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Abstract

NTRUEncrypt is a fast lattice-based cryptosystem and a probable alternative of the

existing public key schemes. The existing provable-secure NTRUEncrypts are limited by the

cyclotomic field it works on - the prime-power cyclotomic field. This is worth worrying, due

to the subfield attack methods proposed in 2016. Also, the module used in computation

and security parameters rely heavily on the choice of plaintext space. These disadvantages

restrict the applications of NTRUEncrypt.

In this paper, we give a new provable secure NTRUEncrypt in standard model under

canonical embedding over any cyclotomic field. We give an reduction from a simple variant

of RLWE - an error distribution discretized version of RLWE, hence from worst-case ideal

lattice problems, to our NTRUEncrypt. In particular, we get a union bound for reduction

parameters and module for all choices of plaintext space, so that our NTRUEncrypt can

send more encrypted bits in one encrypt process with higher efficiency and stronger security.

Furthermore, our scheme’s decryption algorithm succeeds with probability 1 − nω(
√
n logn)

comparing with the previous works’ 1−n−ω(1), making our scheme more practical in theory.

Keywords: NTRU, Ideal lattice, Canonical embedding, Cyclotomic fields, RLWE

1 Introduction

The NTRU encryption scheme, devised by Hoffstein, Pipher and Silverman in [19], was

first presented in Crypto’96. It is one of the fastest known lattice-based cryptosystems as

testified by its inclusion in the IEEE P1363 standard and regarded as an alternative to

RSA and ECC due to its potential of countering attacks by quantum computer. Based
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on the underlying problem of NTRU, various cryptographic primitives are designed, such

as ideuntity-based encryption [11], fully homomorphic encryption [4, 26], digital signatures

[10, 18] and multi-linear maps [14]. Meanwhile, a batch of cryptanalysis works were proposed

aiming at NTRU family [1, 6, 7, 12, 13, 15, 17, 20, 22, 34]. Althought its description (

early version ) relies on arithmetic over polynomial ring for small parameters, it is generally

believed that NTRU problem is hard and NTRUEncrypt is secure in practice.

However, the security of the first NTRUEncrypt in [19] is heuristic and lack of solid

mathematical proof. This leads to a break-and-repair development history of NTRUEncrypt.

The first provable secure NTRUEncrypt variant is proposed by Stehlé and Steinfeld in [35].

They gave a reduction from RLWE problem to the IND-CPA security of their NTRUEncrypt.

But the modified scheme is restricted to power-of-2 cyclotomic rings. Although Stehlé and

Steinfeld’s scheme maybe less practical compared with classical NTRUEncrypt [8], it showed

an important connection between NTRUEncrypt and RLWE, hence between problems over

NTRUEncrypt and worst-case problems over ideal lattices. Recently, Yu, Xu and Wang

modified Stehlé and Steinfeld’s scheme to make it work over prime cyclotomic rings in [38].

Though the results of Yu allows more flexibility of parameter selections, the size requirements

for parameters are more limited, making Yu’s scheme less efficiency. Both of the above

works are based on coefficient embedding. The first NTRUEncrypt scheme using canonical

embedding is discussed in [39] which shows that given approximate parameters, provably

secure NTRUEncrypt can work on prime-power cyclotomic rings. Yu’s two papers gave a

reduction from a variant of RLWE problem proposed in [9] to their NTRUEncrypts.

With the recent calls of post-quantum cryptography by NIST ( Dec. 2016 ), a better

understanding of these problems is necessary and the study of NTRUEncrypt is of theoretical

value as stated in [39]. Considering the subfield attack proposed in [1, 6, 22], designing

practical NTRUEncrypt with more flexible choices of parameters over more general rings (

algebraic fields ) is worth to do and this is also the main motivation of our paper. Moveover,

different choices of the plaintext spaces influence the efficiency of the previous NTRUEncrypts

greatly. That is to say, in order to reach the best efficiency in applications, the existing

NTRUEncrypts’ plaintext space are all limited - only encrypt one bit in each encrypt process.

Try to improve the efficiency of NTRU scheme is also a big motivation of our research.

1.1 Our Contributions

In this paper, we give a IND-CPA secure NTRUEncrypt by using canonical embedding

over any cyclotomic field and give a reduction from a variant of RLWE problem discussed in

[24] to our NTRUEncrypt. Thanks to the RLWE problem we used and the powerful basis

and decoding basis discussed in [24], the reduction parameters are much tighter than all the

previous results. Moreover, our scheme allows a more flexible choice of parameters. Also,

our scheme’s decryption algorithm succeeds with probability 1−nω(
√
n logn) comparing with

the previous works’ 1 − n−ω(1), making our scheme more practical in theory. Our results

enrich the provably secure NTRU family. We also give an improved regularity result for
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all cyclotomic rings by-products. We exploit some ideals shown in [36, 38, 39], and many

technical differences need to be treated carefully.

Our main contributions are summarized as follows.

We design a new variant of NTRUEncrypt by using canonical embedding over any cyclo-

tomic field. We put our scheme to work on the fractional ideal R∨, the codefferent ideal of

any cyclotomic field while the previous works are restricted in prime-power cyclotomic rings.

The RLWE problems we used is a simple variant of the original RLWE problem proposed

in [23] - an error distribution discretized version of RLWE. Comparing with the RLWE in

polynomial rings, the version we used has less reduction loss and tighter reduction parame-

ters.

We observe that the decryption process is not necessary to consider the so-called coef-

ficient embedding. We only need to consider the coefficients of element represented under

the basis of R∨, and different basis effects the results heavily. So we consider a kind of

basis-coefficient embedding and drop the traditional coefficient embedding completely.

We use decoding basis of R∨ proposed in [24] and subgaussian distribution to analysis

the error distribution, which give us a looser bound for estimating the decryption algorithm.

These mathematical tools also make our decryption algorithm succeed with an exception

of a negligible probability n−ω(
√
n logn), much better than the previous works’ n−ω(1) in

applications.

Our main result is as following:

Theorem 1.1. Let l be a positive integer, n = ϕ(l) ≥ 6, q ≥ 8n, q = 1 mod l be a prime of

size poly(n), K = Q(ζl) be a cyclotomic field and R be the ring of algebraic integers of K.

Assume that α = α(n) ≥ 2 satisfies αq ≥ ω(
√

log n). Let ξ = α · ( nk
log (nk) )

1
4 with k = O(1),

ε ∈ (0, 1
2 ) and p ∈ R×q with R×q the set of invertible elements of Rq = R/(qR). Moreover,

let σ ≥ n
3
2 ·
√

ln (8nq) · q 1
2 +ε and ω(n

3
2

√
log n log log n · α2 · q2) · σ · ||p||2∞ < q. Then if

there exists an IND-CPA attack against NTRUEncrypt(n, q, p, σ, ξ) proposed in Section 5

that runs in time poly(n) and has success probability 1
2 + 1

poly(n) , there exists a poly(n)−time

algorithm solving γ−Ideal-SIVP on any ideal lattice of K with γ = Õ(
√
n
α ). Moreover,

the decryption algorithm succeeds with probability 1 − n−ω(
√
n logn) over the choice of the

encryption randomness.

To have a overview, we take σ = n
3
2 ·
√

ln (8nq) · q 1
2 +ε, α · q = ω(

√
log n), then q

1
2−ε =

ω(n3 log2 n · ||p||2∞). Although when p is a “constant” in R, i.e. p ∈ Z, our result is not

as good as [35, 39], when p is a “non-constant polynomial”, our results maybe better. In

particular, when p is an element whose coefficients are all non-zero with respect to the usual

power basis of R, our result is even better than [35], the case of cyclotomic field K = Q(ζ2k)

- the most commonly used cyclotomic fields. More precisely, in this case, the magnitude of

q in [35] becomes ω̃(n11), in [38] becomes ω̃(n11.5) and in [39] becomes ω̃(n8.5), while ours is

ω̃(n6). Moreover, in applications, our construction gets rid of the restriction of cyclotomic

fields and has potentialities to send more encrypted bits in one encrypt process - about
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O(n) times more than [35, 38, 39] when their schemes set p to be a small “polynomial” to

approximate the best bound of q and γ. Further, our decryption algorithm succeeds with a

probability of 1− n−ω(
√
n logn) comparing with the previous work’s 1− n−ω(1). More details

are discussed in Section 6.

1.2 Technique Overview

In this section, we give a technique overview about our constructions. Although the

main thoughts of our NTRUEncrypt constructions follow Stehlé and Steinfeld’s route, many

differences exist.

We design our modified NTRUEncrypt in any cyclotomic field by using canonical em-

bedding and give a reduction from a simple variant of RLWE problem proposed in [24] to

our scheme. This is quite different from the existing provable-secure NTRUEncrypts, which

work in the ring of algebraic integers ( or equivalently the cyclotomic polynomial ring ) in

theory.

The error distribution of the modified RLWE proposed in [24] is a discretization of a

gaussian distribution on K to R∨. It is a kind of subgaussian distribution as discussed

in [28]. The properties of subgaussian distribution, together with a simple computation

( Lemma 5.1 ) give us a nice estimation of the infinite norm of elements represented by

decoding basis in R∨. These technical treatment, with the addition of savings by using the

simple variant of RLWE problem, can tighten up the bound of q and make our scheme more

efficient in theory.

We regard the element as an usual algebraic number and put all computations in cyclo-

tomic fields. More preciously, our scheme is not restricted in the domain R ( or equivalent,

the polynomial ring ) - the ring of algebraic integers of a cyclotomic field. We put it to work

on the fractional ideal R∨, the codefferent ideal of cyclotomic field. Hence, we can get a

union bound for module q and security parameter γ, making our schemes have potentiali-

ties to send more encrypted bits in each encrypt process with higher efficiency and stronger

security.

The key generation algorithm is as follows:

Input : n, q ∈ Z, p ∈ R×q , σ ∈ R.

Output : A key pair (sk, pk) ∈ R×q ×R×q .

1. Sample f
′
from DR,σ; let f = p · f

′
+ 1; if (f mod qR) /∈ R×q , resample.

2. Sample g from DR,σ; if (g mod qR) /∈ R×q , resample.

3. Return secret key sk = f and public key pk = h = pg/f ∈ R×q .

This is almost the same comparing with the previous works. We use standard method

to prove that the algorithm would terminate in expected time. Furthermore, the Gaussian

distribution ensures that the secret key is ‘short’. The analysis of public key distribution

needs to deal with some kinds of q-ary lattices, defined in Section 3.1. By accurate analysis
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of the relationship between different fractional ideals, also inspired by [39] as we remarked in

Section 3.2, we give a lower bound of λ1 with respect to l∞ norm in a kind of q-ary lattice.

In this section, we consider the problem absolutely in K, hence get a better result comparing

with [39]. We also get an improved regularity result, which is discussed by Micciancio in

[27], for any cyclotomic ring by-products.

The NTRUEncrypt is as following:

Key generation : Use the algorithm describe above, return sk = f ∈ R×q
with f = 1 mod pR∨, and pk = h = pg · f−1 ∈ R×q .

Encryption : Given message m ∈ P, set s, e←↩ χ and return c = hs+ pe

+m ∈ R∨q .

Decryption : Given ciphertext c and secret key f, compute c1 = fc. Then

return m = (c1 mod qR∨) mod pR∨.

The plaintext of our scheme is R∨/(pR∨) with p an invertible element in Rq = R/(qR).

Our computations are in R∨, not restricted in R. By using the decoding basis of R∨ and

basis-coefficient embedding of element in R∨, we give a tight connection between canonical

norms and basis-coefficient norms, which is helpful for us to analyze the decryption algorithm.

These operations also enable us to get rid of the limitations of cyclotomic fields in theory.

Therefore, we get an uniform result for all cyclotomic field. Moveover, by using Lemma 5.1,

we also prove that the failure probability of our decryption process is negligible - n−ω(
√
n logn)

comparing with the existing schemes’ n−ω(1). Furthermore, as we remark in Remark 5.3, we

can put all computations and storages in an integral ideal of R. Hence, in applications, our

constructions maybe more practical.

To sum up, though the best bounds of q in [36] is about n1.5 times smaller than ours,

the biggest advantage of our scheme is that our constructions do not limited by the choice of

plaintext space and the cyclotomic fields they work on in theory. Hence, our NTRUEncrypt

can send more encrypted bits in one encrypt process with higher efficiency and stronger

security. Further, our decryption algorithm succeeds with a probability of 1 − n−ω(
√
n logn)

comparing with the previous work’s 1 − n−ω(1). Therefore, we believe, in applications, our

scheme would have more advantages.

2 Preliminaries

In this section, we introduce some background results and notations.

2.1 Notations

Throughout this paper, l, n are positive integers. l̂ = l when l is odd and l̂ = l
2 when l is

even. Functions ϕ(n) and µ(n) stand for the Euler function and the Möbius function. We use
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[n] to denote the set {1, 2, · · · , n}. For p = 1, 2, · · · ,∞, we use ||x||p to represent it’s lp norm

corresponding to the canonical embedding. When p = 2, we usually use ||x|| to represent

it’s l2 norm. For any matrix M ∈ Ck×k, we use λi(M) stand for it’s eigenvalues and si(M)

stand for it’s singular values for i ∈ [n]. We arrange eigenvalues and singular values by their

magnitude, i.e. λ1(M) ≥ · · · ≥ λn(M) and s1(M) ≥ · · · ≥ sn(M). For two random variables

X,Y , ∆(X,Y ) stands for their statistic distance. Function rad represent the radical of a

positive integer n, i.e. for n = pα1
1 · · · p

αk
k with different primes pi, rad(n) =

∏k
i=1 pi.

2.2 Cyclotomic Number Fields, Space H and Geometry

Through out this paper, we consider the cyclotomic number fields. Let K = Q(ζ) for

ζ = ζl be the l-th primitive unit root, which has minimal polynomial Φl(x) =
∏
i|l(x

i−1)µ( li )

of degree n = ϕ(l). Hence [K : Q] = n = ϕ(l), and K ∼= Q[x]/Φl(x). We set R = OK = Z[ζ]

be K’s ring of integers. Let q ∈ Z be a prime, then the factorization of the ideal 〈q〉 = qR

is as follows. Let d ≥ 0 be the largest integer such that qd divides l, let e = ϕ(qd) and let

f ≥ 1 be the multiplicative order of q modulo l/qd. Then 〈q〉 =
∏g
i=1 q

e
i where qi are n/(ef)

different prime ideals, each of norm qf .

In particular, for an integer prime q = 1 mod l, we have e = f = 1, the ideal 〈q〉
splits into n distinct prime ideals as 〈q〉 =

∏
i∈Z∗l

qi with qi =
〈
q, ζ − ωi

〉
, where ω is a

primitive root in Zq. The norm of qi is q. We have Φl(x) =
∏
i∈Z∗l

(x − ωi) mod q. Note

that Rq = Zq[x]/Φl(x), the Chinese Remainder Theorem gives us a isomorphism Rq ∼=∏
i∈Z∗l

Zq[x]/(x− ωi), where the
∏

represents the direct product. We will use this property

frequently, so from now on, we assume q is a prime such that q = 1 mod l.

Since K/Q is a Galois extension and [K : Q] = n = 2s, s ∈ Z+, there are n embeddings

from K to C. In fact, they are automorphisms of K, all of them are complex embeddings

and form K’s Galois group. We set Gal(K/Q) = {σi : i = 1, · · · , n} and use the canonical

embedding σ on K, who maps x ∈ K to (σ1(x), · · · , σn(x)) ∈ H, where H is a kind of

Minkowski space in algebraic number theory. Here we identity σi(ζ) = ζli with li the l−th

element of Z∗l , order the σi and define H = {(x1, · · · , xn) ∈ Cn : xn+1−i = xi, ∀i ∈ [s]},
H is isomorphic to Rn as an inner product space via the orthonormal basis hi∈[n] defined as

follows: assume ej ∈ Cn be the vector with 1 in its j-th coordinate and 0 elsewhere, i be the

complex unit, we set hj = 1√
2
(ej + en+1−j) and hn+1−j = i√

2
(ej − en+1−j) for 1 ≤ j ≤ s.

Moveover, σ(K) ⊆ H ∼= KR := K ⊗Q R.

For any element x ∈ K, we can define the `p norm of x by ||x||p = ||σ(x)||p for p <∞ and

||x||∞ = maxi∈[n] |σi(x)|. Because multiplication of embedded elements is component-wise,

for any x, y ∈ K, we have ||x · y||p ≤ ||a||∞ · ||y||p for p ∈ {1, · · · ,∞}. The Trace and Norm

of x ∈ K is defined as usual, i.e. Tr(x) := TrK/Q(x) =
∑n
i=1 σi(x) and N(x) := NK/Q(x) =∏n

i=1 σi(x). The Norm is multiplicative: N(x · y) = N(x) · N(y). The Trace is Q−linear:

Tr(x+ y) = Tr(x) + Tr(y) and Tr(c ·x) = c ·Tr(x) for all x, y ∈ K and c ∈ Q. Also note that

Tr(x · y) =
∑n
i=1 σi(x)σi(y) =< σ(x), σ(y) >, so Tr(x · y) is a symmetric bilinear form akin

to the inner product of embeddings of x and y.
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The absolute discriminant ∆K of K is a measure of the geometry sparsity of its ring of in-

tegers. Let α1, · · · , αn represent the Z basis ofR, then we can define ∆K = |(σi(αj))1≤i,j≤n|2,

where | · | represents the determinant of matrix. The discriminant of the l−th cyclotomic

number field is

∆K =

(
l∏

prime p|l p
1
p−1

)n
≤ nn.

An integral ideal I ⊆ R is the usual ideal defined in a ring and a fractional ideal J ⊆ K is a set

such that dJ ⊆ R is a integral ideal for some d ∈ R. It is well known that both I and J admit

Z-basis and we can require d ∈ Z. The norm of an integral ideal is its index as an additive

subgroup of R and the norm of a fractional ideal J is defined as N(I) = N(dI)
N(<d>) = N(dI)

|N(d)|
where d ∈ R such that dI ⊆ R. One can regard integral ideal as a special fractional ideal.

For any two fractional ideals I and J , the sum I + J is the set of all a + b for a ∈ I and

b ∈ J , and the product ideal I · J is the set of all finite sums of terms ab for a ∈ I and

b ∈ J . Multiplication extends to fractional ideals in the obvious way and the set of fractional

ideals forms a group under multiplication. Every fractional ideal can be represented as the

quotient of two integral ideals and has an inverse ideal, written I−1, such that I · I−1 = R.

2.3 Lattice and Discretization

We define a lattice as a discrete additive subgroup of H and we only deal with full-rank

lattices. Assume B = {b1, · · · , bn} is the set of basis of a lattice Λ, we have Λ = L(B) =

{
∑n
i=1 zibi : zi ∈ Z}. The determinant of a lattice L(B) is defined as |det(B)|, which is

independent of the choice of basis B. The minimum distance λ1(Λ) of a lattice is the length of

a shortest nonzero lattice vector. We usually use the l2 norm, hence λ1(Λ) = min06=x∈Λ ||x||.
The dual lattice of Λ ⊆ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, < x,y >=

∑n
i=1 xiyi ∈ Z}.

This is actually the complex conjugate of the dual lattice as usually defined in Cn. All of

the properties of the dual lattice that we use also hold for the conjugate dual. It is easy to

see that (Λ∨)∨ = Λ. If B = {bi} ⊆ H is a set of independent vector of a lattice, its dual

basis D = {dj} is characterized by < bi,dj >= δij , where δij is the Kronecker delta. It is

obvious that L(D) = L(B)∨.

For any fractional ideal I of K, we can represent I as Zβ1 + · · ·+ Zβn for some βi ∈ K,

i = 1, · · · , n. Then σ(I) is a lattice of H, and we call σ(I) an ideal lattice and identify

I with this lattice and associate with I all the usual lattice quantities. We have ∆K =

det(σ(R))2, the squared determinant of the lattice σ(R). For any fractional norm I, we also

have det(σ(I)) = N(I) ·
√

∆k. The following lemma from [23] gives upper and lower bounds

on the minimum distance of an ideal lattice in l2 norm.

Lemma 2.1. For any fractional ideal I in a number field K of degree n,

√
n ·N 1

n (I) ≤ λ1(I) ≤
√
n ·N 1

n (I) ·∆
1

2n

K .

For any fractional ideal I in K, its dual is defined as I∨ = {a ∈ K : Tr(aI) ⊆ Z}. It is

easy to verify (I∨)∨ = I, I∨ is a fractional ideal and I∨ embeds under σ as the dual lattice
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of I as defined before. For any fractional ideal J ∈ K with J = Zβ1 + · · ·Zβn for βi ∈ J , the

dual of J can be represented as J∨ = Zβ∨1 + · · ·Zβ∨n where Tr(βiβ
∨
j ) = δij . In fact, an ideal

of K and its inverse are related by multiplication with the dual ideal R∨: I∨ = I−1 · R∨.

The factor R∨ is often called the codifferent, and its inverse (R∨)−1 the different, which is

in fact an ideal in R. For more details, one can refer to [5].

We now consider the discretization. As in [24] and [25], the goal is to convert a continuous

Gaussian into a Gaussian-like distribution. Given a lattice Λ = L(B), a point x ∈ H and a

point c ∈ H representing a lattice coset Λ+c, the goal is to discretize x to a point y ∈ Λ+c,

written y = bxeΛ+c. We want to make the length of y − x is not too large. To do this, we

can sample a relatively short vector f from Λ + (c− x), and output y = f + x. We require

the method used to choose f be efficient and depend only on the desired coset Λ + (c− x).

We call such a procedure valid.

Three easy methods are described in [24]. We describe the formal definition as in [28], a

modified version of [24].

Definition 2.2. If Bern denotes the Bernoulli distribution, then the univariate Reduction

distribution Red(a) = Bern(dae−a)−(dae−a) is the discrete probability distribution defined

for parameter a ∈ R as taking the values

1. 1 + a− dae with probability dae − a,

2. a− dae with probability 1− (dae − a).

A random variable R = (R1, · · · , Rn) ∈ Rn has a multivariate Reduction distribution R ∼
Red(a) on Rn for parameter a = (a1, · · · , an) if its components Rj ∼ Red(aj) for j =

1, · · · , n are independent univariate Reduction random variables.

Some useful lemmas are stated in [28], we only state the results.

Lemma 2.3. (1) If R0 ∼ Red(a) is a univariate Reduction random variable for parameter

a ∈ R, then R0 satisfies (i) |R0| ≤ 1, (ii) E(R0) = 0, (iii) V ar(R0) ≤ 1
4 and (iv) a− R0 ∈

{bac, dae} ⊆ Z.

(2) Suppose that the lattice Λ has ( column ) basis matrix B with s1(B) and R is a Reduction

random variable of approximate dimension, then ||BR||2 ≤ n · s2
1(B) and E(||BR||2) ≤

1
4n · s

2
1(B).

We now describe the coordinate-wise rounding discretisation which is easy to use for our

application. One can check the following definition defines a valid discretisation, more details

are in [28].

Definition 2.4. Suppose Λ = L(B) is a n−dimensional lattice in Rn. For c ∈ Rn, the

coordinate-wise randomized rounding discretisation bxeBΛ+c of the point x ∈ Rn to the lattice

coset Λ + c with respect to the basis B can then be defined in terms of the multivariate

Reduction random variable Qx,c by the random variable

bxeBΛ+c = x +BQx,c, where Qx,c ∼ Red(B−1(c− x)).
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The coordinate-wise randomized rounding bxeBΛ+c of the point x ∈ Rn has the properties

E(bxeBΛ+c) = x and E(||bxeBΛ+c − x||2) ≤ n · s1(B)2. Also, by Lemma 2.3, it follows that

||bxeBΛ+c|| ≤ ||x|| +
√
n · s1(B). For lattices in space H, the definition of discretisation is

similar.

Definition 2.5. Suppose Λ = L(B) is a n−dimensional lattice in space H. For c ∈ H,

the coordinate-wise randomized rounding discretisation bXeBΛ+c of random variable X to

the lattice coset Λ + c with respect to the basis B is then defined by the conditional random

variable

(bXeBΛ+c|X = x) = bxeBΛ+c = x +BQx,c, where Qx,c ∼ Red(B−1(c− x)).

For a vector x ∈ H, we also have ||bxeBΛ+c|| ≤ ||x||+
√
n · s1(B), just as the case defined

in Rn.

2.4 Tensors and Basis for R and R∨

Let K and L be two field extensions of Q, the field tensor product K ⊗Q L is defined

as the set of all Q−linear combinations of pure tensors a ⊗ b for a ∈ K and b ∈ L, where

⊗ is Q−bilinear and satisfies the mixed-product property, i.e. for all e ∈ Q, one have

(a1⊗b)+(a2⊗b) = (a1+a2)⊗b, (a⊗b1)+(a⊗b2) = (a⊗(b1+b2)), e(a⊗b) = (ea)⊗b = a⊗(eb)

and (a1⊗ b1)(a2⊗ b2) = (a1a2)⊗ (b1b2). These properties define addition and multiplication

in K⊗QL, and though the result is not always a field, it will always be one whenever we take

the tensor product of two cyclotomic fields in this work. A key fact from algebraic number

theory is the following.

Proposition 2.6. Let l have prime-power factorization l =
∏
lk =

∏
pαkk , i.e. lk are powers

of distinct primes. Then K = Q(ζl) is isomorphic to the tensor product ⊗kKk of the field

Kk = Q(ζlk), via the correspondence
∏
k ak → (⊗kak), where on the left we implicitly embed

each ak ∈ Kk into K.

When taking K ∼= ⊗kKk, it follows directly from the definitions that the canonical em-

bedding σ of K is the tensor product of the canonical embeddings σk of Kk, i.e. σ(⊗kak) =

⊗kσk(ak). This decomposition of σ in turn implies that the trace decomposes as TrK/Q(⊗kak)

=
∏
k TrKk/Q(ak).

In our application, we hope that the matrices whose columns are consisted of the basis

of R and R∨ has smaller s1 and larger sn. So, we introduce the powerful basis and decoding

basis as in [25]. We set τ be the automorphism of K that maps ζl to ζ−1
l = ζl−1

l , under the

canonical embedding it corresponds to complex conjugation σ(τ(a)) = σ(a). Note that for

any l
′

dividing l, τ also maps ζl′ = ζ
l

l
′

l to ζ−1
l′

= ζ
− l

l
′

l .
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Definition 2.7. The Powerful basis ~p of K = Q(ζl) and R = Z[ζl] is defined as follows:

(1) For a prime power l, define ~p to be the power basis (ζjl )(j∈{0,1,··· ,n−1}), treated as a vector

over R ⊆ K.

(2) For l having prime-power factorization l =
∏
lk =

∏
pαkk , define ~p = ⊗k ~pk, the tensor

product of the power bases ~pk of each Kk = Q(ζlk).

The Decoding basis of R∨ is ~d = τ(~p)∨, the dual of the conjugate of the powerful basis ~p.

Also note that τ(~p) is a Z−basis of R. Different basis of R ( or R∨ ) are connected by

unimodular matrix, hence the spectral norm ( i.e. the s1 ) may have different magnitude.

The following lemma comes from [25], which shows the estimate of s1(σ(~p)) and sn(σ(~p)).

We remark that more details one can refer to [24, 25].

Lemma 2.8. We have s1(σ(~p)) =
√
l̂, sn(σ(~p)) =

√
l

rad(l) .

We also need the estimate of s1(σ(~d)) and sn(σ(~d)). Assume that σ(~p) = T , the lemma

shows that s1(T ) =
√
l̂ and sn(T ) =

√
l

rad(l) . By the definition of ~d and dual ideal, through

an easy computation, one have σ(~d) = (T ∗)−1. Hence we have sn(σ(~d)) = 1√
l̂
, s1(σ(~d)) =√

rad(l)
l . Moreover, one can similarly deduce that ||σ(~d)i|| ≤

√
rad(l)
l for all i = 1, 2, · · · , n.

We define the symbol || · ||cB the basis-coefficient embedding norm. Given a basis B of

a fractional ideal J , for any x ∈ J , written x = x1b1 + · · · + xnbn, then the B−coefficient

embedding of x is the vector (x1, · · · , xn) and the B−cofficient embedding norm of x is

defined as ||x||cB = (
∑n
i=1 x

2
i )

1
2 . Hence, if we represent x ∈ R (or R∨ ) with respect to the

powerful basis (decoding basis ), we have√
l

rad(l)
||x||c

σ ~(p)
≤ ||σ(x)|| ≤

√
l̂||x||c

σ ~(p)
for x ∈ R, (1)

and

1√
l̂
||x||c

σ ~(d)
≤ ||σ(x)|| ≤

√
rad(l)

l
||x||c

σ ~(d)
for x ∈ R∨. (2)

When we write x mod qR∨, we use the representative element of the coset x + qR∨

by
∑n
i=1 xi

~di with xi ∈ [− q2 ,
q
2 ) for computation. Similarly, for element x ∈ R, we write x

mod qR, we use the representative element of the coset x+qR by
∑n
i=1 xi~pi with xi ∈ [− q2 ,

q
2 ).

For our applications, we need to do computations in R∨. Notice that R ⊆ R∨, any element

of R can also be represented as a Z−linear combination of the decoding basis. From now

on, we only use the decoding basis of R∨ and the powerful basis of R. We will omit the

subscribe σ ~(d) when we use the σ(~d)−cofficient embedding of elements in R∨.

2.5 Gaussian and Subgaussian Random Variables

For s > 0, define the Gaussian function ρs : H → (0, 1] as ρs(x) = e−π
||x||2

s2 . By

normalizing this function we obtain the continuous Gaussian probability distribution Ds of
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parameter s, whose density is given by s−n · ρs(x). Let r = (r1, · · · , rn) ∈ (R+)
n

be a

vector such that rj = rn+1−j for j ∈ [s], we can define the elliptical Gaussian distributions

in the basis {hi}i≤n as follows: a sample from Dr is given by
∑
i∈[n] xihi, where xi are

chosen independently from the Gaussian distribution Dri over R. Note that, if we define

map ϕ : H → Rn by ϕ(
∑
i∈[n] xihi) = (x1, · · · , xn), then Dr is also a ( elliptical ) Gaussian

distribution over Rn. The map ϕ ◦ σ builds a relation of Gaussian distribution between H

and Rn.

For a lattice Λ ⊆ H, σ > 0 and c ∈ H, we define the lattice Gaussian distribution of

support Λ, deviation σ and center c by DΛ,σ,c(b) =
ρσ,c(b)
ρσ,c(Λ) , for any b ∈ Rn. We usually omit

the subscript c when it is 0. For δ > 0, we define the smoothing parameter ηδ(Λ) as the

smallest σ > 0 such that ρ 1
σ

(Λ∨ \ 0) ≤ δ. It quantifies how large σ needs to be for DL,σ,c

to behave like a continuous Gaussian. We will use following lemmas from [29], [31], [3] and

[16].

Lemma 2.9. For any full-rank lattice Λ and positive real ε > 0, we have ηε(Λ) ≤
√

ln (2n(1+ 1
ε ))

π ·
λn(Λ).

Lemma 2.10. For any full-rank lattice Λ, c ∈ H, ε ∈ (0, 1) and σ ≥ ηε(L), we have

Prb←↩DΛ,σ,c [|| b− c|| ≥ σ
√
n] ≤ 1+ε

1−ε · 2
−n.

Lemma 2.11. For any full-rank lattice Λ and any positive real ε > 0, we have ηε(Λ) ≤√
ln (2n(1+ 1

ε ))

π · 1
λ∞1 (Λ∨) .

Lemma 2.12. Let Bn denote the Euclidean unit ball. Then for any lattice Λ and any σ > 0,

ρσ(Λ/(
√
nσBn)) < 2−2n ·ρr(λ), where Λ/(

√
nσBn) is the set of lattice points of norm greater

than
√
nσ. Hence, Prx←↩DΛ,σ (||x|| >

√
nσ) < 2−2n.

Lemma 2.13. Let Λ
′ ⊆ Λ be full-rank lattices. For any c ∈ H, ε ∈ (0, 1/2) and σ ≥ ηε(Λ

′
),

we have ∆(DΛ,σ,c mod Λ
′
, U(Λ/Λ

′
)) ≤ 2ε.

It is convenient for us to use the notion of subguassian random variables in our application.

We only introduce the definition and some lemmas we need, more details can be found in

[24], [28], [30] and [37]. We describe the definitions as in [28].

Definition 2.14. For δ ≥ 0, a real-valued random variable X is δ−subgaussian with standard

parameter b ≥ 0 if

E(etX) ≤ eδe 1
2 b

2t2 for all t ∈ R.

A real-valued random variable X is δ−subgaussian random variable with scaled parameter

s ≥ 0 if

E(e2πtX) ≤ eδeπs
2t2 for all t ∈ R.

11



Notice that if X ∼ N(0, b2), then X is a δ−subgaussian random variable with standard

parameter b, the e
1
2 b

2t2 term is exactly the moment-generating function of the one-dimension

Gaussian distribution of parameter b over R. A real-valued random variable is δ−subgaussian

with standard parameter b if and only if it is δ−subgaussian with scaled parameter
√

2πb.

One can extend the definitions to Rn or space H.

Definition 2.15. For any δ ≥ 0, a multivariate random variable X on Rn is δ−subgaussian

with standard parameter b ≥ 0 if

E(e<t,X>) ≤ eδe 1
2 b

2||t||2 for all t ∈ Rn.

A multivariate random variable Z on H is a δ−subgaussian with standard parameter b ≥ 0

if

E(e<t,Z>) ≤ eδe 1
2 b

2||t||2 for all t ∈ H.

This definition is equivalent to say that a random vector X or its distribution is δ−subgaus

sian with standard parameter b if for all unit vector t ∈ Rn, the random variable < X, t >

is δ−subgaussian with standard parameter b. Using the inequality cosh (x) ≤ e
x2

2 , it can

be shown that any B−bounded centered univariate random variable X (i.e. E[X] = 0

and |X| ≤ B ) is 0−subguassian with standard parameter B ( 0−subgaussian with scaled

parameter B
√

2π ).

Definition 2.16. A random variable Z on Rn or H is a noncentral subgaussian random

variable with noncentrality parameter ||E(Z)|| ≥ 0 and deviation parameter d ≥ 0 if the

centered random variable Z0 = Z−E(Z) is a 0−subgaussian random variable with standard

parameter d.

We regard a central subgaussian random variable as a special case of a noncentral sub-

gaussian random variable. A fact showed in [28] Theorem 3 states that the coordinate-wise

randomized rounding discretisation of z to bzeBΛ+c for Λ = L(B) ⊆ H and c ∈ H is a

noncentral subgaussian random variable with noncentrality parameter ||z|| and deviation

parameter 1
2s1(σ(B)). Moveover, [28] proposed the following useful lemma.

Lemma 2.17. Suppose that B is a column basis matrix for a lattice in H with largest

singular value s1(B) and Z is an independent noncentral subgaussian random variable with

deviation parameter dZ . The coordinate-wise randomized rounding discretisation of Z to

bZeBΛ+c is a noncentral subgaussian random variable with noncentrality parameter ||E(Z)||
and deviation parameter (d2

Z + ( 1
2 )2s1(B)2)

1
2 .

2.6 RLWE Problem

We first state a definition of RLWE with a slight different comparing with [23] by scaling

the b component by a factor of q and describe the worst-case result shown in [23].
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Definition 2.18. For a secret s ∈ R∨q and a distribution ψ over KR, a sample from RLWE

distribution As,ψ over Rq × (KR/(qR
∨)) is generated by choosing a ←↩ U(Rq), choosing

e←↩ ψ, and outputting (a, b = a · s+ e mod qR∨).

Definition 2.19. The average-case decision version of the RLWE problem, denoted R −
DLWEq,ψ, is to distinguish with non-negligible advantage between independent samples from

As,ψ where s←↩ U(R∨q ), and the same number of uniformly random and independent samples

from Rq × (KR/(qR
∨)).

Theorem 2.20. Let K be the l-th cyclotomic number field having dimension n = ϕ(l) and

R = OK be its ring of integers. Let α = α(n) > 0, and let q = q(n) ≥ 2, q = 1 mod l

be a poly(n)-bounded prime such that αq ≥ ω(
√

log n). Then there is a polynomial-time

quantum reduction from Õ(
√
n
α )-approximate SIVP on ideal lattices in K to the problem of

solving R−DLWEq,ψ given only k samples, where ψ is the Gaussian distribution Dξ·q with

ξ = α · ( nk
log (nk) )

1
4 .

We will use a variant of RLWE whose support set is Rq × R∨q , which is discussed in

[24]. Let χ be a discrete error distribution over R∨, we modify Definition 2.19 by letting

R − DLWEq,χ be the problem of distinguishing between As,χ and uniform samples from

Rq × R∨q . The following lemma shows that for a wide family of discrete error distributions,

the hardness of the discrete version follows from that of the continuous one.

Lemma 2.21. Let p and q be positive coprime integers, and b·e be a valid discretization

to cosets of pR∨. There exists an efficient transformation that on input ω ∈ R∨p and a

pair (a
′
, b
′
) ∈ Rq × (KR/(qR

∨)), outputs a pair (a = pa
′
, b) ∈ Rq × R∨q with the following

guarantees: if the input pair is uniformly distributed then so is the output pair; and if the input

pair is distributed according to the RLWE distribution As,ψ for some s ∈ R∨ and distribution

ψ over KR, then the output pair is distributed according to As,χ where χ = bp · ψeω+pR∨ .

The distribution of s above is uniform distribution over R∨, we need to change it to

error distribution. This modification makes the secret short, which is very useful in some

applications. The following lemma shows this variant of RLWE is as hard as the original one

by using the technique proposed in [2].

Lemma 2.22. Let p and q be positive coprime integers, b·e be a valid discretization to cosets

of pR∨, and ω be an arbitrary element in R∨p . If R−DLWEq,χ is hard given some k samples

then so is the variant of R−DLWEq,χ in which the secret is sampled from χ := bp·ψeω+pR∨ ,

given k − 1 sapmles.

In our applications, we will set p = 1, ω = 0 and χ = bDξ·qeR∨ . Here we use the

coordinate-wise randomized discretisation b·eBΛ with Λ = σ(R∨) and B the decoding basis

for R∨. Hence, a vector x sampled from χ is a noncentral subgaussian random variable with

13



noncentrality parameter ||x|| and deviation parameter 1
2s1(σ(B)) and has the property

||x|| ≤
√
ns1(σ(B)) +

√
nqξ ≤

√
nqξ +

√
n ·
√
rad(l)

l
(3)

with overwhelming probability.

In fact, we can give a elaborate estimate by using Lemma 2.17. One can see the elaborate

estimate in Section 5. One should also note that when we restrict a to R×q , the problem

remains hard as stated in [35]. From now on we denote A×s,ψ the distribution on R×q × R∨q
and denote R −DLWE×q,ψ the problem of distinguishing distributions of U(R×q × R∨q ) and

A×s,ψ.

3 Some New Results on q-Ary Lattices

We first describe an isomorphism theorem which is helpful for us to analyse the q-ary

lattices we need. In some textbooks, it is called the fourth isomorphism theorem or lattice

isomorphism theorem. We only describe it’s ring’s version. When come to groups or modules,

the results are almost the same.

Proposition 3.1. Let R be a ring, and B an ideal of R. Then every subring of R/B is of

the form A/B, for some subring A of R such that B ⊆ A ⊆ R, the corresponding relation is

1− 1. In particular, every ideal of R/B is of the form A/B, for some ideal A of R such that

B ⊆ A ⊆ R.

We know that Rq = Zq[x]/Φl(x) and Zq[x] is a principal ideal domain, hence Rq is a

principal ideal ring. If we set φi = ωi, where i is the i-th element in Z∗l as in Section 2.2, then

Φl(x) =
∏n
i=1(x− φi) =

∏n
i=1(x− φ−1

i ) mod q. For any proper ideal I ∈ Rq, we can write

I = 〈f(x)〉Rq, where f(x) contains at least one monomials of x−φi, i.e. f(x) =
∏
i∈S(x−φi)

for some S ⊆ {1, 2, · · · , n}. We will use IS represents the ideal
∏
i∈S(x− φi)Rq of Rq.

Let a ∈ (Rq)
m, I ba an proper ideal of Rq, we know there is an ideal J of R such

that qR ⊆ J ⊆ R and I = J/qR. In fact, if we set I = 〈f(x)〉Rq, then J = 〈f(x), q〉R.

Considering the relation qJ ⊆ qR ⊆ J ⊆ R, We get R∨ ⊆ J∨ ⊆ (qR)∨ ⊆ (qJ)∨, which

implies R∨ ⊆ J∨ ⊆ 1
q (R)∨ ⊆ 1

q (J)∨. Thus we get the R module inclusion relations qR∨ ⊆
qJ∨ ⊆ R∨ ⊆ J∨. Moveover, R∨/qJ∨ is a R submodule of J∨/qJ∨.

3.1 q-Ary Lattices

With the relations describe above in mind, we define the q-ary lattice we need for our

analysis of public key distribution in Section 4. The definitions are as followings:

a⊥(I) = {(t1, · · · , tm) ∈ Rm : ∀ i, (ti mod qR) ∈ I and

m∑
i=1

tiai = 0 mod qR},
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L(a, I) = {(t1, · · · , tm) ∈ (J∨)m : ∃ s ∈ R∨, ∀i, ti = ai · s mod qJ∨}.

In fact, a⊥(I) = {(t1, · · · , tm) ∈ Jm :
∑m
i=1 tiai = 0 mod qR} and L(a, I) = {(t1, · · · ,

tm) ∈ (R∨)m : ∃ s ∈ R∨, ∀i, ti = ai · s mod qJ∨}, since qJ∨ ⊆ R∨ and ai · s ∈ R∨. It is

easy to see that both a⊥(I) and L(a, I) are well-defined and are q modules, hence the value

s can take over all elements in R∨. We also define a⊥ and L(a) as a⊥(Rq) and L(a, Rq).

The following lemma shows the dual relations between a⊥(I) and L(a, I).

Lemma 3.2. Let a⊥(I) and L(a, I) be defined above, then we have a⊥(I) = q(L(a, I))∨

and L(a, I) = q(a⊥(I))∨.

Proof. We first show a⊥(I) ⊆ q(L(a, I))∨ and L(a, I) ⊆ q(a⊥(I))∨. ∀ t ∈ a⊥(I) and

z ∈ L(a, I), we only need to show
∑m
i=1 Tr(ti · zi) = 0 mod qZ. Note that zi = ai · s+ q · z′i

for some z
′

i ∈ J∨, we have

m∑
i=1

Tr(ti · zi) = Tr(s ·
m∑
i=1

ti · ai) + q ·
m∑
i=1

Tr(ti · z
′

i).

By the definition,
∑m
i=1 ti · ai = q · r for some r ∈ R. Thus

∑m
i=1 Tr(ti · zi) ∈ qZ.

To complete the proof, we will show q(L(a, I))∨ ⊆ a⊥(I). ∀ x ∈ (L(a, I))∨, we need to

show q · xi ∈ J for all i ∈ [m] and
∑m
i=1 qxi · ai ∈ qR. Note that q(J∨)m ⊆ L(a, I), we can

take v(i) be the vectors in L(a, I) such that the i-th coordinate is q · s′ with s
′ ∈ J∨ and 0

elsewhere. We have Tr(x · v(i)) = Tr(xi · q · s
′
) ∈ Z, hence q · xi ∈ J , since s

′
can take over

all elements of J∨.

∀ t ∈ L(a, I),
∑m
i=1 Tr(xi · ti) ∈ Z. We write ti as ai · s+ q · t′i with t

′

i ∈ J∨, then

m∑
i=1

Tr(xi · ti) = Tr(s ·
m∑
i=1

ai · xi) +

m∑
i=1

Tr(qxi · t
′

i),

the latter sum is in Z, hence Tr(s ·
∑m
i=1 ai · xi) ∈ Z and we get

∑m
i=1 ai · xi ∈ R. Therefore

we have proved a⊥(I) = q(L(a, I))∨, by taking dual in both side, we finish the proof.

3.2 Lower Bound of λ∞1 in L(a, I)

Let IS =
∏
i∈S(x− φi)Rq ⊆ Rq and JS = 〈fS(x), q〉R ∈ R where fS(x) =

∏
i∈S(x− φi).

We have qR ⊆ JS ⊆ R and IS = JS/qR. The factorization of ideal 〈q〉R is
∏n
i=1 qi

with qi = 〈q, x− φi〉, here we still use i to represent the i-th element in Z∗l . Since R is a

Dedekind domain, each qi is a maximal ideal, hence qi and qj is coprime for any i, j ∈ [n],

qi · qj = qi ∩ qj = 〈q, (x− φi)(x− φj)〉. Therefore, JS =
∏
i∈S qi, J

−1
S =

∏
i∈S q

−1
i . Further,

we have J∨S =
∏
i∈S q

−1
i R∨. The following lemma is an analogue of Chinese Remainder

Theorem.
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Lemma 3.3. Let J be a fractional ideal of K and Ji = Ii ·R∨ ⊆ J for i ∈ [n], where Ii ⊆ R
ba ideals and are pairwise coprime. Then we have a isomorphism between J/

∏
i∈[n] Ji and

the direct sum J/J1 ⊕ · · · ⊕ J/Jn.

Proof. We define the map ϕ : J −→ J/J1⊕· · ·⊕J/Jn by mapping x ∈ J to (x mod J1, · · · , x
mod Jn). Note that Ji ∩ Jj = IiIjR

∨ = Ji · Jj for any i, j ∈ [n], we have the kernel of ϕ is∏
i∈[n] Ji. So we only need to prove ϕ is a surjective.

Set Mi =
∏n
j=1,j 6=i Jj , we have Mi ⊆ Jj for j 6= i and M1 + M2 = (J2 + J1)J3 · · · Jn =

J3 · · · Jn, since Ji + Jj = (Ii + Ij)R
∨ = R · R∨ = R∨. Hence M1 + M2 + · · · + Mn = R∨.

We can take ei ∈ Mi such that e1 + e2 + · · · + en = 1 ∈ R ⊆ R∨. These {ei} satisfy ei = 0

mod Jj for j 6= i and ei = 1 mod Ji. ∀ (x1, · · · , xn) ∈ J/J1 ⊕ · · · ⊕ J/Jn, xi ∈ J for i ∈ [n].

If we take x = e1x1 + · · ·+ enxn ∈ J , we have x mod Ji = xi, i.e. ϕ(x) = (x1, · · · , xn). We

have finished the proof.

Now we can give a lemma which shows that for a ←↩ U((R×q )m), the lattice L(a, IS) is

extremely unlikely to contain unusually short vectors for the infinity norm.

Lemma 3.4. For any S ⊆ [n], m ≥ 2 and ε > 0, we have λ∞1 (L(a, IS)) ≥ B, with B = qβ

n ,

where β = (1− 1
m )(1− |S|n )−ε, except with probability p ≤ 2(3m+1)nq−εmn over the uniformly

random choice of a ∈ (R×q )m.

Proof. Let p denote the probability, over the randomness of a, that L(a, IS) contains a non-

zero vector t of infinity norm ≤ B = qβ

n . We upper bound p by the union bound, summing

the probabilities p(t, s) = Pra[∀i, ti = ai · s mod qJ∨S ]. Since the ai’s are independent, we

have p(t, s) =
∏
i≤m pi(ti, s), where pi(ti, s) = Prai [ti = ai · s mod qJ∨S ]. In other words, we

have

p ≤
∑

t ∈ (J∨)m

∀i, 0 < ||ti||∞ < B

∑
s∈R∨/qJ∨

m∏
i=1

Prai [ti = ai · s mod qJ∨S ].

Note that qJ∨S = q
∏
i∈S q

−1
i R∨ = q ·

∏
i∈S q

−1
i · R · R∨ =

∏
i∈S′ qi · R∨, where S

′
=

[n] \S. Using Lemma 3.3, we get an isomorphisms between J∨S /qJ
∨
S and J∨S /(qi1R

∨)⊕ · · ·⊕
J∨S /(qiS′R

∨), where ij ∈ S
′
. Also we have R∨/qJ∨S

∼= R∨/(qi1R
∨)⊕ · · · ⊕R∨/(qi

S
′R
∨).

We claim that there must be a set S
′′ ⊆ S′ such that s, ti ∈

∏
i∈S′′ qiR

∨ and s, ti /∈ qjR
∨

for all j ∈ S
′ \ S′′ . Otherwise, there are some j ∈ S

′
such that either s = 0 mod qjR

∨

and ti 6= 0 mod qjR
∨, or s 6= 0 mod qjR

∨ and ti = 0 mod qjR
∨. In both cases, we have

pti(ai, s) = 0, since ai ∈ R×q . Therefore, for j ∈ S
′′
, we have ti = ai · s = 0 mod qjR

∨

regardless of the value of ai ∈ R×q . For any j ∈ S′ \ S′′ , we have ti = ai · s 6= 0 mod qjR
∨,

the value of ai is unique, since s 6= 0 mod qjR
∨ and ai ∈ R×q . For j ∈ [n] \ S′ , the value of

ai can be arbitrary. Hence, overall, if we set |S′′ | = d, we get pi(ti, s) = (q − 1)d−|S
′
|. By

noting that for any s ∈ Rq, all the element of the coset s+qJ∨ satisfy the equation ti = ai ·s
mod qJ∨ for the same t, we can rewrite the sum’s conditions by
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p ≤
∑

0≤d≤|S′ |

∑
S
′′
⊆ S
′

|S
′′
| = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨)

s ∈ h

∑
t ∈ (J∨)m

∀i, 0 < ||ti||∞ < B

ti ∈ h

m∏
i=1

(q − 1)d−|S
′
|.

Set h =
∏
i∈S′′ qiR

∨, with S
′′ ∈ S′ and |S′′ | = d. Let N(B, d) denote the number of t ∈ J∨

such that ||t||∞ < B and t ∈ h. We consider two cases for N(B, d) depending on d.

Suppose that d ≥ β ·n. Since t ∈ h =
∏
i∈S′′ qiR

∨, h is fraction ideal, we have 〈t〉 = tR∨ ⊆
h and 〈t〉 is a full-rank R-submodule of h. Hence, N(t) = N(〈t〉) ≥ N(h) ≥ N(

∏
i∈S′′ qi ·R∨) =

(
∏
i∈S′′ N(qi))N(R∨) = qd · ∆−1

K . Thus N(t) ≥ qd

nn . We conclude that ||t||∞ ≥ 1√
n
||t|| ≥

N
1
n (t) ≥ q

d
n

n ≥
qβ

n = B.

Suppose now that d < β · n. Define B(l, c) = {x ∈ H : ||x − c||∞ < l}. Note

that σ(h) is a lattice of H, we get N(B, d) is at most the number of points of σ(h) in

the region B(B, 0). Let λ =
λ∞1 (h)

2 , then for any two elements v1 and v2 ∈ h, we have

B(λ,v1) ∩ B(λ,v2) = φ. For any v ∈ B(B, 0), we also have B(λ,v) ⊆ B(B + λ, 0).

Therefore, N(B, d) ≤ vol(B(B+λ,0))
vol(B(λ,0)) = (Bλ + 1)n ≤ (2qβ−

d
n + 1)n ≤ 22nqnβ−d.

We claim that the number of s ∈ R∨/(qJ∨) and s ∈ h is q|S
′
|−d. In fact, if s satisfies the

above conditions, s ∈ h/(qJ∨). Using a kind of isomorphism theorem which states that for

any fractional ideals a, b and c with a ⊆ b, ac/bc ∼= a/b, we have

h/(qJ∨) ∼=
∏
i∈S′′

qiR
∨/(

∏
i∈S′

qiR
∨) ∼=

∏
i∈S′′

qi/(
∏
i∈S′

qi) ∼= R/(
∏

i∈(S′\S′′ )

qi).

Hence, we have |h/(qJ∨)| = |R/(
∏
i∈(S′\S′′ ) qi)| = q|S

′
|−d. Using the above B-bound and the

fact that the number of subsets of S
′

of cardinality d is ≤ 2d, setting P =
∏m
i=1(q− 1)d−|S

′
|,

we can rewrite the inequality of p as

p ≤

 ∑
0≤d<β·n

+
∑

β·n≤d≤|S′ |

 ∑
S
′′
⊆ S
′

|S
′′
| = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨)

s ∈ h

∑
t ∈ (J∨)m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P

≤
∑

0≤d<β·n

∑
S
′′
⊆ S
′

|S
′′
| = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨)

s ∈ h

∑
t ∈ (J∨)m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P

≤ 2|S
′
| max
d<β·n

q|S
′
|−dNm(B, d)

(q − 1)m(|S′ |−d)

= 2|S
′
| max
d<β·n

(1 +
1

q − 1
)m(|S

′
|−d) Nm(B, d)

(q − 1)(m−1)(|S′ |−d)

≤ max
d<β·n

2|S
′
|+2mn(1 +

1

q − 1
)m(|S

′
|−d)qmnβ+|S

′
|−m|S

′
|−d

≤ 2|S
′
|(1+m)+2mn · qmnβ+|S

′
|−m|S

′
| ≤ 2n(1+3m) · q−εmn.
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We finish the proof.

Remark: The estimate of N(B, d) in the case d < β · n is inspired by [39].

3.3 Improved Results on Regularity

The following result is a direct consequence of Lemmata 2.10, 2.13, 3.2 and 3.4.

Lemma 3.5. Let q = 1 mod l be a prime, m ≥ 2, δ ∈ (0, 1
2 ), ε > 0, S ⊆ [n], c ∈ Rm and

t ←↩ DRm,σ,c, where σ ≥ n

√
ln(2mn(1+ 1

δ ))

π · q
|S|
n + 1

m−
|S|
mn+ε. Then for all exception a fraction

of 2(3m+1)nq−εmn of a ∈ (R×q )m, we have

∆
(
t mod a⊥(IS);U(Rm/a⊥(IS))

)
≤ 2δ.

Let χ be a distribution over Rq and denote Dχ the distribution of such tuple (a1, · · · , am,∑m
i=1 tiai) ∈ (R×q )m × Rq where ai ←↩ U(R×q ) and ti ←↩ χ for all i = 1, 2, · · · ,m. The

regularity of the generalized knapsack function (t1, · · · , tm) →
∑m
i=1 tiai is the statistical

distance between Dχ and U((R×q )m × Rq). In [27], Micciancio discussed the regularity over

general rings and used it to design one-way functions. Some improved regularity results are

given in [35], [38] and [39]. Here, we can also give an improved result of regularity, by taking

S = φ and c = 0 in Lemma 3.5.

Theorem 3.6. Let q = 1 mod l be a prime, m ≥ 2, δ ∈ (0, 1
2 ), ε > 0 and ai ←↩ U(R×q ) for

all i ∈ [n]. Assume t←↩ DRm,σ, where σ ≥ n
√

ln(2mn(1+ 1
δ ))

π · q 1
m+ε. Then we have

∆

(
(a1, · · · , am,

m∑
i=1

tiai);U((R×q )m ×Rq)

)
≤ 2δ + 2(3m+1)nq−εmn.

4 Analysis of Key Generation Algorithm

With the results in Section 3, we can derive a key generation algorithm for NTRUEncrypt

as in [35]. Further, by choosing appropriate parameters, we can show that the key generation

algorithm terminates in limited time and the key distributions are very closed to the uniform

distribution.

The key generation algorithm is as follows:

Input : n, q ∈ Z, p ∈ R×q , σ ∈ R.

Output : A key pair (sk, pk) ∈ R×q ×R×q .

1. Sample f
′
from DR,σ; let f = p · f

′
+ 1; if (f mod qR) /∈ R×q , resample.

2. Sample g from DR,σ; if (g mod qR) /∈ R×q , resample.

3. Return secret key sk = f and public key pk = h = pg/f ∈ R×q .
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The following lemma shows that the key generation algorithm can terminate with exe-

cuting only several times.

Lemma 4.1. Let l be a positive integer and q be a prime such that q = 1 mod l. Let

σ > n ·
√

ln (2n(1+ 1
ε ))

π · q 1
n , for an arbitrary ε ∈ (0, 1

2 ). Let a ∈ R and p ∈ R×q . Then

Prf ′←↩DR,σ [(p · f + a mod qR) /∈ R×q ] ≤ n(
1

q
+ 2ε).

Proof. Thanks to the Chinese Remainder Theorem, we only need to bound the probability

that p · f ′ + a ∈ qi is no more than 1
q + 2ε, for any i ≤ n. Here we set i to represent the

i-th element in Z∗m. By Lemma 2.1, we have λ1(qi) = λn(qi) ≤
√
nN(qi)

1
n (
√

∆K)
1
n ≤ nq

1
n .

By Lemma 2.9 and 2.13, we know that p · f ′ mod qi is within distance 2ε to uniformity on

R/qi, so we have f
′

= −a/p mod qi with probability ≤ 1
q + 2ε, as we need.

Next, we show that the generated secret key by the key generation algorithm is small.

This lemma is very useful for us to analyze the probability of success in the decryption

algorithm in Section 5.

Lemma 4.2. Let n ≥ 6, q ≥ 8n, q = 1 mod l be a prime and σ ≥
√

2 ln (6n)
π · n · q 1

n . Then

with probability ≥ 1− 23−n, the secret key f, g satisfy ||f || ≤ 2
√
nσ||p||∞ and ||g|| ≤

√
nσ.

Proof. Set ε = 1
3n−1 . Note that λn(R) = λ1(R) ≤

√
n · (
√

∆K)
1
n = n. By Lemma 2.9,

we have ηε(R) ≤
√

2 ln (6n)
π · n. Hence, Prx←↩DR,σ,c(||x|| ≥

√
nσ) ≤ 3n

3n−22−n. Meanwhile, σ

satisfies the condition in Lemma 4.1, so we get

Prg←↩DR,σ (||g|| ≥
√
nσ | g ∈ R×q ) =

Prg←↩DR,σ (||g|| ≥
√
nσ and g ∈ R×q )

Prg←↩DR,σ (g ∈ R×q )

≤
Prg←↩DR,σ (||g|| ≥

√
nσ)

Prg←↩DR,σ (g ∈ R×q )

≤ 3n

3n− 2
· 2−n · 1

1− n( 1
q + 2ε)

≤ 23−n.

Hence, we have ||f ′ ||, ||g|| ≤
√
nσ with probability ≥ 1 − 23−n. Then we can estimate

||f || ≤ 1 + ||p||∞ · ||f
′ || ≤ 2

√
nσ||p||∞.

The last lemma of this section estimates the statistic distance between the distribution

of public key and the uniform distribution on R×q . The proof is almost the same with

[35, Thm 3] or [38, Thm 2]. We denote by D×σ,z the discrete Gaussian DR,σ restricted to

R×q + z.
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Lemma 4.3. Let 0 < ε < 1
2 and σ ≥ n

3
2

√
ln (8nq) · q 1

2 +2ε. Let p ∈ R×q , yi ∈ Rq and

zi = −yip−1 mod qR for i ∈ {1, 2}. Then

∆

[
y1 + p ·D×σ,z1
y2 + p ·D×σ,z2

mod q, U(R×q )

]
≤ 25n

qbεnc
.

Proof. For a ∈ R×q , we define Pra = Prf1,f2
[(y1 + pf1)/(y2 + pf2) = a], where fi ←↩ D×σ,zi .

It is suffice to show that |Pra − (q − 1)−n| ≤ 22n+5q−bεnc · (q − 1)−n =: ε
′

except a fraction

≤ 27nq−2nε of a ∈ R×q . Note that a1f1 +a2f2 = a1z1 +a2z2 is equivalent to (y1 + pf1)/(y2 +

pf2) = −a2/a1 in R×q and −a2/a1 ←↩ R×q when a ←↩ (R×q )2, we get Pra := Prf1,f2 [a1f1 +

a2f2 = a1z1 + a2z2] = Pr−a2/a1
for a ∈ (R×q )2.

The set of solutions (f1, f2) ∈ R2, fi ←↩ D×σ,zi , to the equation a1f1 + a2f2 = a1z1 + a2z2

mod qR is z + a⊥×, where z = (z1, z2) and a⊥× = a⊥ ∩ (R×q + qR)2. Therefore

Pra =
DR2,σ(z + a⊥×)

DR,σ(z1 +R×q + qR) ·DR,σ(z2 +R×q + qR)
.

Note that a ∈ (R×q )2, we know for any t ∈ a⊥, t2 = −t1 a1

a2
, so t1 and t2 are in the same ideal

I of Rq. It follows that a⊥× = a⊥ \ (∪I⊆Rqa⊥(I)) = a⊥ \ (∪S⊆[n],S 6=φa
⊥(IS)). Similarly,

we have R×q + qR = R \ (∪S⊆[n],S 6=φ(IS + qR)). Using the inclusion-exclusion principal, we

get

DR2,σ(z + a⊥×) =
∑
S⊆[n]

(−1)|S| ·DR2,σ(z + a⊥(IS)), (4)

∀ i ∈ {1, 2}, DR,σ(zi +R×q + qR) =
∑
S⊆[n]

(−1)|S| ·DR,σ(zi + IS + qR). (5)

In the rest of the proof, we show that, except for a fraction ≤ 27nq−2nε of a ∈ (R×q )2:

DR2,σ(z + a⊥×) = (1 + δ0) · (q − 1)n

q2n
,

∀ i ∈ {1, 2}, DR,σ(zi +R×q + qR) = (1 + δi) ·
(q − 1)n

qn
,

where |δi| ≤ 22n+2q−bεnc for i ∈ {0, 1, 2}. These imply that |Pra − (q − 1)−n| ≤ ε′ .
Handling (4): When |S| ≤ εn, we apply Lemma 3.5 with m = 2 and δ = q−n−bεnc. Note

that qR2 ⊆ a⊥(IS) ⊆ R2, we have |R2/a⊥(IS)| = |R2/(qR2)|
|a⊥(IS)/(qR2)| . Meanwhile, |R2/(qR2)| =

q2n and |a⊥(IS)/(qR2)| = |IS | = qn−|S|, since |Rq|/|IS | = |Rq/IS | = q|S|. Therefore for all

except a fraction ≤ 27n

q2nε of a ∈ (R×q )2,∣∣∣DR2,σ(z + a⊥(IS))− q−n−|S|
∣∣∣ = |DR2,σ,−z(a⊥(IS))− q−n−|S|| ≤ 2δ.

When |S| > εn, we can choose S
′ ⊆ S with |S′ | = bεnc. Then we have a⊥(IS) ⊆

a⊥(IS′ ) and hence DR2,σ,−z(a⊥(IS)) ≤ DR2,σ,−z(a⊥(IS′ )). Using the result proven before,
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we conclude that DR2,σ,−z(a⊥(IS)) ≤ 2δ + q−n−bεnc. Overall, we get∣∣∣∣DR2,σ(z + a⊥×)− (q − 1)n

q2n

∣∣∣∣ =

∣∣∣∣∣DR2,σ(z + a⊥×)−
n∑
k=0

(−1)k
(
n
k

)
q−n−k

∣∣∣∣∣
≤ 2n+1δ + 2

n∑
k=dεne

(
n
k

)
q−n−bεnc

≤ 2n+1(δ + q−n−bεnc)

for all except a fraction ≤ 27n

q2nε of a ∈ (R×q )2, since the are 2n choices of S. The δ0 satisfies

|δ0| ≤ q2n

(q−1)n 2n+1(δ + q−n−bεnc) = ( q
q−1 )n · 2n+2 · qb−εnc ≤ 22n+2qb−εnc as required.

Handling (5): Note that for any S ∈ [n], det|IS + qR| = |R/JS | = q|S|, where JS is the

ideal of R such that JS/(qR) = IS . By Minkowski’s Theorem, we have λ1(IS + qR) =

λn(IS + qR) ≤
√
n · q

|S|
n . Lemma 2.9 gives that σ > ηδ(IS + qR) for any |S| ≤ n

2 with

δ = q−
n
2 . Therefore, Lemma 2.13 shows that |DR,σ,−zi(IS + qR) − q−|S|| ≤ 2δ. For the

case |S| > n
2 , we can choose S

′ ⊆ S with |S| ≤ n
2 . Using the same argument above, we get

DR,σ,−zi(I
′

S + qR) ≤ DR,σ,−zi(IS + qR) ≤ 2δ + q−
n
2 . Therefore,∣∣∣∣DR,σ(zi +R×q + qR)− (q − 1)n

qn

∣∣∣∣ =

∣∣∣∣∣DR,σ(zi +R×q + qR)−
n∑
k=0

(−1)k
(
n
k

)
q−k

∣∣∣∣∣
≤ 2n+1δ + 2

n∑
k=n

2

(
n
k

)
q−k

≤ 2n+1(δ + q−
n
2 )

which leads to the desired bound on δi, i = 1, 2.

5 NTRUEncrypt Scheme and Security Analysis

In this section, we describe the NTRUEncrypt. We set the plaintext message space

P = R∨/pR∨. Denote χ = bDξ·qeR∨ with ξ = α · ( nk
log (nk) )

1
4 where k is a positive integer.

We will use decoding basis for element x ∈ R ⊆ R∨. One should note that f = 1 mod pR

implies f = 1 mod pR∨.

Key generation : Use the algorithm describe in Section 4, return sk = f

∈ R×q with f = 1 mod pR∨, and pk = h = pg · f−1 ∈ R×q .

Encryption : Given message m ∈ P, set s, e←↩ χ and return c = hs+ pe

+m ∈ R∨q .

Decryption : Given ciphertext c and secret key f, compute c1 = fc. Then

return m = (c1 mod qR∨) mod pR∨.
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We first give an accurate estimate of the infinite norm of elements sampled from the

discertisation of a Gaussian distribution.

Lemma 5.1. Assume that ξ = α
(

nk
lognk

) 1
4

, χ = bDξ·qeR∨ , α · q ≥ ω(
√

log n) and k = O(1).

Set δ = ω(
√
n log n · α2 · q2) and B the decoding basis for R∨, then for any t ∈ H, we have

Prx←↩χ(|(t,x)| > δ||t||2) ≤ n−ω(
√
n logn)·||t||2 .

Proof. Note that a gaussian random variable x←↩ Dq·ξ has mean 0 and deviation q·ξ√
2π

, the

discretisation bxe is a noncentral subgaussian random variable with noncentrality parameter

0 and deviation parameter ( q
2ξ2

2π + 1
4s1(B)2)

1
2 , by Lemma 2.17. Hence, we have

E(e(t,bxe)) ≤ e
1
2 ·
(
q2ξ2

2π + 1
4 s1(B)2

)
·||t||2

.

For any x←↩ Dq·ξ, by taking the Chernoff bound, we get

Pr(|(t, bxe)| > δ · ||t||2) = Pr(e|(t,bxe)| > eδ·||t||
2

)

≤ 2 · e
1
2 ·
(
q2ξ2

2π + 1
4 s

2
1(B)

)
·||t||2−δ·||t||2

.

Now, we estimate the value of 1
2 ·
(
q2ξ2

2π + 1
4s

2
1(B)

)
·||t||2. Since s1(B) =

√
rad(l)
l ≤ 1, we have

1
2 ·
(
q2ξ2

2π + 1
4s

2
1(B)

)
· ||t||2 = 1

2 ·
(
q2α2

2π

(
nk

log(nk)

) 1
2

+ 1
4
rad(l)
l

)
· ||t||2 = Ω(α2 · q2 ·

√
n log−

1
2 n ·

||t||2). Therefore,

Pr(|(t, bxe)| > δ · ||t||2) ≤ e−||t||
2·(logn−1)·ω(α2q2

√
n

logn ) ≤ n−ω(
√
n logn)·||t||2 .

By using Lemma 5.1, we can get a useful estimate for ||x||∞ with x ←↩ χ = bDq·ξe.
Choose t = ( 1

2 , 0, · · · , 0,
1
2 ) and t = ( i2 , 0, · · · , 0,−

i
2 ), we get

Prx←↩χ(|Re(σ1(x))| > 1√
2
ω(
√
n log n · α2 · q2) ≤ n−ω(

√
n logn)

and

Prx←↩χ(|Im(σ1(x))| > 1√
2
ω(
√
n log n · α2 · q2) ≤ n−ω(

√
n logn).

Hence we have Prx←↩χ(|σ1(x)| > ω(
√
n log nα2q2)) ≤ n−ω(n logn). Similarly, one can prove

that Prx←↩χ(|σk(x)| > ω(
√
n log nα2q2)) ≤ n−ω(n logn) for any k = 1, 2 · · · , n. Therefore, we

conclude

Prx←↩χ(||σ(x)||∞ > ω(
√
n log n · α2 · q2)) ≤ n · n−ω(

√
n logn) ≤ n−ω(

√
n logn). (6)

In order to show that the decryption algorithm succeeds with high probability, we need

some relations between ||x| and ||x||c for any x ∈ K, i.e. we need the parameters C1 and C2

such that C1||x||c ≤ ||x|| ≤ C2||X||c. Recall that for decoding basis, we have C1 = 1√
l̂

and

C2 =
√

rad(l)
l .
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Lemma 5.2. Let n ≥ 6, q ≥ 8n, q = 1 mod l, σ ≥
√

2 ln (6n)
π · n · q 1

n , C =
√
l̂ and C2 =√

rad(l)
l . If ω(n

3
2

√
log n log log n) ·α2 ·q2 ·σ ·||p||2∞ < q , then with probability 1−n−ω(

√
n logn),

the decryption algorithm of NTRUEncrtpt recovers m.

Proof. Notice that f ·h·s = p·g·s mod qR∨, we have fc = pgs+pfe+fm mod qR∨ ∈ R∨. If

||pgs+pfe+fm||c∞ < q
2 , then we have fc has the representation pgs+pfe+fm when compute

mod qR∨. Hence, we have m = (fc mod qR∨) mod pR∨, since f = 1 mod pR = 1

mod pR∨. It thus suffices to give an upper bound on the probability that ||fc||c∞ ≥
q
2 .

Note that ||fc||c∞ ≤ ||fc||c ≤ C||fc|| = C||pgs+pfe+fm|| ≤ C(||pgs||+ ||pfe||+ ||fm||).
By the choice of parameters and Lemma 4.2, with probability ≥ 1−23−n, ||f || ≤ 2

√
nσ||p||∞

and ||g|| ≤
√
nσ. Hence, combining with (6), we get

||pfe||+ ||pgs|| ≤ 2
√
nσ||p||2∞ · ||s||∞ +

√
nσ||p||∞ · ||e||∞)

≤ ω(n
√

log n · α2 · q2)σ||p||2∞

with probability 1 − n−ω(
√
n logn). Since m ∈ R∨/(pR∨) ⊆ K, by reducing modulo the

pσ(~d)i’s, we can write m into
∑n
i=1 εipσ(~d)i with εi ∈ (− 1

2 ,
1
2 ]. Hence

||m|| = ||
n∑
i=1

εipσ(~d)i|| ≤ ||p||∞||
n∑
i=1

εiσ(~d)i|| ≤
√
n

2
||p||∞C2,

by using

||
n∑
i=1

εiσ(~di)|| = ||
n∑
i=1

(εi~di)|| ≤ C2 · ||
n∑
i=1

(εi~di)||c ≤ C2 ·
√
n

2
.

So, we have ||fm|| ≤ ||f || · ||m|| ≤ nσ||p||2∞C2 with probability ≥ 1 − 23−n. Therefore,

putting these results together, we have

||fc|| ≤ C(ω(n
√

log n · α2 · q2) · σ · ||p||2∞ + n · σ · ||p||2∞ · C2)

≤ ω(n
3
2

√
log n log log n · α2 · q2) · σ · ||p||2∞

with probability 1 − n−ω(
√
n logn), where we have used the fact that C2 ≤ 1 and C =

O(
√
n log log n). We get the results we need.

Remark 5.3. We remark that we can put all computations in an integral ideal I = l̂ ·
R∨ ⊆ R by multiplying an integer l̂ without changing the conditions on q and α. The only

change is a slight modification on the decryption algorithm. We use symbol â to represent

the corresponding element of a ∈ R∨, i.e. â = l̂ ·a. Note that f = 1 mod pR = 1 mod pR∨,

we have l̂ · f = l̂ mod pI. Therefore, m̂ = 1
l̂
(l̂(f · ĉ mod qI) mod pI) with m̂ ∈ I/(pI).

The security of the scheme follows by an elementary reduction from R − DLWE×q,Dqξ ,

exploiting the uniformity of the public key in R×q and the invertibility of p ∈ Rq. It’s proof

is almost the same as in [35] or [38].
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Lemma 5.4. Let n ≥ 6, q ≥ 8n, q = 1 mod l, σ ≥
√

ln (8nq)·n 3
2 ·q 1

2 +ε, δ > 0 and ε ∈ (0, 1
2 ).

If there exists an IND-CPA attack against NTRUEncrypt that runs in time T and has success

probability 1
2 + δ, then there exists an algorithm solving R-DLWE× with parameters q and qξ

that runs in time T
′

= T +O(n) and has success probability δ
′

= δ − q−Ω(n).

Proof. Let A be the given IND-CPA attack algorithm, we construct an algorithm B against

R−DLWE×q,Dqξ as follows. Given oracle O that samples from either U(R×q ×R∨q ) or A×s,Dqξ
for some s←↩ χ, B calls O to get a sample (h

′
, c
′
) from R×q × R∨q , then runs A with public

key h = p ·h′ ∈ R×q . When A outputs challenge messages m0, m1 ∈ P, B picks b←↩ U(0, 1),

computes c = p · c′ + mb ∈ R∨q and give it to A. When a returns its guess b
′
, B returns 1

when b
′

= b and 0 otherwise.

Note that h
′

is uniformly random in R×q , so is the public key h given to A. Thus, it

is within statistical distance q−Ω(n) of the public key distribution in the genuine attack.

Moreover, when c
′

= hs + e with s, e ←↩ χ, the ciphertext c given to A has the right

distribution as in the IND-CPA attack. Therefore, if O outputs samples from A×s,Dqξ , A

succeeds an B returns 1 with probability ≥ 1
2 + δ − q−Ω(n).

Now, if O outputs samples from U(R×q × R∨q ), then c is uniformly random in Rq and

independent of b. Hence, B outputs 1 with probability 1
2 . The claimed advantage of B

follows.

In a summary, we have the following results.

Theorem 5.5. Let l be a positive integer, n = ϕ(l) ≥ 6, q ≥ 8n, q = 1 mod l be a prime of

size poly(n) and K = Q(ζl). Assume that α = α(n) ≥ 2 satisfies αq ≥ ω(
√

log n). Let ξ = α ·
( nk

log (nk) )
1
4 with k = O(1), ε ∈ (0, 1

2 ) and p ∈ R×q . Moreover, let σ ≥ n 3
2 ·
√

ln (8nq) ·q 1
2 +ε and

ω(n
3
2

√
log n log log n · α2 · q2) ·σ · ||p||2∞ < q. Then if there exists an IND-CPA attack against

NTRUEncrypt(n, q, p, σ, ξ) that runs in time poly(n) and has success probability 1
2 + 1

poly(n) ,

there exists a poly(n)−time algorithm solving γ−Ideal-SIVP on any ideal lattice of K with

γ = Õ(
√
n
α ). Moreover, the decryption algorithm succeeds with probability 1 − n−ω(

√
n logn)

over the choice of the encryption randomness.

6 Comparison with Previous Works

In applications, we hope we can take q as small as possible and α ( hence γ), as big as

possible ( as small as possible ). In previous works [35, 38, 39], the results of q and γ depend

heavily on the choice of p, i.e. p is a ‘constant’ or p is an ‘usual polynomial’. Therefore, in

applications, the number of encrypted bit in each encrypt process depends heavily on the

choice of p. We can take a comparison for an overview.

(1) p is a ‘constant’.

In this case, by taking qα = Ω(log
3
4 n), one have the approximate parameter γ =

Õ(
√
n

log0.75 n
· q) in [38, 39]. The magnitude of q and γ are q

1
2−ε = ω(l3.75 log1.5 l · ||p||2)
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and γ = ω̃(l8 · ||p||4) with l be a prime in [38] and q
1
2−ε = ω(d0.5l

2.25

log1.5 l · ||p||2) and

γ = ω̃(dl5 · ||p||4) with l = dv, d is a prime in [39]. In [35], one can set α · q = ω(n
√

log n),

then q
1
2−ε = ω(n2.5 log2 n · ||p||2) and γ = ω̃(n5.5 · ||p||4). In [36], they improved the result

to q = ω̃(n4.5).

(2) p is an ‘usual polynomial’.

In this case, by taking qα = Ω(log
3
4 n), one have the approximate parameter γ =

Õ(
√
n

log0.75 n
· q) in [38, 39]. The magnitude of q and γ are q

1
2−ε = ω(l4.75 log1.5 l · ||p||2)

and γ = ω̃(l10 · ||p||4) with l be a prime in [38] and q
1
2−ε = ω(d0.5l

3.25

log1.5 l · ||p||2) and

γ = ω̃(dl7 · ||p||4) with l = dv, d is a prime in [39]. In [35], one can set α · q = ω(n
√

log n),

then q
1
2−ε = ω(n3.5 log2 n · deg(p) · ||p||2) and γ = ω̃(n7.5 · deg(p) · ||p||4).

(3) Our results.

In our scheme, we regard ‘constant’, i.e. p ∈ Z, and ‘usual polynomial’ as an element of

algebraic number in R∨. In both cases, they have the same status. Hence, our results do not

depend on the choice of p. By by taking qα = Ω(log
3
4 n), one have the approximate parameter

γ = Õ(
√
n

log0.75 n
· q), as in [38] and [39]. Then, one can take q

1
2−ε = ω(n3 log3 n · ||p||2∞) and

γ = ω̃(n6.5 · ||p||4∞). In particular, our results eliminate the limitation of cyclotomic fields.

In order to reach the best bounds, the previous results must set p ∈ Z, which limits the

number of encrypted bits. The usual case is set p = 2 to encrypt one bit each time. If one

wants to encrypt n bits each time, which means that every coefficient of the power basis ( or

monomial ) must be used. The bound of q would become very bad, see case (2). Note that

when represented under decoding bases, ||p|| ≤
√

rad(l)
l · ||p||c, where

√
rad(l)
l =

√∏
p(p−1)

n .

If we want to make the best of the number of encrypted bits, for example, take every

coefficient’s value in [0, · · · , n], the results of previous work would become pretty bad, since

the previous results also depend on ||p|| while ours only depend on ||p||∞. More precisely,

when we want to encrypt O(n) bits each time, the magnitude of q in [35] becomes ω̃(n11),

in [38] becomes ω̃(n11.5) and in [39] becomes ω̃(n8.5) comparing with ours ω̃(n6), when we

want to encrypt O(n log(n)) bits each time, the magnitude of q in [35] becomes ω̃(n15), in

[38] becomes ω̃(n15) and in [39] becomes ω̃(n13) comparing with ours ω̃(n10).

That is to say, if we consider to encrypt many bits in each encryption process, one can

see our construction has potentialities to do much better than [35, 38, 39], since our scheme

has no limits on the choice of p.

7 Conclusion

To sum up, though the best bounds of q is about n1.5 times smaller than ours, our scheme

do not limited by the choice of p and the cyclotomic fields it works on. Hence, our scheme get

rid of the dependence of the plaintext space, so that our NTRUEncrypt has potentialities to

send more encrypted bits in each encrypt process with higher efficiency and stronger security.

Further, our decryption algorithm succeeds with a probability of 1−n−ω(
√
n logn) comparing

25



with the previous work’s 1− n−ω(1). Therefore, we believe, in applications, our scheme may

have more advantages.
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