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Abstract. Masking is a widely used countermeasure against Side-Channel
Attacks (SCA), but the implementation of these countermeasures is chal-
lenging. Experimental security evaluation requires special equipment, a
considerable amount of time and extensive technical knowledge. So, to
automate and to speed up this process, a formal verification can be per-
formed to asses the security of a design. Multiple theoretical approaches
and verification tools have been proposed in the literature. The majority of
them are tailored for software implementations, not applicable to hardware
since they do not take into account glitches. Existing hardware verification
tools are limited either to combinational logic or to small designs due to
the computational resources needed.
In this work we present VerMI, a verification tool in the form of a logic
simulator that checks the properties defined in Threshold Implementations
to address the security of a hardware implementation for meaningful orders
of security. The tool is designed so that any masking scheme can be evaluated.
It accepts combinational and sequential logic and is able to analyze an
entire cipher in short time. With the tool we have managed to spot a flaw
in the round-based Keccak implementation by Gross et al., published in
DSD 2017.
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Glitches, Logic Simulator

1 Introduction

Implementing cryptographic algorithms in hardware has become quintessential,
since physical attacks on cryptographic devices are getting increasingly popular and
easier to reproduce. Side-Channel Attacks (SCA) exploit the leakage from different
physical properties of the device, Differential Power Analysis (DPA) [20] being one
of the most common attacks. Several countermeasures have been proposed in the
literature, including hiding and masking [28]. Masking has caught most attention,
with multiple schemes published to date [9, 17, 19, 25, 27, 30]. They are all based
on secret sharing, where each sensitive data, i.e. key dependent, x is divided into
s pieces (x = (x1, . . . , xs)), such that x = x1 ⊥ . . . ⊥ xs. We consider Boolean
masking, where ⊥ is field addition denoted by ⊕, and all s shares are needed to



derive x. Threshold Implementations has been proposed in [25] by defining the
following three properties to secure a hardware design:

– Correctness: a shared function f such that fi(x) = yi, where i = 1, . . . , s, is
correctly shared if

∑
yi = y = f(x).

– Non-completeness : a shared function f is dth-order non-complete if any combi-
nation of up to d component functions fi is independent of at least one input
share.

– Uniformity : the outputs of a shared function have to conform a uniform
distribution. Note that given a uniform sharing, it is sufficient to preserve
the uniformity across operations to achieve univariate security (together with
non-completeness).

Checking if a cryptographic implementation is in fact secure is a very demanding
exercise. One way is by using attack based evaluations, but this is highly inefficient,
since it requires a considerable effort implementing different attacks, ensuring solely
security against those specific attacks. Following the same principle is the non-
specific test vector leakage assessment (TVLA) [12] over the power consumption
or the electromagnetic radiation of the device to detect leakage. Despite a few
limitations [29], this method provides a more generic conclusion on the security
and has been widely used in the literature [11, 22] to assess security of several
implementations. Yet, TVLA and attack based evaluations need the actual ASIC
or a correctly programmed FPGA, as well as special equipment to be performed.

Formal verification is another way of evaluating the security of a cryptographic
implementation. This method studies the theoretical conditions for a design to be
secure [2, 3, 5, 10,13] or models the implementation to simulate its behavior [7, 26].

Our contribution. We propose a Verification Tool to aid in the design flow towards
secure hardware implementations. The tool helps to spot any mistake in the
application of the aforementioned properties with bit precision and provides an
initial univariate security evaluation without any special equipment. In addition,
the tool is applicable to the CMS [27] and DOM [17] masking schemes, since they
inherit the aforementioned TI properties. VerMI works at both algorithmic and
implementation level, with an inherent capability to check designs in the presence
of glitches. We build a structural model of the circuit, providing highly precise
information on the behavior of every bit. When analyzing the first-order DOM
Keccak S-box, our program takes 1.34ms to check non-completeness and 1.7s to
check uniformity. Thus, the total time needed for a complete analysis is less than
2s on an Intel Core i5-4590 CPU with a clock frequency of 3.3GHz and 7.6 GB of
RAM running a 64-bit Linux CentOS7.

The tool reads a VHDL or Verilog module, builds the structural model of
the circuit and implements a logic simulator (Sect. 3). It is able to analyze non-
completeness and uniformity in combinational logic(Sec. 4) and it can handle
sequential circuits (Sec. 5). Subsequently, several important items are discussed
(Sec. 6) and to conclude the article, different experiments are presented (Sec. 7).
The tool is tested for different implementations from the literature, finding a flaw in



the round-based Keccak implementation in [18], which fails the non-completeness
property.

2 Previous work

Formal verification for masked implementations is a widely researched topic [2, 4,
13,15,16,23]. These works target software implementations and neither of them
take into account glitches. Therefore, they can not be applied to verify hardware
implementations.

Formal verification of masked hardware implementations can be done in several
stages of the design flow: at algorithmic, at implementation or at physical level. In
the work of Reparaz [26] a tool for verification at algorithmic level is presented.
The tool receives a software implementation of the secured function and performs
a leakage assessment over simulated traces. However, glitches are not taken into
account.

At implementation level Bertoni et al. in [7] present a tool suitable for hardware
implementations in the presence of glitches. Nevertheless, their tool only analyzes
combinational logic with a simple power model. Bloem et al. in their recent work [10]
also present a formal verification method for hardware implementations in the
presence of glitches. Given a hardware implementation they extract the netlist and
model the logic gates using a Fourier expansion. Three different types of variables
are defined, i.e. secret variables (S), masks (M) or other variable (P ), and every
intermediate value of the circuit is labeled with a set of these variables, where the
labels are based on the Fourier representation of the Boolean function. A value
is not secure if the associated label contains a set with only secret variables. To
simulate glitches, the representation of a gate is extended to compute any Boolean
function from its original inputs and to analyze higher-orders, a SAT solver is
instantiated; both cases increase the analysis complexity considerably. Looking
at their analysis of the first-order DOM Keccak S-box [18], it is possible to see
how much the run time increases when performing the analysis considering glitches
versus not considering them, taking 20s in the first case and around 1s in the
second case. Results in [10] are gathered on an Intel Xeon E-52699v4 CPU with a
clock frequency of 3.6 GHz and 512 GB of RAM running a 64-bit Linux Debian 9.

3 Design choices

VerMI is designed to parse a synthesized netlist, where a logic simulator reconstructs
the logic circuit using wires, pins and gates as objects connected to one another.
Thus, it is possible to simulate the functionality of the circuit and perform efficient
tree search to check connections.

3.1 Building the netlist

The tool receives an HDL design that can be written in VHDL or Verilog, and has
to be capable of reading designs from all kind of developers, so it is important to



take into account the different coding styles. In order to unify the files to analyze,
the first step is to synthesize the design and extract the netlist. To do this, we use
an RTL synthesis tool with open source NanGate libraries. The tool is currently
programmed to parse components from this library, therefore restricted to netlists
using gates with the same name. If needed, the code is easily adaptable to any
other library.

The program parses the elementary gates of this library. To get a single netlist
that uses solely these elements, we specify -ungroup all so that the netlist does
not synthesize sub-modules and uses them to build the top module. This tool
is meant to check security oriented implementations, so in order to avoid any
optimization that might compromise the security, we also specify -exact map. This
option specifies that the elements in the netlist exactly match the specifications
in the HDL description. An implementation compiled without this option or with
any optimization options could be classified as non-secure by the tool, not due to
a designers fault, but due to possible optimizations of important blocks for the
security of the design.

3.2 Logic simulator

We create three classes that allow us to build the structural model of a given circuit.
These objects are the basic logic elements:

Wire. A wire needs, basically, to hold a name and a value. This first class includes
several attributes: the name of the wire, the value, and a flag to note that the wire
is already evaluated conform the attributes. It includes a single method, eval wire,
which evaluates the value of the wire, sets the flag to evaluated and propagates the
simulation to the next gate (more details given in Section 4.3).

Gate. A gate requires, primarily, a type and a functionality. This class keeps the
type of gate (AND, XOR, MUX), the name given to the instantiation of the block,
and the functionality, a function that evaluates the output according to the type of
gate, no matter what type. Certain gates also include the so-called controlling value
c and inversion i [21]. An input value is said to be controlling if it determines the
value of the output regardless of the value of the other inputs. Inversion determines
whether the output value is inverted. By definition, only the four basic gates AND,
OR, NAND, and NOR have these values, given in Table 1:

Pin. The third class is created to connect the previous two. The presence of this
union is important, since it determines the role of each wire when evaluating a
gate. It stores the name of the pin, used later when computing a gate function, and
the wire and the gate to which the pin is connected.

Connecting elements. For each wire, gate and pin, the tool instantiates a new
pointer to the specific object. Class wire has two pointers to pin, pin from and
pin to that define the beginning and the end of the wire. Class gate holds a vector
of input pins inputs and another pin output.



Table 1: Controlling and inversion values for basic gates

c i

AND 0 0
OR 1 0
NAND 0 1
NOR 1 1

Fig. 1: Circuit structural model and logic simulator

Pins are also important to manage fan-outs. In digital logic, fan-outs occur when
a logic gate output is fed into multiple subsequent gates as input. We model them
by adding two more attributes to the wire class: the first one, a flag to indicate
whether certain wire has a fan-out, and the second one, a vector of pins to keep the
multiple endings of this wire, fan out pins. These new pins represent the fan-out
wires that are driven to the different gates.

3.3 Header

The top module of the design to analyze has to include a small header in which
important data for the tool is specified. The header data includes the names of the
sensitive inputs, the outputs of every layer of registers, possible random numbers
and the outputs to be analyzed. Thus, the tool can distinguish the sensitive data
among all the inputs and for every stage in between registers, sorting the variables
and their shares in a N by M matrix, where N is the number of variables and M
the number of shares. The random numbers are specified as well to avoid being
included in the non-completeness analysis and to see how are they taken into
account when analyzing uniformity. Finally, the outputs are included in the header
so that the tool knows which outputs should be considered and when.



4 VerMI

To initiate the program, we need to provide the source path for the RTL synthesizer
and create few directories to store the netlist and some other files. First, the
program analyzes the input file, from which the language, the header information
and the name of the top module are retrieved. Then, it generates a specific .tcl
file for this module and calls the RTL compiler to source it. Finally, the netlist is
generated and wires, pins and gates are created to build the circuit model.

Once this is done the tool offers several functionalities: to calculate all input
dependencies of the output variables, to check non-completeness and uniformity.

4.1 Input dependencies

This feature outputs the number and the specific input variables on which the
outputs depend.

Recursive tree search. Taking advantage of the objects mentioned above, we are
able to build a detailed structural model of the circuit and hence perform a highly
efficient tree search to get all input dependencies. Logic circuits have a hierarchical
tree structure, where the root nodes correspond to the primary outputs, i.e outputs
of the module. The subtrees’ parent nodes correspond to the output of a gate and
the children to its inputs.

We implement a recursive algorithm that starts at a primary output and goes
through the circuit backwards covering all paths containing this output. The
algorithm keeps running until it arrives to a primary input, which is saved as a
dependency if it is declared as sensitive in the header. Alg. 1 presents the pseudo-
code of this function and Fig. 2 illustrates the corresponding tree for two outputs
of the circuit shown in Fig. 1:

Algorithm 1 Recursive Tree Search algorithm

1: procedure search back(gate g, wires w)
2: for all inputs i in g do
3: if i is a Primary Input then
4: if i is not yet saved and i is sensitive data then
5: w ← i
6: end if
7: else
8: search back(g→i, w) Where g is the gate driving i

9: end if
10: end for
11: end procedure

4.2 Non-completeness

VerMI is able to check any-order non-completeness, to give a warning if it fails,
and to output the specific bits on which this property is not fulfilled.



Fig. 2: Tree search in digital circuits

Decision algorithm. Once we have the dependencies of every output, we check
whether all shares for the same variable are included. If this is the case, the variable
fails non-completeness. The tool goes through every output performing this check.
If any of them are failing, it saves this information in a text file that at the end
contains the information of every output sensitive variable failing non-completeness.
Finally, it announces whether this property is fulfilled or not.

To check whether all shares for the same variable are included is not a trivial
task, since the tool is unable to distinguish between variables and shares. Taking
advantage of the matrix data structure (See Sec. 3.3) built when parsing the netlist,
the tool checks if the analyzed wire dependencies include all inputs from the same
row. Hence, all shares of that variable are being used to compute certain output.

Single bit variables. Variables in a hardware module can be specified as a single
bit, as collection of bits (bus) or even with more complex data structures. In case
a variable is declared as a bus, the program creates a different variable for each bit
in the bus. Managing the entire bus would be faster, but also less detailed. Same
procedure applies with different data structures. This way the VerMI tool’s results
are given with bit precision.

This distinction is crucial to make the tool able to analyze masking schemes
for which verification of the inputs independence is required [17,27] as part of the
non-completeness check. By performing the analysis bitwise it is possible to catch
possible dependencies between bits introduced by intermediate operations.

A proof that bitwise analysis is important in the analysis of masking schemes is
that VerMI tool was able to detect a flaw in the round-based Keccak implementa-
tion in [18]. The presence of θ introduces several bit dependencies among the state
which then in χ produce several failures in the non-completeness [1].



dth-order non-completeness. All possible combinations of d outputs are an-
alyzed with the same method presented above. The difference now is that the
dependencies of the d outputs are combined and the tool looks among all of them.
The output file includes all combination of d output variables that together fail
non-completeness.

Currently VerMI supports up to third-order non-completeness verification.
However, it can be easily extended to support verification of any meaningful order.

4.3 Uniformity

The third functionality is to check whether uniformity is preserved across operations.
The tool calculates the output distribution of a given module by simulating all
possible inputs. The frequencies of occurrence of each output vector are calculated
for the different input sharings. If all frequencies are the same inside every group
of input sharings, then the module is said to preserve uniformity. To generate
uniformity-preserving shares is easy for invertible linear operations, while for
non-linear operations it is not, since interaction between shares is needed. This
functionality is meant to analyze these functions separately and check whether
they preserve uniformity.

Simulation. All possible input vectors to the circuits are generated and simulated
one by one at generation time, so there is no need to store all of them. Every
primary input is evaluated with the corresponding value of the bit string. The
wire class member function eval wire is called to evaluate the wire and set it as
evaluated. If a wire is already evaluated, the value does not change.

There are several levels of simulation depending on the level of modeling used
to represent the simulated system. In our case we perform a gate-level simulation,
given the structural model of the circuit built by the tool. Taking advantage of
this representation, it is possible to implement an event-driven simulation, also
known as activity-directed simulation. An event represents a change in the value of
a signal, which at the same time activates the component driven by this wire [21].
The tool only evaluates active elements that may as well change their output value
creating new events.

The simulation starts evaluating the primary inputs which activates the first
gates and propagates the events, elements being evaluated in order of activation. A
data structure event list is created, where pending elements are waiting to be
evaluated. An active component is evaluated only if all its inputs have already been
evaluated, otherwise it is sent to the end of the queue following the already active
elements. The function eval wire is in charge of propagating the simulation, which
continues until the event list is empty. When a wire is evaluated, all gates (including
fan-outs,if exist) driven by this wire are activated and stored in event list vector
for subsequent evaluation.

We speed up the evaluation of the circuit by using the controlling values. If
there is any active input driving the controlling value of the element to be updated,
it is not necessary to wait until all the inputs are evaluated. The value of the output



is c⊕ i, c and i given in Tab. 1. In addition to set the value of the output, the rest
of the inputs are fixed to evaluated with value c⊕ i. Possible fan-outs in the inputs
of the element are not evaluated with this vale. By setting the rest of the inputs to
evaluated, the possibility of extra activations is avoided.

In order to be able to simulate the next test vector it is necessary to reset the
current values. To do so, a function is called to set the value of all wires to “empty”
and set it as not evaluated.

Evaluation. We use the formulas from [9] to evaluate the uniformity. We check
whether, for certain unshared input, every output has the same frequency of
occurrence when all possible sharings of this input are evaluated. This is repeated
for every possible unshared input together with, if added, all random bits specified.
A frequencies vector is initialized to store the frequencies of the outputs happening
for the evaluated unshared input. The output of the circuit evaluated modulo
the size of the frequencies vector corresponds to the index of the frequency to be
increased by one. This is done on the fly so that we do not need to instantiate
multiple vectors.

Limitations. It is important to note that the uniformity check is limited by the
total number of input bits and random bits. As explained above, the program has
to generate all possible inputs for the circuit and evaluate each of them to get the
output. Naturally, it is feasible to check just relatively small gadgets for uniformity,
for instance SBoxes. The designer needs to provide the tool the sub-module that
implements the SBox.

So far the biggest design analyzed was a six shares second-order Keccak SBox,
which meant a generation and evaluation of 230 test vectors and which took almost
2 days using the same platform used in Sec. 1.

5 Sequential circuits

So far we have explained how the tool deals with combinational logic. In this
section, we present how VerMI handles the presence of registers by dividing a
big sequential circuit into all possible combinational sub-circuits or by simulating
it altogether. This allows the program to analyze the security properties in the
presence of sequential logic.

When designing for security, other than for functionality, the registers are
required to prevent propagation of glitches and to synchronize refreshing. Uniformity
is not affected by the presence of registers. Thus, the main goal of the registers,
security wise, is to split the design in different sub-circuits in order to prevent
the glitch propagation. Therefore, the tool analyzes non-completeness over the
combinational logic in between registers, while uniformity is analyzed with registers
included.



Fig. 3: Top: sequential circuit. Bottom: combinational sub-circuits for first and
second stages.

5.1 Difficulties

At first sight, it is straightforward to split a sequential circuit. It is enough to get
rid of the flip flops, their inputs being new primary outputs and their outputs new
primary inputs. Then it is easy to decide which gates and wires belong to one or
another circuit. The problem arises when a program needs to do this separation.

The tool stores a large amount of gates and wires that has to sort into the differ-
ent sub-circuits. It is imperative to include the exact components that correspond
to a certain sub-circuit in order to perform an accurate analysis on the security
afterwards. Missing an element or including extra components, would result in a
possibly non-complete output that actually should have failed the test or, on the
other hand, in extra dependencies that are not in the circuit, producing a false
warning.

5.2 Back-and-forth algorithm

To do this “physical” separation in the simulated circuit, we design the Back-and-
forth algorithm and a new class subcircuit that includes all inputs, outputs, wires
and gates of a sub-circuit. The algorithm works as follows:

1. All primary outputs and the input of every flip-flop (which are now new primary
outputs) are stored in a new vector. The same is done with all primary inputs,
including flip-flop outputs.



2. Create a new subcircuit, pick one of the outputs of this new vector, remove
this wire from the new outputs vector, and perform a backwards tree search
(depicted in red in Fig. 3) to find all the inputs. The algorithm will keep every
gate found in its passage through the circuit.

3. When a primary input is reached, it is stored (if it was not already) and then
the algorithm calls a function to perform another tree search forward (blue)
to find all the outputs that might depend on this input. When an output is
reached, it is stored (if it was not already) and erased from the new outputs
vector. If there is no fan-outs, no new output would be stored.

4. When the recursion is finished, the new sub-circuit is complete and it goes
back to step two until the new outputs vector is empty.

Note that this algorithm may create independent sub-circuits from the same stage
of a pipeline, even though visually they could be considered to belong to the same
sub-circuit. This happens when there is not a fan-out that connects them together.
In Fig. 3 the right sub-circuit would be divided in two by the tool, as it should be,
since there is no connection whatsoever between the two of them. When analyzing
higher-order non-completeness, independent sub-circuits from the same stage will
be analyzed together.

Alg. 2 presents the pseudo-code for the above-presented algorithm. We use
the notation w→g→v to refer to a gate g whose output is v and has an input w.
Similarly, we use w→g→v to refer to the output v and w→g→v for the input w.

5.3 Simulation

The simulation of registers is only needed for uniformity analysis, which is not
affected by the fact that registers are memory or synchronization elements. Thus,
the simulator ignores the concept of time and registers are treated as plain buffers.

6 Discussions

6.1 Fan-outs

It is important to take fan-outs into account and dedicate them special attention
since their presence increases greatly the complexity of a digital circuit. The circuit
is no longer a perfect tree: the nodes may have more than one parent. This results
in multiple trees connected to each other. Thus, we design our Back-and-Forth
algorithm to fully cover all these connected trees.

6.2 Map data structure

When reading the netlist, the program first identifies inputs, outputs, and wires
instantiating and initializing an object for each of them. Then the same is done to
create all gates and pins. The problem comes when reading the file declaration,
where the program gets a string and then it has to look for the correct object wire
to connect it to the gate. Instead of going through all the wires searching for the



Algorithm 2 Recursive Back-and-forth algorithm

1: procedure subcircuit search back(wire w, subcircuit subcirc, wires
remaining outs)

2: if w is a Primary Input or w is a Flip-Flop output then
3: if w is not yet saved then
4: subcirc.inputs← w
5: subcircuit search forth(w, subcirc, remaining outs)

6: else
7: for all inputs i in g do
8: subcircuit search back(i, subcirc, remaining outs)

9: end for
10: end procedure

11: procedure subcircuit search forth(wire w, subcircuit subcirc, wires
remaining outs)

12: if w is a Primary Output or w is a Flip-Flop input then
13: if w is not yet saved then
14: subcirc.outputs← w
15: Erase w from remaining outs
16: subcircuit search back(w, subcirc, remaining outs)

17: end if
18: if gt→w is not yet saved then subcirc.gates← gt→w

19: if w belongs to a fan-out then
20: for all wires fo emerging from w do
21: subcircuit search forth(fo, subcirc, remaining outs)

22: end for
23: end if
24: else
25: if w→g is not yet saved then
26: subcirc.gates←w→ g

27: end if
28: subcircuit search forth(w→g→v, subcirc, remaining outs)
29: if w belongs to a fan-out then
30: for all wires fo emerging from w do
31: subcircuit search forth(fo, subcirc, remaining outs)

32: end for
33: end if
34: end if
35: end procedure



correct object, which would happen several times for each component declaration,
we build a Map structure with string and wire types. Then using the member
function Map.find(“string”) we immediately get the corresponding object.

6.3 Software

The program is written in C++, which provides great performance and valuable
high-level data structures. C++11 is needed to compile several containers from the
STL libraries used in the code. For synthesis we use Synopsys Design Compiler
Version I-2013.12 using the NanGate 45nm Open Cell library [24].

6.4 Computational complexity

Recursive algorithms. The algorithms used to calculate the input dependencies
and to split the circuit into combinational sub-circuits have a time complexity of
approximately O(log(N)), N being the number of gates in the circuit. Recursive
algorithms might produce a stack overflow error if there are too many function
calls to keep. This will mostly depend on the depth of the tree, which is directly
related to the critical path of the circuit. It is highly improbable to find a circuit
with such a critical path that would make the tool to consume such an amount of
memory.

Non-completeness. The time complexity to evaluate this property scales propor-
tionally with the number of output bits (No) and exponentially with the order of
the analysis (d), following the expression O(Nd

o ).

Uniformity. The biggest problem to evaluate uniformity is that all possible inputs
need to be evaluated to get all outputs frequencies of occurrence. Thus, the time
complexity and the memory usage grow exponentially, following the expressions

O(2NiNs+Nr ) and O(2
No(Ns−1)

Ns ) respectively, where Ni is the number of input bits,
Ns the number of shares and Nr the number of random bits.

6.5 Register layers

For the tool to be able to analyze the non-completeness in a sequential circuits, the
user has to specify in the header which register outputs are considered sensitive
data and how shares and variables are distributed.

The synthesizer often optimizes the flip-flops output by using the inverted
output, creating a new signal. This is an issue, since then the variables specified in
the header would never be found. To prevent this the program includes in the .tcl
file the option set dont touch for the specified variables.

7 Evaluation

In this section we present several results to illustrate the performance of the
tool analyzing the TI properties and a benchmark with several implementations
analyzed with our tool.



Non-completeness. Fig. 4 presents the time that the tool needs to evaluate first-,
second- and third-order non-completeness for the full round of several Keccak im-
plementations with different number of shares to see the effect of the different
number of outputs on the execution time:

Fig. 4: From left to right: first-, second- and third-order non-completeness evaluation,
time versus number of output sensitive bits

As it can be seen, the higher the order of the analysis, the faster the time grows
with the number of output bits.

Uniformity. Fig. 5 shows the uniformity results for three different first-order
Keccak SBox implementations from [6,8, 14]:

Fig. 5: Uniformity analysis on [6, 8, 14]

The conclusion from the analysis matches the theory from the aforementioned
works. The first one is not uniform, as more than a single frequency can be
appreciated. The second one achieves uniformity without any additional randomness
with the frequency equal to 1, since the non-shared function is a permutation and
so is the shared version. The last one, with the same number of shares as the first
one, uses four bits of randomness uniformly distributing the output with frequency
equal to 16.

Benchmarking. Table 2 gathers the results for several implementations analyzed
with the tool: protected AND gates from the literature, various sharing schemes of
the Keccak SBox and AES SBox, few whole round-based Keccak implementa-
tions.



Table 2: Verification Tool benchmark

Design Cells Variables 1st N-C 2nd N-C 3rd N-C Uniformity

Comb. Regs. Ins Rand Outs Time Result Time Result Time Result Time Result

Shared AND gates

Trich [30] 7 0 4 1 2 2.2 ms 7 2.5 ms 7 2.5 ms 7 442 µs 3

ISW [19] 7 0 4 1 2 2.2 ms 7 2.6 ms 7 2.4 ms 7 365 µs 3

TI [25] 12 0 6 0 3 2 ms 3 2.7 ms 7 2.6 ms 7 739 µs 7

DOM [17] 8 4 4 1 2 1.7 ms 3 2.2 ms 7 2.5 ms 7 189 µs 3

Shared Keccak SBoxes

DOM [18] 45 20 10 5 10 1.3 ms 3 2.6 ms 7 10.1 ms 7 1.7 s 3

TI3sh. [6] 99 0 15 0 15 1.9 ms 3 2.8 ms 7 11 ms 7 2 s 7

CG3sh. [14] 104 0 15 4 15 2 ms 3 4.5 ms 7 9.8 ms 7 35 s 3

TI4sh. [8] 82 0 20 0 20 1.2 ms 3 4.4 ms 7 16.3 ms 7 85 s 3

Shared d+ 1 AES SBoxes

2sh. [11] 862 144 16 64 16 4.8 ms 3 55.7 ms 7 417 ms 7 - -

3sh. [11] 1.95k 270 24 162 24 6.5 ms 3 106 ms 3 4.03 s 7 - -

Shared round-based Keccak Implementations

DOM 2.7k 800 400 200 800 22.86 ms 7 7.28 s 7 45.2 m 7 - -

TI3sh. 4.2k 0 600 0 600 37.82 ms 3 11.12 s 7 58.8 m 7 - -

TI4sh. 6.3k 0 800 0 800 60.98 ms 3 21.47 s 7 150 m 7 - -

TI6sh. 17k 0 1200 0 1200 137.28 ms 3 87 s 3 14.8 h 7 - -

Related work [10] Analysis time w. glitches/Result

DOM AND 8 2 - - - - - - - - - ≤ 2 s 3

DOM Kec. SB 50 10 - - - - - - - - - ≤ 20 s 3

DOM AES SB 536 208 - - - - - - - - - ≤ 5-10 h 3

Contrary to [10], VerMI is limited to univariate analysis. However, this results
in considerably improved performance, which allows the verification of complex
designs and complete ciphers, while [10] is limited by the inner complexity. The
possibility to check non-completeness on a whole cipher led us to find a flaw in the
round-based Keccak implementation from [18].

8 Conclusions

We have presented VerMI, a formal verification tool to help in automating the
security evaluation of cryptographic hardware implementations. Our tool is able to
address univariate security of any logic circuit, even in the presence of glitches, by
checking non-completeness. Furthermore, the tool is able to check whether unifor-
mity is preserved in smaller blocks. Thus, a complete security assessment is given
for any hardware masking scheme published to date. To evaluate the functionality
of the tool, multiple schemes from the literature were studied, successfully finding
a flaw in one of them: the round-based Keccak implementation from Gross et
al. [18].
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