
Interactively Secure Groups from Obfuscation

Thomas Agrikola? and Dennis Hofheinz??

Karlsruhe Institute of Technology (KIT)
{thomas.agrikola,dennis.hofheinz}@kit.edu

Abstract. We construct a mathematical group in which an interactive variant of the very
general Uber assumption holds. Our construction uses probabilistic indistinguishability
obfuscation, fully homomorphic encryption, and a pairing-friendly group in which a mild
and standard computational assumption holds. While our construction is not practical,
it constitutes a feasibility result that shows that under a strong but generic, and a mild
assumption, groups exist in which very general computational assumptions hold. We believe
that this grants additional credibility to the Uber assumption.
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1 Introduction

Cyclic groups in cryptography Cyclic groups (such as subgroups of the multiplicative group of
a finite field, or certain elliptic curves) are a popular mathematical building block in cryptography.
Countless cryptographic constructions are formulated in a cyclic group setting. Usually these
constructions are accompanied by a security reduction that transforms any adversarial algorithm
that breaks the scheme into an algorithm that solves a computational problem in that group. Among
the more popular computational problems are the (computational or decisional) Diffie-Hellman
problem [26], or the discrete logarithm problem.

The currently known security reductions of several relevant cryptographic schemes require
somewhat more exotic computational assumptions, however. For instance, the security of the Digital
Signature Algorithm is only proven in a generic model of computation [14] (see also [15]). Moreover,
the semi-adaptive (i.e., IND-CCA1) security of the ElGamal encryption scheme requires a “one-more
type” assumption [34]. The currently most efficient structure-preserving signature schemes require
complex interactive assumptions [1, 2]. Finally, some proofs (e.g., [24, 32, 5, 25]) even require
“knowledge assumptions” that essentially state that the only way to generate new group elements is
as linear combinations of given group elements (with extractable coefficients).

While more exotic assumptions can thus be very helpful for constructing cryptographic schemes,
their use also has a downside: reductions to more exotic (and less investigated) assumptions tend
to lower our confidence in the corresponding scheme. (See [12] and [33] for two very different views
on this matter.)

The Uber-assumption family An example of a somewhat exotic but very general and strong
class of computational assumptions in a cyclic group setting is the “Uber” assumption family ([9],
see also [12]). Essentially, this assumption states that no efficient adversary A can win the following
guessing game significantly better than with probability 1/2. The game is formulated in a group
G = 〈g〉 of order q, and is parameterized over polynomials P1, . . . , Pl, P

∗ ∈ Zq[X1, . . . , Xm]. Initially,
the game chooses secret exponents s1, . . . , sm ∈ Zq uniformly, and hands A the group elements
gPi(s1,...,sm), and a challenge element Z ∈ G with either Z = gP

∗(s1,...,sm) or independently random
Z. Given these elements, A has to guess if Z is random or not.1

Depending on the number m of variables, and the concrete polynomials Pi and P ∗, the Uber
assumption generalizes many popular existing assumptions, such as the Decisional Diffie-Hellman
assumption, the k-Linear family of assumptions, and so-called “q-type assumptions”. However, it is
? Supported by ERC Project PREP-CRYPTO 724307.
?? Supported by ERC Project PREP-CRYPTO 724307, and by DFG grants HO 4534/4-1 and HO 4534/2-2.

1 Owing to the original application, the Uber assumption family was formulated in [9] in a setting with a
pairing-friendly group, with a final challenge in the target group.



a priori not at all clear how plausible such general assumptions are. In fact, there are indications
that, e.g., q-type assumptions are indeed easier to break than, say, the discrete log assumption [22].

Fortunately, a number of cryptographic constructions that rely on q-type assumptions can be
transported into composite-order groups, with the advantage that now their security holds under
a simpler, subgroup indistinguishability assumption [21, 20]. However, this change of groups will
not work for every cryptographic construction, and currently we only know how to perform this
technique for a subclass of q-type assumptions.

Our contribution In this work, we shed new light on the plausibility of Uber-style assumptions.
Concretely, we construct a group in which an interactive variant of Uber-style assumptions (in which
the adversary may choose the Pi and P ∗ adaptively) holds. We believe that this lends additional
credibility to the Uber assumption itself, and also strengthens plausibility results obtained from the
Uber assumption (see [12] for an overview).

Our construction assumes subexponentially secure indistinguishability obfuscation (iO, a very
strong but generic assumption), a perfectly correct additively homomorphic encryption scheme
for addition modulo a given prime, and a pairing-friendly group in which a standard assumption
(SXDH, the symmetric external Diffie-Hellman assumption) holds. We stress that we consider
our result as a feasibility result. Indeed, due to the use of indistinguishability obfuscation, our
construction is far from practical. Still, our result shows that even interactive generalizations of the
Uber assumption family are no less plausible than indistinguishability obfuscation (plus a standard
assumption in cyclic groups and additively homomorphic encryption).

Before describing our results in more detail, we remark that the group we construct actually
has non-unique element encodings (much like in a “graded encoding scheme” [27], only without
any notion of multilinear map). It is hence possible to compare and operate with group elements,
but it is not directly possible to use, e.g., the encoding of group elements to hide an encrypted
message. (In particular, it is not immediately possible to implement, say, the ElGamal encryption
scheme with our group as there is no obvious way to decrypt ciphertexts. Signature schemes,
however, do not require unique encodings of group elements and can hence be implemented using
our group.) Furthermore, due to technical reasons our construction requires the maximum degree
of the adversarially chosen polynomials to be bounded a priori.

Related work Pass et al. [37] introduce semantically secure multilinear (and graded) encoding
schemes (of groups). A semantically secure encoding scheme guarantees security of a class of
algebraic decisional assumptions. On a high level, the security property requires that encodings
are computationally indistinguishable whenever there is no way to distinguish the corresponding
elements using only generic operations. The generic multilinear encoding model implies semantic
security of a multilinear encoding scheme. Furthermore, Pass et al. show that many existing iO
candidates [28, 13, 4] that are proven secure in the generic multilinear encoding model can also
be proven secure assuming semantically secure encoding schemes. Hence, this result relaxes the
necessary assumptions to prove the security of certain iO constructions. Bitansky et al. [7] slightly
strengthen the security property of encoding schemes formulated in [37]. Assuming the resulting
security property allows to prove that existing obfuscation candidates [4] provide virtual grey-box
security2.

In [3] Albrecht et al. construct a group scheme providing a multilinear map from iO. This result
complements earlier results that construct iO from multilinear maps [28, 40]. The notion of encoding
schemes used in [3] is a direct adaption of the “cryptographic” multilinear group setting from [10].
In contrast to [37, 7], the encoding scheme of Albrecht et al. provides an extraction algorithm
producing a unique string for all encodings that are equal with respect to the equality relation
of the scheme. Furthermore, [3] requires a publicly available sampling algorithm that produces
encodings for given exponents. Hence, the encoding scheme of [3] grants adversaries slightly more
power.

2 An obfuscator O satisfies virtual grey-box security for a class of circuits C if for any circuit C ∈ C, a PPT
adversary given O(C) can not compute significally more about C than a simulator given unbounded
computational resources and polynomially many queries to the circuit C.
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In this paper we use a similar notion of encoding schemes as in [3]. Furthermore, [37, 7] define
the security property for encoding schemes implicitly. We, in contrast, consider a concrete strong
interactive hardness assumption that holds in our encoding scheme.

Technical approach The assumption we consider is defined similarly to the Uber assumption
above, only with an interactive and adaptive choice of arbitrary (multivariate) polynomials Pi, P ∗
over Zq, where q is the order of the group. That is, there is a secret point s := (s1, . . . , sm) ∈ Zmq ,
and A may freely and adaptively choose the Pi and P ∗ during the course of the security game.
To avoid trivialities, we require that P ∗ does not lie in the linear span of the polynomials Pi. We
call this assumption the Interactive Uber assumption. For convenience only, we will describe our
approach assuming only univariate polynomials in the Interactive Uber assumption. However, we
will see that similar techniques yield security even for multivariate polynomials.

Our starting point is a recent work by Albrecht et al. [3], which constructs a group with a
multilinear map from (probabilistic) iO, an additively homomorphic encryption scheme, a dual mode
NIZK proof system, and a group G in which (a variant of) the Strong Diffie-Hellman assumption [8]
holds. For our purposes, we are not interested in obtaining a multilinear map, however, and we
would also like to avoid relying on a strong (i.e., q-type) assumption to begin with. Moreover, [3]
only proves relatively mild computational assumptions in the constructed group.

In a nutshell, a group element in the construction of [3] has the form

(gz, C = Enc(z), π), (1)

where z ∈ Z is the discrete logarithm of that group element, g ∈ G is a generator of the used existing
group G, Enc is the encryption algorithm of an additively homomorphic encryption scheme, and π
is a non-interactive zero-knowledge proof of consistency. Concretely, π proves that C encrypts the
discrete logarithm z of gz, or that C encrypts a polynomial f with f(w) = z, for a fixed value w
committed to in the public parameters.

In their security analysis, Albrecht et al. [3] crucially use a “switching lemma” that states that
different encodings (gz,Enc(z), π) and (gf(w),Enc(f), π′) are computationally indistinguishable
whenever f(w) = z. This allows to switch to, and argue about encodings with higher-degree f .
Note, however, that any such encoding must also carry a valid gz = gf(w). Hence, changing the
values z = f(w) in such encodings with higher-degree f (as is often required to prove security)
would seem to already necessitate Uber-style assumptions. Indeed, Albrecht et al. require a variant
of the Strong Diffie-Hellman assumption, a q-type assumption.

Group elements in our group To avoid making Uber-style assumptions in the first place, we
simply omit the initial gz value in encodings of group elements, and modify the consistency proof
from Eq. (1). That is, group elements in our group are of the form

(C = Enc(z), π), (2)

where Enc is the encryption algorithm of an additively homomorphic encryption scheme, and π is
a proof of knowledge of some (potentially constant) polynomial f ′ with f ′(w) = z or f ′(w) = f(w)
(in case C encrypts a polynomial f). The value w is some point in Zq that is fixed, but hidden, in
the public parameters of our group, where q is the group order. The proof of knowledge is realized
through an additional encryption C ′ that contains the polynomial f ′. Hence, group elements are
actually of the form

(C = Enc(z), C ′ = Enc(f ′), π). (3)

In a nutshell, such an encoding implicitly represents the group element gf(w) = gf
′(w), where f

and f ′ are the polynomials defined by C and C ′ respectively. For clarity, we sometimes omit the
component C ′ in this overview.

More precisely, C and C ′ contain representation vectors #»

f and
#»

f ′ of the polynomials f and f ′
with respect to a basis {a1, . . ., ad} of Zdq . That is, given a vector #»

f that is encrypted in C, the
coefficients of the corresponding polynomial f are defined as follows

(a1 | . . . | ad)−1 · #»

f (4)
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using the homomorphic mapping between polynomials over Zq and vectors in Zdq . This basis is not
public, but committed to in the public parameters. The reason for using a hidden basis is that we
need to deal with adaptive queries. We postpone the details to a subsequent paragraph. In this
overview, however, we will pretend the ciphertexts C and C ′ contain mere polynomials.

Intuitively, the crux of the matter for the proof of security will be to remove the dependency on
the point w. This changes the group structure to be isomorphic to Zdq which makes it possible to
argue with linear algebra.

A public sampling algorithm allows to produce arbitrary encodings of group elements. Given
an exponent z, the sampling algorithm produces the ciphertexts C and C ′ using the constant
polynomials f := f ′ := z and produces the consistency proof accordingly. We remark that our
group allows for re-randomization of encodings assuming some natural additional properties of the
homomorphic encryption scheme.

The group operation is performed in a similar way to [3]. Namely, suppose we want to add two
encodings (Enc(f1), π1) and (Enc(f2), π2). The resulting (Enc(f3), π3) should satisfy f3 = f1 + f2
as abstract polynomials. Hence, Enc(f3) can be computed homomorphically from Enc(f1) and
Enc(f2). To compute the proof π3, however, we require an obfuscated circuit CAdd that extracts
f1, f2, and generates a fresh proof using the knowledge of f3 = f1 + f2 as witness. Thus, the
implementation of CAdd needs to know both decryption keys for C and C ′. (The details are
somewhat technical and similar to [3], so we omit them in this overview.) We prove that it is
possible to implement a circuit C ′′Add that has almost the same functionality as CAdd but produces a
simulated proof of consistency that is identically distributed to a real one. Hence, the implementation
of C ′′Add does not need to know the decryption keys. Therefore, exploiting the security of the used
obfuscator, we are able to unnoticeably replace the obfuscation of CAdd with an obfuscation of C ′′Add.

We note that our modification to omit the entry gz from the encodings in Eq. (1) makes it
nontrivial to decide whether two given encodings represent the same group element, or, equivalently,
to decide whether a given encoding represents the identity element of the group. Recall that an
encoding (C = Enc(f), π) represents the group element gf(w). (This operation is trivial in the
setting of Albrecht et al., since their encodings carry a value gz = gf(w).) Thus, our construction
needs to provide a public algorithm that tests whether a given encoding (C = Enc(f), π) represents
the identity element of the group, i.e. that tests whether f(w) = 0.

At this point two problems arise. First, this public algorithm must be able to obtain at least
one of the polynomials that are encrypted in C and C ′ respectively. Second, the value w must not
be explicitly known during the proof of security as our strategy is to remove the dependency on w.
We solve both problems by using an obfuscated circuit CZero for testing whether a given encoding
represents the identity element. More precisely, given an encoding (C = Enc(f), π), CZero decrypts
C (using one fixed decryption key) to obtain the polynomial f . In order to avoid the necessity to
explicitly know the value w, CZero factors the univariate polynomial f (in Zq[X]), and obtains the
small set {x1, . . . , xn} of all zeros of f .3 As mentioned above, the value w is fixed but hidden inside
the public parameters. Particularly, we store the value w in form of a point function obfuscation
(i.e., in form of a publicly evaluable function po : Zq → {0, 1} with po(x) = 1⇔ x = w, such that it
is hard to determine the value w given only the function description po). The zero testing circuit
CZero treats an encoding as the identity element if f is the zero polynomial or w ∈ {x1, . . . , xn}.

Observe that this implementation of CZero only requires one decryption key allowing to apply
the Naor-Yung strategy [36]. Furthermore, CZero does not need to know the value w in the clear.
Hence, using an obfuscation of this implementation of CZero avoids both problems described above.

Switching of encodings Similarly to Albrecht et al. [3] we prove a “switching lemma” that states
that encodings (C1 = Enc(f1), π1) and (C2 = Enc(f2), π2) are computationally indistinguishable
whenever f1(w) = f2(w). In other words, encodings of the same group element are computationally
indistinguishable. To prove this lemma, we exploit the security of the used double-encryption
in a similar way as in the IND-CCA proof of Naor and Yung [36]. Particularly, when using an
obfuscation of the circuit C ′′Add, it is not necessary to know both decryption keys to produce public
parameters for the group. We recall that the circuit CZero only knows the decryption key to decrypt
the first component of encodings. Furthermore, it is possible to produce a consistency proof without
3 We note that there are probabilistic polynomial time algorithms that factor univariate polynomials over
finite fields, for instance the Cantor-Zassenhaus algorithm [18].
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knowing the content of the ciphertexts C and C ′ by simply simulating it in the same way C ′′Add does.
Therefore, we can reduce to the IND-CPA security of the encryption scheme. In order to apply the
same argument for the first component of encodings, we need the circuit CZero to forget about the
first decryption key. We accomplish that by replacing the obfuscation of CZero with an obfuscation
of the circuit CZero that uses only the second decryption key instead of the first one. This is possible
due to the security of the obfuscator and the soundness of the proof system. Then, we can use the
same argument as above to reduce to the IND-CPA security of the encryption scheme.

Obtaining the Interactive Uber assumption in our group We recall that the Interactive
Uber assumption (in one variable) generates one secret point s ∈ Zq uniformly at random at which
all queried polynomials are evaluated. To show that the Interactive Uber assumption holds in our
group, we first set up that secret point s as c · w for some independent random c from Z×q , where
w is the secret value of our group introduced above. Hence, a polynomial P that is evaluated at
s = c · w can be interpreted as a (different) polynomial in w. Particularly, given a polynomial
P (X), the polynomial P (X) := P (c ·X) satisfies the equation P (s) = P (w). Thus, an encoding
that contains the polynomial P (X) determines the exponent of the represented group element to
equal P (w) = P (c · w) = P (s). This observation paves the way for using higher-degree polynomials
P (X) to produce encodings for oracle answers and the challenge. As the resulting group elements
(i.e. the corresponding exponents) remain the same, the “switching lemma” described above justifies
that this modification is unnoticeable. Furthermore, by a similar argument as above, we simulate
the proofs of consistency π for every produced encoding, in particular for the encodings that are
produced by the addition circuit.4 As the consistency proof can now be produced independently of
the basis {a1, . . . , ad}, we are able to unnoticeably “erase” this basis from the commitment in the
public parameters.

Our goal now is to alter the structure of the group in the following sense. By definition, our
group is isomorphic to the additive group Zq. We aim to alter that structure such that our group is
isomorphic to the additive group of polynomials in Zq[X] (of bounded degree). Particularly, we alter
the equality relation that is defined on the set of encodings such that two encodings are considered
equal only if the thereby defined polynomials are equal as abstract polynomials. For that purpose,
we remove the dependency on the point w by altering the point function obfuscation po such that it
maps all inputs to 0. Therefore, the zero testing circuit CZero only treats an encoding that contains
the zero polynomial as an encoding of the identity element of the group. As the value w is never
used explicitly in the game (as all the proofs of consistency are simulated), this modification is
unnoticeable due to the security property of the point function obfuscation po. This is a crucial
step paving the way for employing arguments from linear algebra to enable randomization.

The final step requires to randomize the challenge encoding such that there is no detectable
difference between a real challenge and a randomly sampled one. First, we recall that encodings do
not encrypt polynomials in the plain. The encodings contain the representation of polynomials with
respect to some basis {a1, . . . , ad}. That is, given a polynomial P (X), the encoding corresponding
to gP (s) encrypts the vectors

#»

f =
#»

f ′ = (a1 | . . . | ad) · P (c ·X)︸ ︷︷ ︸
=P (X)

, (5)

where P (c · X) is interpreted as a vector of coefficients in the natural way. Therefore, the only
information about the matrix (a1| . . . |ad) is given by matrix vector products. To avoid trivialities,
the challenge polynomial P ∗ can be assumed not to lie in the span of the queries P1, . . . , Pl, which
is why P ∗(c ·X) does not lie in the span of P1(c ·X), . . . , Pl(c ·X). Hence, we may resort to an
information-theoretic argument. More precisely, an adversary that is able to adaptively ask for
matrix vector products, information-theoretically learns nothing about matrix vector products
that are linearly independent of its queries. Therefore, the polynomial that is contained in the
real challenge encoding information-theoretically looks like a randomly sampled polynomial (with
bounded degree) given that the matrix (a1| . . . |ad) is uniformly distributed.

4 More precisely, we again use an obfuscation of C′′Add instead of an obfuscation of CAdd as described above.
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Obtaining the multivariate Interactive Uber assumption The main difficulty that arises
from generalizing our results to the multivariate Interactive Uber assumption is that we do not
have a polynomial-time algorithm that computes all zeros of a multivariate polynomial. Hence, the
zero testing circuit CZero needs to know the point ω := (ω1, . . . , ωm) ∈ Zmq in the clear to explicitly
evaluate the polynomial f that is defined by a given encoding. Our previous proof strategy, however,
crucially relies on removing the dependency on w such that CZero only treats encodings containing
the zero polynomial as encodings of the identity element. This is equivalent to altering the group
structure such that it is isomorphic to the additive group of polynomials over Zq (of bounded
degree).

Although the zero testing circuit CZero knows ω in the clear, it is nevertheless possible to pursue
a similar strategy. Our solution is to gradually alter CZero such that it “forgets” the components ωi
of ω one by one. Particularly, we define intermediate circuits C(i)

Zero that test if the polynomial

F
(f)
i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm) (6)

equals the zero polynomial in Zq[X1, . . . , Xi]. Observe that the original circuit CZero tests whether
F

(f)
0 ≡ 0. Our goal is to unnoticeably establish C(m)

Zero as zero testing circuit, as it realizes the stricter
equality relation we aim for.

In order to unnoticeably replace an obfuscation of C(i)
Zero with an obfuscation of C(i+1)

Zero , we first
alter the implementation of C(i)

Zero such that it performs the test whether F (f)
i is the zero polynomial

by evaluating it at a randomly sampled point r ∈ Ziq. Applying the Schwartz-Zippel lemma upper
bounds the statistical distance of the output distributions of the two circuits enabling to reduce
this step to the security of the obfuscator.

Furthermore, the condition that F (f)
i (r) = F

(f)
i+1(r, ωi+1) = 0 is equivalent to the condition that

the univariate polynomial F (f)
i+1(r, Xi+1) is zero at the point ωi+1. This can be implemented in a

similar manner as in the univariate case using a point function obfuscation of ωi+1. In addition, this
circuit contains a conceptional logical or statement testing whether the polynomial F (f)

i+1(r, Xi+1)
equals the zero polynomial. Using a similar argument as above we are able to alter the point
function obfuscation for ωi+1 to a point function obfuscation that never triggers.

Hence, our zero testing circuit effectively only tests whether F (f)
i+1(r, Xi+1) equals the zero

polynomial in Zq[Xi+1]. Applying the Schwartz-Zippel lemma again, we are able to unnoticeably
alter the implementation of the zero testing circuit such that it tests whether F (f)

i+1 equals the zero
polynomial in X1, . . . , Xi+1 concluding the argument.

Roadmap After fixing notation and recalling some basic definitions in Section 2, we present
our main group construction in Section 3. In Section 4 we prove several technical lemmas that
facilitate proving our main theorem. Our main theorem, Theorem 1, states the validity of (our
variant of) the Interactive Uber assumption relative to the group construction from Section 3. In
particular, in Section 4.1 we prove that it is hard to decide whether public parameters of the group
are generated honestly or such that all proofs of consistency are simulated. In Section 4.2, we
prove a “switching lemma” for encodings of group elements and in Section 4.3 we prove the above
mentioned information-theoretic argument that enables the randomization of the challenge in the
main proof. Finally, Theorem 1 appears in Section 5.

Acknowledgements We would like to thank Antonio Faonio, Pooya Farshim, and Jesper Buus
Nielsen for many interesting discussions. We would also like to thank the reviewers for many helpful
comments.

2 Preliminaries

2.1 Notation

For n ∈ N, let 1n denote the string consisting of n times the digit 1. For a probabilistic algorithm A,
let y ← A(x) denote that y is the output of A on input x. The randomness which A uses during the
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computation can be made explicit by y ← A(x; r), where r denotes the randomness. Let λ denote
the security parameter. We assume that the security parameter is implicitly given to all algorithms
as 1λ.

Let G be a group and let h be a fixed generator of G. Then, [n] denotes the group element hn.
Let n ∈ N be a number, let K be a field, and let Kn denote the vector space of n-tuples of

elements of K. Further, for any i ∈ {1, . . . , n}, let ei ∈ Kn be the vector such that the i-th entry of
ei equals 1 and any remaining entry equals 0. Then, the set {e1, e2, . . . , en} denotes the standard
basis of Kn. Let b1, . . . , bi ∈ Kn, then 〈b1, . . . , bi〉 ⊆ Kn denotes the span of those vectors.

2.2 Assumptions

Let (Gλ)λ∈N be a family of finite cyclic groups. If it is clear from the context, we write G instead
of Gλ. We assume that the order q := |G| of the group is known and prime. Let GensG be the set
of generators of G. We assume that we can efficiently sample elements uniformly at random from
GensG .

A very basic and well-established cryptographic assumption is the decisional Diffie-Hellman
(DDH) assumption. The DDH assumption states that the distributions ([x], [y], [x · y]) and ([x], [y],
[z]) are computationally indistinguishable for x, y, z ← Zq.

Definition 1 (Decisional Diffie-Hellman (DDH) assumption). For any PPT adversary A,
the advantage Advddh

G,A(λ) is negligible in λ, where

Advddh
G,A(λ) := Pr

[
A(1λ, [x], [y], [x · y]) = 1

∣∣ x, y ← Zq
]

− Pr
[
A(1λ, [x], [y], [z]) = 1

∣∣ x, y, z ← Zq
]

and q is the order of the group G.

Let (G1, G2, e) be finite cyclic groups of prime order |G1| = |G2| and let e : G1 × G2 → GT be a
pairing (i.e. a non-degenerate and bilinear map). The groups G1, G2, GT , as well as the pairing e
depend on the security parameter. For greater clarity, we omit this dependency in this setting.

A natural extension of the DDH assumption to the bilinear setting is the symmetric external
Diffie-Hellman (SXDH) assumption. The SXDH assumption states that the DDH assumption holds
in both groups G1 and G2.

2.3 Point obfuscation

In our construction we employ a cryptographic primitive that is called point obfuscation [16, 39]. A
point obfuscation serves the purpose to hide a certain point, but to enable a test whether a given
value is hidden inside. Equivalently, this notion can be seen as an “obfuscation” of a point-function
that evaluates to 1 at exactly this given point and to 0 everywhere else. We require that it is
infeasible to distinguish a point obfuscation that triggers at a randomly sampled point from a
point obfuscation that never triggers. This security requirement is rather weak compared to similar
notions [6].

Definition 2 (Point obfuscation). A point obfuscation for message spaceMλ is a PPT algo-
rithm PObf.
PObf(1λ, x)→ po On input a message x ∈Mλ ∪ {⊥}, PObf produces a description of the point

function

po : Mλ → {0, 1}, y 7→
{

1 if y = x

0 otherwise
.

We require the following two properties to hold:

Correctness: For any x, y ∈Mλ and any po← PObf(1λ, x), po(y) 7→ 1 if and only if x = y.
Soundness: For any PPT adversary A, the advantage Advpo

PObf,A(λ) is negligible in λ, where

Advpo
PObf,A(λ) := Pr

[
A(1λ, po) = 1

∣∣ po← PObf(1λ, x), x←Mλ

]
− Pr

[
A(1λ, po) = 1

∣∣ po← PObf(1λ,⊥)
]
.
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An adaption of a construction proposed in [16] yields a point obfuscation PObf with message space
Zp based on the DDH assumption. Furthermore, a point obfuscation with message space Zp can
be used to construct a point obfuscation for message space Zq, where q is a prime such that p

q is
negligible in λ. For further details, we refer the reader to Appendix A.

Remark 1. According to a reviewer of TCC 2017, a point obfuscation with message space {0, 1}poly(λ)

can be constructed from an injective one-way function F together with a corresponding hardcore
bit B.

Given a string x, the tuple (F (x), B(x)) is the obfuscation of x. The tuple (F (y), 1−B(y)) is
an obfuscation of ⊥, where y is a random element from the message space.

2.4 Subset membership problems

The notion of subset membership problems was introduced in [23]. Informally, a hard subset
membership problem specifies a set, such that it is intractable to decide whether a value is inside
this set or not. Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe Xλ = X .
Further, let R be an efficiently computable witness relation, such that x ∈ L if and only if there
exists a witness w ∈ {0, 1}poly(|x|) with R(x, w) = 1, where poly is a fixed polynomial. We assume
that we are able to efficiently and uniformly sample elements from L together with a corresponding
witness, and that we are able to efficiently and uniformly sample elements from X \ L.

Definition 3 (Hard subset membership problem). The subset membership problem (SMP)
L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A(λ) := Pr

[
A(1λ, x) = 1

∣∣ x← L
]
− Pr

[
A(1λ, x) = 1

∣∣ x← X \ L]
is negligible in λ.

For our construction we need a family L = (Lλ)λ∈N such that for any L ∈ Lλ and any x ∈ L, there
exists exactly one witness r ∈ {0, 1}∗ with R(x, w) = 1.

Let G = {Gλ} be a family of finite cyclic groups of prime order such that the DDH assumption
holds. A possible instantiation of a hard SMP meeting our requirements is the Diffie-Hellman
language Ldh := (Ldh

λ )λ∈N. For any λ ∈ N, Ldh
λ := {Lg,h | g, h ∈ GensG}, Xλ = GensG × GensG ,

and Lg,h := {(gr, hr) | r ∈ Zq}, where q = |Gk|. The SMP Lg,h ⊆ X is hard for randomly chosen
generators g, h← GensG . Given (gr, hr) ∈ Lg,h, the corresponding unique witness is r ∈ Zq.

2.5 Non-interactive commitments

Non-interactive commitment schemes are a commonly used cryptographic primitive [30]. They
enable to commit to a chosen value without revealing this value. Additionally, once committed to a
value, this value cannot be changed. In contrast to the notion of point obfuscations, a commitment
scheme prevents to test whether a particular value is hidden inside a commitment.

Definition 4 (Perfectly binding non-interactive commitment scheme (syntax and se-
curity)). A perfectly binding non-interactive commitment scheme for message space Mλ is a
triple of PPT algorithms Com = (ComSetup, Commit, Open).
ComSetup(1λ)→ ck On input the unary encoded security parameter, the algorithm ComSetup

outputs a commitment key ck.
Commitck(m)→ (com, op) On input the commitment key ck and a message m ∈ Mλ, Commit

outputs a tuple (com, op).
Openck(com, op)→ m̃ On input the commitment key ck and a commitment-opening pair (com,

op), Open outputs the committed message m if op is a valid opening for com. Otherwise, Open
outputs ⊥.

We require Com to be perfectly correct, perfectly binding, and computationally hiding.

Correctness Com is correct if for any λ ∈ N, any ck ← ComSetup(1λ), and any m ∈ Mλ,
Openck(Commitck(m)) = m.
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Perfectly binding Com is perfectly binding if it is not possible to find a commitment that has
valid openings for more than one message, i.e. for any (possibly unbounded) adversary A,
Advbinding

Com,A (λ) = 0, where

Advbinding
Com,A (λ) := Pr

[
Expbinding

Com,A (λ) = 1
]
.

Computationally hiding Com is computationally hiding if commitments for different messages
are computationally indistinguishable, i.e. for any PPT adversary A, Advhiding

A (λ) is negligible,
where

Advhiding
Com,A(λ) := Pr

[
Exphiding

Com,A(λ) = 1
]
− 1

2 .

The games Expbinding
Com,A (λ) and Exphiding

Com,A(λ) are defined in Fig. 1.

Experiment Expbinding
Com,A (λ)

ck ← ComSetup(1λ)

(c, o1, o2)← A(1λ, ck)
m1 ← Openck(c, o1), m2 ← Openck(c, o2)
if m1 6= ⊥ ∧m2 6= ⊥ ∧m1 6= m2 then

return 1
return 0

Experiment Exphiding
Com,A(λ)

ck ← ComSetup(1λ)

(m0,m1, st)← A(1λ, ck, find)
b← {0, 1}, (c, o)← Commitck(mb)

b′ ← A(1λ, c, st, attack)
if b = b′ then return 1
return 0

Fig. 1. The description of the Binding game Expbinding
Com,A (λ) (left) and the Hiding game Exphiding

Com,A(λ) (right).

Such a commitment scheme can be obtained from a group in which the DDH assumption holds.

2.6 Dual mode NIWI proof system

The notion of dual mode NIWI proof systems abstracts from the NIWI proof system proposed in
[31]. A similar abstraction was used in [3].

Definition 5 (Dual mode NIWI proof system (syntax and security)). A dual mode non-
interactive witness-indistinguishable (NIWI) proof system for a relation R is a tuple of PPT
algorithms Π = (SetupΠ , K, S, Prove, Verify, Extract).
SetupΠ(1λ)→ (gpk, gsk) On input the unary encoded security parameter, SetupΠ outputs a group

key gpk and, additionally, may output some related information gsk. The relation R is an
efficiently computable ternary relation consisting of triplets of the form (gpk, x, w) and defines
a group-dependent language L. The language L consists of the statements x, such that there
exists a witness w with (gpk, x, w) ∈ R.

K(gpk, gsk)→ (crs, tdext) On input the group keys gpk and gsk, K outputs a binding common
reference string (CRS) crs and a corresponding extraction trapdoor tdext.

S(gpk, gsk)→ (crs,⊥) On input the group keys gpk and gsk, S outputs a hiding CRS crs.
Prove(gpk, crs, x, w)→ π On input the public group key gpk, the CRS crs, a statement x, and a

corresponding witness w, Prove produces a proof π.
Verify(gpk, crs, x, π)→ {0, 1} On input the public group key gpk, the CRS crs, a statement x, and

a proof π, Verify outputs 1 if the proof is valid and 0 if the proof is rejected.
Extract(tdext, x, π)→ w On input the extraction trapdoor tdext, a statement x, and a proof π, Extract

outputs a witness w.
We require Π to meet the following requirements:

CRS indistinguishability Common reference strings generated via K(gpk, gsk) and S(gpk, gsk)
are computationally indistinguishable, i.e.

Advcrs
Π,A(λ) := Pr

[
Expcrs

Π,A(λ) = 1
]
− 1

2
is negligible in λ, where Expcrs

Π,A(λ) is defined as in Fig. 2.
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Perfect completeness under K and S For any λ ∈ N, any (gpk, gsk)← SetupΠ(1λ), any CRS
(crs, ·)← K(gpk, gsk), any (x, w) such that (gpk, x, w) ∈ R, and any π ← Prove(gpk, crs, x,
w), Verify(gpk, crs, x, π)→ 1. The same holds for any (crs, ·)← S(gpk, gsk).

Perfect soundness under K For any λ ∈ N, any (gpk, gsk) ← SetupΠ(1λ), any (crs, ·) ←
K(gpk, gsk), any statement x such that there exists no witness w with (gpk, x, w) ∈ R, and
any π ∈ {0, 1}∗, Verify(gpk, crs, x, π)→ 0.

Perfect extractability under K For any λ ∈ N, any key pair (gpk, gsk) ← SetupΠ(1λ), any
(crs, tdext) ← K(gpk, gsk), any (x, π) such that Verify(gpk, crs, x, π) → 1, and for any
w ← Extract(tdext, x, π), w is a satisfying witness for the statement x, i.e. (gpk, x, w) ∈ R.

Perfect witness-indistinguishability under S For any λ ∈ N, any (gpk, gsk)← SetupΠ(1λ),
any (crs, ·) ← S(gpk, gsk), any (x, w0) and (x, w1) with (gpk, x, w0), (gpk, x, w1) ∈ R,
the output of Prove(gpk, crs, x, w0) and the output of Prove(gpk, crs, x, w1) are identically
distributed.

Experiment Expcrs
Π,A(λ)

(gpk, gsk)← SetupΠ(1λ)
(crs0, ·)← K(gpk, gsk), (crs1, ·)← S(gpk, gsk)

b← {0, 1}, b′ ← A(1λ, gpk, crsb)
if b′ = b then return 1
return 0

Fig. 2. The description of the CRS inistinguishability game Expcrs
Π,A(λ).

An exemplary dual mode NIWI proof system satisfying computational CRS indistinguishability, per-
fect completeness, perfect soundness, perfect extractability, and perfect witness-indistinguishability
is the proof system proposed by Groth and Sahai in [31]. The soundness, in particular the indis-
tinguishability of common reference strings, of this construction can for instance be based on the
SXDH assumption. The Groth-Sahai proof system allows perfect extractability for group elements,
however, does not provide a natural way to extract scalars. Nevertheless, perfect extractability can
be achieved by using the proof system for the bit representation of the particular scalars [35].

2.7 Probabilistic indistinguishability obfuscation

The notion of probabilistic circuit obfuscation was proposed in [17]. Informally, probabilistic circuit
obfuscation enables to conceal the implementation of probabilistic circuits while preserving their
functionality. Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. The set Cλ contains
circuits of polynomial size in λ. A circuit sampler for C is defined as a set of (efficiently samplable)
distributions S = (Sλ)λ∈N, where Sλ is a distribution over triplets (C0, C1, z) with C0, C1 ∈ Cλ
such that C0 and C1 take inputs of the same length and z ∈ {0, 1}poly(λ).

Definition 6 (Probabilistic indistinguishability obfuscation for a class of samplers S,
[3, 17]). A probabilistic indistinguishability obfuscator (pIO) for a class of samplers S over the
probabilistic circuit family C = (Cλ)λ∈N is a uniform PPT algorithm piO, such that the following
properties hold:

Correctness On input the unary encoded security parameter 1λ and a circuit C ∈ Cλ, piO outputs
a deterministic circuit Λ of polynomial size in |C| and λ. For any λ ∈ N, any C ∈ Cλ, any
Λ← piO(1λ, C), and any inputs m ∈ {0, 1}∗ (of matching length), there exists a randomness
r, such that C(m; r) = Λ(m).
Furthermore, for every non-uniform PPT distinguisher D, every λ ∈ N, every C ∈ Cλ, and
every auxiliary input z ∈ {0, 1}poly(λ), the advantage

Advpio-c
C,z,D(λ) := Pr

[
Exppio-c

C,z,D(λ) = 1
]
− 1

2

is negligible in λ, where Exppio-c
C,z,D(λ) is defined as in Fig. 3.
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Security with respect to S For any circuit sampler S = {Sλ}λ∈N, for any non-uniform PPT
adversary A, the advantage

Advpio-ind
piO,S,A(λ) := Pr

[
Exppio-ind

piO,SA(λ) = 1
]
− 1

2

is negligible in λ, where Exppio-ind
piO,SA(λ) is defined as in Fig. 3.

Experiment Exppio-c
C,z,D(λ)

C0 := C

C1 := piO(1λ, C)
b← {0, 1}

b′ ← ACb(·)(1λ, C, z)
if b′ = b then return 1
return 0

Experiment Exppio-ind
piO,S,A(λ)

(C0, C1, z)← Sλ

b← {0, 1}

Λ← piO(1λ, Cb)

b′ ← A(1λ, C0, C1, Λ, z)
if b′ = b then return 1
return 0

Experiment Expsel-ind
S,A (λ)

(x, st)← A1(1λ)
(C0, C1, z)← Sλ, b← {0, 1}
y ← Cb(x; r)// for fresh randomness r

b′ ← A2(1λ, C0, C1, z, y, st)
if b′ = b then return 1
return 0

Fig. 3. The descriptions of the games Exppio-c
C,z,D(λ) (left), Exppio-ind

piO,S,A(λ) (middle), and Expsel-ind
S,A (λ) (right).

In Exppio-c
C,z,D(λ), D has oracle access to either a probabilistic circuit C0 using fresh randomness for every

oracle query or to a deterministic circuit C1. D can make an unbounded number of oracle queries with the
restriction that no input is queried twice.

We remark that the construction proposed in [17] also satisfies our definition of correctness.
Let X : N→ N be a function. For our purposes we use a class of circuit samplers, such that the

sampled circuits are functionally equivalent for all inputs outside of a set X , and the outputs of the
circuits are indistinguishable for inputs inside of this set X . The set X is a subset of the circuits’
domain of cardinality at most X(λ). Two circuits C0 and C1 are functionally equivalent if for any
input x of matching length and any randomness r, C0(x; r) = C1(x; r).

Definition 7 (X-Ind sampler, [3, 17]). Let X : N → N be a function with X(λ) ≤ 2λ, for all
λ ∈ N. The class SX-ind of X-Ind samplers for a circuit family C contains all circuit samplers S
for C satisfying, that for any λ ∈ N, there exists a set X = Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such
that the following two properties hold:

X-differing inputs For any (possibly unbounded) deterministic adversary A, the advantage

Adveq$
S,A(λ) := Pr

[
C0(x; r) 6= C1(x; r) ∧ x 6∈ X

∣∣∣∣ (C0, C1, z)← Sλ,
(x, r)← A(C0, C1, z)

]
is negligible in λ.

X-indistinguishability For any non-uniform PPT distinguisher A = (A1, A2), the advantage

X(λ) ·Advsel-ind
S,A (λ) := X(λ) ·

(
Pr
[
Expsel-ind

S,A (λ) = 1
]
− 1

2

)
is negligible in λ, where Expsel-ind

S,A (λ) is defined as in Fig. 3.

For our construction we use an obfuscator for the class SX-ind.
According to Theorem 2 in the proceedings of [17], a pIO which is secure with respect to

SX-ind for a circuit family C that only contains circuits of size at most λ can be obtained from sub-
exponentially secure indistinguishability obfuscation (IO) for deterministic circuits in conjunction
with sub-exponentially secure puncturable PRF. The construction given in [17] satisfies this security
requirement even if the circuit family C = {Cλ}λ∈N contains circuits with polynomial size in λ as
long as the input length of those circuits is at most λ.
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2.8 Fully homomorphic encryption scheme

Let C = (Cλ)λ∈N be a family of sets of polynomial sized circuits of arity a(λ), i.e. the set Cλ contains
circuits of polynomial size in λ. We assume that for any λ ∈ N the circuits in Cλ share the common
input domain ({0, 1}poly(λ))a(λ) for a fixed polynomial poly(λ). A homomorphic encryption scheme
enables evaluation of circuits on encrypted data. The first fully homomorphic encryption scheme
was proposed in [29]. In this paper, we abide by the notation used in [3].

Definition 8 (Homomorphic public-key encryption (HPKE) scheme (syntax and secu-
rity)). A homomorphic public-key encryption scheme with message space M ⊆ {0, 1}∗ for a
deterministic circuit family C = (Cλ)λ∈N of arity a(λ) and input domain ({0, 1}poly(λ))a(λ) is a tuple
of PPT algorithms Hpke = (Gen, Enc, Dec, Eval).
Gen(1λ)→ (pk, sk) On input the unary encoded security parameter 1λ, Gen outputs a public key

pk and a secret key sk.
Enc(pk,m)→ c On input the public key pk and a message m ∈ M, Enc outputs a ciphertext

c ∈ {0, 1}poly(λ) for message m.
Dec(sk, c)→ m On input the secret key sk and a ciphertext c ∈ {0, 1}poly(λ), Dec outputs the

corresponding message m ∈M (or ⊥, if the ciphertext is not valid).
Eval(pk,C, c1, . . . , ca(λ))→ c On input the public key pk, a deterministic circuit C ∈ Cλ, and

ciphertexts (c1, . . . , ca(λ)) ∈ ({0, 1}poly(λ))a(λ), Eval outputs a ciphertext c ∈ {0, 1}poly(λ).
We require Hpke to meet the following requirements:

Perfect correctness The triple (Gen, Enc, Dec) is perfectly correct as a PKE scheme, i.e. for
any λ ∈ N, any (pk, sk)← Gen(1λ), any m ∈M, and any c← Enc(pk, m), Dec(sk, c) = m.
Furthermore, the evaluation algorithm Eval is perfectly correct in the sense that for any λ ∈ N,
any (pk, sk)← Gen(1λ), any m1, . . . , ma(λ) ∈ M, any ci ← Enc(pk, mi), any C ∈ Cλ, and
any c← Eval(pk, C, c1, . . . , ca(λ)), Dec(sk, c) = C(m1, . . . , ma(λ)).

Compactness The size of the output of Eval is polynomial in λ and independent of the size of
the circuit C.

Security For any legitimate PPT adversary A, the advantage

Advind-cpa
Hpke,A(λ) := Expind-cpa

Hpke,A(λ)− 1
2

is negligible in λ, where Expind-cpa
Hpke,A is defined as in Fig. 4. An adversary A is legitimate if it

outputs two messages m0, m1 of identical length.

Experiment Expind-cpa
Hpke,A(λ)

(pk, sk)← Gen(1λ), (m0,m1, st)← A(1λ, pk, find)
b← {0, 1}, c← Enc(pk,mb)

b′ ← A(1λ, c, st, attack)
if b′ = b then return 1
return 0

Fig. 4. The description of the IND-CPA game Expind-cpa
Hpke,A(λ).

Without loss of generality, we assume that the secret key is the randomness that was used during
the key generation. This enables to test whether key pairs are valid.

3 Construction

3.1 Group scheme

A group scheme is an abstraction from the properties of groups formalized via a tuple of PPT
algorithms. For our purposes, we further abstract this notion to suit groups where group elements
do not necessarily have unique encodings. We adapt the notion described in [3] which in turn
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generalizes the notion introduced in [11]. As demonstrated in [3], such group schemes benefit from
the fact that group elements can be represented with many different encodings. This allows to add
auxiliary information inside encodings of group elements in order to add more structure to the
group. In our case, however, we exploit that group schemes with non-unique encodings can be used
to conceal the structure of the group.

Definition 9 (Group scheme with non-unique encodings).
A group scheme with non-unique encodings Γ is a tuple of PPT algorithms Γ = (Setup, Val,
Sam, Add, Equal).
Setup(1λ)→ pp On input the unary encoded security parameter 1λ, Setup outputs public param-

eters pp. In particular, pp contains the group order q. We assume that pp is given implicitly to
the following algorithms.

We assume that any encoding is represented as a bit string. In order to decide, whether a given bit
string is a valid encoding of a group element, Γ provides a validation algorithm Val. We refer to
bit strings causing Val to output 1 as (valid) encodings of group elements.
Val(h)→ {0, 1} On input a bit string h ∈ {0, 1}∗, Val outputs 1 if h is a valid encoding with

respect to pp, otherwise Val outputs 0.
In general, it is not sufficient to compare encodings as bit strings in order to decide whether
they represent the same group element. Hence, a group scheme needs to define an algorithm
that provides this functionality. This algorithm is called Equal. We require Equal to realize an
equivalence relation on the set of valid encodings. For any valid encoding h ∈ {0, 1}∗, let G(h)
denote the equivalence class of this encoding. In other words, G(h) contains all encodings that
correspond to the same group element as the encoding h. For any valid encoding h, we require that
|{a ∈ {0, 1}∗ |Val(a) = 1}/G(h)| = q is the order of the group. We refer to the equivalence classes
in {a ∈ {0, 1}∗ |Val(a) = 1}/G(h) as group elements.
Equal(a, b)→ {0, 1,⊥} On input two valid encodings a and b, Equal outputs 1 if a and b represent

the same group element, otherwise Equal outputs 0. If either a or b is invalid, Equal outputs
⊥.

In order to perform the group operation on two given encodings, we define an addition algorithm
Add.
Add(a, b) On input two valid encodings a and b, Add outputs an encoding corresponding to the

group element that results from the addition of the group elements represented by a and b. If
either a or b is invalid, Add outputs ⊥.

The sampling algorithm Sam enables to produce an encoding of a group element and only uses
information that is part of the public parameters pp. Let h be a bit string produced via Sam(1).
For any z ∈ N, let [z] denote the group element corresponding to the equivalence class G(hz),
where the group operation is performed using Add. We require the distribution of Sam(z) to be
computationally indistinguishable from uniform distribution over [z].
Sam(z)→ a On input an exponent z ∈ N, Sam outputs an encoding a from the equivalence class
G(hz).

Given the order q of the group, it is sufficient to provide an addition algorithm to enable inversion
of group elements. To invert a given group element, we use the square-and-multiply approach to add
the given encoding q − 1 times to itself. Further, it suffices to define an algorithm Zero that tests
whether a given encoding corresponds to the identity element of the group instead of an algorithm
Equal as above. To implement the algorithm Equal on input two encodings a and b, we invert b,
add the result to a and test whether the result corresponds to the identity element using Zero.

According to [3], a group scheme with non-unique encodings, in addition to the algorithms
defined above, provides an extraction algorithm. The extraction algorithm, given a valid encoding,
produces a bit string such that all encodings that represent the same group element lead to the
same bit string. However, we omit this algorithm, as our construction does not provide one. It
remains an open problem to extend our construction with an extraction algorithm such that the
validity of the (m,n)-Interactive Uber assumption (see Definition 10) can still be proven.
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3.2 Interactive Uber assumption

The Uber assumption is a very strong cryptographic assumption in bilinear groups first proposed
in [9] and refined in [12]. It provides a natural framework that enables to assess the plausibility of
cryptographic assumptions in bilinear groups.

In contrast to the original definition, we consider adaptive attacks (in which an adversary may
ask adaptively for more information about the game secrets and choose his challenge).

Definition 10 ((m,n)-Interactive Uber assumption for group schemes). Let m = m(λ)
and n = n(λ) such that d :=

(
n+m
m

)
is a polynomial5 in λ, and let Γ be a group scheme. The (m,n)-

Interactive Uber assumption holds for Γ if for any legitimate PPT adversary A, the advantage
Advuber

Γ,A (λ) is negligible in λ, where

Advuber
Γ,A (λ) := Pr

[
Expuber

Γ,A (λ) = 1
]
− 1

2 .

The game Expuber
Γ,A (λ) is described in Fig. 5. An adversary A is legitimate, if and only if it always

guarantees P ∗(X) 6∈ 〈1, P1(X), . . . , Pl(X)〉 and for any P (X) ∈ {P ∗(X), P1(X), . . . , Pl(X)},
deg(P (X)) ≤ n in Expuber

Γ,A (λ), where {P1(X), . . . , Pl(X)} are the polynomials that A requests
from its oracle O.

Experiment Expuber
Γ,A (λ)

pp ← Setup(1λ), s← (Zq)m

(P ∗(X), st)← AO(·)(1λ, pp, find)
b← {0, 1}, r ← Zq
z0 ← Sam(P ∗(s)), z1 ← Sam(r)

b′ ← AO(·)(1λ, zb, st, attack)
if b = b′ then return 1
return 0

Oracle O(P (X))

return Sam(P (s))

Fig. 5. The description of the (m,n)-Interactive Uber game Expuber
Γ,A (λ). The oracle O on input a polynomial

P (X), returns an encoding of the group element [P (s)]. We refer to P ∗(X) as “challenge polynomial” and
to zb as “challenge encoding”. Further, we call the polynomials that A requests from the oracle O “query
polynomials”.

For technical reasons, we need the maximum total degree n of the polynomials appearing in
Expuber

Γ,A (λ) and the number of unknowns m to be bounded a priori.

3.3 Our construction

Inspired by the construction in [3], an encoding of a group element includes two ciphertexts each
encrypting a vector determining an m-variate polynomial over Zq of maximum total degree n
with respect to some randomly sampled basis {a1, . . . , ad}. That basis is hidden inside the public
parameters of the group scheme via a perfectly binding commitment. An encoding corresponds to
the group element whose discrete logarithm equals the evaluation of the thus determined polynomial
at a random point ω ∈ Zmq . That random point ω is fixed in the public parameters via a point
obfuscation po.

For our construction we employ the following building blocks: (i) a dual mode NIWI proof
system Π, (ii) a homomorphic encryption scheme Hpke with message spaceM = Zdq for a family
of circuits of arity a(λ) = 2 adding two tuples in Zdq component-by-component modulo q, (iii) a
point obfuscation PObf for message spaceMk = Zq, (iv) a family T D = (T Dλ)λ∈N of families
T Dλ of languages TD in a universe X = Xλ with unique witnesses for y ∈ TD such that the subset
membership problem TD ⊆ X is hard, (v) a perfectly binding non-interactive commitment scheme
5 If the parameters m and n both grow at most logarithmically in λ or one of them grows polynomially in
λ while the other one is a constant, the binomial coefficient d =

(
n+m
m

)
grows polynomially in λ.
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Com for message space Zd×dq , and (vi) a general purpose X-Ind pIO piO (i.e. a pIO that is secure
with respect to SX-ind for a circuit family that only contains circuits with input length at most l,
where l is the security parameter used for piO). Let n = n(λ) and let m = m(λ) such that

(
n+m
m

)
is a polynomial in λ. The group scheme we construct depends on n and m. We emphasize this
fact by calling it Γm,n := (Setup, Val, Sam, Add, Equal). As mentioned above, we provide an
algorithm that tests if a given encoding is an encoding of the identity group element, instead of
implementing Equal.

Algorithm Setup(1λ)

(gpk, gsk)← SetupΠ(1λ)

(pk, sk)← Gen(1λ), (pk′, sk′)← Gen(1λ)

ω ← (Zq)m , poi ← PObf(1λ, ωi) for 1 ≤ i ≤ m, po := (po1, . . . , pom)
TD← T Dλ, y ← X \ TD
A← {B ∈ GLd(Zq) |B · e1 = e1}

ck ← ComSetup(1λ), (com, op)← Commitck(A)
(crs, tdext)← K(gpk, gsk)

Λadd ← piO(1poly(λ), CAdd), Λzero ← piO(1poly(λ), C
(0)
Zero)

return pp := (q, gpk, crs, y, TD, pk, pk′, Λadd, Λzero, po, ck, com)

Fig. 6. The implementation of the Setup algorithm producing public parameters pp.

In Fig. 6 we describe the algorithm Setup of our construction. The number q is a prime number
that is greater than 2p(λ) and will serve as the order of our group scheme. We require p to be a
polynomial such that p(λ) ≥ poly(λ), where poly is used to scale the security parameter of piO.
We emphasize that our construction allows to arbitrarily choose the group order q as long as q is
greater than 2p(λ) and prime. Therefore, q can be understood as an input of the algorithm Setup.
For the sake of simplicity, we do not write q as input and assume that Setup generates a suitable
group order.

We remark that the circuits CAdd and C(0)
Zero that appear in the algorithm Setup implement the

addition of two group elements and a test for the identity element respectively. For a description
of these circuits we refer the reader to Fig. 7. The polynomial poly(λ) ≥ λ that is used to scale
the security parameter for the obfuscator piO upper bounds the input length of these circuits
CAdd and C(0)

Zero. All versions of addition circuits and all versions zero testing circuits that appear
during the proofs are padded to the same length respectively. We emphasize that it is necessary
to scale the used security parameter as the pIO piO we rely on is secure with respect to SX-ind

for a circuit family that only contains circuits with input length at most λ′, where λ′ denotes the
security parameter that is used to invoke piO.

Encodings of group elements Encodings of group elements are of the form h = (C, C ′, π). The
first two entries C and C ′ are ciphertexts encrypting vectors #»

f ∈ Zdq and
#»

f ′ ∈ Zdq respectively under
the public keys pk and pk ′ respectively, where d is the dimension of the Zq vector space of m-variate
polynomials over Zq with total degree at most n, i.e. d =

(
n+m
m

)
. We require the dimension d of

the vector space to grow at most polynomially in λ. The last entry π is the so-called consistency
proof. We refer to the vectors #»

f and
#»

f ′ as representation vectors of the group element and to the
tuple ( #»

f ,
#»

f ′) as representation of the group element. Let α = (α1, . . . , αm) ∈ Nm denote tuples
with

∑m
i=1 αi ≤ n and let

ϕpol : Zdq → Zq[X], (. . . , vα, . . . )T 7→
∑
α

vα ·Xα1
1 · · ·Xαm

m

be the vector space homomorphism mapping the standard basis of Zdq to a natural basis of the vector
space of m-variate polynomials of degree at most n. For well-definedness we use the lexicographical
order on the tuples (α1, . . . , αm) ∈ Nm, particularly, the first vector of the standard basis of Zdq is
mapped to the constant polynomial 1. The image of ϕpol is Im(ϕpol) = {p ∈ Zq[X] |deg(p) ≤ n}
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and the kernel is ker(ϕpol) = {0}. Hence, ϕpol is an isomorphism between the vector spaces Zdq and
Im(ϕpol).

We recall that Setup(1λ) samples the matrix A uniformly at random from GLd(Zq) such that
the first column equals e1. Hence, the matrix A−1 exists and has the form A−1 = (a1 | a2 | . . . | ad)
such that a1 = e1. The columns a1, . . . , ad ∈ Zdq form a basis of the vector space Zdq .

The coefficients of the representation vectors #»

f = (f1, . . . , fd)T and
#»

f ′ = (f ′1, . . . , f ′d)T of a
group element define the polynomials f(X), f ′(X) ∈ Im(ϕpol) via

f(X) :=
d∑
i=1

fi · ϕpol(ai) f ′(X) :=
d∑
i=1

f ′i · ϕpol(ai)

=ϕpol

(
A−1 · #»

f
)

=ϕpol

(
A−1 ·

#»

f ′
)

In other words, the representation vectors #»

f and
#»

f ′ are the representations of the abstract
polynomials f(X) and f ′(X) respective to the basis {ϕpol(a1) = ϕpol(e1), ϕpol(a2), . . . , ϕpol(ad)}.
Intuitively, a valid encoding that contains the representation vector #»

f ∈ Zdq corresponds to the
group element [f(ω)], where ω is the value that is fixed in the public parameters of the group
scheme via po. The same holds for the representation vector

#»

f ′ resulting in a redundant encoding.
This approach is similar to the Naor-Yung paradigm [36].

We call the representation ( #»

f ,
#»

f ′) consistent if both representation vectors correspond to the
same group element, i.e. the evaluation of the corresponding polynomials f(X) and f ′(X) at ω

are equal. Otherwise, we call such a representation inconsistent. If the representation ( #»

f ,
#»

f ′) is
consistent, we call this representation constant if the corresponding polynomials f(X) and f ′(X)
are constant (i.e. are of total degree at most 0). If a consistent representation is not constant we
call this representation non-constant. The purpose of the so-called consistency proof is to ensure
consistency of encodings, i.e. to ensure that the corresponding representation is consistent. Further,
we use the terms constant, non-constant, consistent, and inconsistent to characterize encodings if
the associated representation has the respective properties.

Consistency proof and validation algorithm The above mentioned consistency proof ensures
that the representations, that are encrypted inside of encodings, are consistent. In other words, the
consistency proof ensures that both representation vectors #»

f and
#»

f ′ used for an encoding lead to
the same group element. We realize this by using the dual mode NIWI proof system Π to produce
the consistency proof π for a relation R. The relation R is a disjunction of three main statements
R = R1 ∨R2 ∨R3:

The relation R1 is satisfied for representations that are constant and consistent. We formalize
this via relation R1.a:

R1.a :=
[

#»

f =
#»

f ′ ∧ deg
(
ϕpol(

#»

f )
)
≤ 0
]

We recall the convention that the degree of the zero polynomial is defined to be −∞. For technical
reasons, we need to make sure that the knowledge of the secret decryption keys (sk, sk ′) and the
knowledge of the used encryption randomness are both sufficient as witnesses. Thus, additionally to
R1.a we define the two relations Rb and Rc. The relations Rb and Rc connect the ciphertexts C,
C ′ of the encoding with the corresponding representation vectors #»

f ,
#»

f ′ appearing in relation R1.a.

Rb :=
[

C = Enc(pk, #»

f ;R) ∧ C ′ = Enc(pk ′,
#»

f ′;R′)
]

Rc :=
[

(pk, sk) = Gen(sk) ∧ #»

f = Dec(sk, C) ∧
(pk ′, sk ′) = Gen(sk ′) ∧

#»

f ′ = Dec(sk ′, C ′)

]
At this point we make use of the assumption that a secret decryption key equals the randomness
that was used to produce the corresponding public encryption key. The relation R1 is defined as
follows:

R1 := R1.a ∧ (Rb ∨Rc) . (7)
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Given a consistent and constant representation ( #»

f ,
#»

f ′) and resulting ciphertexts C and C ′, there
are two possible witnesses to produce the consistency proof for the relation R1: using the secret
decryption keys (sk, sk ′, #»

f ,
#»

f ′) and using the encryption randomness (( #»

f , R), (
#»

f ′, R′)).
The relation R2 is satisfied for representations that are consistent. Again, we formalize this via

a relation R2.a:

R2.a :=

 ϕpol

(
A−1 · #»

f
)

(ω) = ϕpol

(
A−1 ·

#»

f ′
)

(ω) ∧
∀i ∈ {1, . . . ,m} : poi(ωi) = 1 ∧
Openck(com, op) = A ∧ A 6= ⊥


The relation R2 is defined as follows:

R2 := R2.a ∧ (Rb ∨Rc) . (8)

Given a consistent representation ( #»

f ,
#»

f ′) and resulting ciphertexts C and C ′, there are two possible
witnesses to produce the consistency proof for the relation R2: using the secret decryption keys (sk,
sk ′, #»

f ,
#»

f ′, ω, op) and using the encryption randomness (( #»

f , R), (
#»

f ′, R′), ω, op). To be precise,
the matrix A also is part of these witnesses. However, as we can assume that A is a part of op, we
omit this fact in our notation.

The relation R3 introduces a trapdoor enabling production of consistency proofs for inconsistent
encodings.

R3 :=
[
y ∈ TD

]
. (9)

This relation only depends on the instance (TD, y) of the subset membership problem TD ⊆ X
defined in the public parameters. We recall that if y ∈ TD, there exists a unique witness wy
satisfying the witness relation for the SMP. Hence, the witness for the relation R3 is (wy). Given
public parameters pp that are generated via Setup(1λ), y is not in TD. Therefore, there exists no
trapdoor if pp is generated honestly.

Let rp denote the parts of the public parameters that are necessary to produce consistency
proofs, i.e. rp := (q, pk, pk ′, po, ck, com, TD, y). To be precise, the corresponding language L has
the following form:

L :={x = (q, pk, pk ′, po, ck, com,TD, y︸ ︷︷ ︸
=rp

, C, C ′) | ∃w : (x,w) ∈ R}

=L1 ∪ L2 ∪ L3,

where Li := {x = (rp, C,C ′) | ∃w : (x,w) ∈ Ri}. For the sake of clarity, we henceforth omit the
parameters rp and treat the tuple (C, C ′) as the statement.

The validation algorithm Val, on input a bit string h ∈ {0, 1}∗, parses h into (C, C ′, π) and
executes Verify(gpk, crs, x, π) of the underlying NIWI proof system Π for the relation R.

Addition and Zero Algorithm The implementations of the algorithms Add and Zero need
to know secret information that is associated with the public parameters, for instance the secret
decryption keys. Therefore, we implement these algorithms as probabilistic circuits and “hard-code”
the necessary secret parameters inside. The security requirement of the employed obfuscator piO
enables to conceal the implementation of these circuits and, hence, conceals the secret parameters
that are hard-coded. The PPT algorithms Add and Zero simply execute the respective obfuscated
circuit Λadd and Λzero.

In Fig. 7 we present the implementation of the circuit CAdd and the implementation of the circuit
C

(0)
Zero. We remark that CZero only uses the representation vector #»

f and ignores the representation
vector

#»

f ′. This enables to exploit the Naor-Yung like double encryption.
The addition circuit CAdd is similar to the one constructed in [3]. The difference is limited to

the fact that in our case CAdd differentiates between three instead of two different possibilities to
produce the new consistency proof. The encodings of group elements in the construction of [3] are of
the form (h, C, C ′, π), where C and C ′ are some ciphertexts and π is a corresponding consistency
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Circuit CAdd[gpk, rp, sk, sk′,ω, op, tdext](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))
#»

f (a) := Dec(sk, C(a)),
#»

f ′(a) := Dec(sk′, C′(a))
#»

f (b) := Dec(sk, C(b)),
#»

f ′(b) := Dec(sk′, C′(b))
#»

f (c) := ⊕( #»

f (a),
#»

f (b)),
#»

f ′(c) := ⊕(
#»

f ′(a),
#»

f ′(b))

if (C(a), C′(a)), (C(b), C′(b)) ∈ L1 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (sk, sk′, #»

f (c),
#»

f ′(c)))

elseif (C(a), C′(a)), (C(b), C′(b)) ∈ L2 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (sk, sk′, #»

f (c),
#»

f ′(c),ω, op))
else

let α ∈ {a, b} : (C(α), C′(α)) 6∈ L1 ∪ L2

wy ← Extract(tdext, (C(α), C′(α)), π(α))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Circuit C
(0)
Zero[q, sk,ω, A](a)

if ¬Val(a) then
return ⊥

parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )
if f(ω) = 0 then

return 1
return 0

Fig. 7. Circuit CAdd (left) for addition of two group elements, and circuit C(0)
Zero (right) for testing whether

a given encoding is an encoding of the identity element. Additionally to the publicly available parameters
gpk and rp, CAdd has the secret decryption keys sk, sk′, the values ω, the opening op, and the extraction
trapdoor tdext hard-coded. The circuit C(0)

Zero knows the publicly available parameter q and additionally has
the secret parameters sk, ω, and A hard-coded. The circuit ⊕ realizes addition in Zdq .

proof. The value h is the group element in an underlying group that is represented by the encoding.
As h uniquely identifies the represented group element, the equality test simply compares these
values of the given encodings. In our case, however, the encodings do not contain a similar entry.
Therefore, the implementation of the equality test, or rather the zero test, needs to decrypt the
ciphertext C in order to be able to make a statement about the represented group element.

Sampling Algorithm The sampling algorithm Sam, on input an exponent z ∈ N, uses the
representation ( #»

f ,
#»

f ′) := ((z, 0, . . . , 0)T , (z, 0, . . . , 0)T ) to produce an encoding of the requested
group element. The consistency proof is produced for relation R1 using the witness (( #»

f , R), (
#»

f ′,
R′)), where R and R′ are the randomnesses that are used to encrypt #»

f and
#»

f ′ respectively. If the
sampling algorithm does not receive any input, it samples the exponent z from {0, . . . , q − 1}
uniformly at random and proceeds as above. Due to the IND-CPA security of Hpke, the distribution
of the output of Sam(z) is computationally indistinguishable from uniform distribution over the
equivalence class G(Sam(z)) (see Lemma 2).

We remark that our group scheme allows for re-randomization of encodings. To re-randomize a
given encoding, we sample an encoding of the identity element and use the addition algorithm to
add it to the encoding to be randomized. We require the employed homomorphic encryption scheme
to satisfy an additional natural property. Namely, we require that ciphertexts can be re-randomized
by homomorphically adding a fresh ciphertext of 0. This property is also known as circuit privacy.

4 Preparations for the main theorem

In this chapter we prove that if the building blocks we use to construct the group scheme Γm,n
satisfy their respective security requirements, the (m,n)-Interactive Uber assumption holds for the
group scheme Γm,n constructed in Section 3.3. Preliminary, we prove three lemmas that facilitate
and modularize the proof of this statement.
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4.1 Interchangeable ways to sample the public parameters

During the proofs in this chapter we manipulate the way public parameters for the group scheme
are sampled. For greater clarity, we refer to the following distributions of public parameters as
follows:

p̃p : sampled as pp but with y ∈ TD (10)
p̂p : sampled as p̃p but with Λadd ← piO(1poly(λ), C ′′Add), (11)

and crs in hiding mode

See Fig. 8 for the implementation of the circuit C ′′Add.

Circuit C′′Add[gpk, (TD, y), wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a)), parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b)), C′(c) := Eval(pk′,⊕, C′(a), C′(b))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Fig. 8. The circuit C′′Add for addition of two group elements that always produces the consistency proof
π(c) for the relation R3 and does not require any secret information except for the witness wy. The circuit
⊕ realizes addition in Zdq .

These two distributions are computationally indistinguishable even if an adversary knows the
corresponding secret decryption keys sk and sk ′, the point ω, and the opening op. A very similar
statement was stated in Lemma 1 in the proceedings version of [3]. In contrast to that statement
we need this indistinguishability to hold even if the adversary knows the values ω that are hidden
inside the point obfuscations po = (po1, . . . , pom) and the opening op for the commitment com.

Lemma 1 (Swap lemma, [3]). Let piO be a probabilistic indistinguishability obfuscator with
respect to SX-ind for a circuit family that only contains circuits with input length upper bounded by
poly(λ), and let Π be a dual mode NIWI proof system. Then, for any PPT distinguisher A, the
advantage

Advswap
A (λ) := Pr

[
A(1λ, pp, sk, sk ′,ω, op) = 1

∣∣ pp ← p̃p
]

− Pr
[
A(1λ, pp, sk, sk ′,ω, op) = 1

∣∣ pp ← p̂p
]

(12)

is negligible in λ.

Table 1. An overview on the proof steps of Lemma 1, [3]. The boxes emphasize changes compared to
the previous game.

CAdd knows CRS Remark

Game0 sk, sk′, ω, op, tdext binding

Game1 sk, sk′, ω, op, wy binding security of piO

Game2 sk, sk′, ω, op, wy hiding CRS indistinguishability of Π

Game3 wy hiding security of piO

19



Proof. To prove this statement, we proceed over a series of games using similar arguments as in
the proof of Lemma 1 in the proceedings version of [3]. Let outi denote the output of Gamei. For
an overview on the proof steps we refer the reader to Table 1.
Game0. This game samples public parameters pp as p̃p (see Eq. (10)), calls the adversary A on
input (1λ, pp, sk, sk ′, ω, op), and outputs A’s output.
Game1. Is the same as Game0 with the difference that Game1 produces the obfuscation Λadd via
piO(1poly(λ), C ′Add) for the circuit C ′Add (see Fig. 9 for the implementation of C ′Add). Due to the
perfect extractability of Π and the fact that wy is the unique witness for the statement y ∈ TD,
the two circuits CAdd and C ′Add are functionally equivalent. Furthermore, poly(λ) is an upper bound
for the input length of the two circuits. Hence, this game hop is justified by the security property
of piO. In particular, there exists a circuit sampler S1 ∈ SX-ind and a PPT adversary B1, such that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ 2 ·

∣∣∣Advpio-ind
piO,S1,B1

(poly(λ))
∣∣∣. As the extraction trapdoor tdext is no

longer necessary in Game1, we are able to switch over to use a hiding CRS without any further
changes to the game.

Circuit C′Add[gpk, rp, sk, sk′,ω, op, wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))
#»

f (a) := Dec(sk, C(a)),
#»

f ′(a) := Dec(sk′, C′(a))
#»

f (b) := Dec(sk, C(b)),
#»

f ′(b) := Dec(sk′, C′(b))
#»

f (c) := ⊕( #»

f (a),
#»

f (b)),
#»

f ′(c) := ⊕(
#»

f ′(a),
#»

f ′(b))

if (C(a), C′(a)), (C(b), C′(b)) ∈ L1 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)),

(sk, sk′, #»

f (c),
#»

f ′(c)))

elseif (C(a), C′(a)), (C(b), C′(b)) ∈ L2 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)),

(sk, sk′, #»

f (c),
#»

f ′(c), w, op))
else

wy ← Extract(tdext, (C(α), C′(α)), π(α))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Circuit C′′Add[gpk, (TD, y), wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))

π(c) ← Prove(gpk, crs, (C(c), C′(c)),
(wy))

return c := (C(c), C′(c), π(c))

Fig. 9. The circuit C′Add (left) for addition of two group elements that does not use the extraction trapdoor
tdext. The circuit C′′Add (right) for addition of two group elements that always produces the consistency
proof π(c) for the relation R3 and, hence, does not need any secret information except for wy. In contrast
to CAdd, the code line in C′Add that is highlighted is not necessary anymore as C′Add has the witness wy
hard-coded. The differing sections of the implementations of C′Add and C′′Add are highlighted . The circuit ⊕
realizes addition in Zdq .

Game2. Is the same as Game1 except for the fact that Game2 produces the CRS crs in hiding mode
via (crs, ·)← S(gpk, gsk). This game hop is justified by the CRS indistinguishability of Π. In other
words, there exists a PPT adversary B2, such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ 2 ·

∣∣Advcrs
Π,B2

(λ)
∣∣.

Game3. Is identical to Game2 except for the fact that Game3 produces the obfuscation Λadd via
piO(1poly(λ), C ′′Add) for the circuit C ′′Add (see Fig. 9 for the implementation of C ′′Add). However, the
two circuits C ′Add and C ′′Add are not functionally equivalent.

Claim. For any PPT distinguisher A, there exists a circuit sampler S3 ∈ SX-ind and a PPT
adversary B3, such that |Pr[out3 = 1]− Pr[out2 = 1]| ≤ 2 ·

∣∣∣Advpio-ind
piO,S3,B3

(poly(λ))
∣∣∣.
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Proof (sketch). The difference between the circuits C ′Add and C ′′Add is limited to the fact that
C ′′Add always produces the consistency proof π(c) for the relation R3 using wy as a witness, even
if the representations of its inputs a and b are consistent. However, due to the perfect witness-
indistinguishability of Π under a hiding CRS, the consistency proofs π(c) produced by C ′Add and
C ′′Add are identically distributed. We remark that an adversary B3 in this reduction is invoked using
poly(λ) as security parameter. Hence, poly(λ) is an upper bound for the input length of the circuits
C ′Add and C ′′Add. Furthermore, the cardinality of the domain of the circuits C ′Add and C ′′Add is less
or equal to 2poly(λ). Let X : N → N be a function such that X(l) = 2l for any l ∈ N. Therefore,
X(poly(λ)) is greater or equal to the cardinality of the domain of the circuits C ′Add and C ′′Add.

We construct a circuit sampler S3 that samples public parameters as in Game2 omitting the
obfuscated circuit Λadd and outputs the implementations of the two circuits C ′Add and C ′′Add. To
prove that S3 ∈ SX-ind, we define the set X to span the entire domain of the circuits C ′Add and
C ′′Add. Thus, for any possibly unbounded adversary D, the advantage Adveq$

S3,D(λ) = 0. Furthermore,
for any non-uniform PPT distinguisher D′, the advantage Advsel-ind

S3,D′ (λ) = 0 as for any input, the
resulting output of the two circuits is identically distributed. Therefore, S3 is an X-Ind sampler.

To complete the proof, we construct B3 such that it simulates Game2 if Exppio-ind
B3,piO provides an

obfuscation of C ′Add, and Game3 otherwise. ut

Hence, for any PPT distinguisher A, there exists an X-Ind sampler S and PPT adversaries D1
and D2 such that

|Advswap
A (λ)| ≤ 4 ·

∣∣∣Advpio-ind
piO,S,D1

(poly(λ))
∣∣∣+ 2 ·

∣∣Advcrs
Π,D2

(λ)
∣∣. (13)

ut

Later in the proof we will consider a zero testing circuit that uses sk ′ to decrypt the second part
C ′ of encodings instead of the first part C using sk. We refer to this circuit as CZero and refer the
reader to Fig. 11 for more details. An adaption of Lemma 1 such that both p̃p and p̂p contain
an obfuscation of the circuit CZero instead of an obfuscation of the circuit C(0)

Zero will turn out to
be useful. We refer to these distributions as p̃p′ and p̂p′ respectively. Using a similar argument
as before, we can see that Swap lemma also holds for these two distributions. We refer to the
corresponding advantage of a PPT distinguisher A as Advswap′

A (λ).

4.2 Switching of encodings

In this section, we observe that encodings of the same group element are computationally in-
distinguishable. The notion of indistinguishability is formalized via the Switch game defined in
Fig. 10.

Experiment Expswitch
A (λ)

pp ← Setup(1λ)

(( #»

f (0),
#»

f ′(0)), ( #»

f (1),
#»

f ′(1)), st)← A(1λ, pp,ω, op, find)

b← {0, 1}, C ← Enc(pk, #»

f (b);R), C′ ← Enc(pk′,
#»

f ′(b);R′)
if (C,C′) ∈ L1 then

π ← Prove(gpk, crs, (C,C′), (( #»

f (b), R), (
#»

f ′(b), R′)))
else

π ← Prove(gpk, crs, (C,C′), (( #»

f (b), R), (
#»

f ′(b), R′),ω, op))

b′ ← A(1λ, (C,C′, π), st, attack)
if b = b′ then return 1
return 0

Fig. 10. The description of the Switch game Expswitch
A (λ).

An adversary A for the Switch game Expswitch
A is legitimate, if and only if it always guarantees

that the representations ( #»

f (0),
#»

f ′(0)) and ( #»

f (1),
#»

f ′(1)) in Expswitch
A are consistent and represent
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the same group element. In other words, any legitimate adversary for the Switch game always
chooses ( #»

f (0),
#»

f ′(0)) and ( #»

f (1),
#»

f ′(1)) such that f (0)(ω) = f ′(0)(ω) = f (1)(ω) = f ′(1)(ω), where
f (b) := ϕpol(A−1 · #»

f (b)) and f ′(b) := ϕpol(A−1 ·
#»

f ′(b)) for b ∈ {0, 1}.
A similar statement of indistinguishability was stated in Theorem 1 in the proceedings version

of [3]. In contrast to the game formalized in [3], the Switch game needs to explicitly decide whether
to produce the consistency proof π of the challenge encoding (C, C ′, π) for the relation R1 or for
the relation R2.

We remark that in the Switch game, the consistency proof is produced using the encryption
randomness as part of the witness, whereas in the addition circuit the secret decryption keys sk
and sk ′ are used as part of the witness.

Lemma 2 (Switching lemma, [3]). Let Γm,n be the group scheme constructed in Section 3.3.
Further, let piO be a probabilistic indistinguishability obfuscator with respect to SX-ind for a circuit
family that only contains circuits with input length upper bounded by poly(λ), let T D = (T Dλ)λ∈N
be a family of families T Dλ = {TD} of languages TD ⊆ Xλ such that the subset membership
problem is hard, let Π be a dual mode NIWI proof system, and let Hpke be an IND-CPA secure
HPKE scheme. Then, for any legitimate PPT adversary A, the advantage

Advswitch
A (λ) := Pr

[
Expswitch

A (λ) = 1
]
− 1

2 (14)

is negligible in λ.

An important observation to adapt the proof strategy of [3] is that consistency proofs that are
produced for either R1 or R2 depending on whether the chosen representation is constant or not,
and consistency proofs that are produced for R3, are identically distributed under a hiding CRS.
Therefore, the proof strategy is similar as in the proof of Theorem 1 in the proceedings version of
[3].

Table 2. An overview on the steps of the proof of Lemma 2, [3]. The boxes emphasize changes compared
to the previous game. Let pp′ denote public parameters that are sampled like in Setup(1λ) but contain an
obfuscation of the circuit CZero instead of an obfuscation of the circuit CZero. Further, let W1 denote the
witness that is used to prove relation R1, i.e. W1 := (( #»

f , R), (
#»

f ′, R′)), let W2 denote the witness that is
used to prove relation R2, i.e. W2 := (( #»

f , R), (
#»

f ′, R′), ω, op), and let W3 denote the witness (wy).

Public
parameters

pp

C
encrypts

C′

encrypts

Witness for
consistency

proof
Remark

Game0 pp #»

f (b) #»

f ′(b) W1 resp. W2 Switch game

Game1 p̃p #»

f (b) #»

f ′(b) W1 resp. W2 SMP TD ⊆ X

Game2 p̂p #»

f (b) #»

f ′(b) W1 resp. W2 Swap lemma (Lemma 1)

Game3 p̂p #»

f (b) #»

f ′(b) W3 perfect WI of Π

Game4 p̂p #»

f (b) #»

f ′(1) W3 IND-CPA security of Hpke

Game5 p̂p #»

f (b) #»

f ′(1) W1 resp. W2 perfect WI of Π

Game6 p̃p #»

f (b) #»

f ′(1) W1 resp. W2 Swap lemma (Lemma 1)

Game7 pp #»

f (b) #»

f ′(1) W1 resp. W2 SMP TD ⊆ X

Game8 pp′ #»

f (b) #»

f ′(1) W1 resp. W2 security of piO

Game9 p̃p′ #»

f (b) #»

f ′(1) W1 resp. W2 SMP TD ⊆ X

Game10 p̂p′ #»

f (b) #»

f ′(1) W1 resp. W2 Swap lemma for p̃p′, p̂p′

Game11 p̂p′ #»

f (b) #»

f ′(1) W3 perfect WI of Π

Game12 p̂p′ #»

f (1) #»

f ′(1) W3
IND-CPA security of Hpke
independent of b
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Proof. To prove this statement, we proceed over a series of games. We start with the original Switch
game and stop in a game that is independent of the bit b. Let outi denote the output of Gamei.
Further, let A be a legitimate PPT adversary for the Switch game. For an overview on the proof
steps we refer the reader to Table 2.
Game0. Is the original Switch game Expswitch

A (λ).
Game1. Is the same as Game0 with the difference that the public parameters are sampled with a
YES-instance y ← TD of the subset membership problem TD ⊆ X . In other words, in Game1 pp is
distributed as p̃p. This game hop is justified by the hardness of the subset membership problem
TD ⊆ X . Particularly, there exists a PPT adversary B1, such that |Pr[out1 = 1]− Pr[out0 = 1]| ≤∣∣∣Advsmp

T D,B1
(λ)
∣∣∣. This enables to produce valid but inconsistent encodings of group elements.

Game2. Is the same as Game1 except for the fact that the public parameters pp are sampled
like p̂p instead of being sampled like p̃p. This hop is justified by the Swap lemma (Lemma 1). In
other words, |Pr[out2 = 1]− Pr[out1 = 1]| ≤

∣∣Advswap
B2

(λ)
∣∣ for a suitable PPT distinguisher B2. We

emphasize that the secret decryption key sk ′ is never used in this game.
Game3. Is identical to Game2 except for the generation of the consistency proof. In this game the
consistency proof π for the challenge encoding is produced for relation R3 instead of being produced
for either relation R1 or relation R2. The corresponding witness is wy. As the CRS crs is in hiding
mode andΠ is perfectly witness-indistinguishable under a hiding CRS, Pr[out3 = 1]−Pr[out2 = 1] =
0.
Game4. Is the same as Game3 with the difference that the ciphertext C ′ for the challenge encoding
is produced as C ′ ← Enc(pk ′,

#»

f ′(1); R′). In other words, the ciphertext C ′ in this game always
encrypts

#»

f ′(1) instead of
#»

f ′(b). This hop is justified by the IND-CPA security of Hpke.
Claim. For any legitimate PPT adversary A, there exists a legitimate PPT adversary B4 for
the IND-CPA security of the HPKE scheme Hpke, such that |Pr[out4 = 1]− Pr[out3 = 1]| ≤
2 ·
∣∣∣Advind-cpa

Hpke,B4
(λ)
∣∣∣.

Proof (sketch). We construct a legitimate PPT adversary B4 for the IND-CPA game with Hpke
that samples public parameters as in Game3 embedding its input pk ′ and simulates Game3 for A.
Given the output of A’s find-phase, B4 outputs the tuple (m0, m1) := (

#»

f ′(b),
#»

f ′(1)) to the IND-CPA
game and uses the resulting ciphertext as C ′ to produce the encoding (C, C ′, π). As the consistency
proof π is produced for relation R3, B4 does not need to know the encrypted vector or the used
encryption randomness R′ to produce π. ut
Game5. Is the same as Game4, but in this game the consistency proof π of the challenge is again
produced for relation R1 or relation R2 depending on whether the representation ( #»

f (b),
#»

f ′(1)) is
constant or non-constant. As A is legitimate, both representations ( #»

f (0),
#»

f ′(1)) and ( #»

f (1),
#»

f ′(1))
are consistent and represent the same group element, i.e. ϕpol(A−1 · #»

f (b))(ω) = ϕpol(A−1 ·
#»

f ′(1))(ω).
As the CRS crs is in hiding mode and Π is perfectly witness-indistinguishable under a hiding CRS,
Pr[out5 = 1]− Pr[out4 = 1] = 0.
Game6. Is the same as Game5 except for the fact that the public parameters are again sampled as
p̃p, i.e. containing a CRS in binding mode and an obfuscation of the circuit CAdd. This game hop
is justified by Lemma 1. The analysis is similar to the analysis of the game hop from Game1 to
Game2. Particularly, there exists a PPT distinguisher B6, such that |Pr[out6 = 1]− Pr[out5 = 1]| ≤∣∣Advswap

B6
(λ)
∣∣. We emphasize that wy is not used in this game.

Game7. Is identical to Game6 with the difference that the public parameters are sampled with a
NO-instance y ← X \TD of the subset membership problem TD ⊆ X . Hence, the public parameters
in this game are again distributed as the output of Setup(1λ). This hop is justified by the hardness
of the subset membership problem TD ⊆ X . In other words, there exists a PPT adversary B7, such
that |Pr[out7 = 1]− Pr[out6 = 1]| ≤

∣∣∣Advsmp
T D,B7

(λ)
∣∣∣.

Game8. Is the same as Game7 except for the fact that the public parameters contain an obfuscation
of the circuit CZero (see Fig. 11 for the implementation of the circuit CZero) instead of an obfuscation
of the circuit C(0)

Zero. In other words, Λzero is produced via piO(1poly(λ), CZero). This hop is justified
by the security of piO.
Claim. For any legitimate PPT adversary A, there exists an X-Ind sampler S8 and a PPT adversary
B8, such that |Pr[out8 = 1]− Pr[out7 = 1]| ≤ 2 ·

∣∣∣Advpio-ind
piO,S8,B8

(poly(λ))
∣∣∣.

23



Proof (sketch). The two circuits C(0)
Zero and CZero differ only in the fact that C(0)

Zero tests whether
the equality f(ω) = ϕpol(A−1 · #»

f )(ω) = 0 holds and CZero tests whether the equality f ′(ω) =
ϕpol(A−1 ·

#»

f ′)(ω) = 0 holds. We observe that the public parameters in Game7 and Game8 contain a
NO-instance of the SMP TD ⊆ X and the CRS crs is in binding mode. As Π is perfectly binding
under crs and y 6∈ TD, the representation of any valid encoding necessarily is consistent. Therefore,
the circuits C(0)

Zero and CZero are functionally equivalent and a circuit sampler S8 that samples public
parameters as Setup(1λ) and outputs the implementations of the circuits C(0)

Zero and CZero is in
the sampler class SX-ind. Besides, poly(λ) upper bounds the input length of the circuits C(0)

Zero and
CZero. ut

Circuit CZero[q, sk′,ω, A](a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ′ ← Dec(sk′, C′), f ′(X) := ϕpol(A−1 ·
#»

f ′)
if f ′(ω) = 0 then return 1
return 0

Fig. 11. Circuit for testing whether a given encoding corresponds to the identity element. In contrast to
C

(0)
Zero, this circuit uses the decryption key sk′ to obtain the coefficients

#»

f ′.

Game9. Is identical to Game8 with the difference that the public parameters are sampled with
a YES-instance y ← TD of the subset membership problem TD ⊆ X , i.e. the public parameters
are distributed as p̃p′ defined in Section 4.1. This hop is justified by the hardness of the subset
membership problem TD ⊆ X . The reduction is similar to the reduction for hop from Game0
to Game1. Hence, there exists a PPT adversary B9, such that |Pr[out9 = 1]− Pr[out8 = 1]| ≤∣∣∣Advsmp

T D,B9
(λ)
∣∣∣.

Game10. Is the same as Game9 except for the fact that the public parameters pp are sampled like
p̂p′. This game hop is justified by the Swap lemma for the distributions p̃p′ and p̂p′. The analysis is
analogous to the analysis of the game hop from Game1 to Game2. There exists a PPT distinguisher
B10 such that |Pr[out10 = 1]− Pr[out9 = 1]| ≤

∣∣∣Advswap′
B10

(λ)
∣∣∣. We remark that the secret decryption

key sk is never used in this game.
Game11. Is the same as Game10 with the difference that the consistency proof π for the challenge
is produced for relation R3 using wy as a witness. As the CRS crs is in hiding mode and Π is
perfectly witness-indistinguishable under a hiding CRS, Pr[out11 = 1]− Pr[out10 = 1] = 0.
Game12. Is identical to Game11 with the difference that C always encrypts #»

f (1) instead of
#»

f (b), i.e. C is produced via C ← Enc(pk, #»

f (1);R). This game hop is justified by the IND-CPA
security of Hpke. The analysis is analogous to the analysis of the game hop from Game3 to Game4.
Hence, there exists a legitimate PPT adversary B12 for the IND-CPA security of Hpke, such that
|Pr[out12 = 1]− Pr[out11 = 1]| ≤ 2 ·

∣∣∣Advind-cpa
Hpke,B12

(λ)
∣∣∣. Due to the fact that Game12 does not depend

on b, Pr[out12 = 1] = 1
2 .

Therefore, for any legitimate PPT adversary A, there exists an X-Ind sampler S and (legitimate)
PPT adversaries D1, D2, D3, and D4 such that∣∣Advswitch

A (λ)
∣∣ ≤ 3 ·

∣∣Advsmp
D1

(λ)
∣∣+ 14 ·

∣∣∣Advpio-ind
piO,S,D2

(poly(λ))
∣∣∣

+ 6 ·
∣∣Advcrs

Π,D3
(λ)
∣∣+ 4 ·

∣∣∣Advind-cpa
Hpke,D4

(λ)
∣∣∣. (15)

ut

4.3 Randomization

To prove security of our construction, we need a technical lemma that enables to randomize the
challenge in the proof of our main theorem (in Section 5).
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Experiment Exprand
(q,d),A(λ)

A← {B ∈ GLd(Zq) |B · e1 = e1}

(t∗, st)← AO
rand(·)(find)

b← {0, 1}, v∗0 := A · t∗, v∗1 ← Zdq

b′ ← AO
rand(·)(v∗b , st, attack)

if b = b′ then return 1
return 0

Oracle Orand(t)

return A · t

Fig. 12. The description of the Randomization game Exprand
(q,d),A(λ).

Lemma 3 (Randomization lemma). Let d ∈ N be a natural number, and let q be a prime
number. An adversary A is legitimate if and only if it always guarantees that t∗ 6∈ 〈e1, t1, . . . , tl〉
in Exprand

(q,d),A(λ), where t1, . . . , tl ∈ Zdq are A’s oracle queries. Then, for any possibly unbounded
legitimate adversary A, the advantage

Advrand
(q,d),A(λ) := Pr

[
Exprand

(q,d),A(λ) = 1
]
− 1

2 (16)

is at most d
q .

The proof of Lemma 3 is mainly technical.

Proof. To prove this technical lemma, we first observe that any matrix A, that is chosen uniformly
at random from Zd×dq , such that A · tj = vj for any j ∈ {1, . . . , i}, is uniformly distributed over the
set of all matrices satisfying these equations. In other words, a matrix A that is sampled uniformly
at random from Zd×dq until the condition described above holds is uniformly distributed over the
set of all matrices that satisfy this condition.

Without loss of generality, we consider an adversary A that queries d−1 vectors that are linearly
independent of the set of all previous queries, only uses the oracle Orand in its find-phase, and always
queries the vector e1 at first. This is justified by the fact that given an arbitrary legitimate adversary
Ã, we are able to construct such an adversary A that has the same probability of success in the
Randomization game as Ã. Particularly, A initially queries the vector e1, invokes the find-phase of
Ã simulating the oracle Orand for Ã, and only uses its own oracle to answer queries that can not be
computed as a linear combination of the previous oracle queries. Given Ã’s challenge t∗, A extends
the set of its previous oracle queries together with the vector t∗ to a basis of Zdq and queries the
resulting vectors from its oracle. Thus, A is able to simulate the oracle Orand for the attack-phase
of Ã without using its own oracle.

To prove this statement, we proceed over a series of games. Let outi denote the output of
Gamei.
Game0. Is the Randomization game as described in Fig. 12.
Game1. Is the same as Game0 except for the fact that the matrix A is chosen uniformly at random
from all d × d-matrices over Zq and not only from GLd(Zq). As the fraction of non-invertible
matrices in the set of all matrices in Zd×dq is at most d

q , |Pr[out1 = 1]− Pr[out0 = 1]| ≤ d
q .

Game2. Is the same as Game1 with the difference that the internal state of the game, i.e. the matrix
A, is freshly sampled after the find-phase of A conditioned by the output the game already made.
We refer to the matrix that is freshly sampled as Ã. The adversary A does not make oracle queries
after its find-phase has terminated. We remark that Game2 is not necessarily efficient anymore.
Using a similar argument as [38], this hop is conceptional and leads to a statistical distance of 0,
hence, Pr[out2 = 1]− Pr[out1 = 1] = 0.

Consider the point in time after A has output the challenge t∗. The view of A only depends on
the answers v0, . . . , vd−2 to its oracle queries t0 = e1, . . . , td−2. We observe that t1, . . . , td−2 and
v0, . . . , vd−2 are random variables depending on the random variable A. However, these vectors do
not depend on the freshly sampled matrix Ã. The matrix Ã is uniformly distributed over the set
M := {A ∈ Zd×dq |A · ti = vi for any i ∈ {0, . . . , d− 2}}. As {t0, . . . , td−2, t∗} is a basis of Zdq , Ã is
of the form

Ã = B ·D with B =
(
v0 v1 . . . vd−2 v∗

)
and D =

(
t0 t1 . . . td−2 t∗

)−1 .

25



The matrix D is independent of Ã and multiplication with D is a bijection. Hence, the column v∗
is uniformly distributed over Zdq , and Pr[out2 = 1] = 1

2 .
ut

5 The Interactive Uber assumption

The proof starts with the game Expuber
Γm,n,A described in Fig. 5. In this game, the adversary requests

the evaluation of selected polynomials at a secret point s as encodings in the group scheme Γm,n.
Originally, the encodings of those group elements simply encrypt those evaluated values directly.
For that reason, the game needs to know the secret point s. As a first step to bypass that, we
represent the secret s as c ◦ ω := (ci · ωi)mi=1 for a random point c and exploit the fact that the
discrete logarithm that corresponds to an encoding equals the evaluation of the thereby determined
m-variate polynomial at ω. Consequently, we are able to employ the Switching lemma (Lemma 2)
to use non-constant polynomials in ω to produce encodings. As a next step, we need to remove any
information about the matrix A from the public parameters. To achieve that, we gradually alter
the group structure such that encodings are treated as equal if and only if they determine the same
abstract polynomial. This paves the way for employing the Randomization lemma (Lemma 3) to
randomize the challenge.

Theorem 1. Let Γm,n be the group scheme constructed in Section 3.3. Further, let piO be a
probabilistic indistinguishability obfuscator with respect to SX-ind for a circuit family containing
circuits with input length at most poly(λ), let T D = (T Dλ)λ∈N be a family of families T Dλ = {TD}
of languages TD ⊆ Xλ such that the subset membership problem is hard, let Π be a dual mode NIWI
proof system, let Hpke be an IND-CPA secure HPKE scheme, let Com be a perfectly binding non-
interactive commitment scheme, and let PObf be a point obfuscation. Then, the (m,n)-Interactive
Uber assumption (cf. Definition 10) holds for Γm,n.

Before we prove this theorem, we state a technical lemma that helps to argue that the Random-
ization lemma can be applied.

Lemma 4. Let l, n,m ∈ N be natural numbers, let K be a field, and let {Q1(X), . . . , Ql(X)} be a
set of m-variate polynomials over K of total degree at most n. Then the set {Q1(X), . . . , Ql(X)} is
linearly independent over K if and only if for any c ∈ (K×)m, the set {Q1(c ◦X), . . . , Ql(c ◦X)}
is linearly independent over K, where c ◦X = (ci ·Xi)mi=1 is the Hadamard product.

Proof (of Theorem 1). Let A be a legitimate adversary for the (m,n)-Interactive Uber game. To
prove this theorem, we proceed over a series of games. We start with the real (m,n)-Interactive
Uber game and stop with the ideal (m,n)-Interactive Uber game. Let outi denote the output of
Gamei. For an overview on the proof steps we refer the reader to Table 4.
Game0. Is the real interactive Uber game Expuber

Γm,n,A(λ), i.e. the bit b is set to 0. We emphasize
that Game0 produces encodings of group elements in a uniform manner as the sampling algorithm
Sam defined in Section 3.3.
Game1. Is identical to Game0 with the difference that the secret value s is sampled as s := c ◦ ω,
where c is sampled uniformly at random from

(
Z×q
)m. We recall that the algorithm Setup samples

the value ω from (Zq)m and includes point obfuscations for these values in pp. In Game0 s and ω
are distributed uniformly and independently over (Zq)m. In Game1 s and ω are distributed exactly
as in Game0 given that ω does not contain any zero entries. As the probability that at least one
entry of ω equals zero is at most m

q , we have that |Pr[out1 = 1]− Pr[out0 = 1]| ≤ m
q .

Game2. Is the same as Game1 with the difference that Game2 uses non-constant representations
to produce group element encodings. In particular, Game2 uses the representation vectors #»

f :=
#»

f ′ := A · ϕ−1
pol(P (c ◦X)) to produce an encoding of the group element [P (s)]. We recall that these

representation vectors describe the polynomial P (c ◦X) with respect to the basis {ϕpol(a1), . . . ,
ϕpol(ad)}. The corresponding consistency proofs are produced for either relation R1 or for relation
R2 depending on whether the representation ( #»

f ,
#»

f ′) is constant or not. This game hop is justified
by the Switching lemma (Lemma 2). Particularly, there exists a legitimate PPT adversary B2 for the
Switch game, such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ 2 · (l + 1) ·

∣∣Advswitch
B2

(λ)
∣∣, where l denotes

the number of A’s oracle queries.
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To realize this, we use a standard hybrid argument. The hybrid game Game1.i for i ∈ {0, . . . , l}
is identical to Game1 with the difference that the first i oracle queries are answered as in Game2. The
hybrid game Game1.(l+1) is identical to Game2. The adversary B2 receives the secret information ω
and op as input and, hence, is able to simulate each hybrid. B2 guesses an index j ∈ {1, . . . , l + 1}.
If j ∈ {1, . . . , l}, let P (X) denote the j-th query polynomial, and if j = l+ 1, let P (X) denote the
challenge polynomial. The adversary B2 outputs the two representations #»

f (0) :=
#»

f ′(0) := (P (c ◦ω),
0, . . . , 0)T and #»

f (1) :=
#»

f ′(1) := A · ϕ−1
pol(P (c ◦X)) to the Switch game and uses the resulting

answer as answer to the j-th oracle query if j ∈ {1, . . . , l} or as challenge encoding otherwise.
We recall that the first column of the matrix A is e1 which is why A−1 · #»

f (0) = P (c ◦ ω) · e1.
As ϕpol

(
A−1 · #»

f (0)
)

(ω) = P (c ◦ ω) = ϕpol

(
A−1 · #»

f (1)
)

(ω), B2 is a legitimate adversary for the
Switch game.
Game3. Is identical to Game2 with the difference that pp is distributed as p̃p (see Eq. (10)). This
hop is justified by the hardness of the SMP TD ⊆ X , i.e. there exists a PPT adversary B3, such
that |Pr[out3 = 1]− Pr[out2 = 1]| ≤

∣∣∣Advsmp
T D,B3

(λ)
∣∣∣.

Game4. Is the same as Game3 with the difference that the public parameters pp are distributed as p̂p
(see Eq. (11)). This hop is justified by Lemma 1. In particular, there exists a PPT distinguisher B4,
such that |Pr[out4 = 1]− Pr[out3 = 1]| ≤

∣∣Advswap
B4

(λ)
∣∣. To realize this, it is important to observe

that B4 is able to simulate Game3 and Game4 as the necessary secret information ω and op are part
of its input.
Game5. Is identical to Game4 except for the fact that this game produces any consistency proof
for relation R3. As crs is in hiding mode and Π satisfies perfect witness-indistinguishability under
a hiding CRS, Pr[out5 = 1]−Pr[out4 = 1] = 0. This step allows to produce consistency proofs even
if the commitment com contains ⊥ and the point obfuscations po1, . . . , pom are produced for ⊥.
We emphasize that in this game the opening op is not used anymore.
Game6. Is the same as Game5 except for the fact that the commitment com is produced via
Commitck(⊥). In other words, in Game5 com is a commitment for the matrix A, and in Game6 com
is a commitment for ⊥. This game hop is justified by the computational hiding property of Com,
i.e. there exists a PPT adversary B6, such that |Pr[out6 = 1]− Pr[out5 = 1]| ≤ 2 ·

∣∣∣Advhiding
Com,B6

(λ)
∣∣∣.

For notational convenience, let po(i) := (po1, . . . , pom) denote the following distribution

po(i) :=
(
po1 ← PObf(⊥), . . . , poi ← PObf(⊥),
poi+1 ← PObf(ωi+1), . . . , pom ← PObf(ωm)

)
. (17)

Hence, the tuple of point obfuscations po as defined in Game6 is distributed as po(0). Further, for
any multivariate polynomial f(X) and any i ∈ {0, . . . , m} let

F
(f)
i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm). (18)

Let pp(i) denote the distribution of public parameters as in Game6 containing a tuple of point
obfuscations distributed as po(i) and an obfuscation Λzero for the circuit C(i)

Zero.
Game7. Is the same as Game6 with the difference that the m-tuple po of point obfuscations is
distributed as po(m) (see Eq. (17)) and the obfuscation of the zero testing circuit Λzero is produced
via piO(1poly(λ), C(m)

Zero) (see Fig. 13 for the implementation of the circuit C(i)
Zero for i ∈ {0, . . . , m}).

In other words, in Game6 pp is distributed as pp(0) and in Game7 pp is distributed as pp(m).

Lemma 5. For any PPT adversary A, there exists an X-Ind sampler S, and PPT adversaries D1
and D2, such that

|Pr[out7 = 1]− Pr[out6 = 1]| ≤ 8m ·
∣∣∣Advpio-ind

piO,S,D1
(poly(λ))

∣∣∣
+m ·

∣∣∣Advpo
PObf,D2

(λ)
∣∣∣.

Proof (of Lemma 5). We define a series of hybrid games. The hybrid game Game6.i for i ∈ {0,
. . . , m} is identical to Game6 with the difference, that the public parameters pp contain po(i)
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Circuit C
(i)
Zero(a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

if F (f)
i (X1, . . . , Xi) ≡ 0 then

return 1
return 0

Circuit C
′(i)
Zero(a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0 ∨

F
(f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = 0

)
then

return 1
return 0

Circuit C
′′(i)
Zero (a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i

Vj := zero set of F (f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1)

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0 ∨

∃v ∈ Vj : poi+1(v) = 1
)

then

return 1
return 0

Circuit C
′′′(i)
Zero (a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i+1

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , r

(j)
i+1) = 0

)
then

return 1
return 0

Fig. 13. Zero testing circuits that appear in the proof. C(i)
Zero, C

′(i)
Zero know q, sk, (ωi+1, . . . , ωm), and A.

C
′′(i)
Zero , however, only needs to know poi+1 instead of ωi+1. C′′′(i)Zero does not need to know ωi+1 at all. Changes

to the previous circuit are highlighted . We remark that testing whether an m-variate polynomial of total
degree at most n is the zero polynomial can be done in polynomial time as d =

(
n+m
m

)
is polynomial in λ.

and an obfuscation Λzero of the circuit C(i)
Zero. That is, the public parameters produced in Game6.i

are distributed as pp(i). Game6.0 is identical to Game6 and Game6.m is identical to Game7. For an
overview on the proof steps we refer the reader to Table 3.
Game6.i.0. Is the same as Game6.i. That is, pp is distributed as pp(i).
Game6.i.1. Is identical to Game6.i.0 with the difference that the obfuscation Λzero is produced for
the circuit C ′(i)Zero (see Fig. 13 for an implementation of the circuit C ′(i)Zero). This game hop is justified
by the security property of piO and the Schwartz-Zippel lemma.

Claim. For any legitimate PPT adversary A, there exists a circuit sampler S1 ∈ SX-ind and a PPT
adversary B1, such that |Pr[out6.i.1 = 1]− Pr[out6.i.0 = 1]| ≤ 2 ·

∣∣∣Advpio-ind
piO,S1,B1

(poly(λ))
∣∣∣.

Proof (sketch). The condition of acceptance of C ′(i)Zero is a logical or statement such that the left-hand
side of the or-statement implies the right-hand side. Thus, the left-hand side of that or-statement is
only conceptional. Hence, the difference between the circuits’ behavior on input a valid encoding
is limited to the fact that C(i)

Zero only outputs 1 if F (f)
i (X1, . . . , Xi) ≡ 0 as abstract polynomials,

whereas C ′(i)Zero outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = F

(f)
i (r(j)) = 0

for randomly sampled values r(1), . . . , r(ν) ← (Zq)i. The only event causing the two circuits to
produce different outputs is that F (f)

i is a non-zero polynomial and F (f)
i (r(j)) = 0 for every j ∈ {1,

. . . , ν}. Applying the Schwartz-Zippel lemma upper bounds the probability for that event by nν

qν .
We construct a circuit sampler S1 that on input of the security parameter 1poly(λ) produces public

parameters as in Game6.i.0 omitting the obfuscated circuit Λzero and outputs the implementations
of the circuits C(i)

Zero and C
′(i)
Zero. As poly(λ) upper bounds the input length of the two circuits,
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Table 3. An overview on the steps of the proof of Lemma 5. The boxes emphasize changes compared to
the previous game. We recall that F (f)

i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm) and Vj is the zero
set of the polynomial F (f)

i+1(r(j), Xi+1), where r(j) ← Ziq.

Point
obfuscations

Zero
circuit Performed test Remark

Game6.i.0 po(i) C
(i)
Zero F

(f)
i (X1, . . . , Xi) ≡ 0

Game6.i.1 po(i) C
′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨

F
(f)
i+1(r(j), ωi+1) = 0

) security
of piO

Game6.i.2 po(i) C
′′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨
∃v ∈ Vj : poi+1(v) = 1

) security
of piO

Game6.i.3 po(i+1) C
′′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨
∃v ∈ Vj : poi+1(v) = 1

) security
of PObf

Game6.i.4 po(i+1) C
′′′(i)
Zero ∀j :

(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , r

(j)
i+1) = 0

) security
of piO

Game6.i+1.0 po(i+1) C
(i+1)
Zero F

(f)
i+1(X1, . . . , Xi+1) ≡ 0 security

of piO

we may choose the differing domain X to span the entire domain of the two circuits using the
map X : N → N, l 7→ 2l. Therefore, for any possibly unbounded adversary D, the advantage
Adveq$

S1,D(poly(λ)) = 0. Furthermore, we need to verify that for any non-uniform PPT adversary D′,
X(poly(λ)) ·Advsel-ind

S1,D′ (poly(λ)) is negligible in λ. As the statistical distance between the outputs
of C(i)

Zero and C
′(i)
Zero is upper bounded by nν

qν and q ≥ 2p(λ), we can easily choose ν such that
X(poly(λ)) · Advsel-ind

S1,D′ (poly(λ)) is negligible in λ. Hence, S1 is an X-Ind Sampler. Then, we are
able to construct the adversary B1 such that it simulates Game6.i.0 if it receives an obfuscation of
C

(i)
Zero from Exppio-ind

piO,S1,B1
and Game6.i.1 otherwise. ut

Game6.i.2. Is the same as Game6.i.1 with the difference that the obfuscation Λzero is produced for
the circuit C ′′(i)Zero (see Fig. 13 for an implementation of the circuit C ′′(i)Zero). Again, this game hop is
justified by the security of piO. As poi+1 contains the value ωi+1, the following equivalence holds

∃v ∈ Vj : poi+1(v)⇐⇒ F
(f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = 0,

where Vj is the zero set of the polynomial F (f)
i+1(r(j)

1 , . . . , r(j)
i , Xi+1). The zero set of a univariate

polynomial can be computed using the Cantor-Zassenhaus (CS) algorithm [18]. The algorithm CS
is a randomized Las Vegas algorithm with expected computational complexity in O(n3 · log(q))
[19]. As the running time has no upper bound, we define an algorithm CS ′ that simulates CS for
2 · T steps, where T is the expected running time of CS . If CS outputs the zero set during that
time, CS ′ succeeds, otherwise CS ′ outputs ⊥. Exploiting Markov’s inequality, the probability that
CS ′ succeeds if at least 1

2 . We define the algorithm CS ′′ that calls CS ′ p′(λ) times. If at least one
execution of CS ′ succeeds, CS ′′ outputs the (unique) zero set, otherwise CS ′′ outputs ∅. Hence, the
probability that CS ′′ succeeds is at least 1− 1

2p′(λ) . The circuit C ′′(i)Zero uses the algorithm CS ′′ to
compute Vj . Hence, the two circuits behave differently only if the algorithm CS ′′ fails to compute
Vj for some j ∈ {1, . . . , ν}. Employing a union bound, the statistical difference between the outputs
of C ′(i)Zero and C ′′(i)Zero is upper bounded by ν · 1

2p′(λ) .
We construct a circuit sampler S2 that produces public parameters as in Game6.i.1 omitting the

obfuscated circuit Λzero and outputs the implementations of the circuits C ′(i)Zero and C ′′(i)Zero. By the
same argument as above, we only need to verify that X(poly(λ)) ·Advsel-ind

S2,D′ (poly(λ)) is negligible in
λ for any PPT adversary D′. As X(poly(λ)) ≤ 2poly(λ) and Advsel-ind

S2,D′ (poly(λ)) ≤ ν · 1
2p′(λ) , we can

easily choose p′(λ) such that 2poly(λ) · ν · 1
2p′(λ) is negligible and, hence, S2 ∈ SX-ind. We remark

that at this point we make use of the fact that piO is secure even if for circuit families that contain
circuits that are bigger than the security parameter used to instantiate piO.
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A crucial observation is that the value ωi+1 is never used explicitly in Game6.i.2. This enables
to utilize the security property of the point obfuscation PObf.
Game6.i.3. Is the same as Game6.i.2 with the difference that the m-tuple po of point obfuscations
is distributed as po(i+1). That is, in Game6.i.2 poi+1 contains the uniformly distributed value ωi+1
and in Game6.i.3 poi+1 is produced via PObf(⊥). This hop is justified by the security property
of the point obfuscation PObf. In other words, there exists a PPT adversary B3, such that
|Pr[out6.i.3 = 1]− Pr[out6.i.2 = 1]| ≤

∣∣∣Advpo
PObf,B3

∣∣∣(λ).

We observe that the condition ∃v ∈ Vj : poi+1(v) that is used in C ′′(i)Zero can not hold anymore.
Thus, C ′′(i)Zero on input a valid encoding outputs 1 if and only if for every j ∈ {1, . . . , m}, F (f)

i+1(r(j)
1 ,

. . . , r(j)
i , Xi+1) ≡ 0 as abstract polynomials.

Game6.i.4. Is identical to Game6.i.3 with the difference, that Λzero is produced for the circuit C ′′′(i)Zero
(see Fig. 13 for the implementation of the circuit C ′′′(i)Zero ). The difference between the circuits C ′′(i)Zero
and C ′′′(i)Zero is limited to the fact that C ′′(i)Zero only outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0,

whereas C ′′′(i)Zero uses a weaker condition and outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i+1) = 0,

where r(1), . . . , r(ν) are randomly sampled points from (Zq)i+1. Again, the Schwartz-Zippel lemma
upper bounds the probability that the circuits C ′′(i)Zero and C

′′′(i)
Zero behave differently by nν

qν . Thus,
using a similar argument as for the game hop between Game6.i.0 and Game6.i.1, there exists
an X-Ind sampler S4 and a PPT adversary B4, such that |Pr[out6.i.4 = 1]− Pr[out6.i.3 = 1]| ≤
2 ·
∣∣∣Advpio-ind

piO,S4,B4
(poly(λ))

∣∣∣.
Game6.i.5. Is identical to Game6.i.4 with the difference, that Λzero is produced for the circuit C(i+1)

Zero .
The circuit C ′′(i)Zero outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i+1) = 0

for r(1), . . . , r(ν) ← (Zq)i+1. The circuit C(i+1)
Zero only outputs 1 if F (f)

i+1(X1, . . . , Xi+1) ≡ 0 as
abstract polynomials. The only event causing the two circuits to produce different outputs occurs
if the polynomial F (f)

i+1 is a non-zero polynomial and for all j ∈ {1, . . . , ν}, F (f)
i+1(r(j)) evaluates

to 0. Again, the Schwartz-Zippel lemma upper bounds the probability for that to happen by nν

qν .
Hence, this game hop is justified by the security property of the employed obfuscator using a similar
argument as above. Furthermore, Pr[out6.i.5 = 1] = Pr[out6.i+1 = 1].

Hence, we obtain

|Pr[out7 = 1]− Pr[out6 = 1]| ≤

∣∣∣∣∣
m−1∑
i=0

Pr[out6.i+1 = 1]− Pr[out6.i = 1]

∣∣∣∣∣
≤ 8m ·

∣∣∣Advpio-ind
piO,S,D1

(poly(λ))
∣∣∣

+m ·
∣∣∣Advpo

PObf,D2
(λ)
∣∣∣

for a suitable circuit sampler S ∈ SX-ind and suitable PPT adversaries D1 and D2 concluding the
proof of Lemma 5. ut

In C
(m)
Zero the matrix A is not necessary to perform the test whether F (f)

m (X) equals the zero
polynomial. This enables to employ the security of the obfuscator to unnoticeably switch to a zero
testing circuit that does not know the matrix A.
Game8. Is identical to Game7 except for the fact that the public parameters are sampled containing
an obfuscation of the circuit CZero (cf. Fig. 14). We refer to this distribution of public parameters as
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Circuit CZero[q, sk](a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

if #»

f = (0, . . . , 0)T then
return 1

return 0

Fig. 14. Zero testing circuit that does not know the matrix A.

pp. This game hop is justified by the security of piO as the circuits C(m)
Zero and CZero are functionally

equivalent.
In Game8, the matrix A is not necessary to produce the implementation of CZero as F (f)

m (X) ≡
0⇔ #»

f = (0, . . . , 0)T exploiting the fact that multiplication with A is an isomorphism of vector
spaces. Thus, the public parameters pp in Game8 do not contain any information about the matrix
A, i.e. the only source of information about A is the oracle O and the challenge. This enables to
apply the Randomization lemma (Lemma 3).
Game9. Is identical to Game8 except for the fact that the representation vectors #»

f :=
#»

f ′ for the
challenge encoding are sampled uniformly at random from (Zq)d. This game hop is justified by the
Randomization lemma (Lemma 3).

Claim. For any legitimate PPT adversary A, there exists a legitimate (possibly unbounded)
adversary B9 for the Randomization game Exprand

(q,d),B9
(λ), such that |Pr[out9 = 1]− Pr[out8 = 1]| ≤

2 · dq .

Proof (sketch). We construct an adversary B9 for Exprand
(q,d),B9

(λ) that simulates either Game8 or
Game9 depending on whether B9 receives the real challenge from Exprand

(q,d),B9
(λ) or not. The public

parameters pp that are sampled in Game8 and Game9 are identically distributed, and B9 is able
to sample pp exactly like in these games, as pp does not depend on the matrix A. In order to
answer A’s oracle queries, B9 uses its oracle Orand. Particularly, B9 obtains the representation
vectors that are necessary to answer an oracle query for the polynomial P (X) by requesting the
vector t := ϕ−1

pol(P (c ◦X)) from its own oracle Orand. To obtain the representation vectors for
the challenge encoding, B9 outputs the vector t∗ := ϕ−1

pol(P ∗(c ◦X)) to the Randomization game.
Hence, B9 simulates Game8 if the Randomization game provides the real challenge. Otherwise, B9
simulates Game9. By premise, the adversary A is legitimate with respect to the (m, n)-Interactive
Uber assumption, i.e. P ∗(X) 6∈ 〈1, P1(X), . . . , Pl(X)〉 and for any P (X) ∈ {P ∗(X), P1(X),
. . . , Pl(X)}, deg(P (X)) ≤ n. Hence, due to Lemma 4 and exploiting the fact that ϕpol is an
isomorphism of vector spaces, ϕ−1

pol(P ∗(c ◦X)) 6∈ 〈e1, ϕ−1
pol(P1(c ◦X)), . . . , ϕ−1

pol(Pl(c ◦X))〉, where
P1(X), . . . , Pl(X) are the polynomials A queries from its oracle. Therefore, B9 is legitimate. ut

Game10. Is identical to Game9 with the difference that the public parameters pp are sampled
with an obfuscation of C(m)

Zero instead of an obfuscation of CZero. The analysis of this game hop is
analogous to the analysis of the game hop from Game7 to Game8. Hence, in Game10 the public
parameters are distributed as pp(m).
Game11. Is the same as Game10 except for the fact that the public parameters are again distributed
as pp(0) instead of being distributed as pp(m). This game hop is justified by the security property
of piO and the point obfuscation PObf. The analysis is analogous to the proof of Lemma 5.
Game12. Is the same as Game11 except for the fact that com is produced via Commitck(A). The
analysis is analogous to the analysis of the game hop from Game5 to Game6.
Game13. Is the same as Game12 with the difference that Game13 produces consistency proofs for
relation R1 or relation R2 depending on whether the corresponding representation is constant
or not. The representation vectors #»

f :=
#»

f ′ for the challenge encoding are sampled uniformly at
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random from (Zq)d. Nevertheless, the resulting representation is consistent. As Π is perfectly
witness-indistinguishable under a hiding CRS, Pr[out13 = 1]− Pr[out12 = 1] = 0.
Game14. Is the same as Game13 with the difference that in Game13 pp is distributed as p̂p, whereas
in Game14 pp is distributed as p̃p. Hence, this game hop is justified by the Swap lemma (Lemma 1).
We remark that the witness wy for the statement y ∈ TD is never used in Game14.
Game15. Is identical to Game14 except for the fact that the public parameters pp are sampled
according to Setup(1λ). The analysis is similar to the analysis of the game hop form Game2 to
Game3.
Game16. Is the same as Game15 with the difference that group element encodings are sampled
in a uniform manner as in the sampling algorithm Sam, i.e. using constant representations. In
particular, the representation vectors for the challenge encoding are computed via

#»

f :=
#»

f ′ :=
(
ϕpol

(
A−1 · v∗

)
(ω), 0, . . . , 0

)T , for v∗ ← (Zq)d .

The analysis of this game hop is similar to the analysis of the game hop form Game1 to Game2
using a hybrid argument and Lemma 2. We observe that Game16 does not use the value c explicitly.
Game17. Is identical to Game16 with the difference that s is directly sampled uniformly at random
from (Zq)m. In both games Game16 and Game17, s is uniformly and independently distributed
over (Zq)m, if ω does not contain a zero entry. As ω is chosen uniformly at random from (Zq)m,
|Pr[out17 = 1]− Pr[out16 = 1]| ≤ m

q .
Game18. Is identical to Game17 except for the fact that the challenge encoding is sampled using
the representation #»

f :=
#»

f ′ := (r, 0, . . . , 0)T , where r is sampled uniformly at random from Zq. In
Game17, the vector v∗ is sampled uniformly at random from (Zq)d, and multiplication with the
matrix A defines a bijection on (Zq)d that does not depend on v∗. Thus, the vector A−1 · v∗ is
uniformly distributed over (Zq)d. Therefore, Game17 and Game18 are identically distributed, which
is why Pr[out18 = 1]− Pr[out17 = 1] = 0.

Therefore, for any legitimate PPT adversary A, there exist legitimate PPT adversaries D1, D2,
D3, D4, D5, and D6 and a polynomial l = l(λ) such that∣∣∣Advuber

Γm,n,A(λ)
∣∣∣ ≤ d+m

q
+ (6l + 7) ·

∣∣∣Advsmp
T D,D1

(λ)
∣∣∣+m ·

∣∣∣Advpo
PObf,D5

(λ)
∣∣∣

+ (12l + 14) ·
∣∣Advcrs

Π,D3
(λ)
∣∣+ (8l + 8) ·

∣∣∣Advind-cpa
Hpke,D4

(λ)
∣∣∣

+ (28l + 8m+ 34) ·
∣∣∣Advpio-ind

piO,D2
(poly(λ))

∣∣∣
+ 2 ·

∣∣∣Advhiding
Com,D6

(λ)
∣∣∣. (19)

Asm and l grow at most polynomially in λ, the advantage Advuber
Γm,n,A(λ) is negligible in λ concluding

the proof. ut

32



Table 4. An overview on the steps of the proof of Theorem 1. The boxes emphasize changes compared
to the previous game. Let Wi denote the witness that is used to prove relation Ri for i ∈ {1, 2, 3}.
The witnesses W1 and W2 contain the used encryption randomness. Further, for a polynomial P (X), let
RP := A · ϕ−1

pol(P (c ◦X)), and for a vector v∗ ∈ Zdq , let Rv∗ := ϕpol
(
A−1 · v∗

)
(ω) · e1.

Publ.
param.

Secret
s

Representations for
queries P / challenge P ∗

Witness
for π Remark

Game0 pp s← Zmq P (s) · e1 P ∗(s) · e1 W1
the real
Uber game

Game1 pp s := c ◦ ω

c←
(
Z×q
)m P (s) · e1 P ∗(s) · e1 W1

negl. statistical
distance

Game2 pp s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2

Switching lemma
(Lemma 2)

Game3 p̃p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2 SMP TD ⊆ X

Game4 p̂p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2

Swap lemma
(Lemma 1)

Game5 p̂p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 perfect WI of Π

Game6 pp(0) s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3

hiding property
of Com

Game7 pp(m) s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 Lemma 5

Game8 pp s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 security of piO

Game9 pp s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3

Rand. lemma
(Lemma 3)

Game10 pp(m) s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3 security of piO

Game11 pp(0) s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3 Lemma 5

Game12 p̂p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3

hiding property
of Com

Game13 p̂p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2 perfect WI of Π

Game14 p̃p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2

Swap lemma
(Lemma 1)

Game15 pp s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2 SMP TD ⊆ X

Game16 pp s := c ◦ ω

c←
(
Z×q
)m P (s) · e1

Rv∗ ,
v∗ ← Zdq

W1
Switching lemma
(Lemma 2)

Game17 pp s← Zmq P (s) · e1
Rv∗ ,
v∗ ← Zdq

W1
negl. statistical
distance

Game18 pp s← Zmq P (s) · e1
r · e1,
r ← Zq

W1
identically
distributed
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Appendix A Point obfuscation from DDH

Let G = {Gλ} be a family of finite cyclic groups of prime order p such that the DDH assumption
holds. On input the value x ∈ Zp, PObf(x) samples a random generator g ← GensG and two values
r, r′ ← Z×p , and outputs the tuple (gr, gr·x, gr′ , gr′·x). On input ⊥, PObf(⊥) samples a random
generator g ← GensG and four values x, x′, r, r′ ← Z×p such that x 6= x′, and outputs the tuple (gr,
gr·x, gr′ , gr′·x′). Given the description po =: (A, B, A′, B′) of a point function, po(y) evaluates to
1 if and only if Ay = B and A′y = B′ for some point y ∈ Zp.

A point obfuscation with message space Mλ = Zq for a prime q that is much larger than p
can be constructed using the above point obfuscation with message space Zp. Let l ∈ N be the
smallest natural number such that pl ≥ q. Essentially, the idea is to produce a point obfuscation for
the first component of the p-adic representation of elements in Zq. Particularly, on input y ∈ Zq,
PObf′ produces po0 for y (mod p) and appends the remaining p-adic representation in the clear.
On input ⊥, PObf′ produces po0 for ⊥ and generates a random value y ← Zq and appends the
p-adic representation of q omitting the first component. The proof of security relies on the security
of the underlying point obfuscation PObf and the fact that uniform distribution over Zp and
uniform distribution over Zq modulo p are statistically close if the quotient p

q is negligible in λ.

Lemma 6. Let PObf be a point obfuscation with message space Zp for a prime p and let q ≥ pl be
a prime such that p

q is negligible in λ. Then, PObf′ as described in Fig. 15 is a point obfuscation
for message space Zq.

Algorithm PObf′(y)

if y = ⊥ then x← Zq
else x := y

let (x0, . . . , xl−1) s. t.

x =
∑l−1

i=0 xi · p
i and

0 ≤ xi < p for any 0 ≤ i < l

if y = ⊥ then po0 ← PObf(⊥)
else po0 ← PObf(x0)
return po := (po0, x1, . . . , xl−1)

po(x)

let (x0, . . . , xl−1) s. t.

x =
∑l−1

i=0 xi · p
i and

0 ≤ xi < p for any 0 ≤ i < l

return (po0(x0) = 1)∧
(poi = xi for 1 ≤ i < l)

Fig. 15. The description of PObf′ (left) and the map defined by po (right).

Proof (sketch). Let A be a PPT adversary. To prove this statement, we proceed over a series of
games. Let outi denote the output of Gamei.
Game0. This game produces po← PObf′(x) for x← Zq, calls the adversary A on input (1λ, po),
and outputs A’s output. We have that Pr[out0 = 1] = Pr[A(po) = 1 | po← PObf(x), x← Zq].
Game1. This game samples a value x̃0 ← Zp and produces po0 ← PObf(x̃0). The value x is
sampled from Zq conditioned on x = x̃0 (mod p). Further, x0, . . . , xl−1 are produced as in Game0.
This game invokes A with po := (x̃0, x1, . . . , xl−1). The statistical distance between uniform
distribution over Zp and uniform distribution over Zq reduced modulo p is upper bounded by p

2q ,
which is why |Pr[out1 = 1]− Pr[out0 = 1]| ≤ p

2q .
As the message used to produce the point obfuscation po0 is uniformly distributed over the

message space Zp, we are able to exploit the security property of PObf.
Game2. Is identical to Game1 with the difference that po0 is produced for ⊥. Hence, |Pr[out2 = 1]
− Pr[out1 = 1]| ≤ Advpo

PObf,B2
(λ).

Game3. Is the same as Game2 except for the fact that x is sampled uniformly at random from
Zq, i.e. x0 = x (mod p) is not distributed uniformly anymore. Applying a similar argument as
above, we obtain |Pr[out3 = 1]− Pr[out2 = 1]| ≤ p

2q . Furthermore, we have that Pr[out3 = 1] =
Pr
[
A(po) = 1

∣∣ po← PObf′(⊥)
]
.

ut
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