maximum number of random oracle queries posed
by any (dishonest) prover P∗ and c = (min(M, q))2/|H|. For this result we assume that the
Sample algorithm is both problem-uniform and solution-uniform.

Proof. The correctness and zero-knowledge property of the protocol were already shown in The-
orem 2. We thus show the bound on the soundness error. Fix γ ∈ [0, 1] and let εL,U = εL,U (γ).
Let x ∈ U \ L be an invalid candidate and P∗ a (malicious) prover. Let Win denote the
event that P∗ succeeds in finding a response h such that verifier V2 accepts, i.e. the event
{(h,P)←$ V1(x); h←$ P∗(x,P) : V2(h,h)⇒ 1}. Recall that Solx(P) denotes the set of solu-
tions of problem P, and let S1, . . . ,Sl ∈ Solx(P) denote the solutions to the problem on which P∗
queries random oracle H, i.e., the elements such that P∗ queries for H(P,Si) with i ∈ {1, . . . , l}.
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We define Col = {∃i 6= j : H(P,Si) = H(P,Sj)} as the event that the hash values of at least
two of the queried solutions collide. We have

Pr[Win] = Pr [Win | Col] Pr [Col] + Pr [Win | ¬Col] Pr [¬Col]
≤ Pr [Col] + Pr [Win | ¬Col] .

We conclude that Pr[Win] < εL,U + (1− γ)/(1− c) + k/|H|+ c by showing that

a) Pr [Col] < (min(M, q))2/|H| = c and b) Pr [Win | ¬Col] ≤ εL,U+(1−γ)/(1−c)+k/|H| .

Claim a) follows as in the proof of Theorem 2. In order to prove b) we denote by PG the event
that the problem P given as input to P∗ by the verifier is “good” in the sense of having many
solutions, i.e. the event {max #(L)/|Solx(P)| ≤ εL,U}. We have

Pr[Win | ¬Col] = Pr[Win | ¬Col ∧ PG] Pr[PG | ¬Col] + Pr[Win | ¬Col ∧ ¬PG] Pr[¬PG | ¬Col]
≤ Pr[Win | ¬Col ∧ PG] + Pr[¬PG | ¬Col]
≤ Pr[Win | ¬Col ∧ PG] + Pr[¬PG]/Pr[¬Col] .

As stated above, we have Pr[¬Col] ≥ 1−c. Further, by problem-uniformity, P is distributed uni-
formly on P+

x and by the definition of εL,U we have Pr[¬PG] ≤ 1−γ. Hence Pr[¬PG]/Pr[¬Col] ≤
(1 − γ)/(1 − c) and it remains to show that Pr[Win | ¬Col ∧ PG] ≤ εL,U + k/|H|. Since S is
sampled with (solution-uniform) Sample, it is distributed uniformly on Solx(P), which implies
that H(P,S) is uniformly distributed on {H(P,S ′) : S ′ ∈ Solx(P)}. Recall that k = max #L. If
event PG occurs then |Solx(P)| ≥ k/εL,U . Further —conditioned on ¬Col— all values H(P,S ′)
that P∗ knows are distinct. Conditioned on the events S ∈ {S1, . . . ,Sl}, PG and ¬Col prover P∗
guesses H(P,S) with probability at most 1/l. If, on the other hand, S /∈ {S1, . . . ,Sl}, then from
P∗’s point of view H(P,S) is uniformly distributed on H. Hence in this case its best chance
of guessing it is 1/|H|. Note that Pr[S ∈ {S1, . . . ,Sl} | ¬Col ∧ PG] ≤ l · εL,U/k. Summing up
—conditioned on ¬Col and PG— prover P∗’s chance of correctly guessing H(P,S) is bounded
by lεL,U/k · 1/l + 1/|H| = εL,U/k + 1/|H|. Event Win according to line 04 cannot occur if h
contains more than k elements, so we obtain Pr [Win | ¬Col] ≤ εL,U + k/|H|. ut

5 Challenge-Response Protocols in the Domain of Number-Theory

We provide several protocols to prove number theoretic properties of a number N ∈ N, the
corresponding witness being the factorization of N . More formally, we consider the universe

Lodd = {N ∈ N : ν2 = 0; |P(N)| ≥ 2}

of odd numbers, which have at least two prime factors. Note that Lodd can be efficiently decided.
We associate problem and solution spaces as defined in Section 3.1 to several languages L ⊆
Lodd, hence obtaining membership checking protocols via Theorem 1 and Theorem 2. In most
cases the problem and solution space associated to a statement N ∈ Lodd are defined as Z∗N ,
while the defining relation RelN for problem b and solution a is of the type b ≡ ae mod N ,
where the exponent e is chosen according to the number theoretic property of N we want to
prove. Equation (1) of Section 2.2 serves as a primary tool to deduce bounds on max #(L) and
min #(Lodd \L). Defining RelN in the described way enables us to to sample from it as follows.
Algorithm Sample first chooses a solution a uniformly from SN = Z∗N . Then the corresponding
problem b is set to ae. In this way a is uniformly distributed on SolN (b) and the proposed
algorithm samples solution-uniformly (for both valid and invalid candidates) as required for the
Solve-then-Hash protocol of Section 4.2.
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L U PN SN RelN k/m HtS StH Sec.

Lsf Lodd Z∗N Z∗N (an, a) 1/3 X X 5.1
Lppp Lodd Z∗N Z∗N (a2, a) 1/2 X 5.2
Lper Lodd Z∗N Z∗N (ae, a) 1/2 X X 5.3
Lpp Lodd (Z∗N )2 (Z∗N )2 1/2 X 5.4
Lrsa Lodd (Z∗N )3 (Z∗N )3 1/2 X 5.4
Lblum Lpp Z∗N Z∗N (a4, a) 1/2 X 5.5
Lpai Lpp Z∗n2 Zn × Z∗N (f(n,g)(a), a) 1/2 X X 5.6

Table 1. Protocols for properties of RSA moduli. Assume k = max #L and m = min #(U \ L). Columns
seven and eight indicate whether the Hash-then-Solve (HtS) or Solve-then-Hash (StH) protocol can be used
to decide L. Lpp and Lrsa are intersections of other decidable languages and can be decided by running the
corresponding protocols in parallel.

For some of the considered languages the map a 7→ ae defines a permutation on Z∗N for every
valid statement N ∈ L. In this case every problem is solvable, we hence have P+

N = PN , and
the described sampling algorithm also fulfills the property of problem-uniformity and can be
used in the Hash-then-Solve protocol of Section 4.1. For other of the considered languages the
space P+

N of solvable problems is a proper subset of PN and it seems not feasible to construct
an algorithm with the desired properties. In this cases only the Solve-then-Hash protocol can
be used to decide the language.

Considered languages. We provide a toolbox of protocols checking arguably the most
important properties required of RSA-type moduli. An overview of our results is given in Table 1.
Combining several of the protocols gives a method to check for properties required of typical
applications. For example the property that the RSA map a 7→ ae mod N defined by numbers
(N, e) is “good” can be checked by showing that N has exactly two prime factors and is square
free and that e indeed defines a permutation on Z∗N . If an application requires a feature more
specific than the ones we treat, then likely corresponding problem and solution spaces and a
corresponding relation can be found.

As a starting point we consider the languages

Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}
Lppp := {N ∈ Lodd : |P(N)| = 2}

of square free numbers and prime power products, i.e. numbers having exactly two prime fac-
tors. For both languages the corresponding relation was implicitly given in [19]. Note that by
definition of ϕ(N) condition (gcd(ϕ(N), N) = 1) implies that νp = 1 for every p ∈ P(N) and
hence indeed the number is square free. Due to the choice of the relation it additionally implies
that p - (q − 1) for every p, q ∈ P(N). Intersecting both languages yields the language

Lpp := {pq ∈ Lodd : p, q ∈ P, p 6= q, p - (q − 1), q - (p− 1)}

of prime products. Each N in this language is the product of two distinct primes, a minimal
requirement on RSA moduli. We further give relations for the languages

Lper := {(N, e) ∈ Lodd × N : a 7→ ae defines a permutation}
Lrsa := {(N, e) ∈ Lpp × N : a 7→ ae defines a permutation}

of pairs (N, e) such that exponentiation with e defines a permutation on Z∗N and N being a
prime product such that e defines a permutation on Z∗N . Building on the protocol for Lpp we
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consider the language

Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers, i.e. prime products with both primes being equal to 3 modulo 4. We give
problem and solution spaces and a corresponding relation, which up to our knowledge has not
been used so far, such that Lblum can be decided in universe Lpp. Finally, we show that it can be
efficiently decided whether the trapdoor function corresponding to Paillier’s encryption scheme,
which corresponds to pairs (N, g) consisting of a prime product N and an element g of Z∗N2 ,
indeed defines a bijection. A protocol for this property has up to our knowledge not been given
so far. Note that given (N, g) it is assumed to be hard to decide whether the corresponding
map is bijective, since it has been shown to be a lossy trapdoor function under the decisional
quadratic residuosity assumption [15].

5.1 Deciding Lsf

Consider the language
Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}

of square free integers, i.e. of odd numbers such that for every p, q ∈ P(N) we have νp = 1 and
p - q − 1. We show that Lsf can be decided in universe Lodd. For a statement N ∈ Lodd let the
corresponding witness be its factorization. We define the corresponding problem and solution
spaces and the defining relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ aN mod N} .

RelN is defined via the map Z∗N → Z∗N ; a 7→ aN . By equation (1) of Section 2.2 this map is
a bijection exactly if N ∈ Lsf , i.e. if gcd(N,ϕ(N)) = 1, and, since N is odd, at least 3-to-1 if
N ∈ Lodd \ Lsf . Hence max #(Lsf) = 1 and min #(Lodd \ Lsf) = 3.

We now describe the corresponding algorithms. Algorithms Sample samples from RelN by
choosing a←$ Z∗N , setting b← aN and returning the problem-solution pair (b, a). As discussed
above, since the solution a is sampled at random and the corresponding problem b is derived
from it afterwards, a is uniformly distributed on SolN (b) and Sample is solution-uniform. Verify
on input (b, a) checks whether b ≡ an mod n and responds accordingly. Note that Nth roots
modulo N can be efficiently computed given the factorization of N . Hence it is possible to
construct the problem solving algorithm Solve and by Theorem 2 language Lsf can be decided
using the Solve-then-Hash protocol.

For every valid statement N ∈ Lsf the map Z∗N → Z∗N ; a 7→ aN defining the relation RelN
is a bijection. Hence in this case every problem b ∈ PN is solvable. Further the problems
sampled by Sample are uniformly distributed on PN and solutions are uniformly distributed
on the corresponding solution set SolN (b). Thus Sample is both problem-uniform and solution-
uniform, and therefore fulfills the requirements, which are necessary to be used as sampling
algorithm Sample∗ in the Hash-then-Solve protocol of Section 4.1.

5.2 Deciding Lppp

Consider the language
Lppp := {N ∈ Lodd : |P(N)| = 2}
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of prime power products, i.e. of odd numbers that have exactly two prime factors. We show that
Lppp can be decided in universe Lodd. For a statement N ∈ Lodd let the corresponding witness
be its factorization. We define the corresponding problem and solution spaces and the defining
relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ a2 mod N} .

RelN is defined via the map Z∗N → Z∗N ; a 7→ a2. Since N is odd we obtain by equation (1) of
Section 2.2 that this map is 4-to-1 if N ∈ Lppp, i.e. if N has at most 2 distinct prime factors,
and at least 8-to-1 if N ∈ Lodd \ Lppp. Hence max #(Lppp) = 4 and min #(Lodd \ Lppp) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples from RelN by
choosing a ←$ Z∗N , setting b ← a2 and returning the problem-solution pair (b, a). Note that
Sample is solution-uniform. Verify on input (b, a) checks whether b ≡ a2 mod N and responds
accordingly. Note that square roots moduloN can be efficiently computed given the factorization
of N . Hence it is possible to construct the problem solving algorithm Solve and by Theorem 2
language Lppp can be decided using the Solve-then-Hash protocol.

Let N ∈ Lppp be a valid statement. The set P+
N of solvable problems is the set QR(N) of

quadratic residues modulo N . Hence a sampling algorithm Sample∗ compatible with the Hash-
then-Solve protocol of Section 4.1 would require that a) the sampled problems are uniformly
distributed in Z∗N and b) if a sampled problem is solvable then it is accompanied by a solution.
While both sampling uniformly from Z∗N or sampling uniformly from (b, a) ∈ RelN ⊆ QR(N)×
Z∗N is easy, it is unclear how to construct an algorithm with the required properties that does
not need access to the factorization of N . The authors of [19] overcome this problem by imposing
additional requirements on N . They give a protocol able to verify that pq = N ∈ Lppp such
that p, q 6≡ 1 mod 8 and p 6≡ q mod 8. For this restricted language exactly one element of the
set {+b,−b,+2b,−2b} has a square root for every b ∈ Z∗N . Changing the relation to pairs (b, a),
such that a is the root of one of those elements one then defines Sample∗ to sample (b, a) with
algorithm Sample from above and then output (c b, a), where c←$ {+1,−1,+2,−2}.

5.3 Deciding Lper

Consider the language

Lper := {(N, e) ∈ Lodd × N : a 7→ ae defines a permutation}

of pairs (N, e) such that the map a 7→ ae defines a permutation. We show that Lper can
be decided in universe Lodd. For a statement N ∈ Lodd let the corresponding witness be its
factorization. We define the corresponding problem and solution spaces and the defining relation
as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ ae mod N} .

RelN is defined via the map Z∗N → Z∗N ; a 7→ ae. Since this map is a homomorphism, it is at
least 2-to-1 if it is not bijective. Hence max #(Lsf) = 1 and min #(Lodd \ Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples from RelN by
choosing a ←$ Z∗N , setting b ← ae and returning the problem-solution pair (b, a). Note that
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Sample is both problem-uniform and solution-uniform. Verify on input (b, a) checks whether
b ≡ ae mod N and responds accordingly. Note that eth roots modulo N can be efficiently
computed given the factorization of N . Hence it is possible to construct the problem solving
algorithm Solve and by Theorem 2 language Lper can be decided using the Solve-then-Hash
protocol.

Further, for every valid statement N ∈ Lper the map Z∗N → Z∗N ; a 7→ ae defining the
relation RelN is a bijection. Hence in this case every problem b ∈ PN is solvable. Further
the problems sampled by Sample are uniformly distributed on PN and solutions are uniformly
distributed on the corresponding solution set SolN (b). Thus Sample is both problem-uniform
and solution-uniform, and therefore fulfills the requirements, which are necessary to be used as
sampling algorithm Sample∗ in the Hash-then-Solve protocol of Section 4.1.

5.4 Deciding Lpp and Lrsa

Consider the languages

Lpp := {pq ∈ Lodd : p, q ∈ P, p 6= q, p - (q − 1), q - (p− 1)}

of prime products, i.e. square-free numbers having exactly two prime factors, and

Lrsa := {(N, e) ∈ Lpp × N : a 7→ ae defines a permutation}

of pairs (N, e) such that N is a prime product and the RSA map Z∗N → Z∗N ; a 7→ ae defines a
permutation. We have Lpp = Lppp ∩ Lsf and Lrsa = Lper ∩ Lppp ∩ Lsf . The protocols deciding
Lsf , Lppp and Lper are all defined with respect to the same universe Lodd. By running them in
parallel we hence obtain protocols deciding Lpp or Lrsa respectively with respect to Lodd.

5.5 Deciding Lblum

Consider the language
Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers. We show that Lblum can be decided in universe Lpp. For a statement N ∈ Lpp
let the corresponding witness be its factorization. We define the corresponding problem and
solution spaces and the defining relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ a4 mod N} .

Since all statements are elements of Lpp and hence have two odd prime factors, every square
in Z∗N has four square roots. Further, if N a is Blum integer then each element of QR(N) has
exactly one root that is again a square. This implies that every problem of P+ = {b ∈ Z∗N :
b ≡ a4 for some a ∈ Z∗N} has four corresponding solutions, i.e. max #(Lsf) = 2. If on the other
hand N ∈ Lpp \ Lblum, then every element of the form b = a4 has at least two square roots,
which are elements of QR(N). Hence in this case we obtain min #(Lpp \ Lblum) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples from RelN by
choosing a ←$ Z∗N , setting b ← a4 and returning the problem-solution pair (b, a). Note that
Sample is solution-uniform. Verify on input (b, a) checks whether b ≡ a4 mod N and responds
accordingly. Note that 4th roots modulo N can be efficiently computed given the factorization
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of N . Hence it is possible to construct the problem solving algorithm Solve and by Theorem 2
language Lblum can be decided using the Solve-then-Hash protocol.

Let N ∈ Lblum be a valid statement. Since for Blum integers squaring is a permutation on
QR(N), the space of solvable problems is given by QR(N). Hence as in the case of the relation
for language Lppp it seems unfeasible to construct an alternative sampling algorithm Sample∗
that admits the use of the Hash-then-Solve protocol of Section 4.1.

5.6 Deciding Lpai

Let N ∈ Lpp and g ∈ Z∗N2 such that N divides the order of the group generated by g. In this case
the following function associated to N and g, which is used in Paillier’s encryption scheme [26],
defines a bijection that can be efficiently inverted given the factorization of N .

fn,g :
{
ZN × Z∗N → Z∗N2

(a1, a2) 7→ ga1 aN2 mod N2

In this section we show that our protocols can be used to check in universe Lpp, whether a
public key (N, g) for the Paillier encryption scheme indeed defines a bijection. Hence consider
the language

Lpai := {(N, g) ∈ Lpp × N : g ∈ Z∗N2 , fN,g is permutation} .
Note that the condition g ∈ Z∗N2 can be efficiently checked. For a statement N ∈ Lpp let the
corresponding witness be its factorization. We define the corresponding problem and solution
spaces and the defining relation as

PN = Z∗N2

SN = ZN × Z∗N
RelN = {(b, a) ∈ P(N,g) × S(N,g) : b ≡ fN,g(a) mod N} .

RelN is defined via map f(N,g), which is a homomorphism. Hence if it is not bijective it is
at least 2-to-1 and we obtain max #(Lsf) = 1 and min #(Lodd \ Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples from RelN by
choosing a ←$ ZN × Z∗N , setting b ← f(N,g)(a) and returning the problem-solution pair (b, a).
Note that Sample is both problem-uniform and solution-uniform. Verify on input (b, a) checks
whether b ≡ f(N,g)(a) and responds accordingly. Map f(N,g) can be efficiently inverted given the
factorization of N . Hence it is possible to construct the problem solving algorithm Solve and
by Theorem 2 language Lpai can be decided using the Solve-then-Hash protocol.

For every valid statement N ∈ Lpai the map f(N,g) defining the relation RelN is a bijection.
Hence in this case every problem b ∈ PN is solvable. Further the problems sampled by Sample
are uniformly distributed on PN and solutions are uniformly distributed on the corresponding
solution set SolN (b). Thus Sample is both problem-uniform and solution-uniform, and therefore
fulfills the requirements, which are necessary to be used as sampling algorithm Sample∗ in the
Hash-then-Solve protocol of Section 4.1.

The constructions can be easily adapted to handle the generalized version of the trapdoor
function from [14], which uses domain ZNs × Z∗N and range Z∗Ns+1 for some s ∈ N.
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