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Abstract. This paper firstly introduces a novel security definition for
BLAC-like schemes (BLAC represents TTP-free BLacklist-able Anony-
mous Credentials) in the symbolic model using applied pi calculus, which
is suitable for automated reasoning via a certain formal analysis tool. We
model the definitions of some common security properties: authenticity,
non-framebility, mis-authentication resistance and privacy (anonymity
and unlinkability). Then the case study of these security definitions is
demonstrated by modelling and analyzing BLACR (BLAC with Reputa-
tion) system. We verify these security properties by Blanchet’s ProVerif
and a ZKP (Zero-Knowledge Proof) compiler developed by Backes et al..
In particular, we model and analyze the express-lane authentication in
BLACR system. The analysis discovers a known attack that can be car-
ried out by any potential user. This attack allows a user escaping from
being revoked as he wishes. We provide a revised variant that can be
proved successfully by ProVerif as well, which also indicates that the fix
provided by ExBLACR (Extending BLACR) is incorrect.
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1 Introduction

Anonymous credentials allow users to obtain credentials on their identities and
prove possession of these credentials anonymously. There are three parties in the
anonymous credentials system: users obtain credentials from issuers (or GM,
indicating Group Manager). They can then present these credentials to verifiers
(or SP, indicating Service Provider) in an anonymous manner. The verifiers can
check the validity of users’ anonymous credentials but cannot identify them.

Practical solutions for anonymous credentials have been proposed, such as
IBM’s identity mixer [25] and TCG (Trusted Computing Group)’s DAA (Direct
Anonymous Attestation) protocol [20, 21] based on CL-signatures [26, 27], Mi-
crosoft’s U-Prove [32] based on Brands’ signatures [19], or Nymble system [29].
To avoid misbehavior, most of schemes introduce a TTP (Trust Third Party)
to revoke misbehaved users. However, having a TTP capable of deanonymizing
or linking users’ access may be dangerous. Recognizing this, elimination of such
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TTP while still supporting revocation is desired. In this spirit, many schemes
had been proposed, such as EPID [22], BLAC [37], BLACR [9], ExBLACR [39],
PEREA [7], PERM [8], PE(AR)2 [42], FARB [40]. In these TTP-free schemes,
SP can punish users without the assistance of TTP, and users must convince SP
that they satisfy the predetermined authentication policy in a zero-knowledge
way during authentication.

All these schemes are claimed to be provable secure except for U-Prove.
However, computational security definitions of these schemes are very complex,
thus making the proof of security error-prone. For example, Camenisch et al. [24]
pointed out that the known security models of DAA are non-comprehensive and
even insecure recently, and gave a security model under universally composable
framework. BLACR system is also reported that a feasible attack exists [39].
Recognizing this, we tend to prove these complex schemes in another perspective,
namely formal methods, which are widely used to verify cryptographic protocols.
We think formal analysis can help us to find the logical errors of protocols and
become a complement of the computational security proof.

Fortunately, formal analysis has shown its power to prove the complex se-
curity definitions although the formal analysis of anonymous credentials is rel-
atively limited (almost for DAA). Arapinis et al. [5] presented a framework for
analyzing the unlinkability and anonymity in the applied pi calculus. Arapinis
et al. [3, 4] make use of this framework to analyze the privacy of composing pro-
tocols using ProVerif [17]. Smyth et al. [35, 36] introduced a definition of privacy
for DAA schemes that was suited to automated reasoning by ProVerif. They dis-
covered a vulnerability in the RSA-based DAA scheme and fixed it to meet their
definition of privacy. Xi et al. [41] utilized ProVerif to analyze the DAA scheme
in TPM 2.0. They put forward the definition of forward anonymity for the DAA
scheme in symbolic model. To deal with the complex zero-knowledge proof within
equational theory, Backes et al. [12] presented an abstraction of zero-knowledge
proof that is formalized by the applied pi calculus and developed a compiler to
encode this abstraction into a rewriting system that is suited to ProVerif. They
also performed mechanized analysis of DAA using their approach and found a
novel attack.

Contributions. In this paper, we present a novel definition for some common
security properties of BLAC-like schemes via applied pi calculus. Specifically,
we formalize authenticity, non-frameability and mis-authentication resistance as
correspondence properties and privacy as equivalence properties using applied
pi calculus (Section 3).

For a case study, we analyze BLACR system (Section 4). BLACR is a TTP-
free blacklistable anonymous credentials system that allows SPs to revoke the
misbehaved users directly according to their reputation scores (Section 4.2). We
model its sub-protocols by applied pi processes and defined some main processes
to analyze those security properties defined previously. Our analysis result shows
that the BLACR holds these security properties in the normal-lane form (Sec-
tion 4.4). Specially, we also model and analyze the express-lane authentication
of BLACR (Section 4.5). This analysis shows an anticipative actions if a user
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always does not trigger the revocation conditions and reports a known vulner-
ability when a user have potential to get revoked. This attack allows a user to
escape from being revoked as he wishes after he owns a express-lane token, which
disables the security policy of BLACR. Then we provide a revised variant that
can be proved by ProVerif. The revision also shows that the fix provided by
ExBLACR is incorrect.

2 Overview of ProVerif Calculus and ZKP compiler

We adopt the process calculus of ProVerif [13, 1, 14, 16, 28], which is inspired by
the applied pi calculus [2, 33]. In the context of no ambiguity, we sometimes call
it applied pi calculus instead of ProVerif calculus. We also utilize Backes’ ZKP
compiler to encode zero-knowledge proofs [12].

2.1 Overview of ProVerif Calculus

Figure 1 summarizes the syntax of the calculus. It assumes an infinite set of
names, an infinite set of variables, and a signature Σ consisting of a finite set
of function symbols (constructors and destructors). Constructors f are used to
build terms while destructors g manipulate terms in processes. The signature Σ
is equipped with a finite set of equations whose form is M = N .

A destructor g is defined by a finite set def(g) of rewriting rules g(N1, ..., Nn)→
N that processes can apply, where N1, ..., Nn, N are terms containing only con-
structors and variables. Function h represents either a constructor or destructor.

M,N ::=
x, y, z
a, b, c, k, s
f(M1, ...,Mn)

D ::=
M
h(D1, ..., Dn)

P,Q,R ::=
0
P |Q
!P
va.P
M(x).P

M〈N〉.P
let x = D in P else Q
if M = N then P else Q

terms
variable
name
constructor application

term evaluations
term
function evaluation

processes
nil
parallel composition
replication
restriction
input
output
term evaluation
conditional

Fig. 1. Syntax for ProVerif
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Process P,Q are defined as follows. The null process 0 does nothing; P |Q
is the parallel composition of processes P and Q; and the replication !P is
the infinite composition of P in parallel; the restriction va.P creates a new
name a and binds a inside P ; the process M(x).P inputs a message on chan-
nel M and then behaves as P with the received message bound to x; the pro-
cess M〈N〉.P outputs the message N on channel M and then runs P . The
process let x = D in P else Q tries to evaluate D, if it succeeds, then x is
bound to the result and P is executed, otherwise Q is executed. The conditional
if M = N then P else Q is in fact a particular case of destructor application,
which is equivalent to let x = eq(M,N) in P else Q, where the destructor eq is
defined by eq(x, x)→ x.

Figure 2 defines the operational semantics of the calculus by reduction rela-
tion (→Σ). Auxiliary rules define term evaluation (⇓Σ) and the structural equiv-
alence (≡). We omit the operational semantic of process conditional since it is
just a special case of term evaluation. Especially, P{M/x} is a syntactic sugar
of let x = M in P , where {M/x} is a substitution that replaces x with M .

M ⇓M
eval h(D1, ..., Dn) ⇓ σN

if h(N1, ..., Nn)→ N ∈ def(h),
and σ is such that for all i,Di ⇓Mi andΣ `Mi = σNi

P |0 ≡ P P ≡ P
P |Q ≡ Q|P Q ≡ P ⇒ P ≡ Q
(P |Q)|R ≡ P |(Q|R) P ≡ Q,Q ≡ R⇒ P ≡ R
va.vb.P ≡ vb.va.P P ≡ Q⇒ P |R ≡ Q|R
va.(P |Q) ≡ P |va.Q P ≡ Q⇒ va.P ≡ va.Q

if a /∈ fn(P )

N〈M〉.Q|N ′(x).P → Q|P{M/x}
if Σ ` N = N ′ (Red I/Q)

let x = D in P else Q → P{M/x}
if D ⇓M (Red Fun 1)

let x = D in P else Q→ Q
if there is noM such thatD ⇓M (Red Fun 2)

!P → P |!P (Red Repl)
P → Q⇒ P |R→ Q|R (Red Par)
P → Q⇒ va.P → va.Q (Red Res)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Fig. 2. Semantics for ProVerif

Correspondences. ProVerif can verify correspondences in security protocols.
Correspondences are used to capture relationships between events that can be
expressed in the form “if some event has been executed then some other events
have been previously executed”. In particular, correspondences can be used to
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formalize authentication. To specify correspondences, the syntax in Figure 1
needs to provide an additional instruction event(M).P for executing events.
This additional instruction executes the event event(M), then runs P . Besides,
a new rule event(M).P → P is appended in the semantics. The details can be
found in [15].

Observational equivalence. Some security properties, such as privacy-related
properties, can be defined by the notion of observational equivalence. Roughly
speaking, processes P and Q are said to be observationally equivalent if they can
output on the same channel for all contexts they are placed inside. The formal
definition of observational equivalence [16] is as follows.

Definition 1. The process P emits on M (P ↓M ) if and only if P ≡ C[M ′〈N〉.R]
for some evaluation context C that does not bind fn(M) and Σ `M = M ′.

Observational equivalence ∼ is the largest symmetric relation R on closed
processes such that P R Q implies:

1. if P ↓M then Q ↓M ;
2. if P → P ′ then Q→ Q′ and P ′ R Q′ for some Q′;
3. C[P ] R C[Q] for all evaluation contexts C.

ProVerif cannot verify observational equivalence directly, so it introduces a
new calculus biprocess to establish a sufficient condition for observational equiv-
alence. A biprocess is a pair of processes that have the same structure and
differ only by the terms and term evaluations that they contain. The syntax of
biprocess is a simple extension of the Figure 1, with additional cases such that
diff[M,M ′] is a term and diff[D,D′] is a term evaluation. The semantics of
biprocess is the same as Figure 2, except for rules (Red I/O), (Red Fun 1), (Red
Fun 2) being replaced by Figure 3. Given a biprocess P , fst(P ) denotes a pro-
cess replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with D
in P , and similarly for snd(P ). Then observational equivalence can be defined
as a property of biprocesses.

N〈M〉.Q|N ′(x).P → Q|P{M/x}
if Σ ` fst(N) = fst(N ′) andΣ ` snd(N) = snd(N ′) (Red I/O)

let x = D in P else Q → P{diff[M1,M2]/x}
if fst(D) ⇓M1 and snd(D) ⇓M2 (Red Fun 1)

let x = D in P else Q→ Q
if there is no M1 such that fst(D) ⇓M1 and
there is no M2 such that snd(D) ⇓M2 (Red Fun 2)

Fig. 3. Generalized rules for biprocesses

Definition 2. Let P be a closed biprocess. We say that P satisfies observational
equivalence when fst(P ) ∼ snd(P ).
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2.2 Overview of ZKP Compiler

Figure 4 shows an equational theory for abstractly reasoning about non-interactive
zero-knowledge proofs. The ZKP compiler can encode this equational theory into
a convergent rewriting system that ProVerify can apply. A zero-knowledge proof
has the form ZKi,j(M̃, Ñ , F ) (ZK(M̃ ; Ñ ;F ) for short), where M̃ ,Ñ denote se-
quences M1, ...,Mi,N1, ..., Nj and F denotes a formula over those terms. The

terms M̃ is the statement’s private component while Ñ is the statement’s public
component that will be revealed to the verifier and the adversary. The formula
F is an (i, j)-formula that is defined as follow.

Definition 3 ((i, j)-formulas). We call a term an (i, j)-formula if the term con-
tains neither names nor variables, and if for every αk and βl occurring therein,
we have k ∈ [1, i] and l ∈ [1, j].

For example, the term ZK(x; g, y = gx;β2 = βα1
1 ) denotes a ZKP protocol

that proves the knowledge of x such that y = gx holds. The public components
y are revealed by the destructor Publicp and the formula β2 = βα1

1 is revealed
by destructor Formula. Since there is no destructor associated to the private
component, the secret of x is kept.

To verify the statement ZKi,j(M̃, Ñ , F ) with respect to a formula F , it de-
fines a destructor function Veri,j of arity 2. This function is true when F is an
(i, j)-formula and the formula is valid by substituting all αk and βl with the
corresponding values Mk and Nl. This rule guarantees in the abstract model the
soundness and correctness of zero-knowledge protocols.

ΣZK = {ZKi,j ,Veri,j ,Publici,Formula, αi, βj , true|i, j ∈ N} ,
where ZKi,j of arity i+ j + 1, Veri,j of arity 2, Publici and
Formula of arity 1, αi, βj and true of arity 0.

EZK is the corresponding equational theory defined as follows :

Publicp(ZKi,j(M̃, Ñ , F )) = Np with p ∈ [1, j]

Formula(ZKi,j(M̃, Ñ , F )) = F

Veri,j(F,ZKi,j(M̃, Ñ , F )) = true iff

1) EZK⊥F{M̃/α̃}{Ñ/β̃} = true
2) F is an (i, j)-formula

Fig. 4. Equational theory for zero-knowledge

ProVerif cannot deal with this equational theory for zero-knowledge proofs
because the signature ΣZK , and consequently the number of equations, is infinite
(every zero-knowledge is different and needs a relevant signature). Backes et al.
develop a compiler to encode zero-knowledge proof description into ProVerif-
accepted specification, which can be found in [11].
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3 Syntax and Security Definition

3.1 Syntax

Roughly speaking, a TTP-free blacklistable anonymous credentials system con-
tains the following algorithms:

Initialization This algorithm initializes the system parameters. The issuer con-
structs a signing key pair (pkI , skI). If SP is not the issuer, then SP will con-
struct its own key pair (pkV , skV ). Especially, the implementation-specific
parameters will be defined, such as initializing the blacklist.

Registration This algorithm is registration phase between the issuer and a
legitimate user to enroll the user as a member in the group of registered
users. Upon successful completion of this phase, The user obtains a credential
signature cre on his secret value x. Usually, the GM issues the credential in
a blind way.

Authentication The user will generate a zero-knowledge proof to convince an
SP that he has the right to obtain service. First, the user in possession of
x proves that he holds a valid credential cre. Then the user convinces that
he satisfies the authentication policy of SP. Note that a protocol transcript
τ (usually is a ticket) must be seen by the SP to guarantee freshness and to
blacklist the authenticating user if necessary.

Verification SP will check the validity of the received zero-knowledge proofs.
If failed, the user will be blocked to access.

List Management SP can manipulate the list with the transcript τ according
to a specific authentication policy. In a reputation-based policy, the SP scores
the user’s action of the session with a transcript τ and executes the operation
add(L, (τ, s)) to add the score s to the current blacklist L.

3.2 Security Definition

In this section, we present the definitions of security properties in the symbolic
model using applied pi calculus. We are involved in verifying some common
properties of TTP-free blacklistable anonymous credentials system, namely au-
thenticity, non-frameability, mis-authentication resistance, and privacy. Prior to
this, appropriate assumptions and notations will be demonstrated.

Assumptions and Notations In this paper, we denote registration process
as Register (for users) and Issue (for the issuer), and authentication process
as Authenticate. Verification and list management processes can be combined
together since they are all handled by SP, which is denoted as Verify. Initial-
ization process will be encoded into the main process.

In process Register, event registered1 will be executed after the user success-
fully registers with the issuer and obtains a valid credential, otherwise, event un-
registered will be executed. In process Authenticate, event startAuth represents

1 Actually, the event e always take some parameters as e(M1,M2, ...,Mn). We omit
the parameters here for convenient description and readability.
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a new authentication activated by the user. Event acceptAuth will be executed
when the verification of zero-knowledge proofs succeeds in process Verify, and
conversely, event revoke will be executed, which means that the verification fails
and the user has been revoked.

We assume that the adversary controls the execution of an arbitrary number
of users in an arbitrary fashion except for learning their secret, as show in the
following process:

ControlUsers =!pub(id).
!vp.(Register | (p(cre).!(Authenticate | Judge))).

The adversary can choose any user (id) to run the processes Register and
Authenticate. The restricted channel name p is used for delivering the credential
of the user between registration and authentication.

Process Judge models the judgment of a user’s state lying in the authentica-
tion policy (for example, his current reputation score). We record two events in
process Judge: event satisfyPolicy for a satisfied judgment; and event notSatisfy
for a failure.

Authenticity In a system with authenticity, an SP is assured to accept authen-
tication only from users who satisfy the authentication policy. This definition can
be parsed as the following statements:

1. SP accepts authentication from users who satisfy the authentication policy.
2. SP would never accept authentication from users who violate the authenti-

cation policy.

Build on this understanding, we formalize authenticity (Definition 4) as two
correspondence properties using the events recorded in the processes.

Definition 4 (Authenticity). Given processes 〈Register,Issue,Authenticate,
Verify,Judge〉, we say authenticity is satisfied if the following correspondences
are held:

event:acceptAuth  startAuth & satisfyPolicy is true.
event:acceptAuth  startAuth & notSatisfy is false.

The correspondence event:acceptAuth  startAuth & satisfyPolicy means
that, if the process Verify executes an event acceptAuth, then the processes
Authenticate and Judge have executed the events startAuth and satisfyPolicy
respectively. In other words, if the SP passes the verification and accepts the au-
thentication from a user, then this user has started an authentication session and
satisfied the authentication policy before. This means that the SP accepts the
authentication from a user who has satisfied the policy, which is immediately
corresponding to the statement 1. Similarly, the second failed correspondence
means that if the SP accepts the authentication, then the situation that a user
has started a session but violated the policy should never happen before. This is
to say that the SP would never accept the authentication from users who violate
the policy, which is corresponding to statement 2.
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Non-frameability A user is framed if he satisfies the authentication policy,
but is unable to successfully authenticate himself to an honest SP [8, 9]. Reverse
thinking this description, if a system satisfies non-frameability, then the situation
that a user fails to authenticate to an honest SP but satisfies the authentication
policy would never happen. We formalize non-frameability (Definition 5) as the
following correspondence.

Definition 5 (Non-frameability). Given processes 〈 Register,Issue,
Authenticate,Verify,Judge〉, if correspondence

event:revoke  startAuth & satisfyPolicy

is false, non-framebility is satisfied .

This correspondence means that, if SP rejects an authentication, then the
situation that a user has started this authentication session and satisfied the au-
thentication policy would never happen, which is corresponding to the statement
of non-frameability.

Mis-authentication Resistance Mis-authentication takes place when an un-
registered user successfully authenticates himself to an SP. In a system with
mis-authentication resistance, an SP is assured to accept authentications only
from registered users. Analogous to authenticity, we can parse this description
into two statements.

1. The statement “a user successfully authenticates to an SP, but he never
registered to the issuer before” is false.

2. The statement “if an SP accepts the authentication from a user, then before
that, this user has registered with the issuer” is true.

Naturally, these two statements can be formalized into the correspondence
properties, as shown in Definition 6 below.

Definition 6 (Mis-authentication Resistance). if processes 〈Register,Issue,
Authenticate,Verify,Judge〉 are given, Mis-authentication resistance is satis-
fied when the following correspondences are held:

event:acceptAuth  startAuth & unregistered is false.
event:acceptAuth  startAuth & registered is true.

Privacy The definition of privacy is twofold: anonymity and unlinkability, which
is inspired by the formal definitions in [5].

Anonymity ensures that an adversary cannot see the difference between a
system in which the user with a publicly known identity id0 executes the an-
alyzed processes and the system where id0 is not present at all. Based on this
description, we can formalize the anonymity as follows.
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Definition 7 (Anonymity). Given processes 〈Register, Issue, Authenticate,
Judge〉, anonymity is satisfied if the following equivalence holds:

(vid.vp.(Register|(p(cre).!(Authenticate|Judge)))) |
(let id = id0 in let p = int0 in

(Register|(p(cre).!(Authenticate|Judge))))
≈
(!vid.vp.(Register|(p(cre).!(Authenticate|Judge))))

Both sides of equivalence are of the same processes except that the left side
executes the registration and authentication processes of the user id0. That is to
say, if the equivalence is held, then the adversary cannot tell whether or not the
user id0 has executed the registration and authentication processes. Therefore,
the anonymity property is met.

Unlinkability ensures that a system in which the analyzed processes can be
executed by a user multiple times looks the same to an adversary that the system
in which the analyzed processes can be executed by the user at most once. We
formalize the unlinkability as following definition.

Definition 8 (Unlinkability). Given processes 〈Register, Issue, Authenticate,
Judge〉, unlinkability is satisfied if the following equivalence holds:

(!vid.vp.(Register|(p(cre).!(Authenticate|Judge))))
≈
(!vid.vp.(Register|(p(cre).(Authenticate|Judge))))

The difference between two sides locates in the number of times that the au-
thentication has been executed. On condition that this equivalence is satisfied,
the adversary cannot distinguish the user executing the authentication multi-
ple times from executing at most once, which is directly corresponding to the
definition of unlinkability.

4 Case study: BLACR system

BLACR system is introduced by Au, Kapadia and Susilo [9]. It allows users to
anonymously authenticate their identities with an SP directly, while enabling
the SP to score users’ misbehaviour and deny access from users with insufficient
reputation score without the assistance of a TTP. In this section, we model
BLACR and automatically verify its security properties using formal analysis
tool ProVerif.

4.1 Primitives and Equational Theory

BLACR system employs BBS+ signature scheme, which is proposed by Au et
al. [10] based on the schemes of Camenisch and Lysyanskaya [27] and of Boneh
et al. [18]. In this section, we will introduce the primitives described by applied
pi calculus and the associated equational theory.
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We consider commitment commit(x, y), where x is a message and y is a
commitment factor (or blind factor). We also specify an open function together
with the signature scheme for permitting signatures on committed values.

We consider BBS+ signature scheme bbssign(m, sk(s)), where m is a mes-
sage to be signed, and s is a key seed to generate signing key pair (sk(s), pk(s)).
We specify an open function open(bbssign(commit(x, y), sk(s)), y) for open-
ing the signature of a commitment. Again, we construct a verification func-
tion bbsver(open(bbssign(commit(x, y), sk(s)), y), x, pk(s)) for this signa-
ture. Moreover, a message recovery function getmess(open(bbssign(commit(x,
y),sk(s)),y)) is provided to adversary for getting the signing message x.

We construct a zero-knowledge proof as function ZKi,j(M̃, Ñ , F ), where M̃

is private component representing the knowledge to be proved, Ñ denote the
public component and F denotes a formula over those terms.

In summary, we construct a suitable signature Σ and define an equational
theory E to capture the operations of cryptographic primitives. The signature
can be defined as follows:

Σ = Σbase ∪ΣZK , where

Σbase =

{
true,false,hash,exp,and,or,eq,pk,sk,

commit,open,bbssign,bbsver,getmess

}
ΣZK = {ZKi,j , Veri,j , Publici, Formula, αi, βj |i, j ∈ N}

For the signature Σbase, functions true, false are constant symbols; hash, pk,
sk, getmess are unary functions; exp, land, or, eq, commit, open, bbssign

are binary functions; bbsver is ternary functions. The equation theory Ebase

associated with signature Σbase is defined as follows:

Ebase =
and(true, true) = true

or(true, x) = true

or(x, true) = true

eq(x, x) = true

bbsver(open(bbssign(commit(x, y), sk(s)), y), x, pk(s))
= true

getmess(open(bbssign(commit(x, y), sk(s)), y)) = x

Functions and, or, eq are used for conjunction, disjunction and equality test
respectively; hash is used for hashing messages; exp is used for the exponent
operation. The rest functions are used for constructing and verifying BBS+
signature scheme.

The signature ΣZK and its associated equation theory EZK can be found in
Figure 4 in Section 2, so we will not go into the details here.

4.2 Review of BLACR

In this section, we give a high-level description of the BLACR system. The
initialization parameters include: the signing key pair (pk(siss), sk(siss)) of an
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issuer; the unique identity string sid of an SP; the number of categories m and
the blacklist of each category with the thresholds TSi. The registration process
proceeds as follows.

1. The issuer sends a random challenge mreg to a user.

2. The user generates a random number y and computes Cx = commit(x, y).
Then the user generates a signature proof of knowledge Π1 = SPK{(x, y) :
Cx = commit(x, y)}(mreg). He sends a pair (Cx, Π1) to the issuer.

3. The issuer computes a blind credential bcre = bbssign(Cx, sk(s)) if the
verification of Π1 is successful and then sends bcre to the user.

4. The user opens the blind credential cre = open(bcre, y). He outputs cre as
his credential when the verification bbsver(cre, x, pk(s)) is true.

After the user obtains a credential cre, he can authentication to the SP
multiple times using this credential. The authentication process is presented as
follows.

1. The SP sends to the user the lists for each category as well as their cor-
responding threshold values T̃ S = (TS1, ..., TSm) and a random challenge
mauth as well as the policy Pol.

2. The user judges his reputation score si of each category by checking if the
entries on the corresponding list belong to him. Then he tests if si < TSi so
that Pol evaluates to 1.

3. If the test is successful, the user returns to the SP a pair (τ,Π2, Π3), where
τ = (b, t = H(b||sid)x) is the ticket associated with the current authen-
tication session, and (Π2, Π3) is a pair of signature proof of knowledges.
Π2 is used to prove that τ is correctly formed with the credential cre:
SPK{(x, r, cre) : Cx = commit(x, r), bbsver(cre, x, pk(s)) = true, t = b̂x}(mauth),

where b̂ = H(b||sid); Π3 is used to prove Pol evaluates to 1: SPK{(x, r, si) :
Cx = commit(x, r), Csij = commit(0)|j /∈user, Csij = commit(sij)|j∈user,
Csi = Csi1 · · · CsiL , si < TSi}(mauth), where j ∈ {1, ..., L} and L is the
length of the corresponding list.

4. The SP verifies the proofs (Π2, Π3).

If verification of (Π2, Π3) is successful, SP can ensure that the user is a valid
one to access the service.

BLACR also realizes a novel approach called express-lane authentication,
which can expedite the authentication. To adapt this mechanism, SP should
issue a token that is a signature on the aggregated reputation score prior to a
time point upon a successful authentication. Then the user can use this token
to convince his reputation score in that time instead of proving whether or not
an entry belongs to him for every entry in the blacklist. However, using a token
disables the SP’s capability of unblacklisting since removing entries from blacklist
would disable the validity of the token.
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Register =
c(mreg).
let x = bind(id) in
vy.let Cx = commit(x, y) in
let P i1 = ZK(x, y; id, Cx,mreg;Freg) in
c̄ 〈(Cx, P i1)〉 .c(bcre).
let cre = open(bcre, y) in
if bbsver(cre, x, pk(siss)) = true then

event(registered).! p̄ 〈cre〉
else

event(unregistered)
Issue =
vmreg.c̄ 〈mreg〉 .c((Cx, P i1)).
if public2(Pi1) = Cx then
if public3(Pi1) = mreg then
if Ver2,3(Freg, P i1) = true then
let id = public1(Pi1) in
if sybil = true then 0 else
let bcre = bbssign(Cx, sk(siss)) in
c̄ 〈bcre〉

Fig. 5. Process calculus for registration

4.3 Processes for BLACR

We model the registration phase by a pair of processes 〈Register, Issue〉 pre-
sented in Figure 5. We assume that every user has a unique id, which can be a
limited resource such as IP, mobile phone number and some others to prevent
sybil attack. To model the secret value x bound to limited resource, we present a
private function bind to construct the secret value x = bind(id). Since function
bind is private, the adversary cannot reconstruct the secret value x by id. We
also assume that there is only one category for blacklist, thus there exists only
one threshold value TS.

The user first generates a zero-knowledge proof Π1 = ZK(x, y; id, Cx,mreg;
Freg) to ensure the ownership of x with the formula Freg = and(α1 = bind(β1),
β2 = commit(α1, α2)) and sends it to the issuer. The issuer verifies the validity
of Π1. If the verification is successful, the issuer will check if this user is a sybil.
We assume any sybil id has been recorded in a list. To model this mechanism,
we introduce a predicate sybil in the issuer process. The predicate sybil is true
if and only if the user id has been marked sybil. For example, we could set
sybil = or(id = sybilid1, id = sybilid2) if sybilid1, sybilid2 have been marked
sybil. For a valid id, the issuer signs the commitment Cx and sends the blind
signature bcre to the user.
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The user will open the blind signature bcre and get a credential cre. If the
verification of cre is true, he will “store” the credential in the private channel p
in order to use it in the authentication phase via an input in this channel. Also,
the event registered will be executed. Otherwise, event unregistered is executed.

We model the authentication phase by a pair of processes 〈Authenticate,
Verify〉 presented in Figure 6. To generate zero-knowledge proofs, the user must
know his reputation score. However, the calculus of ProVerif cannot afford to
handle either the algebraic operations or the state transition. The first limitation
hinders the user from computing his reputation score. The second limitation
hinders the assigned score of the current authentication session from influencing
the next authentication. Fortunately, our security properties focus on “when
something happened, then something else would happen as expectation” instead
of “how something happened”, so we need a trick to model the judgment process.
We assume a trusted judgment process outputs the judged score for users. We
set the judgment process as follows.

Judge = asg(s).

if s = TS then event(notSatisfy).jud 〈TS〉
else event(satisfyPolicy).jud 〈ltTS〉

In a satisfied score judgment, event satisfyPolicy is executed and a term ltTS
(means less than the threshold value TS) is sent on the private channel jud.
Otherwise, event notSatisfy is executed and the threshold value TS is sent on
the channel jud.

Then the user generates two zero-knowledge proofs: Π2 with formula Fsig =
and(and(β1 = commit(α1, α2), bbsver( α3, α1, β2) = true), β4 = exp(β5, α1))
andΠ3 with formula FPol = and(and(β1 = commit(α1, α2), β2 = commit(α3, α4)),
β3 = α3). The process executes the event startAuth before it outputs proofs
〈Π2, Π3〉.

The process of SP verifies the proofs 〈Π2, Π3〉 and executes the event accep-
tAuth when all verifications are passed, otherwise, it executes the event revoke.
For a successful authentication, this process also “stores” the ticket (b, t) of cur-
rent authentication by a private channel lt for further assigning reputation score.
To model this action, we realize a process AssignScore as lt((b, t)).vs.pub 〈((b, t), s)〉.
It assigns a score to the ticket and outputs this entry in channel asg for the judg-
ment process.

4.4 Experiment Results

In this section, we examine the security properties defined in Section 3 using
ProVerif. The processes above will be expressed as specifications of ZKP compiler
and then be encoded into the inputs of ProVerif. We describe how to prove these
properties and give out the results of ProVerif. The detailed specifications can
be found in [38].
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Authenticate =
c(mauth).vr.vb.vrs
let x = bind(id) in
let Cx = commit(x, r) in
let h = hash((b, sid)) in
let t = exp(h, x) in
let P i2 = ZK(x, r, cre;Cx, pk(siss), b, t, h,mauth;Fsig) in
jud(s).let Cs = commit(s, rs) in
let P i3 = ZK(x, r, s, rs;Cx, Cs, ltTS,mauth;FPol) in
event(startAuth).c̄ 〈(Pi2, P i3)〉

Verify =
vmauth.c̄ 〈(vauth)〉 .c((Pi2, P i3)).
if public2(Pi2) = pk(siss) then
if public5(Pi2) = hash((public3(Pi2), sid)) then
if public6(Pi2) = mauth then
if Ver3,6(Fsig, P i2) = true then
let Cx = public1(Pi2) in
let b = public3(Pi2) in
let t = public4(Pi2) in
if public1(Pi3) = Cx then
if public3(Pi3) = ltTS then
if public4(Pi3) = mauth then
if Ver4,4(FPol, P i3) = true then

event(acceptAuth).! lt 〈(b, t)〉
else

event(revoke)

Fig. 6. Process calculus of authentication

Security Properties as Correspondences Security goals Authenticity, Non-
frameability and Mis-authentication resistance are expressed by correspondences.
To verify these properties, we implement a main process C-Process in Figure 7.
Note that we also initialize a key pair for the SP since we set sid = pk(sver) to
identify the SP for computing the ticket.

Result 1 Given the main process C-Process, ProVerif succeeds in proving the
correspondence statements defined in Section 3.2. Hence, security properties
Authenticity,Non-frameability and Mis-authentication resistance are held under
these definitions.

The running time of the proof is about 10 seconds on an Ubuntu 14.04 located
in VMware with Core i3 3.3GHz, 2GiB memory.
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Process

vsiss.vsver.vjud.vlt.let c = pub in (

pub 〈pk(siss)〉 | pub 〈pk(sver)〉 |
(! issue) | ( ! (Verify | AssignScore)) | ControlUsers

)

Fig. 7. Description of C-Process

Security Properties as Equivalence Privacy of BLACR is expressed by
biprocess. We identify two kinds of privacy: anonymity and unlinkability. We
implement a main process A-Process in Figure 8 to capture anonymity. To adapt
the definition of anonymity, we use a process Users instead of ControlUsers to
capture arbitrary users (vid) except id0 executing the processes.

Encoding anonymity in this way, we have the left side of diff representing
an execution of publicly known id id0 (as a initial knowledge of adversary), while
the right side of diff represents an execution of unknown id id1 (a restrict id). In
fact, the right side of diff is a case of Users (see rule Red Repl in semantics).
Hence, it directly corresponds to the definition in Section 3.2 and we succeed in
reducing the problem of proving anonymity to the diff-equivalence that can be
verified by ProVerif.

Process

vsiss.vsver.vjud.vlt.vint0.vint1.let c = pub in (

pub 〈pk(siss)〉 |pub 〈pk(sver)〉 |(!Issue) |Users|
(let (id, p) = (id0, int0) in Register)|
(vid1.let (id, p) = (id1, int1) in (

Register|int0(cre0).int1(cre1).
let (id, cre) = (diff[id0, id1], diff[cre0, cre1]) in (
Authenticate|Judge))

)
)

where
Users =!vid.!vp.

(Register|(p(cre).!(Authenticate|Judge)))

Fig. 8. Description of A-Process

Result 2 Given the main process A-Process, ProVerif succeeds in proving the
diff-equivalence, therefore, anonymity is satisfied.
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The running time of the proof is almost half an hour in the same virtual
machine.

We also implement a main process U-Process in Figure 9 to capture un-
linkability. Thinking inside this process, we have that the left side of the diff

representing a user executes the system many time, while the right side repre-
sents the users execute the system at most once (The user id2 is always different
for each execution of processes of the user id1).

For a more intuitive understanding, we identify a copy execution of vid1 as
id1

1. Then under this replication (id1
1), there are arbitrary executions of vid2

(id2
11, id2

12..., id2
1i, ...). All the executions identified by id2

11, id2
12..., id2

1i, ...
correspond to executions of the same id id1

1. Hence, the left side of diff may
execute the system by a user id1

1 multiple times, and the right side only exe-
cutes different copies identified by (id2

11, id2
12..., id2

1i, ...). So we also succeed
in reducing the problem of testing unlinkability to diff-equivalence.

Process

vsiss.vsver.vjud.vL.let c = pub in (

pub 〈pk(siss)〉 |pub 〈pk(sver)〉 |
(! issue) |Unlinkability

)

where
Unlinkability =
!vid1.vint1.(
(let (id, p) = (id1, int1) in Register)|
(!vid2.vint2.(

(let (id, p) = (id2, int2) in Register)|
(int1(cre1).int2(cre2).
let (id, cre) = (diff[id1, id2], diff[cre1, cre2]) in
(Authenticate|Judge))

) )
)

Fig. 9. Description of U-Process

Result 3 Given the main process U-Process, ProVerif succeeds in proving the
diff-equivalence, therefore, unlinkability is satisfied.

The running time of the verification is about twenty minutes in our virtual
machine.



18 Weijin Wang et al.

Authenticate =
......
c(c,Btk).
let tk = open(Btk, rs).
if bbsver(tk, s, pk(sver)) = true then
!p0 〈(s, tk)〉 .!p1 〈(s, tk)〉

Verify =
......
if Ver4,4(FPol, P i3) = true then

event(acceptAuth).! L 〈(b, t)〉 .
let btk = bbssign(Cs, sk(sver)) in
c̄ 〈btk〉

else ......

Fig. 10. The additions of normal authentication

4.5 Express-lane Case in BLACR

To reward active users2, BLACR offers express-lane authentication to speed up
the authentication process. In the express-lane authentication, an SP addition-
ally signs a credential (a token) on the score of previous time after the verification
succeeds. This token will be used in the next authentication.

However, an additional state transition that ProVerif cannot deal with is
introduced since a token generated by current authentication must be transferred
to the next time for use. Hence we have to bring in another trick to adapt
ProVerif. We divide the analysis into two scenarios: the first is the one that a
user is honest people and do not misbehaviour purposely, thus always getting
a valid token and proceeding as expectation; the second is the one that a user
will be revoked and test if BLACR proceeds as expectation. To begin with, we
illustrate the models for express-lane authentication.

Firstly, we revise the normal authentication. The registration process stays
unchanged. A new registered user always starts with a normal authentication
since he does not possess a token. Hence, we should add another procedure for
normal authentication to generate the token. The revised process is shown in
Figure 10, while we just provide the additions.

In the revised normal authentication, SP additionally signs commitment Cs
and sends the signature to the user after verification is successful. Upon receiving
this signature, the user opens it and obtains the corresponding token. Then the
user outputs a pair (s, tk) in private channels p0 and p1, which are used to deliver
the token to the next authentication. The reason for outputting this token in
two channels will be explained later.

2 The “active users” has a criterion, which normally is determined by the frequency
of access at a fixed time. This is not our concern in the modelling.
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ExAuthenticate =
c(mEx).vr.vb.vrs.vrsnew
let x = bind(id) in
let Cx = commit(x, r) in
let h = hash((b, sid)) in
let t = exp(h, x) in
let P i2 = ZK(x, r, cre;Cx, pk(siss), b, t, h,mauth;Fsig) in
let Cs = commit(s, rs) in
let P i4 = ZK(x, r, s, rs, tk;Cx, Cs, pk(sver), ltTS,

mEx;Ftk) in
let Csnew = commit(snew, rsnew) in
let P i3 = ZK(x, r, snew, rsnew;Cx, Csnew, ltTS,

TSminus,mEx;FPol) in
event(startExAuth).c̄ 〈(Pi2, P i4, P i3)〉 .
c(c, btknew).
let tknew = open(btknew, rsnew).
if bbsver(tknew, snew, pk(sver)) = true then
!p1 〈(snew, tknew)〉

ExVerify =
vmEx.c̄ 〈mEx〉 .c((Pi2, P i4, P i3)).
...(These are some if...else... statements)...
if Ver3,6(Fsig, P i2) = true then
let Cx = public1(Pi2) in
let b = public3(Pi2) in
let t = public4(Pi2) in
jud(snew).let Csnew = public2(Pi3) in
if Ver5,5(Ftk, P i4) = true then

event(notWillRevoke).
if Ver4,5(FPol, P i3) = true then

event(acceptExAuth).L 〈(b, t)〉 .
let btknew = bbssign(Csnew, sk(sver)) in
c̄ 〈btknew〉

else event(revokeEx)
else

event(willRevoke).
if Ver4,5(FPol, P i3) = true then
...(the same as above)...

where
FPol = and(and(β1 = commit(α1, α2), β2 = commit(α3, α4)),

or(β3 = α3, β4 = α3))
Ftk = and(and(β1 = commit(α1, α2), β2 = commit(α3, α4)),

and(bbsver(α5, α3, β3), β4 = α3) )

Fig. 11. Express-lane authentication
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Secondly, we model the express-lane authentication. The processes of express-
lane authentication are similar with the normal one, as shown in Figure 11. It
adds a zero-knowledge proof Π4 to prove that the user possesses a valid token.
Considering the limitation of space, We omit some “if...else...” statements that
do not affect comprehension.

We add a predicate TSminus to capture a situation that the reputation score
gets close to threshold, and once more punishment will lead to a revocation.
We use this predicate to conduct a trick: if a token represents a score that is
equal to TSminus, then the process executes the event willRevoke, otherwise,
it is less than the threshold value and event notWillRevoke is executed. In both
cases, verification of Π3 is followed. To adapt the predicate TSminus, the zero-
knowledge proof Π3 has to be revised as well in that the score TSminus also
satisfies the policy. So we add a public component TSminus in Π3 and modify
the formula FPol as and(and(...), or(β3 = α3, β4 = α3)).

Scenario 1 In this scenario, we assume the user is behaved as a honest people
and always succeed in authenticating himself. The model for express-lane au-
thentication is almost the same as normal-express one except that we need to
provide a fresh token for every execution. For instance, we still use main pro-
cess C-Process to verify the correspondence properties defined in Section 3.2.
However, the subprocess ControlUsers must be adapted to the following process:

ControlUsers =!pub(id).
! vp.vp1.(Register|(p(cre).

!(vs.let tk = bbssign(s, pk(sver)) in
ExAuthenticate|Judge))).

The newly added item vs.let tk = bbssign(s, pk(sver)) in is to model a fresh
token in ExAuthentication. Given the main process C-Process in Figure 7,
ProVerif also succeeds in proving the correspondence properties.

Scenario 2 In this scenario, the user is dishonest and will be revoked in a certain
authentication. To capture this situation, we implement a special main process
S-Process shown in Figure 12. In this main process, we execute two separate
express-lane authentication: the first one issues a token of TSminus, and deliver
this token to the second one for use. As we expect, the second one should execute
event willRevoke and does not execute event NotWillRevoke. Also, the user has the
capability to store all the tokens he processes, so we adopt two private channels
to deliver tokens from normal authentication to these two separate express-lane
authentications respectively.

Now it is time to model the security property. If BLACR proceeds as ex-
pectation, then the event willRevoke will be executed in the second express-lane
authentication while the event notWillRevoke should not be executed.

Given processes 〈 Register, Issue, Authenticate, Verify, ExAuthentication,
ExVerify〉, we say that BLACR system proceeds as expectation in this scenario
if the following statements hold:

event willRevoke(mEx2) is executed.
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Process

vpriv1.vpriv2.vpriv3.vpriv4.vint1.vint2.vint3.vint4.

vsiss.vsver.vjud.vL.(pub 〈pk(siss)〉 | pub 〈pk(sver)〉 |
(let c = priv1 in issue) |
(let (id, c, p) = (id0, priv1, int1) in Register) |
(let c = priv2 in !Verify) |
(int1(cre).jud(ltTS).let (id, c, p0, p1) =

(id1, priv2, int2, int3) in !Authenticate) |
(let c = priv3 in vmEx1.let mEx = mEx1 in ExVerify) |
(int1(cre).int2(s, tk).jud(TSminus).let (id, c, p1) =

(id1, priv3, int3) in ExAuthenticate) |
(let c = priv4 in vmEx2.let mEx = mEx2 in ExVerify) |
(int1(cre).int3(s, tk).jud(TS).let (id, c, p1) =

(id1, priv4, int4) in ExAuthenticate) |
(!AssignScore)

)

Fig. 12. Description of S-Process

event notWillRevoke(mEx2) is not executed.

The parameter mEx2 means that we test these statements in the second
express-lane authentication. In consequence, ProVerif displays attack derivations
for all the statements.

Result 4 Given the main process S-Process, ProVerif discovers that the events
willRevoke and notWillRevoke are both executed in the second express-lane au-
thentication. As a consequence, we say that the token mechanism of BLACR
does not work properly.

The attack derivation shows that the event notWillRevoke(mEx2) is executed
because the token in the normal authentication can be directly used in the
second express-lane authentication. Hence, a replay attack can be carried out by
a malicious user as follows: in the second express-lane authentication, the user
finds his aggregated reputation score does not satisfy the authentication policy.
But he still proceeds in this way: he uses a preceding token that is enough to
make the aggregate score satisfying the policy. This attack can happen since
these tokens do not consist of any labels to distinguish each other.

In general, this attack can be applied to two kinds of scenarios violating the
security policy: the first one is that a user can utilize an old token to escape
from being revoked; the second one is that a user in possession of a token can
conduct an express-lane authentication at any time, regardless of whether he is
an active user.



22 Weijin Wang et al.

Solution This attack can be fixed by refining the definition of token tk. The
token must consist of the timestamp information t and is expressed as a signa-
ture on (s, t). In the token-presenting step, the timestamp t must be a public
component. To model the revised token mechanism, we add an equation:

bbsver(open(bbssign((commit(x, y), commit(x1, y1)),
sk(s)), (y, y1)), (x, x1), pk(s)) = true

Then SP computes bcre = bbsign((Cx, Ct), sk(sver)) and sends it to the user,
where Cx = commit(x, r) and Ct = commit(t, rt). The user computes cre =
open(bcre, (r, rt)) and obtains the credential cre. Besides, the zero-knowledge
proof Π3 for token representing is revised as

ZK(x, r, s, rs, tk;Cx, Cs, pk(sver), ltTS,mEx, t;Ftk),

where

Ftk = and(and(β1 = commit(α1, α2), β2 = commit(α3, α4)),
and(bbsver(α5, (α3, β6), β3), β4 = α3)).

In revised processes, result not event:notWillRevoke(mEx2) is true, which means
event notWillRevoke(mEx2) is not executed.

Discussion In fact, our solution in symbolic representation mode indicates that
the fix presented in ExBLACR still does not work properly since the timestamp
in the proving process of EXBLACR does not be revealed. In such way, a ma-
licious user can still conduct the replay attack mentioned above, because the
SP can just ensure the token tk is correct but can not know the timestamp t
corresponding to this token. To reveal the timestamp value, we can not use the
standard presenting protocol that BLACR adopts in the implementation of our
revised fix. Nevertheless, this standard protocol can be easily refined to meet our
need since the timestamp t is public. SP can compute the tth power operations
alone to complete a proof of knowledge of a signature, which reflects that the
token is used in the right time.

5 Conclusion

This paper presents the definitions of some common security properties for
BLAC-like systems in the symbolic model using applied pi calculus. We express
these definitions as correspondence properties (authenticity, non-frameability
and mis-authentication resistance) and equivalence properties (anon-ymity and
unlinkability) that are suited to verifying by formal analysis tool. As a case study,
we verify these properties in BLACR system. The analysis finds a known attack
aiming at the token mechanism in the express-lane authentication. We also offer
a security revision that makes the token mechanism been successfully proved
using ProVerif. This revision indicates that the fix provided by ExBLACR is
incorrect.
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Actually, our model is of approximate due to the nature of ProVerif. We
think some other modelling method can also be under consideration to record
state, such as multiset rewriting rules (Tamarin tool [34, 31]), stateful variant of
applied pi calculus [6, 23], or other stateful verification framework [30]. Another
extension may be lying in research of composing protocols as mentioned in the
introduction, which can simplify analysis using ProVerif at a time since too
complex inputs will make ProVerif running out of memory. These may be our
future work.
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