Hardness of Non-Interactive Differential Privacy
from One-Way Functions

Lucas Kowalczyk* Tal Malkin® Jonathan Ullman* Daniel Wichs®

May 30, 2018

Abstract

A central challenge in differential privacy is to design computationally efficient non-interactive
algorithms that can answer large numbers of statistical queries on a sensitive dataset. That is, we
would like to design a differentially private algorithm that takes a dataset D € X" consisting of
some small number of elements n from some large data universe X, and efficiently outputs a
summary that allows a user to efficiently obtain an answer to any query in some large family Q.

Ignoring computational constraints, this problem can be solved even when X and Q are
exponentially large and # is just a small polynomial; however, all algorithms with remotely
similar guarantees run in exponential time. There have been several results showing that,
under the strong assumption of indistinguishability obfuscation (iO), no efficient differentially
private algorithm exists when X and Q can be exponentially large. However, there are no strong
separations between information-theoretic and computationally efficient differentially private
algorithms under any standard complexity assumption.

In this work we show that, if one-way functions exist, there is no general purpose differen-
tially private algorithm that works when X and Q are exponentially large, and # is an arbitrary
polynomial. In fact, we show that this result holds even if X is just subexponentially large
(assuming only polynomially-hard one-way functions). This result solves an open problem
posed by Vadhan in his recent survey [Vad16].

*Columbia University Department of Computer Science. luke@cs.columbia.edu.

fColumbia University Department of Computer Science. tal@cs.columbia.edu.

Northeastern University College of Computer and Information Science. jullman@ccs.neu.edu.
SNortheastern University College of Computer and Information Science. wichs@ccs.neu.edu

1 Introduction

A central challenge in privacy research is to generate rich private summaries of a sensitive dataset.
Doing so creates a tension between two competing goals. On one hand we would like to ensure
differential privacy [DMNS06]—a strong notion of individual privacy that guarantees no individual’s
data has a significant influence on the summary. On the other hand, the summary should enable
a user to obtain approximate answers to some large set of queries. Since the summary must be
generated without knowing which queries the user will need to answer, we would like Q to be very
large. This problem is sometimes called non-interactive query release, in contrast with interactive
query release where the user is required specify the (much smaller) set of queries that he needs to
answer in advance, and the private answers may be tailored to just these queries.

More specifically, there is a sensitive dataset D = (Dy,...,D,,) € X" where each element of D is
the data of some individual, and comes from some data universe X. We are interested in generating
a summary that allows the user to answer statistical queries on D, which are queries of the form
“What fraction of the individuals in the dataset satisfy some property ¢q?” [Kea93]. Given a set
of statistical queries Q and a data universe X, we would like to design a differentially private
algorithm M that takes a dataset D € X" and outputs a summary that can be used to obtain an
approximate answer to every query in Q. Since differential privacy requires hiding the information
of single individuals, for a fixed (X, Q) generating a private summary becomes easier as n becomes
larger. The overarching goal is to find algorithms that are both private and accurate for X and Q as
large as possible and n as small as possible.

Since differential privacy is a strong guarantee, a priori we might expect differentially private
algorithms to be very limited. However, a seminal result of Blum, Ligett, and Roth [BLR13] showed
how to generate a differentially private summary encoding answers to exponentially many queries.
After a series of improvements and extensions [DNR*09, DRV10, RR10, HR14, GRU12, HLM12,
NTZ16, Ull15], we know that any set of queries Q over any universe X can be answered given a
dataset of size n > /log|X|-log|Q| [HR14]. Thus, it is information-theoretically possible to answer
huge sets of queries using a small dataset.

Unfortunately, all of these algorithms have running time poly(n,|X|,|Q|), which can be exponen-
tial in the dimension of the dataset, and in the description of a query. For example if X = {0,1}%, so
each individual’s data consists of d binary attributes, then the dataset has size nd but the running
time will be at least 2¢. Thus, these algorithms are only efficient when both |X| and |Q| have
polynomial size. There are computationally efficient algorithms when one of |Q| and |X]| is very
large, provided that the other is extremely small—at most #?>~2(1), Specifically, (1) the classical
technique of perturbing the answer to each query with independent noise requires a dataset of
size n 2 V|Q| [DN03, DN04, BDMNO05, DMNS06], and (2) the folklore noisy histogram algorithm
(see e.g. [Vad16]) requires a dataset of size n > +/|X]|-log|Q|. Thus there are huge gaps between the
power of information-theoretic and computationally efficient differentially private algorithms.

Beginning with the work of Dwork et al. [DNR"09], there has been a series of results giving evi-
dence that this gap is inherent using a connection to traitor-tracing schemes [CFN94]. The first such
result by Dwork et al. [DNR"09] showed the first separation between efficient and inefficient differ-
entially private algorithms, proving a polynomial-factor separation in sample complexity between
the two cases assuming bilinear cryptography. Subsequently, Boneh and Zhandry [BZ14] proved
that, under the much stronger assumption that indistinguishability obfuscation (iO) exists, then
for a worst-case family of statistical queries, there is no computationally efficient algorithm with
poly(log|Q| + log|X|) sample complexity. More recently, Kowalczyk et al. [KMUZ16] strengthened
these results to show that the two efficient algorithms mentioned above—independent perturbation
and the noisy histogram—are optimal up to polynomial factors, also assuming iO.

Reference Data Universe | # of Queries | Dataset Size | Assumption
| Xl | Qx| n(x)
[DNR*09, BSW06] > exp(x) > exp(x) <x2 Q) | Bilinear Maps
[DNR*09, BZ14] > exp(k) > exp(k) < poly(x) iO + OWF
[KMUZ16] > exp(k) > O(n”) < poly(x) iO + OWF
[KMUZ16] > O(n’) > exp(k) < poly(x) iO + OWF
This work > exp(x°) > exp(k) < poly(x) OWF

Table 1: Comparison of Hardness Results for Offline Differentially Private Query Release. Each
row corresponds to an informal statement of the form “If the assumption holds, then there is no
general purpose differentially private algorithm that works when the data universe has size at least
|X|, the number of queries is at least |Q|, and the size of the dataset is at most n.” All assumptions
are polynomial-time hardness.

These results give a relatively clean picture of the complexity of non-interactive differential
privacy, but only if we assume the existence of iO. Recently, in his survey on the foundations
of differential privacy [Vad16], Vadhan posed it as an open question to prove hardness of non-
interactive differential privacy using standard cryptographic assumptions. In this work, we resolve
this open question by proving a strong hardness result for non-interactive differential privacy
making only the standard assumption that one-way functions (OWF) exist.

Theorem 1.1. There is a sequence of pairs (X, Qi)}xen where |X,| = 224 = 2V gnd |Q, | = 2%

such that, assuming the existence of one-way functions, for every polynomial n = n(x), there is no
polynomial time differentially private algorithm that takes a dataset D € X! and outputs an accurate
answer to every query in Q, up to an additive error of £1/3.

We remark that, in addition to removing the assumption of iO, Theorem 1.1 is actually stronger
than that of Boneh and Zhandry [BZ14], since the data universe size can be subexponential in «,
even if we only make standard polynomial-time hardness assumptions. We leave it as an interesting
open question to obtain quantitatively optimal hardness results matching (or even improving)
those of [KMUZ16] using standard assumptions. Table 1 summarizes existing hardness results as
compared to our work.

Like all of the aforementioned hardness results, the queries constructed in Theorem 1.1 are
somewhat complex, and involve computing some cryptographic functionality. A major research
direction in differential privacy has been to construct efficient non-interactive algorithms for
specific large families of simple queries, or prove that this problem is hard. The main technique for
constructing such algorithms has been to leverage efficient PAC learning algorithms. Specifically,
a series of works [BLR13, GHRU13, GRU12, HRS12] have shown that an efficient PAC learning
algorithm for a class of concepts related to Q can be used to obtain efficient differentially private
algorithms for answering the queries Q. Thus, hardness results for differential privacy imply
hardness results for PAC learning. However, it is relatively easy to show the hardness of PAC
learning using just OWFs [PV88], and one can even show the hardness of learning simple concept
classes (e.g. DNF formulae [DLS14, DSS16]) by using more structured complexity assumptions.
One roadblock to proving hardness results for privately answering simple families of queries is
that, prior to our work, even proving hardness results for worst-case families of queries required

using extremely powerful cryptographic primitives like iO, leaving little room to utilize more
structured complexity assumptions to obtain hardness for simple queries. By proving hardness
results for differential privacy using only the assumption of one-way functions, we believe our
results are an important step towards proving hardness results for simpler families of queries.

Relationship to [GKW17]. A concurrent and independent work by Goyal, Koppula, and Waters
also shows how to prove hardness results for non-interactive differential privacy from weaker
assumptions than iO. Specifically, they propose a new primitive called risky traitor tracing that has
weaker security than standard traitor tracing, but is still strong enough to rule out the existence
of computationally efficient differentially private algorithms, and construct such schemes under
certain assumptions on composite-order bilinear maps. Unlike our work, their new primitive has
applications outside of differential privacy. However, within the context of differential privacy,
Theorem 1.1 is stronger than what they prove in two respects: (1) their bilinear-map assumptions
are significantly stronger than our assumption of one-way functions, and (2) their hardness result
requires a data universe of size |X,| = exp(k), rather than our result, which allows |X,| = exp(x°1).

1.1 Techniques

Differential Privacy and Traitor-Tracing Schemes. Our results build on the connection between
differentially private algorithms for answering statistical queries and traitor-tracing schemes, which
was discovered by Dwork et al. [DNR*09]. Traitor-tracing schemes were introduced by Chor,
Fiat, and Naor [CFN94] for the purpose of identifying pirates who violate copyright restrictions.
Roughly speaking, a (fully collusion-resilient) traitor-tracing scheme allows a sender to generate
keys for n users so that 1) the sender can broadcast encrypted messages that can be decrypted by
any user, and 2) any efficient pirate decoder capable of decrypting messages can be traced to at least
one of the users who contributed a key to it, even if an arbitrary coalition of the users combined
their keys in an arbitrary efficient manner to construct the decoder.

Dwork et al. show that the existence of traitor-tracing schemes implies hardness results for
differential privacy. Very informally, they argue as follows. Suppose a coalition of users takes their
keys and builds a dataset D € X" where each element of the dataset contains one of their user
keys. The family Q will contain a query g, for each possible ciphertext c. The query g, asks “What
fraction of the elements (user keys) in D would decrypt the ciphertext c to the message 1?” Every
user can decrypt, so if the sender encrypts a message b € {0,1} as a ciphertext ¢, then every user will
decrypt c to b. Thus, the answer to the statistical query g, will be b. Now, suppose there were an
efficient algorithm that outputs an accurate answer to each query g, in Q. Then the coalition could
use it to efficiently produce a summary of the dataset D that enables one to efficiently compute
an approximate answer to every query q., which would also allow one to efficiently decrypt the
ciphertext. Such a summary can be viewed as an efficient pirate decoder, and thus the tracing
algorithm can use the summary to trace one of the users in the coalition. However, if there is a way
to identify one of the users in the dataset from the summary, then the summary is not private.

Hardness of Privacy from OWE In order to instantiate this outline, we need a sufficiently good
traitor-tracing scheme. Traitor-tracing schemes can be constructed from any functional encryption
scheme for comparison functions [BSW06]' This is a cryptographic scheme in which secret keys are
associated with functions f and ciphertexts are associated with a message x, and decrypting the

I These were called private linear broadcast encryption schemes by [BSW06], but we use the more modern terminology
of functional encryption.

ciphertext with a secret key corresponding to f reveals f(x) and “nothing else.” In our application,
the functions are of the form f, where f,(x) = 1 if and only if x > z (as integers).

Using techniques from [KMUZ16] (also closely related to arguments in [BZ16]), we show that,
in order to prove hardness results for differentially private algorithms it suffices to have a functional
encryption scheme for comparison functions that is non-adaptively secure for just two ciphertexts
and n secret keys. That is, if an adversary chooses to receive keys for n functions fi,..., f,, and
ciphertexts for two messages x;, x,, then he learns nothing more than {f;(x;), fi(x2)}ic[»)- Moreover,
the comparison functions only need to support inputs in {0, 1,...,n} (i.e. log n bits). Lastly, it suffices
for us to have a symmetric-key functional encryption scheme where both the encryption and key
generation can require a private master secret key.

We then construct this type of functional encryption (FE) using the techniques of Gorbunov,
Vaikuntanathan and Wee [GVW12] who constructed bounded-collusion FE from any public-key
encryption. There are two important differences between the type of FE that we need and bounded-
collusion FE in [GVW12]: (1) we want a symmetric-key FE based on one-way functions (OWFs),
whereas they constructed public-key FE using public-key encryption, (2) we want security for
only 2 ciphertexts but many secret keys, whereas they achieved security for many ciphertexts but
only a small number of secret keys. It turns out that their construction can be rather easily scaled
down from the public-key to the symmetric-key setting by replacing public-key encryption with
symmetric-key encryption (as previously observed by, e.g., [BS18]). Going from many ciphertexts
and few secret keys to many secret keys and few ciphertexts essentially boils down to exchanging
the role of secret keys and ciphertexts in their scheme, but this requires care. We give the full
description and analysis of this construction. Lastly, we rely on one additional property: for
the simple functions we consider with logarithmic input length, we can get a scheme where the
ciphertext size is extremely small x°(!), where « is the security parameter, while being able to
rely on standard polynomial hardness of OWFs. To do so, we replace the garbled circuits used
in the construction of [GVW12] with information-theoretic randomized encodings for simple
functions and leverage the fact that we are in the more restricted nonadaptive secret-key setting.
The resulting small ciphertext size allows us to get DP lower bounds even when the data universe
is of size |X| = exp(x°).

We remark that Tang and Zhang [TZ17] proved that any black-box construction of a traitor-
tracing scheme from a random oracle must have either keys or ciphertexts of length n®(1), provided
that the scheme does not make calls to the random oracle when generating the user keys. Our
construction uses one-way functions during key generation, and thus circumvents this barrier.

Why Two-Ciphertext Security? In the hardness reduction sketched above, the adversary for the
functional encryption scheme will use the efficient differentially private algorithm to output some
stateless program (the summary) that correctly decrypts ciphertexts for the functional encryption
scheme (by approximately answering statistical queries). The crux of the proof is to use differential
privacy to argue that the scheme must violate security of the functional encryption scheme by
distinguishing encryptions of the messages x and x — 1 even if it does not possess a secret key for
the function f,, which is the only function in the family of comparison functions that would give
different output on these two messages, and therefore an adversary without this key should not be
able to distinguish between these two messages.

Thus, in order to obtain a hardness result for differential privacy we need a functional en-
cryption scheme with the following non-standard security definition: for every polynomial time
adversary that obtains a set of secret keys corresponding to functions other than f, and outputs
some stateless program, with high probability that program has small advantage in distinguishing
encryptions of x from x—1. Implicit in the work of Kowalczyk et al. [KMUZ16] is a lemma that says

that this property is satisfied by any functional encryption scheme that satisfies the standard notion
of security for two messages. At a high level, security for one-message allow for the possibility that
the adversary sometimes outputs a program with large positive advantage and sometimes outputs a
program with large negative advantage, whereas two-message security bounds the average squared
advantage, meaning that the advantage must be small with high probability. This argument is
similar to one used by Dodis and Yu [DY13] in a completely different setting.

1.2 Additional Related Work

(Hardness of) Interactive Differential Privacy. Another area of focus is interactive differential
privacy, where the mechanism gets the dataset D and a (relatively small) set of queries Q chosen by
the analyst and must output answers to each query in Q. Most differentially private algorithms
for answering a large number of arbitrary queries actually work in this setting [DNR*09, DRV10,
HLM12], or even in a more challenging setting where the queries in Q arrive online and may
be adaptively chosen. [RR10, RR10, GRU12, Ull15]. Ullman [Ull16] showed that, assuming one-
way functions exist, there is no polynomial-time differentially private algorithm that takes a
dataset D € X" and a set of O(n?) arbitrary statistical queries and outputs an accurate answer
to each of these queries. The hardness of interactive differential privacy has also been extended
to a seemingly easier model of interactive data analysis [HU14, SU15], which is closely related to
differential privacy [DFH"15, BNS*16], even though privacy is not an explicit requirement in
that model. These results however do not give any specific set of queries Q that can be privately
summarized information-theoretically but not by a computationally efficient algorithm, and thus
do not solve the problem addressed in thus work.

The Complexity of Simple Statistical Queries. As mentioned above, a major open research direc-
tion is to design non-interactive differentially private algorithms for simple families of statistical
queries. For example, there are polynomial time differentially private algorithms with polynomial
sample complexity for summarizing point queries and threshold queries [BNS13, BNSV15], using an
information-theoretically optimal number of samples. Another class of focus has been marginal
queries [GHRU13, HRS12, TUV12, CTUW14, DNT14]. A marginal query is defined on the data
universe {0, 1}*. It is specified by a set of positions S C{1,...,«x}, and a pattern ¢t € {0, 1}l and asks
“What fraction of elements of the dataset have each coordinate j € S set to ¢;?” Specifically, Thaler
et al. [TUV12], building on the work of Hardt et al. [HRS12] gave an efficient differentially private
algorithm for answering all marginal queries up to an additive error of +.01 when the dataset is of
size n 2 2V¥. If we assume sufficiently hard one-way functions exist, then Theorem 1.1 would show
that these parameters are not achievable for an arbitrary set of queries. It remains a central open
problem in differential privacy to either design an optimal computationally efficient algorithm for
marginal queries or to give evidence that this problem is hard.

Hardness of Synthetic Data. There have been several other attempts to explain the accuracy
vs. computation tradeoff in differential privacy by considering restricted classes of algorithms. For
example, Ullman and Vadhan [UV11] (building on Dwork et al. [DNR*09]) show that, assuming
one-way functions, no differentially private and computationally efficient algorithm that outputs a
synthetic dataset can accurately answer even the very simple family of 2-way marginals. A synthetic
dataset is a specific type of summary that is interchangeable with the real dataset—it is a set
D = (Dy,...,D,) € X" such that the answer to each query on D is approximately the same as the
answer to the same query on D. 2-way marginals are just the subset of marginal queries above
where we only allow |S| < 2, and these queries capture the mean covariances of the attributes.
This result is incomparable to ours, since it applies to a very small and simple family of statistical

queries, but only applies to algorithms that output synthetic data.

Information-Theoretic Lower Bounds. A related line of work [BUV14, DTTZ14, BST14, BU17,
SU17] uses ideas from fingerprinting codes [BS98] to prove information-theoretic lower bounds on
the number of queries that can be answered by differentially private algorithms, and also devise
realistic attacks against the privacy of algorithms that attempt to answer too many queries [DSS*15,
DSSU17]. Most relevant to this work is the result of [BUV14] which says that if the size of the data
universe is 2", then there is a fixed set of 1 queries that no differentially private algorithm, even a
computationally unbounded one, can answer accurately. Although these results are orthogonal
to ours, the techniques are quite related, as fingerprinting codes are essentially the information-
theoretic analogue of traitor-tracing schemes.

2 Differential Privacy Preliminaries

2.1 Differentially Private Algorithms

A dataset D € X" is an ordered set of n rows, where each row corresponds to an individual, and
each row is an element of some data universe X. We write D = (Dy,...,D,,) where D; is the i-th row
of D. We will refer to n as the size of the dataset. We say that two datasets D, D’ € X* are adjacent if
D’ can be obtained from D by the addition, removal, or substitution of a single row, and we denote
this relation by D ~ D’. In particular, if we remove the i-th row of D then we obtain a new dataset
D_; ~ D. Informally, an algorithm A is differentially private if it is randomized and for any two
adjacent datasets D ~ D’, the distributions of A(D) and A(D’) are similar.

Definition 2.1 (Differential Privacy [DMNSO06]). Let A: X" — S be a randomized algorithm. We
say that A is (e, 0)-differentially private if for every two adjacent datasets D ~ D’ and every EC S,

P[A(D) e E]<e®-IP[A(D’) € E] + 0.

In this definition, ¢, 0 may be functions of #.

2.2 Algorithms for Answering Statistical Queries

In this work we study algorithms that answer statistical queries (which are also sometimes called
counting queries, predicate queries, or linear queries in the literature). For a data universe X, a
statistical query on X is defined by a predicate g : X — {0,1}. Abusing notation, we define the
evaluation of a query g on a dataset D = (Dy,...,D,) € X" to be

1 n
E;q(Di)-

A single statistical query does not provide much useful information about the dataset. However,
a sufficiently large and rich set of statistical queries is sufficient to implement many natural
machine learning and data mining algorithms [Kea93], thus we are interested in differentially
private algorithms to answer such sets. To this end, let Q = {g: X — {0,1}} be a set of statistical
queries on a data universe X.

Informally, we say that a mechanism is accurate for a set Q of statistical queries if it answers
every query in the family to within error +« for some suitable choice of & > 0. Note that 0 < g(D) <1,
so this definition of accuracy is meaningful when a <1/2.

Before we define accuracy, we note that the mechanism may represent its answer in any form.
That is, the mechanism outputs may output a summary S € S that somehow represents the answers
to every query in Q. We then require that there is an evaluator Eval : S xQ — [0, 1] that takes the
summary and a query and outputs an approximate answer to that query. That is, we think of
Eval(S,q) as the mechanism’s answer to the query g. We will abuse notation and simply write g(S)
to mean Eval(S,q).>

Definition 2.2 (Accuracy). For a family Q of statistical queries on X, a dataset D € X" and a
summary S € S, we say that S is a-accurate for Q on D if

VgeQ |q(D)-q(S) < a.

For a family of statistical queries Q on X, we say that an algorithm A : X" — S is («a, p)-accurate for
Q given a dataset of size n if for every D € X",

IP[A(D) is a-accurate for Q on X]>1 - .

In this work we are typically interested in mechanisms that satisfy the very weak notion of
(1/3,0(1/n))-accuracy, where the constant 1/3 could be replaced with any constant < 1/2. Most
differentially private mechanisms satisfy quantitatively much stronger accuracy guarantees. Since
we are proving hardness results, this choice of parameters makes our results stronger.

2.3 Computational Efficiency

Since we are interested in asymptotic efficiency, we introduce a computation parameter x € IN.
We then consider a sequence of pairs {(X,, Q,)}cenw Where Q, is a set of statistical queries on X,.
We consider databases of size n where n = n(x) is a polynomial. We then consider algorithms A
that take as input a dataset X! and output a summary in S, where {S,}.cn is a sequence of output
ranges. There is an associated evaluator Eval that takes a query q € Q, and a summary s € S,
and outputs a real-valued answer. The definitions of differential privacy and accuracy extend
straightforwardly to such sequences.

We say that such an algorithm is computationally efficient if the running time of the algorithm
and the associated evaluator run in time polynomial in the computation parameter «. In principle,
it could require as many as |X| bits even to specify a statistical query, in which case we cannot hope
to answer the query efficiently, even ignoring privacy constraints. Thus, we restrict attention to
statistical queries that are specified by a circuit of size polylog|X|, and thus can be evaluated in
time polylog|X|, and so are not the bottleneck in computation. To remind the reader of this fact, we
will often say that Q is a family of efficiently computable statistical queries.

2.4 Notational Conventions

Given a boolean predicate P, we will write I{P} to denote the value 1 if P is true and 0 if P is false.
We also say that a function € = ¢(n) is negligible if e(n) = O(1/n°) for every constant c > 0, and denote
this by e(n) = negl(n).

2If we do not restrict the running time of the algorithm, then it is without loss of generality for the algorithm to
simply output a list of real-valued answers to each queries by computing Eval(S, q) for every g € Q. However, this
transformation makes the running time of the algorithm at least |Q|. The additional generality of this framework allows
the algorithm to run in time sublinear in |Q|. This generality is crucial for our results, which apply to settings where the
family of queries is superpolynomially large in the size of the dataset.

3 Weakly Secure Traitor-Tracing Schemes

In this section we describe a very relaxed notion of traitor-tracing schemes whose existence will
imply the hardness of differentially private data release.

3.1 Syntax and Correctness

For a function n : N — IN and a sequence {K,, C,}cn, an (n, {K,, C,})-traitor-tracing scheme is a
tuple of efficient algorithms IT = (Setup, Enc, Dec) with the following syntax.

* Setup takes as input a security parameter «, runs in time poly(x), and outputs n = n(x) secret

user keys skq,...,sk, € K, and a secret master key msk. We will write sk = (skq,...,sk,, msk) to
denote the set of keys.

* Enc takes as input a master key msk and an index i € {0,1,...,n}, and outputs a ciphertext
c € Cy. If ¢ «— Enc(j, msk) then we say that c is encrypted to index j.

* Dec takes as input a ciphertext c and a user key sk; and outputs a single bit b € {0,1}. We
assume for simplicity that Dec is deterministic.

Correctness of the scheme asserts that if sk are generated by Setup, then for any pair i,j,
Dec(sk;, Enc(msk, j)) = I{i < j}. For simplicity, we require that this property holds with probability 1
over the coins of Setup and Enc, although it would not affect our results substantively if we required
only correctness with high probability.

Definition 3.1 (Perfect Correctness). An (n,{K,, C,})-traitor-tracing scheme is perfectly correct if for
every ¥ € N, and every 1,j € {0,1,...,n}

P [Dec(sk;,c) =1{i < j}] = 1.
sT«zSetup(K),C:Enc(msk,j)

3.2 Index-Hiding Security

Intuitively, the security property we want is that any computationally efficient adversary who is
missing one of the user keys sk;. cannot distinguish ciphertexts encrypted with index i* from index
i*— 1, even if that adversary holds all n —1 other keys sk_;.. In other words, an efficient adversary
cannot infer anything about the encrypted index beyond what is implied by the correctness of
decryption and the set of keys he holds.

More precisely, consider the following two-phase experiment. First the adversary is given every
key except for sk;:, and outputs a decryption program S. Then, a challenge ciphertext is encrypted
to either i* or to i* — 1. We say that the traitor-tracing scheme is secure if for every polynomial
time adversary, with high probability over the setup and the decryption program chosen by the
adversary, the decryption program has small advantage in distinguishing the two possible indices.

Definition 3.2 (Index Hiding). A traitor-tracing scheme I1 satisfies (weak) index-hiding security if
for every sufficiently large x € IN, every i* € [n(x)], and every poly(x)-time adversary A,

1
P IP[S(Enc(msk,i*)) = 1] - P[S(Enc(msk,i* = 1)) =1]> —| < — (1)
sk=Setup(x), S=A(sk_;) 4en] ™ 4en

In the above, the inner probabilities are taken over the coins of Enc and S.

Note that in the above definition we have fixed the success probability of the adversary for
simplicity. Moreover, we have fixed these probabilities to relatively large ones. Requiring only a
polynomially small advantage is crucial to achieving the key and ciphertext lengths we need to
obtain our results, while still being sufficient to establish the hardness of differential privacy.

3.3 Index-Hiding Security Implies Hardness for Differential Privacy

It was shown by Kowalczyk et al. [KMUZ16] (refining similar results from [DNR*09, Ull16]) that a
traitor-tracing scheme satisfying index-hiding security implies a hardness result for non-interactive
differential privacy.

Theorem 3.3. Suppose there is an (n,{K,, C,})-traitor-tracing scheme that satisfies perfect correct-
ness (Definition 3.1) and index-hiding security (Definition 3.2). Then there is a sequence of of pairs
{Xie, Qi tcen where Q. is a set of statistical queries on X, |Q| = |Cyl|, and |X, | = |K| such that there is
no algorithm A that is simultaneously

1. computationally efficient,

2. (1,1/4n)-differentially private, and

3. (1/3,1/2n)-accurate for Q, on datasets D € X,’:(K).

3.4 Two-Index-Hiding-Security

While Definition 3.2 is the most natural to prove hardness of privacy, it is not consistent with
the usual security definition for functional encryption because of the nested “probability-of-
probabilities.” In order to apply more standard notions of functional encryption, we show that
index-hiding security follows from a more natural form of security for two ciphertexts.

First, consider the following IndexHiding game.

The challenger generates keys sk = (skq,...,sk;,, msk) < Setup(x).

The adversary A is given keys sk_;. and outputs a decryption program S.
The challenger chooses a bit b « {0, 1}

The challenger generates an encryption to index i* — b, ¢ < Enc(msk,i* - b)
The adversary makes a guess b’ = S(c)

Figure 1: IndexHiding;.

Let IndexHiding,. ; ¢ be the game IndexHiding;. where we fix the choices of sk and S. Also,
define o

1
Adv;. g5 = P [b"=b]--.
/899 IndexHiding . g ¢ 2
so that)
[b'=bl-5= E [Adv,]
IndexHiding;« dk=Setup(x) 1*,sk,
S=A(sk_j+)

Then the following statement implies (1) in Definition 3.2:

1
P [Adv‘* 2o > —] <
s?:Setup(K),S:A(Skfi*) o

The challenger generates keys sk = (skq,...,sk,, msk) < Setup.

The adversary A is given keys sk_;. and outputs a decryption program S.
Choose by «— {0,1} and b; < {0,1} independently.

Let ¢y «— Enc(i* — bg; msk) and ¢y «—; Enc(i* — by; msk).

Let b/ = S(Co, C1)

Figure 2: TwolndexHiding;.

We can define a related two-index-hiding game.
Analogous to what we did with IndexHiding, we can define TwolndexHiding;. 5 ¢ to be the

game TwolndexHiding,. where we fix the choices of sk and S, and define

1
TwoAdv; = P [b'=by®b]-=
TwolndexHiding;. 2

Kowalczyk et al. [KMUZ16] proved the following lemma that will be useful to connect our new
construction to the type of security definition that implies hardness of differential privacy.

Lemma 3.4. Let I be a traitor-tracing scheme such that for every efficient adversary A, every x € IN,
and index i* € [n(x)],
1

TwoAdv < ———
300n3

Then I1 satisfies weak index-hiding security.

In the rest of the paper, we will construct a scheme satisfying the assumption of the above
lemma with suitable key and ciphertexts lengths, which we can immediately plug into Theorem 3.3
to obtain Theorem 1.1 in the introduction.

4 Cryptographic Tools

4.1 Decomposable Randomized Encodings

Let F = {f :{0,1}¢ = {0, 1}k} be a family of Boolean functions. An (information-theoretic) decompos-
able randomized encoding for F is a pair of efficient algorithms (DRE.Encode, DRE.Decode) such that
the following hold:

* DRE.Encode takes as input a function f € F and randomness R and outputs a randomized
encoding consisting of a set of £ pairs of labels

B ~ F(f,O;R) F(f,O,R)
F<f,R>—{ FAFLR) - ﬁﬁ(f,l,m}

where the i-th pair of labels corresponds to the i-th bit of the input x.

* (Correctness) DRE.Decode takes as input a set of ¢ labels corresponding to some function f
and input x and outputs f(x). Specifically,

V feF, xe{0,1}' DRE.Decode(F;(f, x|, R),..., Fe(f, %, R)) = f(x)

with probability 1 over the randomness R.

10

(Information-Theoretic Security) For every function f and input y, the set of labels corre-
sponding to f and y reveal nothing other than f(p). Specifically, there exists a randomized
simulator DRE.Sim that depends only on the output f(x) such that

YV feF, xe{0,1) {Fi(f,x1,R),...,Fe(f,x¢, R)| ~ DRE.Sim(f (x))
where ~ denotes that the two random variables are identically distributed.

The length of the randomized encoding is the maximum length of F(f,R) over all choices of
f € F and the randomness R.

We will utilize the fact that functions computable in low depth have small decomposable
randomized encodings.

Theorem 4.1 ([Bar86, Kil88]). If F is a family of functions such that a universal function for F,
U(f,x) = f(x) can be computed by Boolean formulae of depth d (with fan-in 2, over the basis {A,V,—}),
then F has an information-theoretic decomposable randomized encoding of length O(44).

4.2

Private Key Functional Encryption

Let 7 = {f :{0,1}¢ — {0, 1}k} be a family of functions. A private key functional encryption scheme for

F is a tuple of polynomial-time algorithms ITpy = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) with the
following syntax and properties:

Our goal is to construct a functional encryption scheme that is (1, 2

FE.Setup takes a security parameter 1* and outputs a master secret key FE.msk.

FE.KeyGen takes a master secret key FE.msk and a function f € F and outputs a secret key
FE.sks corresponding to the function f.

FE.Enc takes the master secret key FE.msk and an input x € {0,1}¢ and outputs a ciphertext c
corresponding to the input x.

(Correctness) FE.Dec takes a secret key FE.sk corresponding to a function f and a ciphertext
c corresponding to an input x and outputs f(x). Specifically, for every FE.msk is in the support
of FE.Setup

FE.Dec(FE.KeyGen(FE.msk, f), FE.Enc(FE.msk, x)) = f(x)

The key length is the maximum length of FE.sk over all choices of f € F and the randomness
of FE.Setup, FE.Enc. The ciphertext length is the maximum length of c over all choices of
x € {0,1}¢ and the randomness of FE.Setup, FE.Enc.

(Security) We will use a non-adaptive simulation-based definition of security. In particular,
we are interested in security for a large number of keys n and a small number of ciphertexts
m. We define security through the pair of games in Figure 3. We say that Iy is (n,m, ¢)-
secure if there exists a polynomial-time simulator FE.Sim such that for every polynomial-time
adversary A and every «,

'P[Efeal (Mg, A) = 1] - P[Ee3] (T, A, FE.Sim) = 1]| < e(x)

K,n,m

) W)—secure and has short

ciphertexts and keys, where n = n(x) is a polynomial in the security parameter. Although it is not
difficult to see, in Section 7 we prove that the definition of security above implies the definition of
two-index-hiding security that we use in Lemma 3.4.

11

Ereal (HFEJ-A):

K,n,m
A outputs at most n functions f,..., f, and m inputs x1,...,x,,

Let FE.msk «—; FE.Setup(1¥) and
Vi€ [n] FEskg < FE.KeyGen(FE.msk, f;)
Vje[m] cj e FEEnc(FE.msk,x;)

A receives {FE.sks}i_; and {c]‘};”:1 and outputs b

Eideal (TT.. A,FE.Sim):

K,n,m
A outputs at most n functions f,..., f, and m inputs x1,...,x,,

({FEskr)r, {ai)) = FE.Sim({ £ {ﬁ<x].>};":1}j_l)

A receives {FE.skg}i” | and {cj};”:1 and outputs b

Figure 3: Security of Functional Encryption

4.2.1 Function-Hiding Functional Encryption

As an ingredient in our construction we also need a notion of function-hiding security for a (one-
message) functional encryption scheme. Since we will only need this definition for a single message,
we will specialize to that case in order to simplify notation. We say that Il is function-hiding
(n,1,¢)-secure if there exists a polynomial-time simulator FE.Sim such that for every polynomial-
time adversary A and every «,

|1P[Efeal (T, A) = 1]~ P[4 (T, A, FE.Sim) = 1]| < e(x)

x,n,1 x,n,1

preal rfideal
EK,n,l’ EK,n,l

not given the functions f; as input. Namely, in Eid¢al:

Ereal Eideal

. . pideal :
et Exn except that the simulator in EK’H’1 is

where are the same experiments as as

({FEsky) ¢) - FESIm({fi(x)}1y)

A main ingredient in the construction will be a function-hiding functional encryption scheme
that is (1, 1,negl(x))-secure. The construction is a small variant of the constructions of Sahai and
Seyalioglu [SS10] and Gorbunov, Vaikuntanathan, and Wee [GVW12]

Theorem 4.2 (Variant of [SS10, GVW12]). Let F be a family of functions such that a universal function
for F has a decomposable randomized encoding of length L. That is, the function U(f,x) = f(x) has a
DRE of length L. If one-way functions exist, then for any polynomial n = n(x) there is an (n,1,negl(x))-
function-hiding-secure functional encryption scheme Il with key length L and ciphertext length O(xL).

Although this theorem follows in a relatively straightforward way from the techniques of [SS10,
GVW12], we will give a proof of this theorem in Section 5. The main novelty in the theorem is
to verify that in settings where we have a very short DRE—shorter than the security parameter
k—we can make the secret keys have length proportional to the length of the DRE rather than
proportional to the security parameter.

12

5 One-Message Functional Encryption

We will now construct I1ppr = (OFE.Setup, OFE.KeyGen, OFE.Enc, OFE.Dec): a function-hiding
(n,1,negl(x))-secure functional encryption scheme for functions with an (information-theoretic)
decomposable randomized encoding DRE. The construction is essentially the same as the (public
key) variants given by [SS10, GVW12] except we consider information theoretic randomized en-
codings instead of computationally secure ones and instead of encrypting the labels under a public
key encryption scheme, we take advantage of the private-key setting to use an encryption method
that produces ciphertexts with size equal to the message if the message is smaller than the security
parameter. Encrypting the labels of a short randomized encoding, this allows us to argue that keys
for our scheme are small. To perform this encryption, we use a PRF evaluated on known indices to
mask each short label of DRE.

Let n = poly(x) denote the number of users for the scheme. We assume for simplicity that lgn
is an integer. Our construction will rely on the following primitives:

* A pseudorandom function family {PRFy : {0,1)18" — {0,1)18" | s € {0, 1}).

* A decomposable randomized encoding of f,(x) = Ifx > y} where x,p € {0,1 Jlogn,

Setup(1¥):
Choose seeds sk , < {0,1}* for k € [Ign],b € {0,1}.
Choose randomness R; for the randomized encoding for each j € [n].

Choose x « {0,1}'8".
Define

(K} = {PRF ()@ Filfi xc @, Ry}

where ke {1,.,1gn},b €{0,1}

Let each user’s secret key be sk; = (j, {K,g;}).
Let the master key be msk = {skj ;}.

Enc(i, msk = {sky p}) :
Output ¢; = (p :=x®1, Skl,ylf---’Sklgn,ylgn)

Dec(c;, sk;):
Output DRE.Decode(PRFy,, (j)@KY) ..., PRFat, (1)@ Kl(é)n,ylgn)

Figure 4: Our scheme I1pgg.

5.1 Proof of Correctness

Dec(c;,sk;) = DRE.Decode(PRFy, (j)@K}) .., PR, (j) Kl‘é’wgn)

= DRE.Decode(F; (fir 9 @xl,Rj),...,Flgn(](]',ylgn ® X1g1, R;))
= DRE.Decode(F; (fj, i1, R;), .., Fign(fj, iigns R;))

= (i)

13

Where the last step uses the (perfect) correctness of the randomized encoding scheme. So:

P [Dec(cj,sk;) =I{i < j}] IP[DRE Decode(Fl(f],zl, i) Flgn (firiign Rj)) = fi(i]

sT(:Setup(K), c;i=Enc(msk,i)

5.2 Proof of Security
Lemma 5.1. 'H)[E,rfglm (Morg, A) = 1] 11)[E;<d;3a,}1 M opg, A, FE.Sim) = 1]| < e(x)

Proof. Consider the hybrid scheme IT;,; defined in Figure 5, which uses a truly random string
instead of the output of a PRF for the encrypted labels corresponding to the off-bits of y = x®1.
Note that this scheme is only useful in the nonadaptive security game, where i is known at time of
Setup (since it is needed to compute y). We can easily show that the scheme is indistinguishable
from the original scheme in the nonadaptive security game.

Setup(1%¥):
Choose seeds sky < {0,1}* for k € [Ign].
Choose randomness R; for the randomized encoding for each j € [n].
Choose x «; {0,1}'8".
Lety =xoi.
Define ,
{K,i{;k} = {PRFy () @ Fil ik, R}

Construct '
(ki e o
where k € {1,..,1gn}

Let each user’s secret key be sk; = (j, {K,g;}).
Let the master key be msk = {sk}.

Enc(i, msk = {sk;}) :
Output ¢; = (y = x® 1,5k, ..., skig)

Dec(c;, sk;):

Output DRE.Decode(PRF (j)® K"

) PREg (@K)

lg n ylgn

Figure 5: Hybrid scheme ITj ..

Lemma 5.2. ’IP[B,rfglm (Tope, A) = 1]~ P[ER, (T, A) = 1]’ <lgn-PRF.Adv(k) = &(x)

Proof. Follows easily by the security of the PRF (applied 1gn times in a hybrid for each function in
the off-bits of p). O

In Figure 6 we define a simulator for the ideal setting that is indistinguishable from our hybrid
scheme ITf,... The simulator uses the simulator for the decomposable randomized encoding
scheme to generate the labels to be encrypted using only the knowledge of the output value of the
functions on the input.

14

OFE.Sim:
Input: 1%, and the evaluation of n (unknown) functions on 1 unknown input: {y;}?_,
Let DRE.Sim be the simulator for information-theoretic randomized encoding DRE.

// Generate ciphertext
Choose y < {0,1}18".
For k € [Ign]:

Choose skj < {0,1}*
Let ¢ = (y,sky, ..., skigp)

// Generate keys for j € [n] using DRE.Sim
For j € [n]:

Generate: (ﬁij), Fl(g)n) «— DRE.Sim(y;)

Let: K(j) = PRFg (j)® ,((for k € [1gn]
Choose: K(T {0,1)18" for k € [Ign]
) _)
Let: OFE.sk]- = {Kk,b}kepg,,]
be{0,1}

// Output the n simulated secret keys and simulated ciphertext
Output: {OFE.sk;}i, ¢

Figure 6: The Simulator OFE.Sim for ITpgg.

Lemma 5.3. '11) [Ereal, (Mo, A) = 1] - P[ES3 (Mo, A, FE.Sim) = 1” _
Proof. Follows easily by the information-theoretic security of the randomized encoding. O

Adding the statements of Lemma 5.2 and Lemma 5.3 gives us the original statement of security.
O

So, ITppg is a function-hiding-secure private-key functional encryption scheme (n, 1, negl(x))
with security based on the hardness of a PRF (which can be instantiated using a one-way function)
and the existence of an information-theoretic randomized encoding for the family of comparison
functions {f; : {0,1)18" — {0,1}} of length L. Furthermore, note that the length of ciphertexts is:
Ign-x +1gn = 0O(xL) and the length of each key is L, satisfying the conditions of Theorem 4.2.

6 A Two-Message Functional Encryption Scheme for Comparison

We now use the one-message functional encryption scheme ITopg described in Section 5 to con-
struct a functional encryption scheme Ilgg that is (1, 2

functions. For any y € {0, 1}¢, let

» 300m =+)-secure for the family of comparison

Sy(x) =I{x >y}

where the comparison operation treats x,y as numbers in binary. We define the family of functions

Feomp = {f, 10,1} > {0, 1} | y € {0,1)"}

15

In our application, we need x,v € {0,1,...,1}, so we will set £ = [log,(n + 1)] = O(logn). One
important property of our construction is that the user key length will be fairly small as a func-
tion of ¢, so that when ¢ = O(logn), the overall length of user keys will be no(l) (in fact, nearly
polylogarithmic in).

6.1 Construction

Our construction will be for a generic family of functions 7, and we will only specialize the
construction to Fomp wWhen setting the parameters and bounding the length of the scheme. Before
giving the formal construction, let’s gather some notation and ingredients. Note that we will
introduce some additional parameters that are necessary to specify the scheme, but we will leave
many of these parameters to be determined later.

* Let n be a parameter bounding the number of user keys in the scheme, and let IF be a finite
field whose size we will determine later.

e Let F = {f :{0,1}¢ — {0, 1}} be a family of functions. For each function f € F we define an

associated polynomial f : F*! — T as follows:

1. Let f : F - ¥ be a polynomial computing f
2. Define f : F“*! — T to be f(xq,...,%.,2) =f(x1,...,xg)+z

Let D and S be such that every for every f € F, the associated polynomial f has degree at
most D and can be computed by an arithmetic circuit of size at most S. These degree and
size parameters will depend on F.

* Let Pp s be the set of all univariate polynomials p : F — F of degree at most D’ and
size at most S’. Let ITppg = (OFE.Setup, OFE.KeyGen, OFE.Enc, OFE.Dec) be an (n, 1,negl(x))-
function-hiding-secure functional encryption scheme (i.e. secure for n keys and one message)
for the family of polynomials Pp s/ .

We’re now ready to describe the construction of the two-message functional encryption scheme
ITpg. The scheme is specified in Figure 7.

Correctness of [Tz, Before going on to prove security, we will verify that encryption and decryp-
tion are correct for our scheme. Fix any f; € F and let f; : F* — IF be the associated polynomial,
and fix any input x € F¢. Let r; : F — IF be the degree RD polynomial chosen by FE.KeyGen on
input f; and let f; ,.(r,(1) be the function used to generate the key OFE.sk; ;. Let q: F — IF¢ be the
degree R polynomlal map chosen by FE.Enc on input x. Observe that, by correctness of [1prg, when
we run FE.Dec we will have

p(t) = OFE.Dec(OFE.sk; 1, ¢,) = fi r (q(t), t) = fi(q(t)) + ri(t).

Now, consider the polynomial ﬁ,q,,’, :IF — F defined by

ﬁ,q,r fz) +1i(£).

Since f; has degree at most D, g has degree at most R, and r; has degree at most RD, the degree of
fl,q,r, is at most RD. Since |U/| = RD +1, the polynomlal p agrees with f; g, at RD + 1 distinct points,

and thus p = f, In partlcular p(0) = f; 4,(0). Since we chose r; and g such that r;(0) = 0 and
q(0) = x, we have p = fi(9(0)) + ;(0 ﬂ Thls completes the proof of correctness.

16

Global Parameters: A family of functions F = {f : {0, 1}f — {0,1}¢} is a family of functions, a
finite field IF, a bound D on the degree of polynomials f : F*! — IF computing a function in
F, a parameter R € N, and parameters U = RD +1,and T = U2.

FE.Setup(1%):
Generate T independent master keys for OFE.msk; «—, OFE.Setup(1%¥)
Output FE.msk = {OFE.mskt}Z‘;1

FE.KeyGen(FE.msk, f;) :
// To aid in our proofs later, we index invocations of FE.KeyGen with i
Let f; : FY — FF be a multivariate polynomial computing f;
Choose a random polynomial r; : IF — F of degree RD such that r;(0) =0
For every t € [T]:
Define the function f;,ri(x, t) = fi(x)+ri(t)
Let OFE.sk; ; < OFE.KeyGen(OFE.msk,, f; ,.(-, 1))
Output FE.sk; = {OFE.sk; ;}_,

FE.Enc(FE.msk, x) :
Choose a random polynomial map g : F — ¢ of degree R so that g(0) = x.
Choose a random U C [T] of size U
For every t e U: let ¢; «—; OFE.Enc(OFE.msk;, q(t))
Output ¢ = {¢t}teys

FE.Dec(FE.sk;,c):
Let FE.sk; = {OFE.ski,t}thl, ¢ ={cihey
For every t e U, let p(t) = OFE.Dec(OFE.sk; ;,¢c;)
Extend the polynomial p(¢) to all of IF by interpolation
Output p(0)

Figure 7: A Functional Encryption Scheme for 2 Messages

6.2 Security for Two Messages
Theorem 6.1. For every polynomial n = n(x), Tgg is (n,2,0)-secure for & = T -negl(x) + 272(R),

First we describe at a high level how to simulate. To do so, it will be useful to first introduce
some terminology. Recall that FE.Setup instantiates T independent copies of the one-message
scheme T. We refer to each instantiation as a component. Thus, when we talk about generating a
secret key for a function f; we will talk about generating each of the T components of that key and
similarly when we talk about generating a ciphertext for an input x; we will talk about generating
each of the U components of that ciphertext. Thus the simulator has to generate a total of nT
components of keys and 2U components of ciphertexts. The simulator will consider several types
of components:

* Components t € Uy NU, where U;,U, are the random sets of components chosen by the
encryption scheme for the two inputs, respectively. The adversary obtains two ciphertexts
for these components, so we cannot use the simulator for the one-message scheme. Thus for
these components we simply choose uniformly random values for all the keys and ciphertexts
and use the real one-message scheme.

17

* Components t € U; AU, (where A is the symmetric difference). For these we want to use the
simulator for the one-message scheme to generate both the keys for each function and the
ciphertexts for these components (recall that the one-message scheme is function-hiding).
To do so, we need to feed the simulator with the evaluation of each of the functions on the
chosen input. We show how to generate these outputs by leveraging the random high-degree
polynomials ; included in the keys. These values are then fed into the simulator to produce
the appropriate key and ciphertext components.

* Components t ¢ U; UU,. For these components the real scheme would not generate a
ciphertext so the distribution can be simulated by a simulator that takes no inputs.

With this outline in the place, it is not too difficult to construct and analyze the simulator.

Proof of Theorem 6.1. We prove security via the simulator described in Figure 8.

First we make a simple claim showing that there is only a small probability that the simulator
has to halt and output L because I is too large.

Claim 6.2. IP[FE.Sim = 1] =2"0®),

Proof Sketch for Claim 6.2. Recall that 7 is defined to be U; NU,. Since U;,U, are random subsets
of [T], each of size U, and we set T = U?, we have E[|Z|] = 1. Moreover, the intersection of the
two sets has a hypergeometric distribution, and by a standard tail bound for the hypergeometric
distribution we have IP[FE.Sim = 1] = P[|Z| > R] < 27Q(R), O

In light of the above claim, we will assume for the remainder of the analysis that the simulator
does not output L, and thus |Z| < R, and this will only cost add 279 to the simulation error. In
what follows, we will simplify notation by referring only to components corresponding to keys and
one of the ciphertexts, and will drop the superscript b. All of our arguments also applies to the
second ciphertext, since this ciphertext is generated in a completely symmetric way.

Components Used in Both Ciphertexts. First, we claim that the simulator produces the correct
distribution of the keys and ciphertexts for the components t € Z. Note that the simulator chooses
the keys in exactly the same way as the real scheme would: it generates keys for the functions
j:i,ri(-, t) where r; is a random degree RD polynomial with the constant coefficient 0. The ciphertexts
in the real scheme would contain the messages {q(t)},;; where q is a random degree R polynomial
with constant coefficient equal to the (unknown) input x. Since |Z| < R, this is a uniformly random
set of values. Thus, the distribution of {a;},.;, is identical to {q(t)},;,, and therefore the simulated
ciphertext components and the real ciphertext components have the same distribution.

Components Used in Exactly One Ciphertext. Next we claim that the simulated keys and ciphertexts
for the components t € i/ \ T are computationally indistinguishable from those of the real scheme.
Since in these components we only need to generate a single ciphertext, we can rely on the simulator
OFE.Sim for the one-message scheme. OFE.Sim takes evaluations of n functions each at a single
input and simulates the keys for those n functions and the ciphertext for that single input. In order
to apply the indistinguishability guarantee for OFE.Sim, we need to argue that the evaluations that
FE.Sim feeds to OFE.Sim are jointly identically distributed to the real scheme.

Recall that in the real scheme, each key corresponds to a function ﬁ,rl, (-,t) and this function gets
evaluated on points g(t). Thus for each function i, and each ciphertext component ¢, the evaluation
is ﬁ,q,ri(t) = fi(q(t)) + r;(t). The polynomials q,74,...,7, are chosen so that for every i, ﬁ,q,,i(O) = ﬁ(x)
where x is the (unknown) input. We need to argue that the set of evaluations {7; ;} generated by the

18

FE.Sim:

n
Input: 1%, n functions and their evaluations on 2 unknown inputs { fi,y},yiz}i_l

Let f; : F&*1 - TF and 37},373 € IF be the associated polynomial and field elements
Let OFE.Sim be the simulator for the one-message scheme I1pgg

Choose random ry,...,7, : F — F of degree RD s.t. for all i, r;(0) = 0, let ﬁ’ri(', t) = fi(-) +ri(t)
Choose two random sets U/',U/?> C [T] of size U = RD + 1
Let T =U' NnU2. If |Z| > R, halt, output L. (henceforth we assume |Z| < R).

// Generate the keys and ciphertexts for components t € 7 using I1opg
Fortel:

For b € {1,2} choose a random value af eF¢

Let OFE.msk; «— OFE.Setup(1%)

For every i, let OFE.sk; ; < OFE.KeyGen(OFE.mskt,f,”rl_(-, t))

For b € {1,2}, let ¢! <, OFE.Enc(OFE.msk,, a?)

/ Interpolate consistent evaluations to give OFE.Sim for t e U*\ T
For every i, generate a set of evaluations {ﬁlh f}teub as follows:
// Choose random values consistent with the choices we made for t € 7
For every i and every t € Z, set y~f”t = fi’ri(atb)
For all except one point t € 4% \ Z, choose uniformly random values for giib, ;
// Ensure consistency with the final output.
For all i, interpolate a polynomial ﬁf-’ of degree RD such that ﬁf’(O) = ﬁl-h, ﬁf-’(t) = ﬁkt
For the last point t € U?, set ﬁfit = ﬁf’(t)

// Generate keys and ciphertexts for t € i}, \ Z using OFE.Sim
For t € Uy \ T: ({OFE.ski }) ,¢;) OFE.Sim([g}jt})

n

i=1

// Generate keys (but no ciphertexts) for ¢t ¢ U; U, obliviously
For t € [T]\ (U' UU?) and i € [n], let OFE.sk; ; < OFE.Sim().

// Output the n simulated secret keys and 2 simulated ciphertexts

Output: {{OFE-Ski,t}?:1}?:1 ’ {Ctl}teul ’{Ctz}teuz

Figure 8: The Simulator FE.Sim for ITgg.

simulator have the same distribution as { f;’q,,l_(t)}. Observe that, since r; is a random polynomial of

degree RD with constant coefficient 0, its evaluation on any set of RD points is jointly uniformly

random. Therefore, for every q chosen independently of r, the evaluation of firq,ﬁ on any set of RD
points is also jointly uniformly random. On the other hand, the evaluation of fi,q,r,- on any set of
RD +1 points determines the whole function and thus determines fi,q,,i (0), therefore conditioned

on evaluations at any set of RD points, and the desired value of fi,q,n(O), the evaluation at any other
point is uniquely determined.

Now, in the simulator, for every i, we choose RD evaluations 7;; uniformly randomly—for
the points t € 7 they are uniformly random because the polynomials r; and the values a;; were
chosen randomly, and then for all but one point in &/ \ Z we explicitly chose them to be uniformly

19

random. For the remaining point, we chose 7; ; to be the unique point such that we obtain the
correct evaluation of ﬁ-,q,ri (0), which is the value p; that was given to the simulator. Thus, we have
argued that for any individual i, the distribution of the points 7; ; that we give to the simulator is
identical to that of the real scheme. The fact that this holds jointly over all i follows immediately
by independence of the polynomials ry,...,7,.

Components Used in Neither Ciphertext. Since the underlying one-message scheme satisfies function-
hiding, it must be the case that the distribution of n keys and no messages is computationally
indistinguishable from a fixed distribution. That is, it can be simulated given no evaluations. Thus
we can simply generate the keys for these unused components in a completely oblivious way.

Since we have argued that all components are simulated correctly, we can complete the proof
by taking a hybrid argument over the simulation error for each of the T components, and a union
bound over the failure probability corresponding to the case where |Z| > R. Thus we argue that
FE.Sim and the real scheme are computationally indistinguishable with the claimed parameters. [

6.3 Bounding the Scheme Length for Comparison Functions

In the application to differential privacy, we need to instantiate the scheme for the family of
comparison functions of the form f,(x) = I{x > y} where x,y € {0, 1}°8" and we need to set the

parameters to ensure (1,2)-security where n = n(x) is an arbitrary polynomial.

1
» 30013
Theorem 6.3. For every polynomial n = n(x) there is a (n, 2, W)—secure functional encryption scheme
for the family of comparison functions on O(logn) bits with keys are in K, and ciphertexts in C,. where

ppoly(loglogn o(1)
2

K| = "= and |C| = 2%
Theorem 1.1 follows by combining Theorem 6.3 with Theorem 3.3. Note that Theorem 6.3
constructs a different scheme for every polynomial n = n(x). However, we can obtain a single scheme

that is secure for every polynomial n(x) by instantiating this construction for some n’(x) = x®().

Proof of Theorem 6.3. By Theorem 6.1, if the underlying one-message scheme I1pgg is (1,1, negl(x))-
function-hiding secure, then the final scheme Iz will be (7, 2, 6)-secure for 6 = T - negl(x) + 27Q(R),
If we choose an appropriate R = O(logn) then we will have 6 = T - negl(x) + W. As we will see, T
will be a polynomial in n, so for sufficiently large values of x, we will have 6 < W.
the proof, we bound the length of the keys and ciphertexts:

To complete

The functions constructed in FE.KeyGen have small DREs. For the family of comparison functions
on logn bits, there is a universal Boolean formula u(x,p) : {0, 1}1087 % {0,1}1°8" — {0,1} of size
S = O(logn) and depth d = O(loglog 1) that computes f,(x). Thus, for any field IF, the polynomial
ii(x,p) : F1°8" x F1°8" _ TF is computable by an arithmetic circuit of size S = O(log#n) and depth
d = O(loglogn), and this polynomial computes fy(x). For any value r € IF, the polynomial #,(x,v) =
ii(x,v) + r is also computable by an arithmetic circuit of size S + 1 = O(logn) with degree d. Note
that this polynomial is a universal evaluation for the polynomials fw(-,)= f;() + r(t) created in
FE.KeyGen.

To obtain a DRE, we can write #,(x,y) as a Boolean formula u, p(x,v) : {0, 1)(logm)(log|Fl) »
{0, 1)logm)loglF)) _, (0 1}108IF| vith depth d” = d - depth(FF) and size S’ = S - size(IF) where depth(IF)
and size(IF) are the depth and size of Boolean formulae computing operations in the field F, re-
spectively. Later we will argue that it suffices to choose a field of size poly(logn), and thus dg, Sy =
poly(loglogn). Therefore these functions can be computed by formulae of depth d” = poly(loglogn)

20

and size S” = poly(logn). Finally, by Theorem 4.1, the universal evaluator for this family has DREs
of length O(4%") = exp(poly(loglog n)).

The secret keys and ciphertexts for each component are small. Tlpp generates key and ciphertext
components for up to T independent instantiations of I1opg. Each function for I1gg corresponds
to a formula of the form u, defined above. By Theorem 4.2, we can instantiate I1opg so that
each key component has length exp(poly(loglogn)) and each ciphertext component has length
« -exp(poly(loglogn)) = poly(x), where the last inequality is because n = poly(«x).

The number of components T and the size of the field F is small. In ITpp we take T = U? = (RD + 1)?
where D < 29 is the degree of the polynomials computing the comparison function over FF. As we
argued above, we can take R = O(logn) and D = poly(logn). Therefore we have T = poly(logn). We
need to ensure that |[F| > T + 1, since the security analysis relies on the fact that each component t €
[T] corresponds to a different non-zero element of IF. Therefore, it suffices to have |F| = poly(log n).
In particular, this justifies the calculations above involving the complexity of field operations.

Putting it together. By the above, each component of the secret keys has length exp(poly(loglogn)

and there are poly(log n) components, so the overall length of the keys for I is exp(poly(loglogn)).
Each component of the ciphertexts has length poly(x) and there are poly(logn) = poly(log«))
components, so the overall length of the ciphertexts for Ilg is poly(x). The theorem statement
now follows by rescaling x and converting the bound on the length of the keys and ciphertexts to a
bound on their number. O

7 Two-Message Functional Encryption Implies Index Hiding

As discussed in subsection 3.2, Lemma 3.4 tells us that if we can show that any adversary’s
advantage in the TwolndexHiding game is small, then the game’s traitor-tracing scheme satisfies
weak index-hiding security and gives us the lower bound of Theorem 3.3. First, note that one
can use a private key functional encryption scheme for comparison functions directly as a traitor-
tracing scheme, since they have the same functionality. We will now show that any private key
functional encryption scheme that is (1,2)-secure is a secure traitor-tracing scheme in the
TwolndexHiding game.

In Figure 9, we describe a variant of the TwolndexHiding game from Figure 2 that uses the
simulator FE.Sim for the functional encryption scheme Il = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec)
for comparison functions f,(x) = I{x > y} where x,y € {0, 1}198" that is (1, 2, W)—secure. Note that
the challenger can give the simulator inputs that are independent of the game’s by, b; since for all
indices j # i*, the output values of the comparison function for j on both inputs i* — by, i* — by are
always identical: I{j > i*} (for all by, by € {0, 1}).

L
7 30013

The challenger runs the simulator to produce:
({sk]-}jﬁe[ﬂ],{co,cl}) o FESim({f (14> 11 >0)

The adversary A is given keys sk_;» and outputs a decryption program S.
Choose by «— {0,1} and by < {0, 1} independently.
Let b/ = S(Co, C1)

Figure 9: SimTwolndexHiding][i*]

21

Defining:
1
SimTwoAdv[i*] = P b'=bydb]-=
Hmawoe V[l] SimTwolndexHiding|i*] [0 1] 2
We can then prove the following lemmas:
Lemma 7.1. For all p.p.t. adversaries, SimTwoAdv[i*] = 0.

Proof. In SimTwolndexHiding[i*], by, by are chosen uniformly at random and independent of the
adversary’s view. Therefore, the probability that the adversary outputs b’ = by, @ b; is exactly %, and

so SimTwoAdv[i*] = P [b'=by®b]- % =0. O
SimTwolndexHiding[i*]

. %1 Qe - 1
Lemma 7.2. For all p.p.t. adversaries, [TwoAdv[i*] - SimTwoAdv[i*]| < 555

Proof. This follows easily from the simulation security of the 2-message FE scheme. O

We can now show that any adversary’s advantage in the TwolndexHiding game is small:

Lemma 7.3. Given a Two-Message Functional Encryption scheme for comparison functions f,(x) =

I{x > v} where x,y € {0, 1}198" that is (n, 2 -secure,

;)
’ 30013

IMgg = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec)
then for all i*,

TwoAdv[i*] < ———
30013

Proof. Adding the statements of Lemma 7.1 and Lemma 7.2 gives us the statement of the lemma:

O]

TwoAdv([i*] <
300n3

Combining Lemma 7.3 with Lemma 3.4, the (1, 2, W)—secure Two-Message Functional Encryp-
tion scheme from Section 6 is therefore a (n, {K,, C, })-traitor tracing scheme with weak index-hiding
security. From Theorem 6.3, we have that

ly(log (1)
K| =228 —on™and |C| = 2~

which when combined with Theorem 3.3 gives us our main Theorem 1.1.

Acknowledgements

The authors are grateful to Salil Vadhan for many helpful discussions.

The first and second authors are supported in part by the Defense Advanced Research Project
Agency (DARPA) and Army Research Office (ARO) under Contract W911NF-15-C-0236, and NSF
grants CNS-1445424 and CCF-1423306. Any opinions, findings and conclusions or recommenda-
tions expressed are those of the authors and do not necessarily reflect the views of the the Defense
Advanced Research Projects Agency, Army Research Office, the National Science Foundation, or the
U.S. Government. The first author is also supported by NSF grant CNS-1552932 and NSF Graduate
Research Fellowship DGE-16-44869.

The third author is supported by NSF CAREER award CCF-1750640, NSF grant CCF-1718088, and
a Google Faculty Research Award.

The fourth author is supported by NSF grants CNS-1314722, CNS-1413964.

22

References

[Bar86]

[BDMNO5]

[BLR13]

[BNS13]

[BNS*16]

[BNSV15]

[BS98]

[BS18]

[BST14]

[BSW06]

[BU17]

[BUV14]

[BZ14]

[BZ16]

[CFN94]
[CTUW14]

David A Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC!. In Proceedings of the 18th ACM Symposium on Theory
of Computing (STOC), 1986.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the SuLQ framework. In Symposium on Principles of Database Systems (PODS), 2005.

Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to noninter-
active database privacy. J. ACM, 60(2):12, 2013.

Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate differential privacy. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (RANDOM-APPROX). 2013.

Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, and
Jonathan Ullman. Algorithmic stability for adaptive data analysis. In Proceedings
of the 48th Annual ACM on Symposium on Theory of Computing, STOC, 2016.

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release
and learning of threshold functions. In IEEE Annual Symposium on Foundations of
Computer Science (FOCS), 2015.

Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897-1905, 1998.

Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. J. Cryptology, 31(1):202-225, 2018.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In FOCS, pages 464-473. IEEE,
October 18-21 2014.

Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Eurocrypt, 2006.

Mitali Bafna and Jonathan Ullman. The price of selection in differential privacy. In
COLT 2017 - The 30th Annual Conference on Learning Theory, 2017.

Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes and the price
of approximate differential privacy. In STOC, pages 1-10. ACM, May 31 - June 3 2014.

Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Proceedings of CRYPTO 2014, 2014.

Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of private
learning. In Theory of Cryptography Conference, 2016.

Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, 1994.

Karthekeyan Chandrasekaran, Justin Thaler, Jonathan Ullman, and Andrew Wan.
Faster private release of marginals on small databases. In Innovations in Theoretical
Computer Science (ITCS), 2014.

23

[DFH*15]

[DLS14]

[DMNS06]

[DN03]

[DN04]

[DNR*09]

[DNT14]

[DRV10]

[DSS*15]

[DSS16]

[DSSU17]

[DTTZ14]

[DY13]

[GHRU13]

[GKW17]

[GRU12]

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. Preserving statistical validity in adaptive data analysis. In STOC. ACM,
2015.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to
improper learning complexity. In Symposium on Theory of Computing, (STOC), 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference (TCC), 2006.

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
Principles of Database Systems (PODS). ACM, 2003.

Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically parti-
tioned databases. In CRYPTO, 2004.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On
the complexity of differentially private data release: efficient algorithms and hardness
results. In Symposium on Theory of Computing (STOC). ACM, 2009.

Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Using convex relaxations for
efficiently and privately releasing marginals. In Symposium on Computational Geometry
(SOCG), 2014.

Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In Foundations of Computer Science (FOCS). IEEE, 2010.

Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan.
Robust traceability from trace amounts. In FOCS. IEEE, 2015.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
DNFs. In COLT, 2016.

Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. Exposed! a
survey of attacks on private data. 2017.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss:
optimal bounds for privacy-preserving principal component analysis. In Symposium
on Theory of Computing, STOC, pages 11-20, 2014.

Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Theory of Cryptography
Conference (TCC). 2013.

Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately releasing
conjunctions and the statistical query barrier. SIAM . Comput., 42(4):1494-1520, 2013.

Rishab Goyal, Venkata Koppula, and Brent Waters. Risky traitor tracing and new
differential privacy negative results. Cryptology ePrint Archive, Report 2017/1117,
2017.

Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private
data release. In Theory of Cryptography Conference (TCC), 2012.

24

[GVW12]

[HLM12]

[HR14]

[HRS12]

[HU14]

[Kea93]

[Kil88]

[KMUZ16]

[NTZ16]

[PV88]

[RR10]

[5510]

[SU15]

[SU17]

[TUV12]

[TZ17]

[UI115]

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm
for differentially private data release. In Advances in Neural Information Processing
Systems (NIPS), 2012.

Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In Foundations of Computer Science (FOCS), 2014.

Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via
learning thresholds. In Symposium on Discrete Algorithms, (SODA), 2012.

Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data
analysis is hard. In FOCS. IEEE, 2014.

Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. In Sympo-
sium on Theory of Computing (STOC). ACM, 1993.

Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
ACM Symposium on Theory of Computing (STOC), 1988.

Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Mark Zhandry. Strong hardness
of privacy from weak traitor tracing. In Theory of Cryptography Conference (TCC), 2016.

Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
The small database and approximate cases. SIAM J. Comput., 45(2):575-616, 2016.

Leonard Pitt and Leslie G Valiant. Computational limitations on learning from exam-
ples. Journal of the ACM (JACM), 35(4):965-984, 1988.

Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In
Symposium on Theory of Computing (STOC). ACM, 2010.

Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Conference on Computer and Communications Security (CCS), 2010.

Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the hard-
ness of preventing false discovery. In Proceedings of The 28th Conference on Learning
Theory, COLT, pages 1588-1628, 2015.

Thomas Steinke and Jonathan Ullman. Tight lower bounds for differentially private
selection. In IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS,
pages 634-649, 2017.

Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately
releasing marginals. In International Colloquium on Automata, Languages, and Program-
ming (ICALP), 2012.

Bo Tang and Jiapeng Zhang. Barriers to black-box constructions of traitor tracing
systems. In Theory of Cryptography Conference (TCC), 2017.

Jonathan Ullman. Private multiplicative weights beyond linear queries. In PODS.
ACM, 2015.

25

[Ull16] Jonathan Ullman. Answering n%+°(1) counting queries with differential privacy is hard.

SIAM Journal on Computing, 45(2):473-496, 2016.

[UV11] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private
synthetic data. In Theory of Cryptography Conference (TCC, 2011.

[Vad16] Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of
Cryptography. Yehuda Lindell, editor, 2016.

26

	Introduction
	Techniques
	Additional Related Work

	Differential Privacy Preliminaries
	Differentially Private Algorithms
	Algorithms for Answering Statistical Queries
	Computational Efficiency
	Notational Conventions

	Weakly Secure Traitor-Tracing Schemes
	Syntax and Correctness
	Index-Hiding Security
	Index-Hiding Security Implies Hardness for Differential Privacy
	Two-Index-Hiding-Security

	Cryptographic Tools
	Decomposable Randomized Encodings
	Private Key Functional Encryption
	Function-Hiding Functional Encryption

	One-Message Functional Encryption
	Proof of Correctness
	Proof of Security

	A Two-Message Functional Encryption Scheme for Comparison
	Construction
	Security for Two Messages
	Bounding the Scheme Length for Comparison Functions

	Two-Message Functional Encryption Implies Index Hiding
	References

