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Abstract. The TWEAKEY/STK construction is an increasingly popular approach
for designing tweakable block ciphers that notably uses a linear tweakey schedule.
Several recent attacks have analyzed the implications of this approach for differential
cryptanalysis and other attacks that can take advantage of related tweakeys. We
generalize the clustering approach of a recent differential attack on the tweakable block
cipher MANTIS5 and describe a tool for efficiently finding and evaluating such clusters.
More specifically, we consider the set of all differential characteristics compatible with
a given truncated characteristic, tweak difference, and optional constraints for the
differential. We refer to this set as a semi-truncated characteristic and estimate its
probability by analyzing the distribution of compatible differences at each step.
We apply this approach to find a semi-truncated differential characteristic for
MANTIS6 with probability about 2−67.73 and derive a key-recovery attack with a
complexity of about 253.94 chosen-plaintext queries and computations. The data-time
product is 2107.88 � 2126.
Keywords: (Truncated) Differential Cryptanalysis · TWEAKEY · MANTIS

1 Introduction
Tweakable block ciphers generalize the concept of block ciphers by adding an additional
public input, the tweak. This tweak plays a role similar to the nonces or initialization
values of higher-level modes of operation, and provides additional variation of the instances
of the cipher family. The concept was formally introduced by Liskov et al. [LRW02],
who defined it as a family Ẽ of permutations Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.
Ẽ maps a k-bit key K, t-bit tweak T and n-bit plaintext M to an n-bit ciphertext C,
such that Ẽ(K,T, ·) is a permutation. The recent popularity of tweakable block ciphers,
for instance in the CAESAR competition, shows that tweakable block ciphers may be
more naturally suited as building blocks for higher-level modes of operation than block
ciphers. A particularly relevant application area for tweakable block ciphers is memory
and disk encryption, where the address of each data item defines the tweak. However,
generic constructions to turn block ciphers E(K,M) into secure tweakable block ciphers
Ẽ(K,T,M) are often not well-suited for such applications, since they incur a significant
latency overhead compared to a plain block cipher call.

Compared to generic constructions that use some block cipher as a black box, dedicated
constructions try to provide more efficient designs with full security by integrating the tweak
in the core primitive design. With the TWEAKEY framework, Jean et al. [JNP14] propose
to treat the tweak in almost the same way as the key in a key-alternating construction.
This approach, and in particular the special case STK with its linear tweak schedule, has
been adopted in several CAESAR candidates (Deoxys, Joltik, KIASU), as well as standalone
tweakable block cipher designs like SKINNY and MANTIS [BJK+16] or QARMA [Ava17].
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Regarding the cryptanalytic implications of this approach, one central aspect is the
possibility of related-tweak attacks. The tweak is usually assumed to be under the attacker’s
control, although in practice, the definition of the mode of operation that uses the cipher
may impose some constraints. In particular, this means that the attacker can introduce
differences via the key schedule, similar to related-key attacks on classical block ciphers.
This increases the number of rounds necessary for security against differential cryptanalysis,
as well as certain other attacks [DEM16], such as integral distinguishers or Meet-in-the-
Middle attacks. For designers, this means that they must analyze bounds for the differential
probability in the related-key model. Standard search approaches for finding or lower-
bounding the best characteristics, such as mixed-integer linear programming (MILP),
satisfiability (SAT) or constraint programming (CP) solvers, can usually be adapted to
the related-tweak case.

The output of such a search is either an optimal differential characteristic or, more often,
a truncated differential characteristic with the minimum number of active S-boxes, referred
to as “minimal characteristic” in the following. For standard strongly aligned block ciphers
in the fixed-key model, the bounds derived from such a minimal characteristic are usually
both reasonably tight and reasonably reliable to estimate the security margin. However,
several recent papers have discussed issues which indicate that the bounds obtained from
minimal characteristics of STK-based tweakable block ciphers can be less useful. The main
reason for this is the deterministic behaviour of the linear tweak schedule with respect to
the input tweak difference. Cid et al. [CHP+17] showed that if this is not considered in
the search, the resulting minimal characteristics are often invalid, and that tighter bounds
can be obtained by adapting the search model accordingly. Dobraunig et al. [DEKM16],
on the other hand, take advantage of the predictable tweakey schedule to cluster several
differential characteristics with nearly optimal probability for an attack on MANTIS5.

Our contributions

We generalize the clustering approach from the attack on MANTIS5 [DEKM16] and describe
a tool for efficiently finding and evaluating such clusters. Whereas the cluster for MANTIS5
was found by hand and was simple enough for its probability to be evaluated on a round-by-
round basis, we argue that such probability estimates are not accurate in general. Instead
of starting with a differential characteristic and trying to find similar characteristics that
can be clustered, we start from a truncated differential characteristic (plus, optionally, a
fixed, compatible differential) and consider all compatible differential characteristics for a
fixed tweak difference.

To represent the resulting family of individual characteristics in a compact way, we
describe the set of permissible differences for each intermediate state on a cell-by-cell
basis. We refer to the resulting structured cluster of characteristics as a semi-truncated
characteristic. We then need to efficiently estimate the probability of the semi-truncated
characteristic without enumerating all individual characteristics, somewhat similar to the
probability of a truncated characteristic. Due to the influence of the tweak difference, we
need to estimate the expected distribution of differences within the specified set at each
step and analyze the resulting transition probabilities of each operation.

In summary, we combine advantages of classical and truncated characteristics: On
the one hand, by clustering many characteristics, we improve the overall probability
and generate pairs more efficiently compared to the single best differential characteristic.
On the other hand, a straightforward truncated approach cannot take advantage of the
high-probability transitions in the S-box, incurs significant costs from the linear constraints
imposed by the tweak schedule, and does not provide a fixed output difference that
can be used, for instance, for boomerang attacks. We discuss how such semi-truncated
characteristics can be applied to obtain efficient key-recovery attacks, and analyze the
complexity and possible tradeoffs for this approach.
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We apply this approach to find a semi-truncated differential characteristic for MANTIS6
with probability about 2−67.73 and derive a key-recovery attack with a complexity of about
253.94 chosen-plaintext queries and computations. The data-time product of 2107.88 is below
the designers’ bound of 2126 claimed for MANTIS5 and MANTIS7 (with additional data
limits for MANTIS5). The designers’ bound for the probability of the best characteristic
is ≤ 2−88. Note that MANTIS6 has a block size of 64 bits, so the probability of our
semi-truncated characteristic is worse than the generic probability of any fixed differential,
and much worse than the generic probability of 2−33.58 of its semi-truncated differential.

Outline

In Section 2, we provide a brief description of the TWEAKEY construction and the
tweakable block cipher MANTIS, as well as some of its cryptographic properties. In
Section 3, we introduce our approach for finding semi-truncated characteristics, estimating
their probability, and deriving key-recovery attacks. In Section 4, we apply the approach to
find a semi-truncated characteristic for MANTIS6 and develop a corresponding key-recovery
attack.

2 Background on MANTIS
2.1 The Tweakable Block Cipher MANTIS
MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [BJK+16].
The designers propose several variants MANTISr that differ only in the number of rounds.
All variants operate on a 64-bit message block M = M0‖M1‖ · · · ‖M15 and work with a
64-bit tweak T = T0‖T1‖ · · · ‖T15 and (64 + 64)-bit key K = (k0, k1). All 64-bit values are
mapped to 4× 4 states S of 4-bit cells Sj , where S0, . . . , S3 is the first row, etc.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r backward
rounds R2r+1−i = R−1

i , separated by an involutive, unkeyed middle layer S ◦M ◦ S. The
64-bit subkey k1 is used as round key for the outer forward and backward rounds, while
the other 64-bit subkey k0 and the derived k′0 = (k0 ≫ 1) + (k0 � 63) serve as whitening
keys. The tweak T is added together with k1 in every round according to the TWEAKEY
construction, with a simple cell permutation h as a tweak schedule. The construction is
illustrated in Figure 1a.
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(a) PRINCE-like α-reflective cipher structure

Ri = S P M

Ci + hi(T ) + k1

R−1
i

= M P−1 S

Ci + hi(T ) + k1 + α

(b) Midori-like round function

Figure 1: Design of the tweakable block cipher MANTISr.

The round function Ri is very closely related to that of Midori [BBI+15]. It updates
the 4× 4 state of 4-bit cells by means of the sequences of transformations Ri and R−1

i ,
as illustrated in Figure 1b. Its S-box layer (SubCells) and linear layer (PermuteCells,
MixColumns) are directly inherited from Midori [BBI+15]. In the following, we briefly
describe the individual operations. For a more detailed description of the MANTIS family,
we refer to the design paper [BJK+16].
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Figure 2: Nonlinear and linear transformations of the MANTIS round function Ri.

• SubCells (S) applies the involutive 4-bit S-box S given in Figure 2a to each state cell.
For our attack, we are primarily interested in the differential behaviour of S. The
differential distribution table (DDT) in Figure 2a shows that S has 24 differential
transitions with a probability of 2−2; for two of the input differences, 2 and 4, each of
the four possible output differences is observed with probability 2−2. This is due to
the algebraic properties of S: only 12 of the 15 component functions have algebraic
degree 3. In addition to the first derivative Sa(x) := S(x) + S(x+a) of the S-box, as
tabulated in the DDT, we will also refer to some properties of the second derivative
Sa,τ (x) := Sa(x) + Sa(x+τ), in particular the case Sa,τ = 0 as tabulated in the
differential invariance table (DIT) in Figure 2a.

• AddTweakeyi (A) and AddConstanti (C) add the round constant Ci, the subkey k1
(for Ri) or k1 +α (for R−1

i ), and the round tweakey hi(T ) to the state. The tweakey
update function h simply permutes the order of cells as specified in Figure 2b.

• PermuteCells (P) permutes the state cells as specified in Figure 2c.

• MixColumns (M) multiplies columns with involutive near-MDS matrix M in Figure 2d.

2.2 Previous Cryptanalysis Results
Security claims for MANTIS are given with respect to the data-time product limit of
D · T < 2126 due to generic attacks on its FX construction [KR96], similar to the claims
for PRINCE [BCG+12]. With a MILP model of the cipher’s differential behaviour in a
related-tweak model, the designers are able to prove lower bounds of at least 34, 44, 50
active S-boxes with MDP 2−2 for 5, 6, 7 rounds (corresponding to 12, 14, 16 S-box layers)
[BJK+16]. Explicit security claims are given for MANTIS5 for an attacker constrained to
D ≤ 230 chosen plaintexts or D ≤ 240 known plaintexts, and for MANTIS7 without further
constraints besides the data-time product D · T < 2126.

Dobraunig et al. [DEKM16] refuted the claim for MANTIS5 with a differential attack
using 230 chosen plaintexts and a practical runtime of about 1 hour, or about 238 cipher
calls. This attack exploits the minimalistic security margin and a strong clustering
effect of differential characteristics. Dobraunig et al. start from a truncated differential
characteristic and show how to find a consistent optimal differential characteristic. Finally,
they collect many more closely related optimal and near-optimal characteristics to obtain a
cluster with higher probability, estimated as 2−40.51, and with multiple starting differences,
thus reducing the data complexity with suitable initial structures.
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3 Semi-Truncated Families of Differential Characteristics
In this section, we consider families of differential characteristics for tweakable block ciphers
designed according to the TWEAKEY/STK approach. Considering several characteristics
instead of a single one offers two primary advantages: First, by allowing several different
input differences, candidate plaintext pairs can often be generated more efficiently. This is
particularly useful when the data complexity is a limiting factor for the attack complexity,
such as in FX designs. Second, by allowing several differences in the middle of the
characteristic, the overall probability that a pair follows any of those characteristics is
increased.

The classical approach to take advantage of both effects is to consider truncated
differential characteristics [Knu94]. All published STK designs are strongly aligned, AES-
like ciphers, so we focus on such designs. When applied to AES-like designs, the probability
of (cell-wise) truncated differential characteristics is usually evaluated by considering the
approximate probability of all MixColumns transitions, which depends primarily on the
number of inactive output cells. For related-tweak truncated characteristics, cancellations
of tweak differences need to be taken into account in a similar manner. A more fine-
grained approach is to consider several individual differential characteristics, as in multiple
differential cryptanalysis [BG11], and base the analysis on the knowledge of each individual
characteristic’s probability.

When we try to apply the classical estimates for the probability of (aligned) truncated
characteristics in the context of tweakable block ciphers with a linear tweak schedule, we
notice that the estimates become very unreliable. Consider a related-tweak scenario. Once
the input tweak difference for a pair is fixed, the deterministic differential tweak schedule
imposes many constraints on the differences of the intermediate values in all rounds. Often,
these constraints will be contradictory; in some of the remaining cases, the probability that
the pair follows the truncated characteristic will be much higher than estimated. In their
analysis of Deoxys and Joltik, Cid et al. [CHP+17] observed that indeed many truncated
characteristics turn out to be impossible for all input tweak differences, and proposed
additional criteria to identify and eliminate such cases. Since truncated characteristics
are also used as an intermediate step to find or derive bounds on standard differential
characteristics, eliminating such impossible truncated characteristics is important for faster
search results and tighter bounds.

What remains unclear is if and how truncation can be used to improve actual differential
attacks on tweakable designs, and how the probability of such constrained truncated char-
acteristics should be estimated. In the attack on MANTIS5, Dobraunig et al. [DEKM16]
cluster several individual differential characteristics that follow the same truncated char-
acteristic for a fixed tweak difference. They start from one solution and manually add
other, similar characteristics, which deviate in a few S-box transitions. To describe the
resulting family of characteristics, they specify a small set of possible differences in each
cell of the characteristic. The probability is estimated on a round-by-round basis by
considering the columnwise transition probability for MixColumns ◦ SubCells, summing
over all permitted output differences, and averaging over all input differences. A practical
verification confirmed that the estimates are reasonably accurate.

However, when we try to extend the MANTIS5 approach [DEKM16] to more rounds of
MANTIS or to other STK designs, we face several issues. First, finding clusters manually
is tedious and error-prone work, in particular if many truncated starting points are
contradictory. Second, the cell-wise probability estimate only works well for MANTIS5 due
to the special structure of the characteristic, where almost all S-box transitions have either
only one input difference or only one output difference with equiprobable transitions for
all input differences. Third, the “optimality” of the cluster (with respect to the truncated
starting point) is unclear, is might be possible to add further characteristics. In this section,
we address these issues with a more generally applicable, partially automated approach.
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3.1 Finding Semi-Truncated Characteristics
As a first step, we want to characterize the set of all compatible differential characteristics
subject to several constraints configured by the cryptanalyst:

• Truncated constraints: A truncated characteristic serves as a starting point. The
resulting set of characteristics will be compatible with this truncated characteristic.
We chose several candidates with a close-to-minimal number of active S-boxes
obtained from a MILP (or SAT) solver, i.e., optimized for differential probability.
For target designs with stronger S-boxes and lower diffusion, it may be more efficient
to start from truncated characteristics optimized for truncated probability instead.

• Fixed tweak difference: We consider only characteristics with one fixed tweak
difference, for several reasons. The value of the tweak difference can completely
change both the structure of the set of compatible characteristics and its probability,
so for an attack, it usually only makes sense to consider the “best” difference. For
many attacks, like boomerangs [CHP+17], only a fixed tweak difference is useful.
If the number of active tweak cells in the truncated characteristics is low, or if many
combinations can be excluded due to linear constraints, all possible tweak differences
can be evaluated based on the quality of the resulting semi-truncated characteristic.

• Input/output constraints: If the attack setup requires, the differential can be
additionally constrained. Adding constraints to a finished characteristic may also be
useful for tradeoffs between different attack phases, as discussed in the next sections.

We want to describe a superset of the set of compatible characteristics where we specify
for each state cell a list of possible differences. In absence of a tweak difference, this
superset would usually be a standard truncated characteristic, where each cell permits
either only the zero difference or any difference (except maybe for the last round); but
with the constraints of a linear tweak schedule and a fixed tweak difference, this superset
is significantly reduced, and we refer to it as a semi-truncated characteristic.

We initialize the semi-truncated characteristic based on the initial constraints and prop-
agate these constraints across the steps of the round function. Consider the state geometry
and operations of MANTIS as an example. For each intermediate state S = (S0, . . . , S15),
let χ = (χ0, . . . , χ15) with χi ⊆ X = {0, . . . , f} denote the set of differences specified by
the semi-truncated characteristic. We now consider an operation f ∈ {S,A,P,M} in some
round of the cipher. Let S be the input state and Sf = f(S) the output state of this
operation. We iteratively update the sets with propagated information for each operation:
SubCells (S): The relation between consistent input and output differences is defined by

the DDT of the S-box. We define the according set transition function σ : 2X → 2X :

σ(X) := { y ∈ X | ∃x ∈ X : DDT(x, y) > 0 }.

Since the MANTIS S-box is involutive, we can eliminate unreachable differences by

χS
i ← χS

i ∩ σ(χi) , i = 0, . . . , 15 ,
χi ← χi ∩ σ(χS

i ) , i = 0, . . . , 15 .

PermuteCells (P): The output set must equal the permuted input set, so we update

χP
i ← χP

i ∩ [P(χ)]i , i = 0, . . . , 15 ,
χi ← χi ∩ [P−1(χP)]i , i = 0, . . . , 15 .

AddTweakey (A): If τ denotes the tweak difference and S ⊕ τi := {s⊕ τi | s ∈ S}, update

χA
i ← χA

i ∩ (χi ⊕ τi) , i = 0, . . . , 15 ,
χi ← χi ∩ (χA

i ⊕ τi) , i = 0, . . . , 15 .
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MixColumns (M): The possible transitions need to be analyzed column by column. Con-
sider the column I = (I0, I1, I2, I3) ∈ I = {(0, 4, 8, 12), . . . , (3, 7, 11, 15)} with its
associated characteristic χI = χI0 × . . .× χI3 . Using the linearity of M, we update

χM
Ij
← χM

Ij
∩ {[M · δ]j | δ ∈ χI , M · δ ∈ χM

I } , I ∈ I, j = 0, . . . , 3 ,
χIj ← χIj ∩ {[M · δ]j | δ ∈ χM

I , M · δ ∈ χI} , I ∈ I, j = 0, . . . , 3 .

For the specific case of transitions that match the branch number bound for the
MANTIS matrix, these update conditions can be simplified: All valid transitions
must have the same difference in all 4 active input/output cells, so all active sets
must be equal. Let χ∗I denote the 4 active cells of χI‖χM

I , then we only update

[χ∗I ]0, [χ∗I ]1, [χ∗I ]2, [χ∗I ]3 ← [χ∗I ]0 ∩ [χ∗I ]1 ∩ [χ∗I ]2 ∩ [χ∗I ]3 , I ∈ I .

Each update of a state potentially impacts the two neighbouring states, so we iterate the
updates until the semi-truncated characteristic converges to a fixed-point where none of the
update steps causes any more changes. The resulting reduced semi-truncated characteristic
still describes a superset of all consistent differential characteristics that follow the initial
constraints. We refer to all characteristics in this superset as “compatible”, and use
“consistent” or “possible” to mean characteristics with non-zero probability. Next, we want
to estimate the probability of such a reduced semi-truncated characteristic, and see how
further constraints impact the resulting attacks.

3.2 Probability of Semi-Truncated Characteristics
The probability of a semi-truncated characteristic is defined as the sum of probabilities
of all compatible differential characteristics for a fixed input difference, averaged over all
compatible input differences. Similarly, the probability of a semi-truncated differential is
defined as the probability that any compatible output difference is observed for a fixed
input difference, averaged over all compatible input differences. As usual, we will assume
that the probability of an individual differential characteristic (for the fixed target key)
can be estimated based on the average probability (across all long-keys), which is in turn
computed by multiplying the differential probabilities of each round for a Markov cipher.

A straightforward approach for estimating the probability of a semi-truncated character-
istic is to apply the definition to each round operation, and multiply all the obtained round
probabilities. This approach was applied in the attack on MANTIS5 [DEKM16] (except
for the first round). The relevant round operations for evaluating the semi-truncated
probability are SubCells (as for individual characteristics) and MixColumns (as for truncated
characteristics); the other operations are trivial if the semi-truncated characteristic is re-
duced. In this straightforward computation we however made two Markovian assumptions:

(a) Uniformity of values: For each individual characteristic, we make the usual
Markov assumption that the input values to SubCells are uniformly distributed; and

(b) Uniformity of differences: By using the definition of the probability of a semi-
truncated differential and averaging over all input differences, we make a similar
uniformity and independence assumption regarding the distribution of the differences
in each round among the compatible characteristics.

In the case of MANTIS, the first assumption seems reasonable except in the inner part,
which features two successive SubCells layers without a key addition in between. For the
specific semi-truncated characteristic used for MANTIS5, the second assumption is also
well-justified in most rounds, for example due to the uniform distribution of the message
input or the most frequent transitions with 4 equiprobable differentials. However, in
general – and in Round 2 in particular – this assumption does not apply.
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To obtain a more accurate estimate in general, it is necessary to consider not only the set
of differences at each step, but their expected distribution among all compatible, consistent
differential characteristics that contribute to the probability. Consider an intermediate
state S with semi-truncated characteristic χ. The difference in this state for a random
compatible plaintext pair is a random variable ∆ = (∆0, . . . ,∆15). We write ∆ ∈ χ for the
event ∆i ∈ χi for all i, and ∆ ∈ χ to state that all intermediate differences in the steps
up to and including S follow the semi-truncated characteristic for a particular input pair.
We are interested in the distribution of ∆ in case ∆ ∈ χ, and specifically, in the cell-wise
conditional distribution defined by the probability mass function ϕi:

ϕi : X → [0, 1], δ 7→ P
[
∆i = δ | ∆ ∈ χ

]
.

Now consider an operation f ∈ {S,A,P,M} that is applied to the input state S to produce
the output state Sf := f(S). We want to derive the conditional distribution ϕfi of ∆f and
estimate the probability pf of the semi-truncated characteristic up to this state:

pf = P
[
∆f ∈ χf | ∆ ∈ χ

]
, pf = P

[
∆f ∈ χf

]
= pf · P

[
∆ ∈ χ

]
.

As an intermediate step, we consider the distribution of ∆f without the constraints χf ,
i.e., ϕ̃fi under the condition ∆ ∈ χ instead of ϕfi under ∆f ∈ χf (so ϕfi (δ) = 0 for δ /∈ χfi ):

ϕ̃fi : X → [0, 1], δ 7→ P
[
∆f
i = δ | ∆ ∈ χ

]
.

For AddTweakey and PermuteCells, we trivially get pf = 1, and ϕ̃fi = ϕfi is a permuted ϕi.
For SubCells, let P[α S→ δ] denote the differential probability of (α, δ) obtained from the
DDT of S-box S. Furthermore, let 1χi

denote the indicator function of χi: If δ ∈ χi then
1χi

(δ) = 1, else 1χi
(δ) = 0. If we assume that the distributions ϕi are independent, then

ϕ̃S
i (δ) =

∑
α∈χi

ϕi(α) · P
[
α
S→ δ
]
, pS

i =
∑
δ∈χS

i

ϕ̃S
i (δ) ,

ϕS
i (δ) = 1χS

i
(δ) · ϕ̃

S
i (δ)
pS
i

, pS =
∏
i

pS
i .

For MixColumns, the distribution needs to be evaluated column by column for each I ∈ I.
Then, assuming the input distributions ϕi are independent, we get the following distribution
ϕM
I of column differences ∆I = (∆I0 , . . . ,∆I3) and (dependent) cell distributions ϕM

Ij
:

ϕ̃M
I (δI) = ϕI(M · δI) =

∏
j

ϕIj
([M · δI ]j) , pM

I =
∑
δI∈χM

I

ϕ̃M
I (δI) ,

ϕM
I (δI) = 1χM

I
(δI) ·

ϕ̃M
I (δI)
pM
I

⇒ ϕM
Ij

(δ) =
∑

[δI ]j=δ

ϕM
I (δI) , pM =

∏
I

pM
I .

For the special case of meeting the branch number bound with a ∈ {1, 2, 3} active input
cells and 4− a active output cells, all active cells share the same set χ∗. Then, all active
output cells will also share an identical (dependent) distribution ϕM

∗ . For example, in the
simplest case that the input cells are also identically (independently) distributed by ϕ∗:

pM
I =

∑
δ∈χ∗

[ϕ∗(δ)]a , ϕM
∗ (δ) = 1χ∗(δ) · [ϕ∗(δ)]a

pM
I

.

Clearly, the independence assumptions required at each step will usually not be satisfied.
On the other hand, maintaining a full-state distribution ϕ for each state is not practicable.
As a practical compromise, we consider the dependencies ϕM

I introduced by MixColumns in
the next SubCells, but assume that the following PermuteCells “clears” the dependencies:

ϕ̃S
I(δI) =

∑
αI∈χI

ϕI(αI) ·
∏
j

P
[
[αI ]j

S→ [δI ]j
]
, pS

I =
∑
δI∈χS

I

ϕ̃S
I(δI) .
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3.3 Exploiting Semi-Truncated Characteristics
Data Collection

Once we have fixed a semi-truncated characteristic and determined an estimate for its
probability, we need to consider how to efficiently generate message pairs with a com-
patible input difference, and how to evaluate the resulting output differences. All these
considerations depend on the size of the semi-truncated difference set relative to the total
number of possible differences. For this purpose, we identify the semi-truncated difference
χ = (χ0, . . . , χ15) with the corresponding expanded set of differences χ0× · · · ×χ15 ⊆ X 16.
We then denote the number |χ| of differences compatible with the semi-truncated difference
χ, and their ratio (or filter) ρ(χ) among all differences, by

|χ| := |χ0 × · · · × χ15| =
∏
i

|χi| ∈
[
1, |X | 16]

ρ(χ) := |χ|
|X 16|

=
∏
i

ρ(χi) ∈
[
2−16|X |, 1

]
.

We consider a semi-truncated characteristic with probability p and denote its plaintext-
ciphertext differential and tweak difference by (χM , χC) and χT , respectively. Note that
the tweak difference is fixed, so |χT | = |{δT }| = 1, whereas |χM |, |χC | ≥ 1.

Plaintext pairs can be generated efficiently with initial structures similar to the case of
multiple and truncated differentials: We fix a base plaintext M and base tweak T . Then,
we query the ciphertexts for the setM×T of plaintext-tweak combinations, where the
message setM and tweak set T are defined as follows:

T = T ⊕
〈
χT
〉

= {T, T ⊕ δT }, M = M ⊕
〈
χM
〉
,

where 〈S〉 denotes the linear span generated by a set S, i.e., the set of all linear combinations
of elements in S. For each queried message in the first half T ⊕M of this set, there is
a corresponding queried message in the second half (T ⊕ δT ) ⊕M for any compatible
difference δM ∈ χM . Thus, with 2·|〈χM 〉| chosen-plaintext queries, we obtained |〈χM 〉|·|χM |
compatible plaintext pairs. Among this set of compatible pairs, all message differences
compatible with χM (and each χMi ) appear equally often, consistent with the uniform
starting distribution we assumed in Subsection 3.2. We can repeat this procedure several
more times with different base inputs M and T to generate pairs at a constant rate of
|χM |/2 pairs per query. This is independent of the structure of the sets χMi and the
resulting size of 〈χMi 〉, except for the obtained granularity of the number of pairs.

If we want to generate enough pairs to expect R valid pairs compatible with the full
semi-truncated characteristic, the necessary number of queries NQ is

NQ = R · 2
|χM | · p

in case p−1 is an integer multiple of |〈χM 〉| · |χM |, or slightly more otherwise. The resulting
NP = R/p ciphertext pairs can be filtered down to a much smaller number of candidates
that still contains about R valid pairs based on the ciphertext difference, which must be
in χC , resulting in a number of filtered ciphertext pairs NF of

NF = R · |χ
C |
p

.

This filtering can usually be done efficiently without the need to enumerate all R/p
ciphertext pairs. For example, we can select the cell positions Si with the smallest sets χCi ,
and repeat the following for each base input (T,M): Store the first half of the ciphertexts
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with tweak T in a hash table indexed by the values of the ciphertext cells Ci. Then, for
each ciphertext in the second half with tweak T ⊕ δT , only check the relevant hash table
entries according to χCi for matches on the full output difference χC . Ideally, if there
are sufficiently many cells with |χCi | = 1 (depending on the size |χM |), then each filtered
ciphertext pair can be identified with minimal amortized cost. In this ideal case, the total
complexity is dominated either by the number of queries NQ or the number of filtered
ciphertext pairs NF, both of which can be significantly smaller than NP = R/p.

Key Recovery

Different approaches to key recovery are possible depending on the properties of the semi-
truncated characteristic, such as |χM |, |χC |, p, and the cardinalities in the initial and final
intermediate rounds. The details also depend heavily on the target cipher, in particular
its key schedule. In the remaining paper, we focus on an approach that combines elements
of classical 0-round and 1+-round key recovery using standard differential characteristics
or differentials. Below, we summarize the basic approach and possible tradeoffs, but refer
to Subsection 4.3 for a detailed description of a practical application.

We recover the full key in three phases, where the first phase usually dominates the
attack complexity. Note that in this paper, we target a cipher with key size twice as large
as the block size, and also essentially more than twice as large as the key size that the
attacker can brute-force, so it is not sufficient to just recover a few key bits and brute-force
the rest. We assume we have generated a set of NF filtered ciphertext pairs that contains
at least one valid pair compatible with the semi-truncated characteristic, as described
above.

In the first phase, we will try to identify this valid pair and recover parts of the
initial and final round keys in the process. To this end, we guess parts of the initial
and final round key and test for each filtered pair if the resulting intermediate values
are compatible with the characteristic. We only keep round key candidates that produce
valid intermediate values for at least one characteristic. To estimate how many partial
key guesses produce valid intermediate values for a fixed pair, we will assume that the
filtered differentials are distributed uniformly among (χM , χC). Then, we use the same
methods as in Subsection 3.2 for estimating probabilities: for the initial rounds, we reuse
the probability estimates for the relevant parts of the characteristics; for the final rounds,
we compute estimates in essentially the same way, but based on the inverse round function.
This phase reduces the space of key candidates for each cell or column, and can be repeated
to (almost) uniquely determine the relevant round key values, as well as identify the valid
pair.

In the second phase, we repeat a similar approach to test more conditions of the
characteristic and recover more key material. Since we only need to test for one or a few
valid pairs instead of all NF filtered pairs, we can simultaneously guess larger parts of the
key and thus cover more initial and final rounds. Finally, in the third phase, we brute-force
the remaining key space.

As a tradeoff to balance the complexities arising from NQ and NF, we can consider
minor adjustments of the semi-truncated characteristic. If NF dominates the complexity,
we can restrict χM in order to exclude the lowest-probability characteristics in the set
and thus increase p. As an effect, the product |χM | · p will slightly decrease (since we
excluded several previously valid pairs), leading to a slight increase in the data complexity
NQ. Another negative effect is that the first rounds of the cipher will provide a slightly
less effective filter for key recovery. On the other hand, NF and the resulting complexity
costs for key recovery will be significantly decreased.
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4 Application to MANTIS6

4.1 Finding a Semi-Truncated Characteristic for MANTIS6

We can now apply the approach to find a semi-truncated characteristic for MANTIS6.
First, we need a truncated characteristic as a starting point. A MILP model similar to
the designers’ [BJK+16] yields characteristics with 44 active S-boxes. However, when
evaluating these minimal truncated characteristics, all results show some undesirable
properties that negatively influence the final probability, such as MixColumns transitions
with branch number > 4 and tweak differences with more than 2 active cells. If we add
extra constraints to the MILP model to forbid such properties, the minimum number of
active S-boxes grows to 48. Most of the resulting solutions display the same inner structure
as the existing 5-round characteristic. We use one of these for the following attack.

To develop the truncated characteristic into a useable semi-truncated characteristic,
we need to fix the two active cells of the tweak difference. We can easily enumerate
all 225 possible values. The most promising choice is (a, a), the same as for MANTIS5.
Additionally, we can optionally add constraints on the input difference (to optimize the
initial structures and average probability) and the output difference (if the intended
distinguisher profits from it). For the output, we have no explicit constraints, but we can
consider some modifications of the basic truncated trail in the last rounds to improve the
attack, as discussed below. For the input, the unconstrained version for the input already
provides a good tradeoff between the data complexity and key recovery complexity, so we
do not add any constraints for the present attack.

Using the methods introduced in the previous section, the truncated characteristic is
developed into the semi-truncated characteristic illustrated in Figure 3. Note that the
resulting characteristic has more active S-Boxes in Round 12 than the truncated version.
This was done to improve the overall probability by allowing all possible S-Box transitions
from Round 11 onward for some cells, resulting in more possible differences in the Round
12. We want to strike a balance between a good probability by allowing more S-Box
transitions in the later rounds, a good filtering option by keeping more cells inactive in the
ciphertext, and a good key-recovery process by having more active cells in Rounds 11 and
12. We obtained the best results by having exactly half of the cells in the ciphertext active
and half inactive.

Figure 3 only indicates the sets χfi and the transition probability estimates pf at each
relevant step f , not the underlying distribution ϕfi . As an example, consider the SubCells
step of round 2. After the preceding MixColumns, cells S6, S10, S14 ( 1 ) have the same
difference uniformly distributed in χi = {a, f, d, 5}. To analyze the transition probability of
these three cells, consider each of the four possible differences in turn. Difference a will be
mapped by SubCells to compatible differences in χS

6,10,14 with probability pS
6,10,14 = 1 · 1 · 1

4 ,
and the differences in SS

6 , S
S
10 will be uniformly distributed (25% each for a, f, d, 5).

Difference f has pS
6,10,14 = 1

2 ·
1
2 ·

1
4 , and a biased output distribution (50% a, 50% f).

Differences d and 5 each have pS
6,10,14 = 1

4 ·
1
4 ·

1
4 , and produce 100% a. On average, the

success probability is 1
4 ·

11
32 ≈ 2−3.54, and the resulting distribution for i ∈ {6, 10} is

ϕS
i (a) = 4

11 , ϕS
i (f) = 3

11 , ϕS
i (d) = ϕS

i (5) = 2
11 . The remaining cells contribute pS

7,8 = 2−4.
All estimated transition probabilities of the semi-truncated characteristic are indicated

in Figure 3, and the overall end-to-end probability is 2−67.73. If we compare this to the
best compatible single characteristic, we get a probability of 2−84 (assuming 1-round key
recovery, excluding the final S) or 2−68 (assuming 2-round key recovery, exluding the last
two S, S). On the other hand, if we naively evaluate the probability of the truncated
characteristic by counting the necessary cancellations, we get the much smaller probability
of 2−100 (generously excluding initial A and final M,A,M,A,A). Of course, it should be
noted that neither this truncated characteristic nor the best compatible single characteristic
are necessarily optimal for MANTIS6.
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Figure 3: Family of differential characteristics for MANTIS6.
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4.2 Data Collection Phase
We need to generate about 267.73 message pairs to have an expected number of 1 pair
following the semi-truncated characteristic of Figure 3. While the trivial approach with
2 · 267.73 queries to the encryption oracle would not exhaust the codebook for this 64-
bit tweakable block cipher, the resulting data-time product would exceed the attacker’s
complexity bounds. Instead, we take advantage of multiple input differences.

The semi-truncated input difference covers |χM | = 42 · 134 ≈ 218.80 differences and has
a span of |〈χM 〉| = 82 · 164 = 222. Using an initial structure as described in Subsection 3.3,
we can generate |〈χM 〉| · |χM | ≈ 240.80 pairs from 2 · |χM | ≈ 219.80 queries, giving a rate
of 221 pairs per query. For example, the initial structure for cells S4, S11 is illustrated in
Figure 4. After repeating this for about 267.73/240.80 = 226.93 different base plaintexts, we
expect 1 valid pair.

M = M ⊕ {

M = M ⊕ {

}

}

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

T = T ⊕ {

T = T ⊕ {

} ,

} ,

0

a

Figure 4: Initial structure for χM4 = χM11 = {a, f, d, 5} ( ) [DEKM16].

The family of characteristics given in Figure 3 has a number of conditions for valid
ciphertext pairs we can use to filter generated pairs before the key guessing phase:

(F1) Cells S0, S1, S3, S5, S7, S9, S12, S15 have ∆ = 0 (ρ(χC0,1,3,5,7,9,12,15) = 2−4×8 = 2−32)
(F2) Cells S2, S6, S8, S13 have ∆ ∈ σ({5, a, d, f})[+a] (ρ(χC2,6,8,13) = 2−0.299×4 = 2−1.196)
(F3) Cell S10 has ∆ ∈ σ({5, a, d, f}+ a) + a (ρ(χC10) = 2−0.193)
(F4) Cells S4, S11 have ∆ ∈ σ(σ({5, a, d, f})) (ρ(χC4,11) = 2−0.093×2 = 2−0.186)

Combining the filtering conditions (F1), (F2), (F3), and (F4), we have a filter with
probability ρ(χC) = 2−33.58 to narrow down the number of relevant pairs from NP = 267.73

to NF = 234.15. This step can be implemented efficiently by grouping the ciphertexts
into partitions based on the values of the relevant ciphertext cells and only combining
pairs in each partition. The expected number of valid pairs per base plaintext is � 1, so
the overhead of generating and filtering pairs can be considered negligible. The resulting
complexity is NQ = 249.93 chosen ciphertext queries and accesses to a small data structure
for finding a set of NF = 234.15 pairs containing about 1 valid pair.

As mentioned in Subsection 3.3, we could strike a different tradeoff between NQ and
NF by slightly modifying the input difference. One alternative possibility would be to use
an input structure similar to MANTIS5 [DEKM16] with 4 differences {5, a, d, f} per active
cell in χM . The resulting probability p would increase by a factor of 23 and decrease NF
accordingly, but the overall attack complexity also increases. Thus, we keep the original
characteristic of Figure 3. An additional effect of this choice of larger sets is that the attack
is more robust to differential invariance effects as observed for MANTIS5 [DEKM16], since
not all transitions are invariant with Sa,τ = 0 under a fixed τ (see Figure 2a).

4.3 Key Recovery Phase
We can now use such a set of candidate pairs to narrow down the keyspace. However,
note that the end-to-end probability of 2−67.73 is smaller than the generic probability
2−64 of any fixed output difference, and much smaller than the generic probability of the
semi-truncated difference at any step in the last rounds. Additionally, the 128-bit key is
twice as large as the block size. This makes the key recovery approach somewhat more
challenging. We will follow the approach sketched in Subsection 3.3.
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Phase 1: Recovering 61 bits of key material from filtered pairs

The first step is the recovery of 61 total bits of key information. We check our key guesses
against several constraints in the semi-truncated characteristic of Figure 3.

• Round 1. Guessing 24 bits of the subkey k0 +k1 allows us to compute forward until
after the SubCells step in round 1, where we can check the conditions (C1), (C2),
(C3) listed in Table 1. The probabilities of these conditions to hold for a filtered
output pair can be evaluated with the approach of Subsection 3.2 as 2−14.80.

• Round 12. We can additionally guess 32 bits of the subkey k′0 + k1 and compute
back before the last SubCells step in round 12, where we can check the conditions
(C4), (C5), (C6), (C7) of Table 1. The total probability is 2−20.71.

• Rounds 2 and 11. Guessing keys for further rounds is more computationally
expensive, since keyguesses depend on both keyguesses for previous rounds, as well
as inactive cells in the plaintext/ciphertext, for which the key also would have to be
guessed. However, due to the linear nature of the MixColumns step, we can target
some cells after the SubCells step in rounds 2 and 11 with conditions (C8), (C9).

(C8) depends on the keyguesses made for (C2) and (C4), plus 4 bits S2 ⊕ S8 ⊕ S13 of
k1. Of these 4 bits, 3 have already been determined, so we guess only 1 bit.

(C9) depends on the keyguesses for (C5), plus 4 new bits S4 ⊕ S11 ⊕ S14 of k1.

The probability that a pre-filtered ciphertext pair follows the conditions (C1) to (C9) is
estimated using the methods of Subsection 3.2, resulting in a total probability of 2−41.21.
Thus, we expect that for a single ciphertext pair, out of the 261 possible sub-key candidates,
only 261−41.21 = 219.79 should satisfy all conditions (C1) to (C9). Repeating this process
for all 234.15 pairs results in a total of roughly 219.79+34.15 = 253.94 valid subkeys, reducing
the key space by a factor of 27.06. We need to repeat this process a total of 9 times to
filter out the correct 61-bit subkey. These 9 repetitions increase the overall time and data
complexity by a factor of 23.17.

We compute the set of 253.94 valid sub-keys for each repetition r ∈ 1, 2, . . . , 9 and finally
perform a set intersection of all 9 sets to calculate the correct 61-bit subkey. Using a
hash-set as a data structure this can be done with a computational complexity of 253.94

(only the first intersection is this expensive, as the set of valid keys shrinks with each
intersection performed).

Table 1: Conditions used for key recovery and their probabilities (for a pre-filtered pair).
Round Cond. Cells Difference ∆ Prob. Key bits

1
(C1) S4, S11 a {a} 2−4 8
(C2) S2, S8, S13 2 {5, a, d, f}, equal 2−9.10 12
(C3) S6 1 {a, f} 2−1.70 4

12

(C4) S2, S8, S13 12 {5, a, d, f} 2−9.1 12
(C5) S4, S11, S14 13 σ({5, a, d, f}), equal [+a] 2−8.11 12
(C6) S6 11 {5, a, d, f} 2−1.7 4
(C7) S10 10 {5, a, d, f}+ a 2−1.8 4

2 and 11 (C8) S7 and S7 a {a} 2−4 (C2)+(C4)+1
11 (C9) S5 9 {5, a, d, f} 2−1.7 (C5)+4
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Phase 2: Recovering 43 bits of key material from valid pairs

Using the recovered 61 bits of information about the secret key, we can further filter the
9× 234.15 plaintext pairs i ∈ Ir. Since the right key misidentifies a pair as false positive
with a probability of about 2−41.21, we expect that only the 9 valid pairs remain. We can
now use those 9 valid pairs to recover another 43 bits of key information in two steps.

• Round 2. We can recover 29 bits of key material by targeting cells S0, S5, S10 of
the S-Box output in Round 2, where we can verify condition (V1) listed in Table 2.
These cells already depend on many key bits, as illustrated in Figure 5. Taking into
account the previously recovered 61 bits, we need to guess another 29 bits of key
information. Condition (V1) holds with a probability of ≈ 2−4.25, or ≈ 2−38.25 for
all 9 remaining pairs, so we expect that only the correct 29-bit subkey remains.

• Round 11. In a similar fashion, we can recover 14 more bits by targeting cells
S6, S12 of the S-Box input in Round 11 and verifying condition (V2). Taking into
account the previously recovered 61 + 29 key bits, we need to guess another 14 bits.
Condition (V2) holds with a probability of ≈ 2−2.54, or ≈ 2−22.86 for all 12 remaining
pairs, and should uniquely determine the correct 14-bit subkey.

Table 2: Conditions used for key recovery and their probabilities (for all 9 valid pairs).
Round Cond. Cells Difference ∆ Prob. Key bits
2 (V1) S0, S5, S10 3 {5, a, d, f}, equal 29×4.25 +29
11 (V2) S6, S12 8 {5, a, d, f}, equal 29×2.54 +14
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Figure 5: Cells influencing the 29-bit (top) and 14-bit (bottom) key-recovery process.

Phase 3: Recovery of k0 and k1, and summary of complexities

So far, we have recovered 61 + 29 + 14 bits of information about the key material. This
results in 104 linearly independent linear equations for k0 and k1. To recover the full key,
we have to guess the 24 remaining bits, resulting in a complexity of 224 trial encryptions.

In summary, the complexity of this attack is dominated by the first key recovery step,
where we store and intersect sets of 253.94 key candidates.
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