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Abstract. Statistical analysis of ciphertexts has been recently used to carry out
devastating inference attacks on deterministic encryption (Naveed, Kamara, and
Wright, CCS 2015), order-preserving/revealing encryption (Grubbs et al., S&P 2017),
and searchable encryption (Pouliot and Wright, CCS 2016). At the heart of these
inference attacks is classical frequency analysis. In this paper, we propose and evaluate
another classical technique, homophonic encoding, as a means to combat these attacks.
We introduce and develop the concept of frequency-smoothing encryption (FSE)
which provably prevents inference attacks in the snapshot attack model, wherein
the adversary obtains a static snapshot of the encrypted data, while preserving the
ability to efficiently and privately make point queries. We provide provably secure
constructions for FSE schemes, and we empirically assess their security for concrete
parameters by evaluating them against real data. We show that frequency analysis
attacks (and optimal generalisations of them for the FSE setting) no longer succeed.
Keywords: database encryption · snapshot attacks · inference attacks · homophonic
encoding · frequency-smoothing encryption

1 Introduction
DE for outsourced data. Deterministic Encryption (DE) is an attractive option for
encrypting outsourced data because it is equality-preserving: finding an exact match
for a specific datum is just as easy as finding an exact match for its encryption. This
makes it possible for a user to query its data using an encrypted search term, with the
remote data host identifying and returning matches to the user without needing to decrypt
them. Similarly, deterministic Order-Preserving/Revealing Encryption (OPE/ORE) allows
users to perform efficient range searches on encrypted data, and Symmetric Searchable
Encryption (SSE) schemes with deterministically encrypted keywords can use traditional
indexing methods to return search results. These schemes have been widely deployed in
the industry for protecting data in this way (see, e.g., [FVY+17, Sec. I(A)] for a list of
commercial solutions).

Frequency analysis and inference attacks. Classical frequency analysis is a powerful
attack against deterministically encrypted data. If the plaintext distribution is not uniform
and an adversary has a reference dataset from which it can compute expected plaintext
frequencies, then the adversary, given access to a snapshot of the encrypted data, can
match frequencies in the encrypted domain with those in the plaintext domain, thus
identifying which ciphertext corresponds to which plaintext. This kind of inference attack,
where statistical techniques are used to infer plaintext information, was used to great
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destructive effect in the work of Naveed et al. [NKW15]: they correctly inferred large
amounts of patient information from DE-encrypted hospital records. Their work and
related papers investigating inference attacks [PW16, IKK12, GSB+17, BGC+17] and
leakage-abuse attacks [CGPR15, GMN+16, ZKP16, DDC16, KKNO16, LMP18] continue
to dent both the industry’s and the research community’s confidence in its ability to
adequately protect outsourced data whilst preserving query capabilities.

Countermeasures. Only recently have researchers begun to investigate how to mitigate
inference attacks based on frequency analysis. A few proposed OPE/ORE schemes hide
frequencies, such as those by Kerschbaum [Ker15] and Boneh et al. [BLR+15], but they both
have limited practicality. In work concurrent to ours, Pouliot, Griffy, and Wright [PGW17]
developed the notion of weakly randomized encryption (WRE), in which a small amount
of randomness is injected into each ciphertext to prevent frequency analysis. However,
their use of statically defined distributions seems to render their most secure construction,
WRE with Poisson salt allocation, vulnerable to a form of frequency analysis based on
solving knapsack problems, which invalidates the security claim [PGW17, Theorem 4.1].
We discuss this and other related work in greater detail in Section 6.

Homophonic encoding. Given the importance of the problem and the current paucity
of solutions, we set out to develop rigorous means of preventing inference attacks on
encrypted data, with the particular setting of encrypted databases in mind. Frequency
analysis is a venerable attack method, so it is fitting that we were inspired by a technique
that is almost as old to counter it: homophonic encoding (HE). The goal of homophonic
encoding (or homophonic substitution) is to flatten the frequency distribution of messages
by mapping each plaintext to multiple possible homophones, with the number of encodings
for each plaintext m ideally being proportional to the frequency of m. Then, although
homophonically encoded data may still contain repetitions, the homophones occur roughly
equally often; frequency information would be of no use to an adversary who has a complete
copy of the encoded data.

Homophonic encoding has a long history which is well documented, for example,
in [Kah97]. However, as far as we can ascertain, it appears to have received little formal
analysis. Moreover, it is usually applied in contexts where adjacent data items are not
independent of one another—for example, letters or words in natural language—which
renders it vulnerable to attacks based on analysis of bi-grams rather than single-letter
frequencies. This inherent weakness does not arise in database encryption, where each
column of the database is encrypted under a separate key and entries in adjacent rows are
not correlated.

HE in the cloud. By combining the power of HE to flatten message distributions and
encryption to provide message privacy, we arrive at what we call frequency-smoothing
encryption (FSE). Using HE leads to encryption schemes that are randomised: we ensure
that each message has enough homophones to combat frequency analysis, but not so many
that they cannot all be computed on the fly and sent to the database for comparison with
the relevant column of ciphertexts. The question is then whether this trade-off between
preventing frequency leakage and increasing query complexity is beneficial, providing
schemes that are both secure against snapshot attackers and reasonably efficient. In the
sequel, we show that the answer to this question is positive, at least for certain distributions.

Threat model. However, we must immediately issue some important caveats. In the
current work, we achieve security against only two forms of attack. The first is security
in a somewhat randomised generalisation of the standard security notion for DE due to
Rogaway and Shrimpton [RS06]. The second is security against inference attacks made by
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a snapshot attacker on a per-column basis. Our security proofs and empirical evaluations
are respectively focused on these notions. We do not defend against more advanced forms
of attack, such as those based on query analysis, as in [CGPR15, GMN+16], or attacks
based on correlations between columns, as in [DDC16, BGC+17]. Concretely, without
some kind of query padding or query batching, it will be possible to carry out frequency
analysis on the queries made in our schemes, since the number of queries required for a
given plaintext m will be roughly proportional to the frequency of m. In addition, Grubbs
et al. recently pointed out the artificiality of the snapshot attack model [GRS17]. Database
management systems often store additional information that an attacker would capture
in its snapshot, e.g. prior queries. Nevertheless, resisting snapshot attacks is necessary
for achieving meaningful security in any realistic threat model, and our approach at least
achieves this.

Thus, despite some limitations, we believe that our work has significant value: currently,
there are few good solutions that address any of the recent and severe inference attacks,
and we show that at least some forms of attack can be effectively combatted at low cost.
We consider that our work on frequency-smoothing encryption could form the basis of
a more complete solution to the problem of preventing inference attacks on encrypted
databases.

1.1 Detailed technical contributions
Definitions. We introduce the concept of frequency-smoothing encryption (FSE) which
generalises (symmetric) deterministic encryption to the setting of “somewhat randomised”
encryption, where each message has a relatively small number of possible ciphertexts
(homophones). FSE is general enough to capture schemes that handle initially unknown
or changing message distributions.

Security notions. We provide two security notions for FSE in Section 2. The first, called
frequency-smoothing security, prevents frequency analysis attacks by requiring that a
collection of FSE ciphertexts be indistinguishable from random data (in a sense to be made
precise) even when the underlying plaintext distribution is known. The second, simply
called privacy, generalises the symmetric deterministic encryption security notion [RS06].
We carefully motivate our definitional choices in the main body.

Modular construction and proof. We then give, in Section 3, a generic construction for
FSE from any Deterministic Encryption (DE) scheme and any Homophonic Encoding (HE)
scheme. The latter is a keyless primitive that transforms plaintext data via a probabilistic
encoding step, flattening the frequency distribution, before encryption with the DE scheme.
Essentially, the flattening property of the HE scheme ensures that the resulting FSE scheme
is frequency smoothing, while the privacy of the DE scheme ensures the overall privacy of
the FSE scheme. In Appendix A, we also give a construction of an FSE scheme from an
HE scheme, a PRF, and any IND$-CPA secure encryption scheme. This construction has
the advantage that decryption avoids a potentially expensive decoding step.

Specific HE schemes. We go on to propose two simple, easy-to-implement HE schemes in
Section 4. We do not claim that these schemes are novel, but nor have we found them in the
literature. Both HE schemes are tunable in the sense that the number of bits of randomness
r injected during encryption can be controlled, giving trade-offs between query efficiency
and resistance to frequency analysis attacks. Using a novel application of Kullback–Leibler
(KL) divergence and based on a framework for optimal distinguishers [BJV04], we show
that our HE schemes asymptotically achieve perfect flattening in a statistical sense—
even for computationally unbounded adversaries. However, to obtain a bound of typical
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cryptographic levels, like 2−80, may require large values of r, which in turn results in high
query complexity.

Experimental evaluation. Given this limitation, we use our provable security results as
a design guide, and turn to conducting an empirical analysis of the effectiveness of our
FSE schemes with moderate values of r. In particular, we evaluate them against attacks
which attempt to identify plaintexts with ciphertexts via frequency analysis, in the same
way as Naveed et al. [NKW15], rather than evaluating them against our formal security
notion of FSE-smoothness. This form of attack asks more of the adversary than is required
by our formal security definition, so security here offers a weaker guarantee than our
formal definition. However, we argue that security in the sense of resisting such attacks
is pragmatically useful, given a real-world adversary’s typical aim of recovering actual
plaintext. This evaluation is in Section 5.

Generalised frequency analysis attack. The evaluation requires us to obtain an equiv-
alent of frequency analysis for FSE schemes, in which each plaintext can have multiple
homophones in the ciphertext space. We do so using the method of Maximum Likelihood
Estimation, deriving an efficient algorithm which is statistically optimal in assigning
ciphertexts to possible plaintexts, in the same way that frequency analysis is—that is, by
maximising the statistical likelihood of the selected assignment, cf. [LP15]. We believe this
algorithm to itself be novel. We then apply this algorithm on FSE-encrypted data, using
the same medical dataset as was employed in [NKW15], and the same metric of success,
this being the number of hospitals in which a certain fraction of records of a given type
were successfully recovered by a frequency analysis attack. We show that FSE is successful
in defeating our generalised version of frequency analysis for many attributes, even while
maintaining moderate query complexity. The success rate of the MLE adversary is usually
quickly reduced to that of a pure guessing strategy for recovering plaintext.

1.2 Terminology and notation
Let D be any probability distribution on a set of messages M, and write fD(m) for
the probability mass function (pmf) of a particular message m ∈ M according to the
distribution D, so 0 ≤ fD(m) ≤ 1 for all m ∈M. The corresponding cumulative density
function (cdf) is FD :M→ [0, 1], where FD(mj) =

∑j
i=1 fD(mi) for some ordering of the

messages inM. (This ordering may be the natural one if the data is numerical; otherwise
it can be arbitrary.) The support supp(D) is the subset ofM for which the pmf is non-zero.
When a data owner or an adversary must guess or estimate the data’s true distribution D,
we use D̃ for the owner’s approximation and D̂ for the adversary’s approximation.

We use ‖ to denote concatenation. Trunc (x, n) denotes truncating the bitstring x to a
length of n bits, removing the bits from the right. bxe denotes the integer nearest to x.
When the fractional part of x is 0.5, it is always rounded up.

Our analysis involves various distributions—for instance, the data’s actual distribution,
and what the data owner or the adversary predict the data’s distribution to be. Table 1
summarizes our notation for these various distributions.

2 Frequency-smoothing encryption (FSE)
Our goal is to design a scheme that outputs ciphertexts whose frequencies are uniform, so
even an adversary who knows the underlying plaintext frequencies cannot infer anything
about the data. Since such an attacker knows the plaintext distribution, our scheme’s
Setup algorithm also accepts as input an estimate D̃ of the messages’ distribution.
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Table 1: Overview of our notation for various distributions.

Symbol Domain Description

D̃ M owner’s guess of the data’s distribution
D̂ M adversary’s guess of the data’s distribution
D M data’s actual distribution
Ds E encoded data’s distribution for an HE or FSE

scheme when state is s (introduced in Sec. 4.1)

In addition, a distribution adaptation parameter ∆ indicates how “different” the client’s
estimate of the message distribution D̃ may be from the actual message distribution D. The
choice of the measure of “difference” will depend on the particular FSE scheme and how it
adapts to the message counts it observes. For instance, the parameter ∆ may be an upper
bound on the Kolmogorov–Smirnov statistic of the two distributions, or their statistical
distance. In a sense, this parameter indicates how much uncertainty is associated with the
initial estimated distribution D̃, and thus it indicates how conservatively a dynamic FSE
scheme should allocate homophones. Regardless of what measure of difference is used, we
assume that ∆ = 0 indicates complete confidence that D̃ = D, in which case the scheme
will be entirely non-adaptive, i.e., static.

Maintaining state is what allows our FSE schemes to handle initially unknown distribu-
tions (∆ 6= 0): by updating the state as messages are encrypted, the scheme can allocate
more homophones to the more frequently observed messages. Decryption involves accessing
the updated state, and therefore the state must always contain enough information to
decrypt any message encrypted with an earlier state. The state also makes explicit that
encryption requires knowledge of the plaintext distribution, which the client will need
to store in practice. Additionally, having a state allows some precomputation on the
message distribution to make encryption or decryption faster. Nevertheless, when the
precise message distribution is known from the start or the scheme is static (∆ = 0),
the state does not need to be updated after running Setup and the following definitions
simplify accordingly.

We make the following assumptions. First, we assume that the support of the distribu-
tion is known even if the exact distribution is not. Second, we assume that the messages
are sampled independently and are statically distributed. If the distribution changes over
time, the estimated distribution D̃ given as input to Setup would need to be replaced with a
set of conditional distributions describing a stochastic process. We leave this generalization
as important future work.

Definition 1. A frequency-smoothing encryption (FSE) scheme FSE is a quadruple of
algorithms FSE = (Setup,KeyGen,Encrypt,Decrypt) such that:

• Setup : {0, 1}∗ × DM × {0, 1}∗ → S takes a security parameter λ ∈ {0, 1}∗, a
distribution D̃ ∈ DM, and a distribution adaptation parameter ∆ ∈ {0, 1}∗ as input
and outputs a state s ∈ S that includes a description of the distribution D̃ and maybe
other information.

• KeyGen : {0, 1}∗ → K takes a security parameter λ ∈ {0, 1}∗ as input and outputs a
secret key sk ∈ K.

• Encrypt : K ×M×S → {C × S} ∪ {⊥} takes a key sk ∈ K, a message m ∈M, and
a state s ∈ S as input and outputs either a ciphertext c ∈ C and an updated state
s′ ∈ S or ⊥.
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• Decrypt : K × C × S →M∪ {⊥} takes a key sk ∈ K, a ciphertext c ∈ C, and a state
s ∈ S as input and outputs either a message m ∈M or ⊥.

Setup, KeyGen, and Encrypt are randomized algorithms, while Decrypt is deterministic.
For a particular key sk, call a state s′ attainable from the state s if s′ = s or if there
exists a finite sequence of messages m1, . . . ,mn ∈Mn such that by defining s0 := s and
(ci, si)← Encrypt(sk,mi, si−1) for i = 1, . . . , n, we get sn = s′ with non-zero probability. A
frequency-smoothing scheme is correct for a distribution D̃ if for any s← Setup(λ, D̃,∆),
any sk ← KeyGen(λ), any m ∈ supp(D̃), and any state s′ attainable from s, if (c, s′′) ←
Encrypt(sk,m, s′), then Decrypt(sk, c, s′′′) = m with probability 1 for any s′′′ attainable
from s′′. Less formally, any message encrypted after initialising the state can be decrypted
later, even if other messages are encrypted in the meantime, potentially updating the state.

For some fixed λ, D̃, and ∆, and any key sk output by KeyGen(λ) with non-zero
probability, we let HFSE

sk,s (m) be the set of all possible outputs of Encrypt(sk,m, s′) such that
s0 is a state output by Setup(λ, D̃,∆) with non-zero probability, s′ is attainable from s0, and
s is attainable from s′. Thus, HFSE

sk,s (m) is the union of homophone sets of message m for any
state that may have come before the state s. We also let HFSE

sk,s :=
⋃
m∈MHFSE

sk,s (m) be the
set of all possible encryptions (homophones) of any message with key sk for any state that
may have come before s. We assume that the sizes of homophone sets are independent of
the choice of sk ∈ K, so we may write |HFSE

s (m)| for |HFSE
sk,s (m)| and |HFSE

s | for |HFSE
sk,s |. Two

immediate corollaries of the correctness property are that HFSE
sk,s (m) ⊆ HFSE

sk,s′(m) for any
state s′ attainable from s, and that HFSE

sk,s (m1) and HFSE
sk,s (m2) are disjoint unless m1 = m2,

in which case HFSE
sk,s (m1) = HFSE

sk,s (m2).

2.1 Using FSE
To use frequency-smoothing encryption in the intended setting—on outsourced data that
is queryable—the set HFSE

sk,s (m) must be easy to compute or describe for any message m
given a state s and key sk. This allows a SQL query containing an expression such as
WHERE attribute = x to be rewritten as WHERE attribute IN (x1, x2, ...), where
the xi’s compose the set of x’s homophones. This rewriting effectively incurs a query
blow-up, with a single query for item x being converted into a more complex query for all
of x’s homophones. Looking ahead, the trick will be to parameterise our FSE schemes so
that this blow-up is manageable whilst still preventing frequency analysis attacks.

FSE does not natively support range queries other than by expanding a range to a set
of values and thence to a larger set of homophones. However, the specific constructions for
FSE that follow can be adapted to use OPE, in which case range queries can be efficiently
supported. We revisit this idea in Section 7.

The state s of an FSE scheme is stored locally at the client, or in a proxy that
transparently performs the encryption and decryption operations. Note that s will typically
include an accurate representation of the message distribution, and thus FSE schemes
may not be appropriate for very large message spaces. We will evaluate the client-side
storage requirements of our FSE schemes as we introduce them, but typically they are on
the order of r · |M| where r is a small parameter.

2.2 Frequency-smoothing security
A frequency-smoothing scheme should do what its name implies: hide the frequency of
messages from an attacker with access to a collection of ciphertexts, like a column in a
database table. It should also be hard to learn anything about individual plaintexts from
ciphertexts without the secret key. We formalize these notions of frequency-smoothing
and privacy in two security games.
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The frequency-smoothing game FSE−SMOOTH (Figure 1) captures the requirement
that ciphertexts do not leak any information about message frequencies, by making their
distribution indistinguishable from uniform. In the b = 0 case of this game, the challenger
uses an estimated distribution D̃ (corresponding to a data owner’s guess of its data’s
distribution) to initialize the state and then encrypts messages sampled according to the
true distribution D. In the b = 1 case, the challenger samples ciphertexts uniformly at
random with replacement from a set having the size of the homophone set if the static
scheme were used (∆ = 0) with the data’s true distribution D. The adversary receives
N ciphertexts, the distribution D̃ that the challenger uses to initialize the state when
b = 0, its own estimate of the data’s distribution D̂ (possibly different from D̃), and the
distribution adaptation parameter ∆. The adversary’s goal is to distinguish these two
cases. Informally, if it is able to distinguish the distribution of the N ciphertexts from
uniform, then the message distribution must not have been properly smoothed by the FSE
scheme.

Game FSE−SMOOTHA,D̃,D̂,D,N,∆FSE (λ)

b←$ {0, 1}
if b = 0 then

s0 ← FSE.Setup(λ, D̃,∆)
sk← FSE.KeyGen(λ)
m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(ci, si)← FSE.Encrypt(sk,mi, si−1)
endfor

else
s∗0 ← FSE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

endif
b′ ← A(c1, . . . , cN , D̃, D̂,∆)
return (b′ = b)

Figure 1: The frequency-smoothing game for an FSE scheme.

Definition 2. Consider the game FSE−SMOOTH in Figure 1. The frequency-smoothing
advantage of A against the FSE scheme FSE is

Advsmooth
FSE (A, D̃, D̂,D, N,∆) = 2 ·

∣∣∣∣Pr
[
FSE−SMOOTHA,D̃,D̂,D,N,∆FSE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 3. An FSE scheme FSE is (α, t, D̃, D̂,D, N,∆)-SMOOTH if for all adversaries
A running in time at most t and receiving at most N samples, it holds that

Advsmooth
FSE (A, D̃, D̂,D, N,∆) ≤ α.

From the definition of the FSE−SMOOTH game, some necessary conditions are imme-
diately obvious: first, for an FSE scheme to be FSE−SMOOTH for arbitrary D̃ and D, the
distribution adaptation parameter would need to be large and so would the total number
of homophones—the latter would need to be about the number of samples, N . Therefore,
for efficient constructions, it makes sense to consider schemes that are FSE−SMOOTH
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for classes of distributions D and D̃ that are “close enough” according to the distribution
adaptation parameter ∆.

Second, for a scheme to be FSE−SMOOTH for arbitrarily large N , the size of every
message’s homophone set must be proportional to the frequency of the corresponding
message according to D. This is a consequence of the distribution over the set of all
homophones being indistinguishable from uniform and each homophone corresponding to
exactly one message.

The FSE−SMOOTH security notion is comprehensive; it captures the possibility that
the attacker has different information (D̂) about the messages’ actual distribution (D) than
the data owner used to initialize the state (D̃). It also captures the possibility that the
adversary has information about the data owner’s estimate of the data’s distribution (D̃).
In general, the adversary may not know exactly what distribution the data owner used to
initialize the state, but we assume that it does—such an adversary is more powerful.

An important case is when the data’s distribution is known by both the data owner
and the attacker. In Section 4, we present FSE schemes that are provably secure when
D = D̃ = D̂, while in Section 5, we present results of an empirical analysis of FSE security
when D = D̃ = D̂ and compare it to security of DE when D̂ = D and D̂ ≈ D.

2.3 Message privacy
It is not enough for an FSE scheme to hide the frequencies of the messages: even if the
ciphertext distribution is uniform, the adversary could still be able to decrypt messages.
For example, consider the toy FSE scheme that “encrypts” messages simply by appending
bitstrings to them, with the number of different appended strings being proportional to
the frequency of the message. Such a scheme would satisfy Definition 3, but an adversary
could simply truncate the “ciphertexts” to recover plaintexts. Thus frequency smoothing
alone is not sufficient for security and we also need a message privacy notion.

To obtain our message privacy definition, we adapt the deterministic privacy (“detPriv”)
security notion for DE schemes [RS06] to our setting. That definition is itself an adaptation
of the indistinguishability-from-random-bits (“IND$”) notion of security for a nonce-based
symmetric encryption scheme [Rog04]. It is also similar to the notion of message privacy
we use for DE schemes in Section 3.2.

In the detPriv game [RS06], the adversary is tasked with distinguishing real encryptions
of messages m of its choice from random bitstrings selected from the ciphertext space. Our
FSE−PRIV game diverges from the detPriv game in two related ways. First, we restrict
the adversary to requesting encryptions of messages sampled according to the distribution
D, so the challenger can sample the messages on its behalf. This may seem like a limitation
of the adversary’s power, but it reflects exactly the scenario we want to model, one in
which encryption depends on the plaintext’s distribution. Second, we allow the adversary
to receive (potentially different) encryptions of the same message. In the deterministic
setting, it was assumed without loss of generality that the adversary does not repeat any
encryption queries since repeated encryptions would have revealed nothing new. In our
setting, the encryption algorithm is probabilistic, so we allow repeated encryptions of m,
but ensure they are either real encryptions or sampled from a randomly selected set Ym of
the appropriate size, that is, of size |HFSE

s∗0
(m)|.

In the FSE−PRIV game in Figure 2, the challenger either initializes the state using
the estimated distribution D̃ and then encrypts messages sampled according to D, or it
samples sets Ym of the “right” size for each message m if the true distribution D had been
known from the start in the static scheme (∆ = 0). Given N plaintext-ciphertext pairs,
the distributions D̂ and D̃, and the distribution adaptation parameter ∆, the adversary A
must determine how the plaintext-ciphertext pairs were generated.
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Game FSE−PRIVA,D̃,D̂,D,N,∆FSE (λ)

b←$ {0, 1}
m1, . . . ,mN ←DM
if b = 0 then

s0 ← FSE.Setup(λ, D̃,∆)
sk← FSE.KeyGen(λ)
for i in {1, . . . , N} do

(ci, si)← FSE.Encrypt(sk,mi, si−1)
endfor

else
s∗0 ← FSE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

for i in {1, . . . , N} do
if ∃ j < i : mi = mj do
Ymi := Ymj

else
Ymi ←$Y, |Ymi | = |H

FSE
s∗0

(mi)|
Y := Y \ Ymi

endif
ci ←$Ymi

endfor
endif
b′ ← A((m1, c1), . . . , (mN , cN ), D̃, D̂,∆)
return (b′ = b)

Figure 2: The privacy game for an FSE scheme.

Definition 4. Consider the message privacy game FSE−PRIV in Figure 2. The message-
privacy advantage of A against the FSE scheme FSE is

Advpriv
FSE(A, D̃, D̂,D, N,∆) = 2 ·

∣∣∣∣Pr
[
FSE−PRIVA,D̃,D̂,D,N,∆FSE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 5. An FSE scheme FSE is (α, t, D̃, D̂,D, N,∆)-PRIV if for all adversaries A
running in time at most t and receiving at most N plaintext-ciphertext pairs, it holds that
Advpriv

FSE(A, D̃, D̂,D, N,∆) ≤ α.

From these definitions, some guidelines arise for creating efficient, secure schemes. First,
since homophone set sizes can only increase, the initial homophone set sizes in the b = 0
case should be small to leave room to grow the sets corresponding to the most frequent
messages. Making a set of homophones too big will only require that some of its members
appear with low probability, so the sizes of the final homophone sets in the b = 0 case,
|HFSE

sN (m)|, should be roughly equal to the sizes of the homophone sets in the static b = 1
case, |Ym| = |HFSE

s∗0
(m)|.

Recall that in the smoothness game (Figure 1), the adversary sees only ciphertexts.
Frequency smoothness enforces that the sizes of each message’s homophone set must be
proportional to that message’s frequency or large enough that no ciphertexts are repeated.
In the message privacy game (Figure 2), the adversary sees plaintext-ciphertext pairs.
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Message privacy enforces that there is no link between plaintexts and ciphertexts except
what is necessary for correctness. Both conditions are necessary for a secure frequency-
smoothing scheme. In the next section, we present constructions for FSE that reflect this
two-part approach.

3 Building FSE from HE and DE
One approach to building an FSE scheme is to first probabilistically encode the messages
in a way that smooths the plaintext distribution, then deterministically encrypt them. In
this section, we present such a two-part, modular construction that composes homophonic
encoding (to smooth frequencies) with deterministic symmetric-key encryption (to provide
privacy). Sections 3.1 and 3.2 present definitions for homophonic encoding and deterministic
encryption schemes, while Section 3.3 describes how to compose them to get an FSE
scheme. In Appendix A, we describe an alternate construction of an FSE scheme from an
HE scheme, a PRF, and an IND$-CPA secure encryption scheme. By using a conventional
IV-based encryption scheme, it becomes possible to skip a potentially expensive decoding
step when decrypting FSE ciphertexts.

3.1 Homophonic encoding
We consider stateful encoding schemes that are given an estimated distribution of the
messages as input.

Definition 6. A (stateful) homophonic encoding scheme HE is a triple of algorithms
(Setup,Encode,Decode) such that:

• Setup : {0, 1}∗ ×DM × {0, 1}∗ → S is a probabilistic algorithm that takes a configu-
ration parameter λ ∈ {0, 1}∗, an estimated distribution D̃ overM, and a distribution
adaptation parameter ∆ as input and outputs some state s ∈ S that includes a
description of the distribution D̃ and any other scheme parameters.

• Encode :M×S → {E × S} ∪ {⊥} is a probabilistic algorithm that takes a message
m ∈ M and a state s ∈ S as input and outputs either an encoded message e ∈ E
and an updated state s′ ∈ S, or ⊥.

• Decode : E × S → M ∪ {⊥} is a deterministic algorithm that takes an encoded
message e ∈ E and a state s ∈ S as input and outputs a message m ∈M or ⊥.

We emphasize that all algorithms and parameters in a homophonic encoding scheme
are keyless, and therefore provide no message privacy.

For some fixed λ, D̃, and ∆, letHHE
s (m) be the set of all possible encodings (homophones)

of the messagem ∈M for any state up to the given state s. Also letHHE
s :=

⋃
m∈MHHE

s (m).
In order to use HE for its intended purpose, we require that the set of homophones of a
message is easy to compute or describe given a state. Again, call a state s′ attainable from
the state s if s′ = s or there exists some finite sequence of messages m1, . . . ,mn ∈ Mn

such that setting s0 := s and letting (ei, si)← Encode(mi, si−1) for i = 1, . . . , n, then we
have sn = s′ with non-zero probability. A homophonic encoding scheme is correct for a
distribution D̃ ∈ DM if for all states s output by Setup(λ, D̃,∆), any message m ∈ supp(D̃),
and any state s′ attainable from s, if (e, s′′)← Encode(m, s′), then Decode(e, s′′′) = m with
probability 1 for any s′′′ attainable from s′′. In particular, the correctness property requires
that any two sets of homophones HHE

s (m) and HHE
s (m′) are disjoint unless m = m′.

While encoding schemes can be fixed-length or variable-length, depending on whether
the encoded messages E all have the same length, we consider only fixed-length schemes
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in this paper. The usual advantage of variable-length codes—their low average codeword
length—is not as much of an advantage in the setting of encrypted databases1.

In Figure 3, we introduce a game HE−SMOOTH for HE schemes that is similar to
the FSE−SMOOTH game (Figure 1). We also define the advantage of an adversary and
the security of an HE scheme in a manner similar to the corresponding FSE−SMOOTH
definitions of the previous section. Note that in the b = 1 case of the FSE−SMOOTH
game, the adversary receives ciphertexts sampled uniformly at random from some set of
the right size, while in the b = 1 case of the HE−SMOOTH game, the adversary receives
ciphertexts sampled uniformly at random from the actual set of homophones.

Game HE−SMOOTHA,D̃,D̂,D,N,∆HE (λ)

b←$ {0, 1}
if b = 0 then

s0 ← HE.Setup(λ, D̃,∆)
m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(ei, si)← HE.Encode(mi, si−1)
endfor

else
s∗0 ← HE.Setup(λ,D, 0)
e1, . . . , eN ←$HHE

s∗0
endif
b′ ← A(e1, . . . , eN , D̃, D̂,∆)
return (b′ = b)

Figure 3: The frequency-smoothing game for an HE scheme.

Definition 7. Consider the game HE−SMOOTH in Figure 3. The frequency-smoothing
advantage of A against the homophonic encoding scheme HE is

Advsmooth
HE (A, D̃, D̂,D, N,∆) = 2 ·

∣∣∣∣Pr
[
HE−SMOOTHA,D̃,D̂,D,N,∆HE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 8. An HE scheme HE is (α, D̃, D̂,D, N,∆)-SMOOTH if for all adversaries A,
it holds that Advsmooth

HE (A, D̃, D̂,D, N,∆) ≤ α.

HE smoothness resembles the Distribution-Transforming Encoder (DTE) security
notion from Juels and Ristenpart’s work on honey encryption schemes [JR14]. In that
setting, distribution-specific encoders were used to construct encryption schemes that
withstand brute-force attacks by yielding plausible plaintexts when decrypting a target
ciphertext with incorrect keys. A DTE adversary’s goal is to distinguish between single
message-encoding pairs where either the message was sampled according to some given
distribution, then encoded, or the encoding was first sampled uniformly at random, then
the message obtained by decoding. This notion is tailored to their setting and is less suited
to the snapshot inference attacks based on frequency analysis that we are considering. In

1In a database table, it is likely that every value in a column is allocated the same amount of storage
according to the declared data type of the attribute. Variable-length entries are still possible, however—for
instance, by storing a prefix indicating the length of each entry in the column. Since we are considering
applications where the data items are no longer than a few bytes, it is space-efficient to pad data to a
fixed size rather than include a length prefix.
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our setting, indistinguishability of a series of samples from one of two distributions is more
appropriate than indistinguishability of message-encoding pairs. Nevertheless, the two
notions are equivalent in some cases—consider a static HE scheme where the adversary
and data owner have perfect distributional knowledge (D = D̃ = D̂). Encoded messages in
the HE−SMOOTH game can then be decoded by the adversary, yielding a multi-sample
version of DTE security. Thus, in this case, HE−SMOOTH security implies DTE security,
and when N = 1, they are equivalent.

Note that our definition of HE smoothness allows the adversary to be computationally
unbounded. Our specific HE schemes in Section 4 will achieve HE smoothness in this
strong sense.

3.2 Deterministic encryption
Deterministic encryption is the second ingredient in our modular construction for FSE
schemes. We include the standard definition here for completeness.

Definition 9. A deterministic (secret-key) encryption (DE) scheme DE is a triple of
algorithms (KeyGen,Encrypt, Decrypt) with associated sets K,M, and C such that:

• KeyGen : {0, 1}∗ → K is a probabilistic algorithm that takes a security parameter λ
as input and outputs a secret key sk ∈ K.

• Encrypt : K ×M → C is a deterministic algorithm that takes a secret key sk ∈ K
and a message m ∈M as input, and outputs a ciphertext c ∈ C.

• Decrypt : K × C → M∪ {⊥} is a deterministic algorithm that takes a key sk ∈ K
and a ciphertext c ∈ C as input and outputs a message m ∈M or ⊥.

A deterministic encryption scheme is correct if Decrypt(sk,Encrypt(sk,m)) = m for all
m ∈M and all sk ∈ K. The security notion we choose to use for DE (Figure 4) is based
on indistinguishability from random bits. Such definitions have already been used in the
context of nonce-based symmetric encryption [Rog04] and deterministic authenticated
encryption (DAE) for key-wrapping [RS06]. The adversary adaptively queries an encryption
oracle with messages and consistently receives either the corresponding ciphertext or a
string of random bits that has the same length as the ciphertext. Without loss of generality,
we assume the adversary does not repeat any queries to its encryption oracle. The
adversary’s goal is to determine whether the oracle is responding with real ciphertexts or
random bitstrings. However, to make a definition that is well-suited to the potentially
small message spaces we will encounter in our FSE schemes, we deviate from previous
definitions in the literature: in the “random bits” case, we sample ciphertexts uniformly
at random without replacement from a random ciphertext set Y ⊂ C of an appropriate
size. This makes our definition closer to that of PRI (pseudorandom injection) security for
DAE [RS06, Section 8], though we dispense with the decryption oracle in that notion.

Definition 10. Consider the deterministic privacy game in Figure 4. The message privacy
advantage of A against the deterministic encryption scheme DE is

Advpriv
DE (A, N) = 2 ·

∣∣∣∣Pr
[
DE−PRIVA,NDE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 11. A DE scheme DE is said to be (α, t,N)-private if for all adversaries
A running in time at most t and making at most N encryption queries, it holds that
Advpriv

DE (A, N) ≤ α.

A block cipher that is a PRP is easily seen to meet this definition; AES would be a
good candidate. For more flexibility in selecting the message space M, one could pad
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Game DE−PRIVA,NDE (λ)

b←$ {0, 1}
sk← DE.KeyGen(λ)
Y ←$ C, |Y | = |M|
b′ ← AENC

return (b′ = b)

ENC(m)

if b = 0 then
c := DE.Encrypt(sk,m)

else
c←$Y

Y := Y \ {c}
endif
return c

Figure 4: The message privacy game for a DE scheme. We assume that A does not repeat
queries.

short strings and use a block cipher, or use a small-domain PRP [MRS09, RY13] or a
format-preserving encryption scheme [BR02, BRRS09]. For larger domains, a wide-block
PRP or an encryption mode such as SIV could be used [RS06].

3.3 FSE from HE and DE
Now that we have defined stateful HE schemes, DE schemes, and their security, we are
ready to present our modular construction for an FSE scheme.

Definition 12. Let HE = (Setup,Encode,Decode) be a stateful homophonic encoding
scheme with message spaceM and encoded message space E . Let DE = (KeyGen,Encrypt,
Decrypt) be a deterministic encryption scheme with key space K, message space E , and
ciphertext space C. The composed FSE scheme (HE,DE)-FSE is defined as follows.

• Setup takes a security parameter λ ∈ {0, 1}∗, a distribution D ∈ DM, and a distribu-
tion adaptation parameter ∆ ∈ {0, 1}∗ as input. It runs HE.Setup(λ,D,∆) to obtain
an initial state s0 and outputs s0.

• KeyGen takes a security parameter λ ∈ {0, 1}∗ as input. It runs DE.KeyGen(λ) to
obtain a key sk ∈ K and outputs sk.

• Encrypt takes a key sk ∈ K, a message m ∈ M, and a state s ∈ S as input. It
runs HE.Encode(m, s) to obtain (e, s′). It then runs DE.Encrypt(sk, e) to obtain a
ciphertext c ∈ C. It outputs (c, s′).

• Decrypt takes a key sk ∈ K, a ciphertext c ∈ C, and a state s ∈ S as input. It runs
DE.Decrypt(sk, c) to obtain a message e ∈ E or ⊥. In the former case, it then runs
HE.Decode(e, s) to obtain a message m ∈M or ⊥. It outputs m, or ⊥ if it occurred
in either step.

When the HE scheme is frequency-smoothing and the DE scheme is message-private,
the composed FSE scheme is both frequency-smoothing and private, in the senses of
Definitions 3 and 5.

Theorem 1. Suppose that HE is an (αHE, D̃, D̂,D, N,∆)-SMOOTH homophonic encoding
scheme on (M, E ,S) for some D̃, D̂,D ∈ DM and that DE is an (αDE, t+ tHE.Setup + N ·
(tHE.Encode + tHE.Decode), N)-PRIV deterministic encryption scheme on (K, E , C). Then the
FSE scheme (HE,DE)-FSE is

• (αHE + αDE, t, D̃, D̂,D, N,∆)-SMOOTH, and

• (αHE + αDE, t, D̃, D̂,D, N,∆)-PRIV.
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Proof. First, consider smoothness of the composed FSE scheme. We prove that (HE,DE)-
FSE is smooth with the given parameters using the sequence of games illustrated in Figure 5.
The transitions between successive games are based on indistinguishability and we omit
some details of the construction of the corresponding distinguishers for brevity.

Game 0

b←$ {0, 1}
if b = 0 then

sk← DE.KeyGen(λ)
s0 ← HE.Setup(λ, D̃,∆)
m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(ei, si)← HE.Encode(mi, si−1)
ci := DE.Encrypt(sk, ei)

endfor
else

s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

endif
b′ ← A(c1, . . . , cN , D̃, D̂,∆)
return (b′ = b)

Game 1

b←$ {0, 1}
if b = 0 then

sk← DE.KeyGen(λ)
s∗0 ← HE.Setup(λ,D, 0)
for i in {1, . . . , N} do
ei ←$HHE

s∗0

ci := DE.Encrypt(sk, ei)
endfor

else
s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

endif
b′ ← A(c1, . . . , cN , D̃, D̂,∆)
return (b′ = b)

Figure 5: Sequence of games in the proof of smoothness of an (HE,DE)-FSE scheme
(continued on next page).

Let A be any SMOOTH adversary for (HE,DE)-FSE that runs in time at most t, and
let Game 0 be the FSE−SMOOTH game, as in Figure 1. When b = 0, the ciphertexts are
obtained by sampling messages mi from M according to D, encoding them using D̃ to
initialize the state, and then encrypting them. When b = 1, the ciphertexts are chosen
uniformly at random from a subset of C of the correct size, the number of FSE homophones
of each message.

Let Game 1 be the same as Game 0 except when b = 0: the ciphertexts are obtained
by first sampling N encodings ei uniformly at random from the set of HE homophones,
and then encrypting them with DE.

Consider the following (α′, D̃, D̂,D, N,∆)-SMOOTH adversary A′ for HE, which will
distinguish games 0 and 1. A′ receives (e1, . . . , eN , D̃, D̂,∆) and flips a coin b ∈ {0, 1}. If
b = 0, it runs DE.KeyGen(λ) to generate a secret key and encrypts the ei’s with it, resulting
in ci’s. If b = 1, it runs HE.Setup(λ,D, 0) to generate an initial state s∗0 and samples N
ci’s uniformly at random from a subset of C whose size is HFSE

s∗0
. It then gives the ci’s,

D̃, D̂, and ∆ to A, which returns a bit b′. If b′ = b, then A′ outputs 1. Otherwise, it
outputs 0. By definition, the advantage of A′ is the absolute difference in the probabilities
that A′ outputs 1 when its input was real encodings and when its input was uniformly
sampled encodings. If A′ received real encodings, then A is playing game 0. If A′ received
uniformly sampled encodings, then A is playing game 1. Therefore,

Advsmooth
HE (A′, D̃, D̂,D, N,∆) =|Advgame0

FSE (A, D̃, D̂,D, N,∆)
− Advgame1

FSE (A, D̃, D̂,D, N,∆)|
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Game 2

b←$ {0, 1}
if b = 0 then

s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

for i in {1, . . . , N} do
ei ←$HHE

s∗0
if ∃ j < i : ei = ej do
ci := cj

else
ci ←$Y

Y := Y \ {ci}
endif

endfor
else

s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

endif
b′ ← A(c1, . . . , cN , D̃, D̂,∆)
return (b′ = b)

Game 3

b←$ {0, 1}
if b = 0 then

s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

else
s∗0 ← HE.Setup(λ,D, 0)
Y ←$ C, |Y | = |HFSE

s∗0
|

c1, . . . , cN ←$Y

endif
b′ ← A(c1, . . . , cN , D̃, D̂,∆)
return (b′ = b)

Figure 5: Sequence of games in the proof of smoothness of an (HE,DE)-FSE scheme
(continued from previous page).

Since HE is (αHE, D̃, D̂,D, N,∆)-SMOOTH for adversaries with unbounded runtime, we
have

|Advgame0
FSE (A, D̃, D̂,D, N,∆)− Advgame1

FSE (A, D̃, D̂,D, N,∆)| < αHE.

Next, let Game 2 be the same as Game 1 except when b = 0, where the N ciphertexts
are chosen from a subset of C of the right size, with repetitions according to the pattern of
repetitions in the randomly selected ei (but otherwise being sampled without replacement,
as in the b = 1 case of the DE−PRIV game, cf. Figure 4). We can again build an adversary
A′′—this time for DE−PRIV—that interpolates between games 1 and 2 and has advantage

Advpriv
DE (A′′, N) =

∣∣∣Advgame1
FSE (A, D̃, D̂,D, N,∆)− Advgame2

FSE (A, D̃, D̂,D, N,∆)
∣∣∣ .

A′′ flips a coin b and either runs HE.Setup(λ,D, 0) to get an initial state s∗0, uniformly
samples N encoded messages ei fromHHE

s∗0
, and queries its ENC oracle with the ei (avoiding

repeated queries to ENC when repeated ei are encountered), or uniformly samples N
ciphertexts from a subset of C having size |HFSE

s∗0
|. It then runs A on these N ciphertexts,

D̃, D̂, and ∆, and outputs 1 if A’s output b′ equals b. Its running time is therefore the
time to run A, tHE.Setup, the time to sample N messages (which we assume is less than
N · tHE.Encode), and the time it takes to query its oracle (which we assume is instantaneous).
Since DE is (αDE, t+ tHE.Setup +N · tHE.Encode, N)-PRIV,∣∣∣Advgame1

FSE (A, D̃, D̂,D, N,∆)− Advgame2
FSE (A, D̃, D̂,D, N,∆)

∣∣∣ < αDE.
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Finally, we consider Game 3. In the b = 0 case of this game, we now sample the
ci’s with replacement from a subset of C of the right size, no longer relying on the ei,
which were sampled from a set of the same size, to dictate repetitions in the ci’s. It is
straightforward to see that the distribution on the ci’s is the same in Game 2 and in Game
3. Hence ∣∣∣Advgame2

FSE (A, D̃, D̂,D, N,∆)− Advgame3
FSE (A, D̃, D̂,D, N,∆)

∣∣∣ = 0.

Finally, since |HFSE
s∗0
| = |HHE

s∗0
|, the b = 0 and b = 1 cases of Game 3 are identical, so

Advgame3
FSE (A, D̃, D̂,D, N,∆) = 0. We therefore have

Advsmooth
FSE (A, D̃, D̂,D, N,∆) = Advgame0

FSE (A, D̃, D̂,D, N,∆)
< αHE + αDE

for any FSE−SMOOTH adversary A running in time at most t.
Next, consider message privacy of the composed scheme. We prove that FSE is (αHE +

αDE, t, D̃, D̂,D, N,∆)-PRIV by showing that if HE is (αHE, D̃, D̂,D, N,∆)-HE−SMOOTH
and there is an (α, t, D̃, D̂,D, N,∆)-PRIV adversary AFSE for FSE, then there is also an
(α− αHE, t+ tHE.Setup +N · (tHE.Decode + tHE.Encode), N)-PRIV adversary ADE for DE.
ADE can query its provided encryption oracle ENCDE at most N times (without

repetition), while it must simulate encrypting N messages sampled according to D (with
repetition) for AFSE. First, ADE initializes the homophonic encoding scheme HE: it runs
HE.Setup(λ,D, 0) to generate a state s∗0. It samples N encodings ei uniformly at random
with replacement from HHE

s∗0
. It decodes these ei’s to obtain the messages mi. That is,

for i = 1 to N , it sets mi := HE.Decode(ei, s∗0). Next, it queries ENCDE with each of
the distinct encodings ei to obtain c1, . . . , cN . It provides AFSE with the distributions D̃
and D̂, the distribution adaptation parameter ∆, and the N plaintext-ciphertext pairs
((m1, c1), . . . , (mN , cN )). Eventually, AFSE outputs a bit b′. ADE then outputs the same
bit.

Note that AFSE’s view is exactly the same as in the FSE−PRIV game in Figure 2. If
ENCDE is operating with bDE = 0 (real ciphertexts), then ADE is perfectly simulating the
b = 0 case for AFSE since, by the HE−SMOOTH property, encodings sampled uniformly
at random from HHE

s∗0
have the same distribution as if they were encodings of messages

sampled according to D, with an initial state determined by D̃.
If ENCDE is operating with bDE = 1 (random bitstrings without replacement), then

ADE is perfectly simulating the b = 1 case for AFSE. By the HE−SMOOTH property, the
distribution of encodings of messages sampled according to D is uniform on the set of all
homophones HHE

s∗0
. Since this set of homophones is partitioned into the sets of individual

messages’ homophones, the distribution on the latter is thus uniform as well. Hence, as
required, each message’s encoding (and thus its ciphertext) is chosen uniformly at random
from a set of the correct size with replacement. Therefore, ADE’s advantage is at least
AFSE’s advantage less the probability that the HE encodings were distinguishable:

Advpriv
DE (ADE, N) > α− αHE.

The running time of ADE is at most the time to run AFSE, tHE.Setup, sample N values from
HHE

s∗0
(which we again assume is less than N · tHE.Encode), decode N items, and make at

most N queries to its encryption oracle (which we assume is instantaneous), achieving the
required bounds.

4 Some static HE schemes
Henceforth, we narrow our focus to frequency-smoothing encryption for the scenario
where the data’s actual distribution is known to both the data owner and the adversary
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(D̃ = D̂ = D) and the homophonic encoding scheme is static (∆ = 0). We will write
Advsmooth

HE (A,D, N) for the adversary’s advantage in this case. We leave the development
of schemes for more complex settings to future work, but note that the second HE scheme
in this section can be made dynamic to cope with a changing distribution D.

We begin with a general result about an adversary’s smoothness advantage against an
HE scheme. Then, we present two concrete homophonic encoding schemes. The first one
is an interval-based scheme, which we analyse in detail, and the second one is a banded
scheme, which we briefly consider and compare to the first scheme. We will prove the
smoothness of both schemes using the general bound we now develop.

4.1 Bounding an HE−SMOOTH adversary’s advantage
When the distribution is public and the HE scheme is static, we can re-interpret the
HE−SMOOTH game from Figure 3 in terms of the resulting distribution over the encoded
message space E . Let Ds be this distribution—for a static HE scheme, it depends solely
on the initial state s output by Setup(λ,D). (For an arbitrary homophonic encoding
scheme, the distribution over the encoding space will involve a stochastic process.) Since a
message m’s homophone is chosen uniformly at random, each of its homophones e will
have frequency fDs(e) = fD(m)

|HHE(m)| .
The adversary must distinguish receiving N samples drawn according to Ds and N

samples drawn according to the uniform distribution over the set of homophones. We
bound an HE−SMOOTH adversary’s distinguishing advantage using a result from Baignères,
Junod, and Vaudenay’s statistical framework for analysing distinguishers [BJV04]. It shows
that the error probability of an optimal distinguisher given a number of samples from
two close distributions D0 and D1 can be bounded in terms of the Kullback–Leibler (KL)
divergence of D0 with respect to D1, which is defined as

KL (D0,D1) :=
∑
m∈M

fD0(m) · log fD0(m)
fD1(m)

for two distributions D0 and D1 having supportM. In particular, when D1 is the uniform
distribution overM, we can write the KL divergence in terms of D0’s Shannon entropy,
H(D0):

KL (D0,D1) =
∑
m∈M

fD0(m) · (log |M|+ log fD0(m)) = log |M| −H(D0).

That is, the Kullback–Leibler divergence of D0 from uniform is the natural log of the
support’s size less the Shannon entropy of D0 in nats.

The following bound follows directly from the result of Baignères, Junod, and Vaudenay
that determines an optimal distinguisher’s probability of error [BJV04, Theorem 6].

Theorem 2. Let HE be a static homophonic encoding scheme with message spaceM and
encoded message space E. Let D ∈ DM be a public distribution over M, and let Ds be
the resulting distribution over E for a state s output by HE.Setup(λ,D). If fDs(e) is close
to 1/|HHE

s | for all encodings e ∈ HHE
s , then, for any HE−SMOOTH adversary A, and for

sufficiently large N ,

Advsmooth
HE (A,D, N) ≤

∣∣∣∣∣∣12 − Φ

−
√
N ·KL

(
Ds,U|HHE

s |
)

2

∣∣∣∣∣∣
where Φ(·) is the cdf of the standard normal distribution.
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This theorem applies even to computationally unbounded adversaries. The requirement
that fDs(e) be close to 1/|HHE

s | for all e is not a restriction; it is necessary for smoothness.
(It is inherited from [BJV04, Prop. 5], where it allows a Taylor series expansion to be
truncated at the second order with only small error.) Recall that the cdf of the standard
normal distribution, Φ, equals 1/2 at 0, so the closer N ·KL

(
Ds,U|HHE

s |
)
is to 0, the smaller

is any HE−SMOOTH adversary’s advantage. Hence, in order to establish a smoothness
bound on any particular static scheme HE, it is sufficient to prove bounds on KL

(
Ds,U|HHE

s |
)
.

Finally, using the fact that the pdf of a standard normal distribution peaks at 0 with value
1/
√

2π, it is easy to see that a good upper bound on Advsmooth
HE (A,D, N) is given by

Advsmooth
HE (A,D, N) ≤ 1

2
√
π
·
√
N ·KL

(
Ds,U|HHE

s |
)
. (1)

This suggests that to make the adversary’s advantage very small, we need KL
(
Ds,U|HHE

s |
)
�

1/N . We now turn to the analysis of two specific static encoding schemes. For convenience
in what follows, we assume thatM⊆ {0, 1}n.

4.2 Interval-based homophonic encoding
Informally, interval-based homophonic encoding (IBHE) partitions the set of r-bit strings
according to the distribution D: message m will be allocated an interval of about fD(m) ·2r
bitstrings. Each message will be replaced by one of its corresponding r-bit strings.

One way (others are possible) of partitioning the set of r-bit strings according to D is as
follows. Suppose, without loss of generality, that the messages in supp(D) = {m1,m2, . . .}
are numbered by increasing frequency according to D. Now, consider the cumulative
distribution FD. To simplify notation, let FD(m0) := 0. Then, the homophone set of any
message mi ∈ supp(D) is{

b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1
}
,

where integers in this set are represented with r bits. This interval has size approximately
2r · fD(mi), as desired. The encoding algorithm for IBHE simply selects an encoding e of
mi uniformly at random from the relevant interval.

It is clear that the encoding bitlength r must be at least log2 |supp(D)| so each message
can have at least one possible encoding. In addition, r must be big enough so that each
message is assigned a non-empty interval using this partitioning technique. The following
straightforward proposition relates a message distribution, an IBHE encoding length, and
a lower bound on the number of homophones each message has.

Proposition 1. Let D be a distribution over the message space M, with messages in
supp(D) = {m1,m2 . . .} numbered by increasing frequency, and let h ≥ 1 be a positive
integer. Then, when encoded with r-bit IBHE, every message m ∈ supp(D) has at least h
homophones if and only if r ≥ rmin−h, where

rmin−h :=
⌈

max
1≤i≤|supp(D)|

log2
i · h− 0.5
FD(mi)

⌉
For correctness (i.e., to ensure that no message in the support of D is assigned an

empty homophone set), r ≥ rmin−1 is necessary and sufficient.
It is possible to obtain a simpler sufficient (though not necessary) condition for every

message in the support of D to have at least h homophones by noting that messages are
ordered according to frequency, so FD(mi) ≥ i · fD(m1).

Corollary 1. If messages are encoded with r-bit IBHE for some r ≥ log2
h

fD(m1) , then
every message m ∈M has at least h homophones.
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Proof. For any i from 1 to |M|, we have

log2
h

fD(m1) ≥ log2
i · h− 0.5
i · fD(m1) ≥ log2

i · h− 0.5
FD(mi)

.

Therefore, the condition r ≥ log2
h

fD(m1) is enough to guarantee that all messages have
at least h homophones.

Definition 13. The interval-based homophonic encoding (IBHE) scheme with message
spaceM⊆ {0, 1}n is defined as follows:

• Setup : (λ,D) 7→ s, computes the maximum r of the minimum encoding length
rmin−1 and the encoding length rD,λ determined by D and λ, and outputs the state
s := (r,D).

• Encode : (m, s) 7→ e ∪ ⊥, chooses an integer e uniformly at random from the set of
m’s homophones HHE

s (m) :=
{
b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1

}
, and outputs

either the r-bit representation of e, or ⊥ if m /∈ supp(D).

• Decode : (e, s) 7→ m ∪ ⊥, determines the message mi ∈ supp(D) such that e ∈
{FD(mi−1), . . . , FD(mi)− 1}, and outputs either m := mi, or ⊥ if no such mi exists.

Note that it is possible for the encoded bitlength r to be smaller than the data’s
bitlength n, in which case IBHE compresses data. Also note that IBHE’s Encode and
Decode algorithms need access to tables mapping the messages mi to their intervals{

b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1
}

via the cdf FD of D, and vice versa. Since each interval can be represented by 2r bits, we
see that the total client-side storage for these tables is 4r · |supp(D)| bits.

In order to apply Theorem 2 to bound the HE-smoothness of IBHE, and thereby
Theorem 1 to construct an FSE scheme, we need an upper bound on the Kullback–Leibler
divergence of the encoded data’s distribution Ds relative to the uniform distribution U|HHE

s |.
For IBHE, if the encoding length r is at least rmin−h, as defined in the statement of
Prop. 1, then this bound is approximately 1/2h2. This result is stated in the following
lemma.

Lemma 1. Let D be a distribution over M and suppose that m1 is the least frequent
message in the support of D. Suppose that the encoding length r in the IBHE scheme is
such that r ≥ rmin−h for some positive integer h and let s := (r,D). Then,

KL (Ds,U2r ) ≤
1

2h2 .

Proof. For ease of notation, suppose E = HHE
s = {0, 1}r and writeHHE forHHE

s . Recall that
messages in the support of D are numbered by increasing frequency, and since r ≥ rmin−h,
each of these messages has at least h homophones in E .

Let δi := bFD(mi) · 2re −FD(mi) · 2r be a rounding error associated with each message
in supp(D), so δi ∈ (−0.5, 0.5]. For convenience, set δ0 := 0. Then, we can express the size
of a message’s homophone set as

|HHE(mi)| = fD(mi) · 2r + δi − δi−1. (2)

In order to apply Theorem 2, the distribution of the encoded data, Ds, must already be
somewhat close to uniform. By applying eqn. 2 and recalling how Ds is defined, we get

fDs(e)
2−r = fD(mi) · 2r

|HHE(mi)|
= 1 + δi−1 − δi

|HHE(mi)|
.
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For the approximation to hold, δi−1−δi
|HHE(mi)| must be small for all i from 1 to |M|. Since the

difference of the rounding errors, δi−1 − δi, could take on any value in the interval (−1, 1),
we must instead bound |HHE(mi)| using the fact that r ≥ rmin−h.

Using a Taylor series approximation for log(fDs(e)/2−r) in the same way as [BJV04,
Prop. 5], we obtain

KL (Ds,U2r ) ≈
1
2
∑
e∈E

(fDs(e)− 2−r)2

2−r

≈ 2r−1
∑
e∈E

(fDs(e)− 1/2r)2

≈ 2r−1
|supp(D)|∑
i=1

|HHE(mi)| ·
(

fD(mi)
|HHE(mi)|

− 1/2r
)2

≈ 2r−1
|supp(D)|∑
i=1

(
fD(mi)2

|HHE(mi)|
− 2 · fD(mi)

2r + |H
HE(mi)|
22r

)

≈ 2r−1
|supp(D)|∑
i=1

(
fD(mi)2

|HHE(mi)|

)
− 1 + 1

2 .

Next, we simplify the sum using eqn. 2:

|supp(D)|∑
i=1

fD(mi)2

|HHE(mi)|
=
|supp(D)|∑
i=1

(
|HHE(mi)| − (δi − δi−1)

)2
22r · |HHE(mi)|

= 1
22r

|supp(D)|∑
i=1

(
|HHE(mi)| − 2(δi − δi−1) + (δi − δi−1)2

|HHE(mi)|

)

= 1
2r + 1

22r

|supp(D)|∑
i=1

(δi − δi−1)2

|HHE(mi)|
.

where the middle term collapsed to zero by virtue of δ0 = δ|supp(D)| = 0. Finally, by noting
that δi ∈ (−0.5, 0.5] guarantees that (δi − δi−1)2 ≤ 1, using the assumption that each
message has at least h homophones, and hence that |supp(D)| can be at most 2r/h, we get
the bound

|supp(D)|∑
i=1

(δi − δi−1)2

|HHE(mi)|
≤ |supp(D)| 1

h
≤ 2r
h2 .

Combining the equations and inequalities above yields the desired bound:

KL (Ds,U2r ) ≤
1

2h2 .

Suppose one has a distribution D, N samples, and a given target ε for the frequency-
smoothing advantage Advsmooth

HE (A,D, N) for the IBHE scheme. Using the approximation
in eqn. 1 from the start of this section and the bound from the above lemma, we obtain
after some manipulation the requirement

h ≥
√
N

2
√

2πε
.
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Combining this value with the sufficient condition from Cor. 1 enables us to derive a
minimum bitlength for r to use in the IBHE scheme:

r ≥ log2

√
N

2
√

2πε · fD(m1)
.

Note that to halve the upper bound on an adversary’s advantage ε, the minimum encoding
length must increase by 1 bit.

A numerical example. Suppose D is such that fD(m1) = 2−5. Suppose N = 210 and
ε = 2−10. Then we get h ≥ 215/2

√
2π ≈ 212.7. Applying the bound from Cor. 1 to

guarantee r ≥ rmin−h, we find that we need r ≥ 18 to limit the frequency-smoothing
advantage of any adversary to at most 2−10 against IBHE for these parameters.

Variants. We now describe, with practicality in mind, two variants of IBHE, one of which
we will use in our evaluation in Section 5.

(Variant 1) Append encodings to messages rather than entirely replacing them. This
enables, for instance, faster decoding when processing query results.

(Variant 2) Modify how intervals (homophone sets) are allocated in such a way that
smaller encoding bitlengths are possible (as long as they are still at least log2 |supp(D)|).
Some distributions can yield prohibitively large values of rmin−1 if fD(m1) is relatively
tiny.

The change to how intervals of {0, . . . , 2r − 1} are assigned can be interpreted simply
as building intervals (in the same way as before) for a modified distribution D′. The
algorithm shown in Figure 6 takes as input a distribution D and a desired encoding length.
It outputs a second distribution, D′, with the same support as D that can be used to
construct intervals, encode, and decode with the desired encoding length. Starting with
the least frequent message, this algorithm changes the distribution just enough that one
homophone is assigned to each “too small” message. It does this until each of the remaining
messages can be assigned at least one homophone after being scaled to share the error
introduced by assigning “too many” homophones to the least frequent messages. When
r ≥ rmin−1, this algorithm does not change the distribution.

The resulting modified IBHE scheme would run this algorithm as part of Setup and
use the adjusted distribution D′ in the state, s := (r,D′), for all encoding and decoding.
The original distribution D does not need to be stored.

4.3 Banded homophonic encoding
We next present a simple homophonic encoding scheme that appends tags to messages
rather than replacing them entirely. The tags can have any length l ≥ 1 and each message
has at most 2l homophones. Let D be some distribution overM and again suppose that
the messages in supp(D) are numbered according to their frequencies:

fD(m1) ≤ fD(m2) ≤ . . . ≤ fD(m|supp(D)|).

Based on these frequencies, each message has a band that determines the number of possible
tags that can be appended to it and therefore the number of homophones it has. Divide
the interval (0, fD(m|supp(D)|)] into 2l bands each of width w := fD(m|supp(D)|)/2l, numbered
1 to 2l. The messages whose frequencies are in band i, in the interval ((i− 1) · w, i · w],
will each have i homophones. In particular, the most frequent message, m|M|, will have 2l
homophones—all possible l-bit strings can be appended to it.

Definition 14. The banded homophonic encoding (BHE) scheme with message space
M⊆ {0, 1}n is defined as follows:
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Distribution adjustment algorithm

isBigEnough := False

scaleFactor := 1
for i in{1, . . . , |supp(D)|} do

if i = 1 then
if fD(mi) < 1/2r+1 then
fD′(mi) := 1/2r+1

scaleFactor := (1− fD(mi))/(1− fD′(mi))
else
fD′(mi) := fD(mi)
// second value could still be too small

else // i ≥ 2

if isBigEnough then
fD′(mi) := fD(mi)/scaleFactor

else
if fD(mi) ≥ 1/2r · scaleFactor then
isBigEnough := True

fD′(mi) := fD(mi)/scaleFactor
else
fD′(mi) := 1/2r

scaleFactor := (1− FD(mi))/(1− FD′(mi))
return D′

Figure 6: Distribution adjustment algorithm for distribution D and desired encoding
length r, with r ≥ log2 |supp(D)|, and messages numbered by increasing frequency.

• Setup : (λ,D) 7→ s computes the tag length l determined by λ and D, the band width
w := fD(m|supp(D)|)/2l, and outputs s := (l,w,D).

• Encode : (m, s) 7→ m‖t ∪ ⊥ computes message m’s frequency band, b := dfD(m)/we,
picks an integer t uniformly at random in {0, 1, ..., b − 1}, and outputs either the
(n+ l)-bit string m‖t, where t is represented using l bits, or ⊥ if m /∈ supp(D).

• Decode : (e, s) 7→ Trunc (e, n) removes the last l bits of e to recover m.

The main advantages of this banded HE scheme are that there is no minimum tag length
and decoding is fast—in particular, it does not need any table of frequency information to
decode. Encoding requires storing a table of l · |M| bits.

Another feature is that if the distribution changes, the scheme can adapt to the new
frequencies without re-encoding every data item. This can be done by using so-far-unused
l-bit tags if an item’s frequency increases (effectively increasing its band number), or by
initially over-sizing l and using a deliberately under-sized set of homophones and, if an
item’s frequency decreases, re-scaling the bands used for all the other items. By contrast,
the interval-based encoding scheme cannot adapt to changes in the distribution without
re-encoding all of the messages.

A negative aspect of the banded homophonic encoding scheme is that the total number
of encodings, |HHE

s |, is not fixed. For Theorem 2 to apply, the distribution of the encoded
data must already be close enough to the uniform distribution on its homophones. Consider
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the rounding errors for each message: let
δi :=

⌈
2l · fD(m)/fD(m|supp(D)|)

⌉
− 2l · fD(m)/fD(m|supp(D)|),

so δi ∈ [0, 1) for each mi, 1 ≤ i ≤ |supp(D)|. The total number of homophones is then

|HHE
s | =

2l
fD(m|supp(D)|)

+
|supp(D)|∑
i=1

δi.

Whereas the total number of homophones was predictable (indeed fixed) for IBHE, here it
may vary by as much as |supp(D)| − 1 depending on the distribution and the rounding
errors δi it produces. For the encoded data’s distribution to be close enough to uniform
so we can apply Theorem 2, we require |supp(D)| � 2l

fD(m|supp(D)|) . This unpredictability
indicates that values of l for BHE will need to be much higher than values of r for IBHE
to guarantee smoothness. This is quantified in the following lemma.
Lemma 2. Let D be a distribution overM and suppose that m|supp(D)| is the most frequent
message according to D. Suppose that l in the BHE scheme is such that |supp(D)| �

2l
fD(m|supp(D)|) , and let |HHE

s | be the size of the resulting set of homophones. Then

KL
(
Ds,U|HHE

s |
)
≤
|supp(D)| · fD(m|supp(D)|)

2l+1 .

Proof. For ease of notation, suppose E =
⋃
m∈supp(D)HHE

s (m), and write HHE for HHE
s .

Recall that the number of homophones of a message m ∈ supp(D) is its band number,⌈
2l · fD(m)/fD(m|supp(D)|)

⌉
, where m|supp(D)| is the most frequent message according to D.

Letting δi := |HHE(mi)| − 2l · fD(mi)/fD(m|supp(D)|), we can write

|HHE| = 2l
fD(m|supp(D)|)

+
|supp(D)|∑
i=1

δi. (3)

By assumption, |supp(D)| � 2l
fD(m|supp(D)|) , so Theorem 2 applies and we can use the following

approximation for the Kullback–Leibler divergence:

KL
(
Ds,U|HHE|

)
≈ 1

2
∑
e∈E

(
fDs(e)− 1/|HHE|

)2
1/|HHE|

≈ |H
HE|
2

|supp(D)|∑
i=1

|HHE(mi)| ·
(

fD(mi)
|HHE(mi)|

− 1
|HHE|

)2

≈ |H
HE|
2

|supp(D)|∑
i=1

(
fD(mi)2

|HHE(mi)|
− 2 · fD(mi)

|HHE|
+ |H

HE(mi)|
|HHE|2

)

≈ |H
HE|
2

|supp(D)|∑
i=1

fD(mi)2

|HHE(mi)|

− 1 + 1
2

Next, we estimate the sum using the fact that δi ∈ [0, 1) for i = 1, . . . , |supp(D)|:
|supp(D)|∑
i=1

fD(mi)2

|HHE(mi)|
=
|supp(D)|∑
i=1

fD(mi)2

2l · fD(mi)/fD(m|supp(D)|) + δi

≤
|supp(D)|∑
i=1

fD(mi)2

2l · fD(mi)/fD(m|supp(D)|)

≤
fD(m|supp(D)|)

2l .
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Finally, combining this upper bound on the sum with an upper bound on the total number
of homophones from eqn. 3 yields the desired bound:

KL
(
Ds,U|HHE|

)
≤

2l
fD(m|supp(D)|) + |supp(D)|

2

(
fD(m|supp(D)|)

2l

)
− 1

2

≤
|supp(D)| · fD(m|supp(D)|)

2l+1 .

Suppose one has a distribution D, N samples, and a given target ε for the frequency-
smoothing advantage Advsmooth

HE (A,D, N) for the BHE scheme. Using the above lemma
and the bound on an adversary’s advantage in eqn. 1 from the start of this section, we
obtain the requirement

l ≥ log2

(
N · |supp(D)| · fD(m|supp(D)|)

(2ε)2 · π

)
− 1.

Note that since fD(m|supp(D)|) is the maximum frequency, fD(m|supp(D)|) ≥ 1
|supp(D)| , so

regardless of the distribution, the added bitlength l must be at least

log2

(
N

(2ε)2 · π

)
− 1.

A numerical example. Suppose N = 210 and ε = 2−10, and let D be the given distribution
on the message spaceM. A lower bound on the required tag length l in the BHE scheme
is log2

(
210

(2·2−10)2·π

)
− 1 ≈ 25. The minimum value of l needed for a specific distribution

may be greater still.
Recall the similar example at the end of Section 4.2: for the same values of N and ε,

the minimum required encoding bitlength for interval-based HE was r ≥ 12.7 + log2
1

fD(m1) .
With banded HE, the minimum additional bitlength is l = 25.

5 Practical security
We have introduced definitions and general constructions that we proved secure with
respect to our expressly defined security notions. However, as we have seen in some
numerical examples for our encoding schemes, achieving typical cryptographic security
levels for our notion of FSE−SMOOTH security could require large encoding lengths for
some distributions, leading to a serious blow-up in query complexity (cf. Sec. 2.1). Given
this limitation, we choose to perform an empirical evaluation of the security of FSE against
frequency analysis attacks2.

In this section, therefore, we adopt a more pragmatic approach, working with moderate
encoding lengths and switching to a more practical metric of evaluation, since we already
know that we will not attain cryptographic levels of security for arbitrary distributions. The
security metric we work with in this section is the number of data items that an attacker
can correctly decrypt, which has been used for assessing the effectiveness of inference
attacks in the literature [NKW15, GSB+17] and closely reflects a real-world adversary’s
aim of plaintext recovery. This approach is similar to the paradigm of accelerated provable
security, also called prove-then-prune [HKR15]: we designed a scheme and proved its

2Of course, we are also interested in achieving FSE−PRIV, but this is easily done using our HE-DE
construction with an appropriate DE component, e.g., a block cipher such as AES.
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security based on the security of its primitives, but we relax the primitives for practical
use and rely on cryptanalysis to assess security.

We evaluate an FSE scheme built from static HE and DE using our modular construction.
For the HE component, we use IBHE (Section 4.2) with the distribution adjustment
algorithm (variant 2 at the end of that section). Our attacks on FSE are in the public
distribution setting, where D̃ = D̂ = D. This grants the adversary greater power than in
the scenario considered by Naveed et al. [NKW15], where D̂ is only approximately D.

Our aim is to reduce the attacker’s success rate in recovering plaintext to that of a
naive guessing attack, which is, in any case, not preventable. We develop a maximum
likelihood attack for this setting, and then assess its performance using databases of
medical records, the same data to which Naveed et al. applied DE and carried out
inference attacks [NKW15]. This allows us to compare the security of FSE and of DE, and
of FSE to naive guessing attacks.

5.1 A maximum likelihood attack on static FSE
Given the selected metric of success—the number of records an attacker can correctly
decrypt—we must determine how an attacker would maximize this number. We apply the
technique of maximum likelihood estimation (MLE) to derive an efficient attack on a static
FSE scheme under the assumption that only frequency information is meaningful. MLE is
an asymptotically optimal technique; as the number of samples tends toward infinity, the
maximum likelihood estimator is an unbiased estimator with the smallest variance.

Our analysis relies on the following two assumptions. The first is that a static FSE
scheme’s Encrypt algorithm outputs each of a message’s homophones with equal probability.
This property holds for composed FSE schemes arising from both of our static HE
constructions. It is reasonable to assume that it would hold for any static FSE scheme
since the state is not updated in such schemes and, after all, the goal of a frequency-
smoothing scheme is to smooth the distribution such that it becomes indistinguishable
from uniform. Our second assumption is that the adversary considers only “proper”
deterministic decryption functions—its solution cannot map one ciphertext to multiple
plaintexts, nor can it assign one plaintext more homophones than it has. This rules out
attacks that may otherwise appear to perform well, such as simply guessing that every
item is the plaintext having the highest frequency in the reference distribution. Such
a naive attack could actually perform better than the MLE attack with respect to this
metric.

We let DB denote the collection of N ciphertexts available to the adversary. We let
n(c) denote the number of times that ciphertext c ∈ C occurs in DB. According to the
MLE approach, a most likely decryption θ maximises the likelihood L(θ|DB) := Pr[DB|θ ].
Thus we wish to compute

arg max
θ

Pr[DB|θ ] = arg max
θ

∏
c∈C

(
fD(θ(c))
|HFSE(θ(c))|

)n(c)

= arg max
θ

∏
m∈supp(D)

(
fD(m)
|HFSE(m)|

)∑
c∈θ−1(m)

n(c)

= arg max
θ

∑
m∈supp(D)

 ∑
c∈θ−1(m)

n(c)

 · log fD(m)
|HFSE(m)|

where at the last step, we use the fact that maximising a product of terms can be achieved
by maximising the sum of the logs of those terms. To maximize this expression, θ should
map the most frequently occurring ciphertexts (with largest n(c) values) to the messages
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with the largest “scaled frequencies” fD(m)/|HFSE(m)|. This observation leads directly to
the following attack.

When not all possible ciphertexts appear in the set DB, the sizes of the sets θ−1(m)
can be strictly less than |HFSE(m)|. In this case, we scale the number of homophones of
each message by the fraction of unique ciphertexts in C that occur in the sample DB.

So, suppose the adversary has N FSE-encrypted items, each of whose underlying
plaintext was sampled independently fromM according to the known distribution D. The
adversary can compute the number of homophones |HFSE

s (m)| for each m in supp(D), since
this set’s size depends on the state s, which in turn depends only on the distribution and
not the particular choice of key. Further, suppose |HFSE| = |C|, so that every possible
ciphertext appears at least once.

The adversary’s goal is to find the correct many-to-one decryption mapping θ : C →M.
Let n(c) denote the number of times that ciphertext c ∈ C occurs in the set of samples.
The attack is as follows. Label the distinct observed ciphertexts so their counts are in
decreasing order:

n(c1) ≥ n(c2) ≥ · · · ≥ n(c|C|).

Also label the plaintext items in the support of D so their scaled frequencies are in
decreasing order:

fD(m1)
|HFSE

s (m1)| ≥
fD(m2)
|HFSE

s (m2)| ≥ · · · ≥
fD(m|supp(D)|)
|HFSE

s (m|supp(D)|)|
.

Then the attack sets θ so that

θ :{c1, . . . , c|HFSE
s (m1)|} 7→ m1,

θ :{c|HFSE
s (m1)|+1, . . . , c|HFSE

s (m1)|+|HFSE
s (m2)|} 7→ m2,

and so on, until the |HFSE
s (m|supp(D)|)| least frequent ciphertexts are mapped to m|supp(D)|.

This efficient procedure creates a decryption mapping θ that is not necessarily unique:
if two or more encrypted data item counts are the same, then permuting them will result
in decryption mappings that are equally likely. Similarly, if two or more scaled plaintext
frequencies are the same, then permuting them will result in equally likely decryption
mappings. In our experiments, such ties were broken randomly.

Notice that if deterministic encryption were used in place of FSE, so that |HFSE
s (m)| = 1

for each message m, then this attack reduces to a basic frequency analysis attack of the
type used by Naveed, Kamara, and Wright [NKW15], which was shown to be maximum
likelihood [LP15]. Thus our attack generalises basic frequency analysis.

This attack is easily modified for the case where the attacker and data owner have
different information about the data’s distribution (D̂ 6= D̃). In this case, the attacker
would number the plaintext items according to fD̂(m)/|HFSE

s̃ (m)|, where s̃ depends only
on D̃.

5.2 Experimental results
We use the aforementioned MLE attack to simulate an attacker attempting to decrypt
FSE-encrypted records in a database. We individually attack the 12 columns of each of 200
medical databases (one per hospital). To obtain the distribution D, we work with patient
discharge data from the 200 largest hospitals in the 2009 Nationwide Inpatient Sample
(NIS), from the Healthcare Cost and Utilization Project (HCUP), run by the Agency for
Healthcare Research and Quality in the United States [Age09]. The largest hospitals were
those with the greatest total number of discharges in that year. The 12 target attributes
are listed in Table 2, along with the number of distinct values the attribute can take
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and a typical minimum encoding length for the IBHE scheme. (Different per-hospital
distributions could result in slightly different rmin values.) APRDRG refers to the All
Patients Refined Diagnosis Related Groups, a patient classification system.

We simulate FSE-encrypting and then attacking the HCUP data of the individual largest
hospitals using each of the hospitals’ data to define a per-hospital reference distribution for
each of the 12 target attributes. We assume this per-hospital distribution is always known
to the attacker. This experimental setup is good for the attacker—in reality, it is likely
that an attacker attempting to steal a particular hospital’s data would only have access to,
say, national statistics from previous years (like in [NKW15]). To simplify our analysis,
we ignore all values that were identified as missing, invalid, unavailable, or inconsistent.

Table 2: The 12 attributes targeted in our experiments.

Attribute Num. Typical rmin
values (IBHE)

Age (AGE) 125 20
Admission month (AMONTH) 12 4
Admission source (ASOURCE) 5 10
Admission type (ATYPE) 6 12
Patient died (DIED) 2 5
Sex (FEMALE) 2 1
Length of stay (LOS) 365 23
Major diagnostic category (MDC) 25 10
Primary payer (PAY1) 6 7
Ethnicity group (RACE) 6 7
Disease severity (APRDRG_Severity) 4 10
Mortality risk (APRDRG_Risk_Mortality) 4 10

Our results are presented in a series of graphs in Figure 7, one for each attribute, and
with various encoding lengths r for each attribute. These graphs show complementary
cumulative distributions, since we are interested in the number of databases for which at
least some fraction of the records were recovered. We consider each attribute separately,
so “percentages of records recovered” refers not to entire records (rows) in a database, but
to the values of a particular attribute (column) in those records.

Our goal, informally, is that attacking FSE is hard—in particular, at least as hard
as attacking DE. If our attacks are less successful against FSE than DE, then the lines
corresponding to FSE will be to the left of and below those for DE, and the area under
them will be smaller.

The trivial guessing attack. An adversary can always simply guess that every ciphertext
it sees corresponds to the most likely plaintext. It would succeed quite well with this
metric for certain attributes, irrespective of the encryption method used. This is the case,
for example, with the binary attribute DIED where there is one very likely plaintext (since
most patients survive their hospital visits). Each attribute’s graph in Figure 7 includes a
solid gray line, labelled “max fD”, that represents the success rate of this trivial attack.
No encryption method can force the trivial attacker below this line, so little security is
achievable for certain attributes like DIED using any form of encryption (according to the
metric chosen for our evaluation).



28 Frequency-smoothing encryption

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls
FSE, r= 8
FSE, r= 10
FSE, r→∞
DE

DE (D̂≈D)
max fD

Age

(a) Age

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission month

(b) Admission month

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Mortality risk

(c) Mortality risk

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Disease severity

(d) Disease severity

Figure 7: Our experimental results by attribute: complementary cumulative distributions
(continued on next two pages).

Our MLE approach does not capture this trivial attack since it looks for a correct
decryption mapping that respects the numbers of homophones each plaintext has. Thus,
it is possible for the trivial attack to actually perform better than a statistically optimal
attack. As can be seen from the graphs, by setting r appropriately, we can ensure that this
is the case, making the MLE attack worse than simple guessing. Since it is not possible for
any encryption scheme to protect against simple guessing attacks, the fact that the MLE
attack is made worse than the trivial attack by homophonic encoding is a positive feature
of our approach. Indeed, once this is achieved for a particular value of r, there is no benefit
in increasing r further (except perhaps to disguise which database column is which).

Comparison with DE. Naveed et al. individually attacked 200 databases of DE-encrypted
medical data from 2009 using aggregated 2004 data for the auxiliary distribution [NKW15].
The power of frequency analysis attacks on DE can be further strengthened by assuming the
attacker knows the exact per-database distributions rather than an aggregated distribution.
In evaluating DE, we consider both situations, yielding two curves for DE in each graph:
one that uses an aggregated distribution (D̂ ≈ D, similar to [NKW15], but from the same
year) and the other, a per-database distribution (D̂ = D). Our experiments attacking FSE
always assume that the adversary has exact knowledge of the data’s distribution D, giving
it the most power.

For some attributes, frequency analysis on DE even with aggregated auxiliary data
recovers nearly all records in all databases (e.g., APRDRG_Risk_Mortality, DIED, FEMALE),
and per-hospital distributions perform even better, recovering nearly 100% of records
correctly in every case. And, as can be seen from our graphs in Figure 7, FSE withstands
attacks much better than DE in the majority of cases, even when the adversary is given the



Marie-Sarah Lacharité and Kenneth G. Paterson 29

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls
FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission source

(e) Admission source

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission type

(f) Admission type

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Patient died

(g) Patient died

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Sex

(h) Sex

Figure 7: Our experimental results by attribute: complementary cumulative distributions
(continued from previous page and continued on next page).

per-hospital distributions. The results for AGE, LOS, and MDC are particularly encouraging.
One exception is DIED; using FSE barely reduces the number of records an attacker can
recover, even with large encoding lengths. The reason is that DIED is binary and one value
accounts for over 98% of records in a data set, on average. Thus the MLE attack will
still succeed with high probability, as it will assign the majority of ciphertexts to the high
probability value and be correct most of the time. As noted earlier, in such a situation,
the trivial plaintext recovery attack that just assigns every ciphertext to the most likely
plaintext value performs even better and is also unavoidable for any encryption scheme.

Limit case. As the encoding length r increases, there are fewer repeated ciphertexts, and
eventually, no ciphertext occurs more than once. Given N ciphertext items, our MLE
attack assigns approximately N · fD(m) of them to message m. For large enough N , we
can approximate this assignment of plaintexts to ciphertexts in the following manner:
for each ciphertext, the attacker independently samplesM according to D to determine
its guess. The probability that any single ciphertext is assigned the correct plaintext is
then f :=

∑
m∈M fD(m)2, and the number of correct guesses then follows a binomial

distribution with N trials and success probability f . We have simulated such an attack
strategy using each individual hospital’s distribution and indicated the resulting curves
with r → ∞ in the graphs. The fraction of records recovered quickly converges to this
random guessing strategy, even using encoding lengths much less than rmin.

Distribution adjustment algorithm. We use the distribution adjustment algorithm in
Figure 6: when the desired encoding length is less than rmin, intervals are constructed in
a different way that guarantees even the least frequent items have at least one homophone.
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Figure 7: Our experimental results by attribute: complementary cumulative distributions
(continued from two previous pages).

The values of rmin were typically highest for AGE (20) and LOS (23). Using an encoding
length of 8 for AGE still resulted in fewer records decrypted than with DE. For LOS, whose
minimum unencoded bitlength is 9, there was a drastic drop in the percentage of records
recovered even with an encoding length of only 10. Using only DE, 50% of hospitals had
at least 80% of their records recovered, while with 10-bit IBH encoding, no hospital had
more than 22% of its records recovered.

Query complexity. The parameter r affects query complexity in addition to affecting
storage cost: an equality (point) query for one item becomes an equality query for each
of its homophones. For large enough encoding lengths r, our results indicate that the
statistically optimal MLE attack offers no advantage over guessing—even when the attacker
has precise knowledge of the underlying data’s distribution. However, the results quickly
converge to random guessing for all attributes, and the effect on query complexity is
manageable. For example, encoding AGE with r = 10 bits results in a query expansion of
2r · fD(0) ≈ 27 in the worst case (for the most frequent age, 0). Encoding MDC with r = 10
bits results in a query expansion of about 28 for the most frequent item.

Limitations. For a few attributes, such as ASOURCE and RACE, even an attacker using the
random guessing strategy succeeds more often than may be acceptable. In these cases,
higher values of r cannot help limit the adversary’s success. These attributes had few
possible plaintext values (5 and 6 respectively) and their unencoded distributions were
skewed: for example, the most common ASOURCE value was about 29 times more frequent
than the least common value. As we noted above, such guessing attacks are unavoidable
in this situation.



Marie-Sarah Lacharité and Kenneth G. Paterson 31

6 Related work
As noted in the introduction, homophonic substitution is a classical cryptographic technique
introduced to combat frequency analysis on substitution ciphers (which, after all, is what a
DE scheme is). While the idea of applying it in the current domain is not groundbreaking,
we present the original analysis required to assess its security in theory and practice. In
particular, we did not find our MLE analysis from Section 5.1 in the literature on this
topic.

In concurrent work, Pouliot, Griffy, and Wright [PGW17] developed the notion of
weakly randomized encryption (WRE). In such schemes, some randomness is inserted into
each ciphertext to prevent frequency analysis, which is also the goal of our frequency-
smoothing encryption schemes. Their most secure construction is WRE with Poisson
salt allocation, where each plaintext is assigned a number of ciphertexts determined by a
Poisson process: for every message m, the Poisson process is run over the interval (0, f(m)],
with the number of arrivals determining how many homophones it will have and the inter-
arrival times determining what frequency each of them will have. Since the inter-arrival
times of the Poisson events are exponentially distributed, the ciphertexts will each have a
frequency sampled from an exponential distribution with the same parameter as the Poisson
distribution. These ciphertext frequencies are fixed, so without having specified a bound
on the number of samples the adversary sees, it is possible to determine their frequencies
to arbitrary precision. Then, because the adversary is not computationally bounded, it
can exhaustively find groups of ciphertexts for which the sum of their frequencies equals
the frequency of one particular plaintext. This enables an unbounded adversary to break
the scheme of [PGW17]. It is plausible that a bounded adversary who can solve subset
sum problems for certain ranges of parameters would also succeed in breaking the scheme.
Of course, this approach requires the auxiliary distribution of plaintext frequencies to be
exact.

A few OPE/ORE schemes have properties similar to frequency-smoothing. The first
OPE scheme [AKSX04] uses a kind of homophonic encoding in its construction. Its goal is
not necessarily to hide frequencies, but to hide the input’s distribution by transforming
it to have some target distribution. The paper used the Kolmogorov-Smirnov test to
determine whether (i) the input data’s distribution was indistinguishable from uniform
after flattening, and (ii) the encoded data’s distribution was indistinguishable from data
with the target distribution (Gaussian, Zipf, or uniform). In their experiments, the data
items had 32 bits and encodings had 64 bits. In contrast to [AKSX04], our work applies
to any type of data, not just numeric, and we focus on DE rather than OPE. Both of
our HE schemes can be combined with OPE in an analogous way to our (HE,DE)-FSE
construction to produce an FSE scheme that is order-preserving.

Kerschbaum [Ker15] presented a frequency-hiding OPE scheme that entirely forbids
repetition of ciphertexts. However, it has large client-side storage requirements and,
because of its order-preserving nature, is vulnerable to partial plaintext recovery attacks in
a snapshot attack model [GSB+17]. The security notion used is indistinguishability under
frequency-analysing ordered chosen plaintext attack (IND-FA-OCPA). The adversary is
tasked with distinguishing between encryptions of two equal-length sequences of plaintexts,
not necessarily distinct, which have at least one randomized order in common (this being
a ranking in which ties are allowed to be broken arbitrarily). The IND-FA-OCPA security
notion captures the idea that the ciphertext leaks only the randomized order. It does not
leak any frequency information, since each message and ciphertext value occurs exactly once.
Roche et al. [RACY16] introduced a partial order-preserving encoding scheme that uses
the same security notion. Boneh et al.’s ORE scheme [BLR+15] is built from multilinear
maps and the authors admit it is too inefficient for practical use. These approaches are
incomparable to ours since we do not require ciphertexts to be distinct. Allowing repetition
in turn enables us to achieve more flexible trade-offs between security and performance.
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Papadimitriou et al.’s splayed additively symmetric homomorphic encryption (SPLASHE)
construction [PBC+16] hides frequencies while supporting aggregate operations such as
COUNT and SUM by expanding each column into as many columns as there are possible
values. Their enhanced SPLASHE construction addresses the attendant storage expansion
by assigning individual columns to the “most frequent” values and grouping together the
“least frequent” values in one column. To distinguish the less frequent values, a column of
deterministically encrypted (DE) values is added. The frequencies of the “least frequent”
values in this column are smoothed with a rudimentary padding technique. SPLASHE
was designed for data analytics and in particular it does not support equality queries or
joins. It also suffers from significant data expansion, about 10x for a real-world analytics
database.

Another recent construction is a secure order-preserving indexing (OPI) that supports
efficient point and range queries while hiding frequencies [MGD16]. OPI expands the
plaintext domain to the ciphertext domain by assigning an interval of indices to each
plaintext whose size is proportional to its frequency, much like we do with IBHE in
Section 4.2. However, there is no formal security analysis nor suggestion about how
to choose the size of the ciphertext domain. The schemes we propose have adjustable
parameters to attain the desired balance of security and efficiency.

We imagine FSE applied to columns in a database, and there exist other solutions
for securely querying an encrypted database. For example, Kamara and Moataz [KM16]
developed a structured encryption scheme for relational databases that supports many
types of SQL queries and does not leak any frequency information. However, the storage
cost can be very high, and unlike our schemes, it is not a scheme that could be added to
an existing SQL database in a legacy-friendly manner; it would entirely replace a database
and change how queries are treated.

7 Conclusions and applications
Deterministic encryption has many useful applications, but as recent research has demon-
strated, the frequency information it leaks can be devastating to security. Using our
frequency-smoothing encryption (FSE) approach, which is based on homophonic encoding
(HE), lets data owners gain control over how much information their encrypted data leaks
when it is at rest. Our definitions are generic enough to include schemes that adapt to
initially unknown plaintext distributions, and our security notions take into account the
number of ciphertexts the adversary sees and its knowledge about the plaintext distribution,
which may be different from the data owner’s knowledge about this distribution.

We provided an empirical evaluation of our static (HE,DE)-FSE scheme with interval-
based homophonic encoding (IBHE) and moderate encoding lengths r in the case where
the data’s distribution is known to both the data owner and adversary. We simulated
FSE-encrypting and attacking the same medical records that were DE-encrypted and
attacked by Naveed et al. [NKW15]. To attack the FSE-encrypted data, we developed
a statistically optimal attack that generalises frequency analysis on DE. Then, we were
able to directly compare attacking DE and FSE using the same metric: the proportion of
items that an adversary successfully recovers. FSE can withstand attacks by adversaries
that know the data’s actual distribution, which DE cannot. We showed that our attack
on FSE rapidly devolves to having the success rate of a trivial guessing strategy (which
cannot be prevented by any cryptographic means) as r, the encoding parameter of the
IBHE scheme, increases. In passing, we note that our approach can further impede attacks
by disguising the number of plaintexts in a column, making it harder to identify which
column corresponds to which encrypted attribute.

Encrypting values in database columns to preserve query capabilities is only one
application of deterministic encryption. Many OPE scheme are deterministic, and some
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searchable encryption schemes use deterministically encrypted per-document keywords to
find search results, which makes them susceptible to inference attacks based on frequency
analysis. In particular, as we have already noted, our HE schemes are compatible with
OPE: OPE can simply replace DE in the construction of Section 3.3. Our IBHE and BHE
schemes do not rely on messages being ordered by frequency, and they work equally well
when the messages are in numerical order. Moreover, numerical ordering is preserved by
the HE schemes. However, the recent snapshot attack [GSB+17] on the frequency-hiding
OPE scheme of Kerschbaum [Ker15] suggests caution is warranted here.

Relatedly, it would be interesting to explore the effect of HE on the success of pairwise
column attacks for OPE [DDC16] and on the success of other inference attacks that exploit
cross-column correlations [BGC+17]. Addressing the same issue would be of great interest
for indices in searchable encryption, in particular for inference attacks exploiting word
co-occurrence [PW16] or attacks that use subsets of known documents [CGPR15].

Finally, our general definition of FSE is conducive to the development of schemes that
can adapt to changing distributions in the underlying data. It is important to assess how
the attack prevention capability of our static HE techniques degrades as the distribution
changes gradually, to understand how much change can be tolerated.
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A Building FSE from HE and CIV
While the modularity of the composed approach to achieving FSE may offer control over
the security-efficiency trade-offs and choice of DE scheme, an all-in-one approach with
no separate decryption and decoding steps could be more efficient. In this appendix, we
describe how to build an FSE scheme of this type, from any HE scheme, a PRF, and a
conventional IV-based IND$-CPA encryption scheme. This approach is somewhat inspired
by the synthetic IV (SIV) construction of Rogaway and Shrimpton [RS06]. We modify SIV
by using a homophonic encoding of the message instead of the message itself to generate
the IVs.

Definition 15. Let HE = (Setup,Encode,Decode) be a stateful homophonic encoding
scheme with message spaceM and encoded message space E . Let CIV = (KeyGen,Encrypt,
Decrypt) be a conventional IV-based encryption scheme, as defined in [RS06], with key space
K1, message space E , IV space IV, and ciphertext space C. Let PRF be a pseudorandom
function with keyspace K2 and output space {0, 1}n ⊆ IV. The SIV-like (HE,CIV)-FSE
scheme is defined as follows.

• Setup takes a security parameter λ ∈ {0, 1}∗, a distribution D ∈ DM, and a distribu-
tion adaptation parameter ∆ ∈ {0, 1}∗ as input. It runs HE.Setup(λ,D,∆) to obtain
an initial state s0, which it outputs.

• KeyGen takes a security parameter λ ∈ {0, 1}∗ as input. It runs CIV.KeyGen(λ) to
obtain a key sk1 ∈ K1 and selects sk2←$K2. It outputs (sk1, sk2).

• Encrypt takes keys (sk1, sk2) ∈ K1×K2, a messagem ∈M, and a state s ∈ S as input.
It runs HE.Encode(m, s) to obtain either ⊥, in which case it also returns ⊥, or (e, s′).
It then computes PRF(sk2, e) to get iv ∈ IV. Lastly, it runs CIV.Encrypt(sk1,m; iv)
to obtain a ciphertext c ∈ C. It sets ĉ = iv‖c and outputs (ĉ, s′).

• Decrypt takes keys (sk1, sk2) ∈ K1 ×K2 and a ciphertext ĉ as input. It parses ĉ as
iv‖c ∈ IV × C or returns ⊥ if this is not possible. It runs CIV.Decrypt(sk1, c; iv) to
obtain a message m, and returns m.

This scheme does not run HE.Decode during decryption, thus avoiding the need to
store a decoding table and making it potentially more attractive for implementation.

We omit a detailed security analysis of this scheme. Satisfying FSE−PRIV follows from
the IND$-CPA security of CIV. The use of a PRF to generate the IVs from encodings e
produces IVs that are indistinguishable from random, up to repetitions induced by the
encoding scheme, with such encodings arising only from message repetitions and therefore
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resulting in identical ciphertexts ĉ = iv‖c. Satisfying FSE−SMOOTH, on the other hand,
follows from the HE-smoothness of HE, the pseudorandomness of PRF and the IND$-CPA
security of CIV.

The construction here generalises to build an FSE scheme from any HE scheme, a PRF,
and any deterministic authenticated encryption (DAE) scheme, in the sense introduced
in [RS06]. The idea is to set the header for the DAE scheme to be PRF(sk2, e) where e is
output by HE.Encode as in the above construction. We note, however, that the integrity
properties enjoyed by DAE are overkill for security in our snapshot attacker model.
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