
SECRECY WITHOUT ONE-WAY FUNCTIONS

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

Abstract. We show that some problems in information security can be solved with-
out using one-way functions. The latter are usually regarded as a central concept of
cryptography, but the very existence of one-way functions depends on difficult con-
jectures in complexity theory, most notably on the notorious “P 6= NP” conjecture.
This is why cryptographic primitives that do not employ one-way functions are often
called “unconditionally secure”.

In this paper, we suggest protocols for secure computation of the sum, product,
and some other functions of two or more elements of an arbitrary constructible ring,
without using any one-way functions. A new input that we offer here is that, in
contrast with other proposals, we conceal “intermediate results” of a computation.
For example, when we compute the sum of k numbers, only the final result is known
to the parties; partial sums are not known to anybody. Other applications of our
method include voting/rating over insecure channels and a rather elegant and efficient
solution of the “two millionaires problem”.

Then, while it is fairly obvious that a secure (bit) commitment between two parties
is impossible without a one-way function, we show that it is possible if the number
of parties is at least 3. We also show how our unconditionally secure (bit) commit-
ment scheme for 3 parties can be used to arrange an unconditionally secure (bit)
commitment between just two parties if they use a “dummy” (e.g., a computer) as
the third party. We explain how our concept of a “dummy” is different from a well-
known concept of a “trusted third party”. Based on a similar idea, we also offer an
unconditionally secure k-n oblivious transfer protocol between two parties who use a
“dummy”.

We also suggest a protocol, without using a one-way function, for the so-called
“mental poker”, i.e., a fair card dealing (and playing) over distance.

Finally, we propose a secret sharing scheme where an advantage over Shamir’s
and other known secret sharing schemes is that nobody, including the dealer, ends
up knowing the shares (of the secret) owned by any particular player.

It should be mentioned that computational cost of our protocols is negligible to
the point that all of them can be executed without a computer.

1. Introduction

Secure multi-party computation is a problem that was originally suggested by Yao
[18] in 1982. The concept usually refers to computational systems in which several
parties wish to jointly compute some value based on individually held secret bits of

Research of the first author was partially supported by the Federal Agency of the Science and
Innovations of Russia, State Contract No. 02.740.11.5192.

Research of the second author was partially supported by the NSF grants DMS-0914778 and CNS-
1117675.

1



2 SECRECY WITHOUT ONE-WAY FUNCTIONS

information, but do not wish to reveal their secrets to anybody in the process. For
example, two individuals who each possess some secret numbers, x and y, respectively,
may wish to jointly compute some function f(x, y) without revealing any information
about x or y other than what can be reasonably deduced by knowing the actual value
of f(x, y).

Secure computation was formally introduced by Yao as secure two-party computa-
tion. His “two millionaires problem” (cf. our Section 3) and its solution gave way to a
generalization to multi-party protocols, see e.g. [4], [7]. Secure multi-party computa-
tion provides solutions to various real-life problems such as distributed voting, private
bidding and auctions, sharing of signature or decryption functions, private information
retrieval, etc.

In this paper, we offer protocols for secure computation of the sum and product of
three or more elements of an arbitrary constructible ring without using encryption or
any one-way functions whatsoever. We require in our scheme that there are k secure
channels for communication between the k ≥ 3 parties, arranged in a circuit. We also
show that less than k secure channels is not enough.

Unconditionally secure multiparty computation was previously considered in [4] and
elsewhere (since the present paper is not a survey, we do not give a comprehensive
bibliography on the subject here, but only mention what is most relevant to our paper).
A new input that we offer here is that, in contrast with [4] and other proposals, we
conceal “intermediate results” of a computation. For example, when we compute a
sum of k numbers ni, only the final result

∑k
i=1 ni is known to the parties; partial sums

are not known to anybody. This is not the case in [4] where each partial sum
∑s

i=1 ni

is known to at least some of the parties. This difference is important because, by the
“pigeonhole principle”, at least one of the parties may accumulate sufficiently many
expressions in ni to be able to recover at least some of the ni other than his own.

Here we show how our method works for computing the sum (Section 2) and the
product (Section 4) of private numbers. We ask what other functions can be securely
computed without revealing intermediate results.

Other applications of our method include voting/rating over insecure channels (Sec-
tion 2.3) and a rather elegant solution of the “two millionaires problem” (Section 3).

We also address another cryptographic primitive, known as (bit) commitment. In
cryptography, a commitment scheme allows one to commit to a value while keeping it
hidden, with the ability to reveal the committed value later. Commitments are used to
bind a party to a value so that they cannot adapt to other messages in order to gain
some kind of inappropriate advantage. They are important to a variety of cryptographic
protocols including secure coin flipping, zero-knowledge proofs, and secure multi-party
computation. See [8] or [13] for a general overview.

It is known [12] that a secure (bit) commitment between two parties is impossible
without some kind of encryption, i.e., without a one-way function. However, if the
number of parties is at least 3, this becomes possible, as long as parties do not form
coalitions to trick other party (or parties). It has to be pointed out though that formal
definitions of commitment schemes vary strongly in notation and in flavor, so we have



SECRECY WITHOUT ONE-WAY FUNCTIONS 3

to be specific about our model. We give more formal details in Section 6, while here
we just say, informally, that what we achieve is the following: if the committed values
are just bits, then after the commitment stage of our scheme is completed, none of the
parties can guess any other party’s bit with probability greater than 1

2 . We require in
our scheme that there are k secure channels for communication between the parties,
arranged in a circuit. We also show that less than k secure channels is not enough.

Then, in Section 7, we show how our unconditionally secure (bit) commitment scheme
for 3 parties can be used to arrange an unconditionally secure (bit) commitment between
just two parties if they use a “dummy” (e.g., a computer) as the third party. We explain
how our concept of a “dummy” is different from a well-known concept of a “trusted
third party” and also from Rivest’s idea of a “trusted initializer” [15]. In particular,
a difference important for real-life applications is that our “dummy” is unaware of the
committed values. Also, our “dummy” is passive, i.e., he does not privately transmit
information to “real” participants and he does not generate randomness.

Based on a similar idea, we also offer, in Section 8, an unconditionally secure k-n
oblivious transfer protocol between two parties who use a “dummy”.

In Section 9, we consider a related cryptographic primitive known as “mental poker”,
i.e., a fair card dealing (and playing) over distance. Several protocols for doing this,
most of them using encryption, have been suggested, the first by Shamir, Rivest, and
Adleman [17], and subsequent proposals include [5] and [9]. As with the bit commit-
ment, a fair card dealing between just two players over distance is impossible without
a one-way function since commitment is part of any meaningful card dealing scenario.
However, it turns out to be possible if the number of players is k ≥ 3. What we require
though is that there are k secure channels for communication between players, arranged
in a circuit. We also show that our protocol can, in fact, be adapted to deal cards to
just 2 players. Namely, if we have 2 players, they can use a “dummy” player (e.g. a
computer), deal cards to 3 players, and then just ignore the “dummy”’s cards, i.e., “put
his cards back in the deck”. An assumption on the “dummy” player is that he cannot
generate any randomness, so randomness has to be supplied to him by the two “real”
players. Another assumption is that there are secure channels for communication be-
tween either “real” player and the “dummy”. We believe that this model is adequate
for 2 players who want to play online but do not trust the server. “Not trusting” the
server exactly means not trusting with generating randomness. Other, deterministic,
operations can be verified at the end of the game; we give more details in Section 9.2.

We note that the only known (to us) proposal for dealing cards to k ≥ 3 players
over distance without using one-way functions was published in [1], but their protocol
lacks the simplicity, efficiency, and some of the functionalities of our proposal; this is
discussed in more detail in our Section 10. Here we just mention that computational
cost of our protocols is negligible to the point that they can be easily executed without
a computer.

Finally, in Section 11, we propose a secret sharing scheme where an advantage over
Shamir’s [16] and other known secret sharing schemes is that nobody, including the
dealer, ends up knowing the shares (of the secret) owned by any particular players.
The disadvantage though is that our scheme is a (k, k)-threshold scheme only.



4 SECRECY WITHOUT ONE-WAY FUNCTIONS

2. Secure computation of a sum

In this section, our scenario is as follows. There are k parties P1, . . . , Pk; each Pi has
a private element ni of a fixed constructible ring R. The goal is to compute the sum of
all ni without revealing any of the ni to any party Pj , j 6= i.

One obvious way to achieve this is well studied in the literature (see e.g. [8, 9, 11]):
encrypt each ni as E(ni), send all E(ni) to some designated Pi (who does not have a
decryption key), have Pi compute S =

∑
i E(ni) and send the result to the participants

for decryption. Assuming that the encryption function E is homomorphic, i.e., that∑
i E(ni) = E(

∑
i ni), each party Pi can recover

∑
i ni upon decrypting S.

This scheme requires not just a one-way function, but a one-way function with a
trapdoor since both encryption and decryption are necessary to obtain the result.

What we suggest in this section is a protocol that does not require any one-way func-
tion, but involves secure communication between some of the Pi. So, our assumption
here is that there are k secure channels of communication between the k parties Pi,
arranged in a circuit. Our result is computing the sum of private elements ni without
revealing any individual ni to any Pj , j 6= i. Clearly, this is only possible if the number
of participants Pi is greater than 2. As for the number of secure channels between Pi,
we will show that it cannot be less than k, by the number of parties.

2.1. The protocol (computing the sum).
(1) P1 initiates the process by sending n1+n01 to P2, where n01 is a random element

(“noise”).
(2) Each Pi, 2 ≤ i ≤ k − 1, does the following. Upon receiving an element m from

Pi−1, he adds his ni + n0i to m (where n0i is a random element) and sends the
result to Pi+1.

(3) Pk adds nk + n0k to whatever he has received from Pk−1 and sends the result
to P1.

(4) P1 subtracts n01 from what he got from Pk; the result now is the sum S =∑
1≤i≤k ni +

∑
2≤i≤k n0i. Then P1 publishes S.

(5) Now all participants Pi, except P1, broadcast their n0i, possibly over insecure
channels, and compute

∑
2≤i≤k n0i. Then they subtract the result from S to

finally get
∑

1≤i≤k ni.
Thus, in this protocol we have used k (by the number of the parties Pi) secure

channels of communication between the parties. If we visualize the arrangement as a
graph with k vertices corresponding to the parties Pi and k edges corresponding to
secure channels, then this graph will be a k-cycle. Other arrangements are possible,
too; in particular, a union of disjoint cycles of length ≥ 3 would do. (In that case,
the graph will still have k edges.) Two natural questions that one might now ask are:
(1) is any arrangement with less than k secure channels possible? (2) with k secure
channels, would this scheme work with any arrangement other than a union of disjoint
cycles of length ≥ 3? The answer to both questions is “no”. Indeed, if there is a vertex
(corresponding to P1, say) of degree 0, then any information sent out by P1 will be
available to everybody, so other participants will know n1 unless P1 uses a one-way



SECRECY WITHOUT ONE-WAY FUNCTIONS 5

function to conceal it. If there is a vertex (again, corresponding to P1) of degree 1,
this would mean that P1 has a secure channel of communication with just one other
participant, say P2. Then any information sent out by P1 will be available at least to
P2, so P2 will know n1 unless P1 uses a one-way function to conceal it. Thus, every
vertex in the graph should have degree at least 2, which implies that every vertex is
included in a cycle. This immediately implies that the total number of edges is at least
k. If now a graph Γ has k vertices and k edges, and every vertex of Γ is included in
a cycle, then every vertex has degree exactly 2 since by the “handshaking lemma” the
sum of the degrees of all vertices in any graph equals twice the number of edges. It
follows that our graph is a union of disjoint cycles.

2.2. Effect of coalitions. Suppose now we have k ≥ 3 parties with k secure channels
of communication arranged in a circuit, and suppose 2 of the parties secretly form a
coalition. Our assumption here is that, because of the circular arrangement of secure
channels, a secret coalition is only possible between parties Pi and Pi+1 for some i,
where the indices are considered modulo k; otherwise, attempts to form a coalition (over
insecure channels) will be detected. If two parties Pi and Pi+1 exchanged information,
they would, of course, know each other’s elements ni, but other than that, they would
not get any advantage if k ≥ 4. Indeed, we can just “glue these two parties together”,
i.e., consider them as one party, and then the protocol is essentially reduced to that
with k−1 ≥ 3 parties. On the other hand, if k = 3, then, of course, two parties together
have all the information about the third party’s element.

For an arbitrary k ≥ 4, if n < k parties want to form a (secret) coalition to get
information about some other party’s element, all these n parties have to be con-
nected by secure channels, which means there is a j such that these n parties are
Pj , Pj+1, . . . , Pj+n−1, where indices are considered modulo k. It is not hard to see
then that only a coalition of k − 1 parties P1, . . . , Pi−1, Pi+1, . . . , Pk can suffice to get
information about the Pi’s element.

2.3. Ramification: voting/rating over insecure channels. In this section, our
scenario is as follows. There are k parties P1, . . . , Pk; each Pi has a private integer ni.
There is also a computing entity B (for Boss) who shall compute the sum of all ni. The
goal is to let B compute the sum of all ni without revealing any of the ni to him or to
any party Pj , j 6= i.

The following example from real life is a motivation for this scenario.

Example 1. Suppose members of the board in a company have to vote for a project by
submitting their numeric scores (say, from 1 to 10) to the president of the company. The
project gets a green light if the total score is above some threshold value T . Members of
the board can discuss the project between themselves and exchange information privately,
but none of them wants his/her score to be known to either the president or any other
member of the board.

In the protocol below, we are again assuming that there are k channels of communi-
cation between the parties, arranged in a circuit: P1 → P2 → . . . → Pk → P1. On the



6 SECRECY WITHOUT ONE-WAY FUNCTIONS

other hand, communication channels between B and any of the parties are not assumed
to be secure.

2.4. The protocol (rating over insecure channels).
(1) P1 initiates the process by sending n1 + n01 to P2, where n01 is a random

number.
(2) Each Pi, 2 ≤ i ≤ k − 1, does the following. Upon receiving a number m from

Pi−1, he adds his ni + n0i to m (where n0i is a random number) and sends the
result to Pi+1.

(3) Pk adds nk + n0k to whatever he has received from Pk−1 and sends the result
to B.

(4) Pk now starts the process of collecting the “adjustment” in the opposite direc-
tion. To that effect, he sends his n0k to Pk−1.

(5) Pk−1 adds n0(k−1) and sends the result to Pk−2.
(6) The process ends when P1 gets a number from P2, adds his n01, and sends the

result to B. This result is the sum of all n0i.
(7) B subtracts what he got from P1 from what he got from Pk; the result now is

the sum of all ni, 1 ≤ i ≤ k.

3. Application: the “two millionaires problem”

The protocol from Section 2, with some adjustments, can be used to provide an
elegant and efficient solution to the “two millionaires problem” introduced in [18]:
there are two numbers, n1 and n2, and the goal is to solve the inequality n1 ≥ n2?
without revealing the actual values of n1 or n2.

To that effect, we use a “dummy” as the third party. Our concept of a “dummy” is
quite different from a well-known concept of a “trusted third party”; importantly, our
“dummy” is not supposed to generate any randomness; he just does what he is told to.
Basically, the only difference between our “dummy” and a usual calculator is that there
are secure channels of communication between the “dummy” and either “real” party.
One possible real-life interpretation of such a “dummy” would be an online calculator
that can combine inputs from different users. Also note that in our scheme below the
“dummy” is unaware of the committed values of n1 or n2, which is useful in case the
two “real” parties do not want their private numbers to ever be revealed. This suggests
yet another real-life interpretation of a “dummy”, where he is a mediator between two
parties negotiating a settlement.

Thus, let A (Alice) and B (Bob) be two “real” parties, and D (Dummy) the “dummy”.
Suppose A’s number is n1, and B’s number is n2.

3.1. The protocol (comparing two numbers).

(1) A splits her number n1 as a difference n1 = n+
1 − n−1 . She then sends n−1 to B.

(2) B splits his number n2 as a difference n2 = n+
2 − n−2 . He then sends n−2 to A.

(3) A sends n+
1 + n−2 to D.

(4) B sends n+
2 + n−1 to D.



SECRECY WITHOUT ONE-WAY FUNCTIONS 7

(5) D subtracts (n+
2 + n−1 ) from (n+

1 + n−2 ) to get n1 − n2, and announces whether
this result is positive or negative.

Remark 1. Perhaps a point of some dissatisfaction in this protocol could be the fact
that the “dummy” ends up knowing the actual difference n1−n2, so if there is a leak of
this information to either party, this party would recover the other’s private number ni.
This can be avoided if n1 and n2 are represented in the binary form and compared one bit
at a time, going left to right, until the difference between bits becomes nonzero. However,
this method, too, has a disadvantage: the very moment the “dummy” pronounces the
difference between bits nonzero would give an estimate of the difference n1 − n2 to the
real parties, not just to the “dummy”.

We note that the original solution of the “two millionaires problem” given in [18],
although lacks the elegance of our scheme, does not involve a third party, whereas our
solution does. On the other hand, the solution in [18] uses encryption, whereas our
solution does not, which makes it by far more efficient.

4. Secure computation of a product

In this section, we show how to use the same general ideas from Section 2 to se-
curely compute a product. Again, there are k parties P1, . . . , Pk; each Pi has a private
(nonzero) element ni of a fixed constructible ring R. The goal is to compute the prod-
uct of all ni without revealing any of the ni to any party Pj , j 6= i. Requirements on
the ring R are going to be somewhat more stringent here than they were in Section 2.
Namely, we require that R does not have zero divisors and, if an element r of R is a
product a · x with a known a and an unknown x, then x can be efficiently recovered
from a and r. Examples of rings with these properties include the ring of integers and
any constructible field.

4.1. The protocol (computing the product).

(1) P1 initiates the process by sending n1 ·n01 to P2, where n01 is a random nonzero
element (“noise”).

(2) Each Pi, 2 ≤ i ≤ k − 1, does the following. Upon receiving an element m from
Pi−1, he multiplies m by ni ·n0i (where n0i is a random element) and sends the
result to Pi+1.

(3) Pk multiplies by nk · n0k whatever he has received from Pk−1 and sends the
result to P1. This result is the product P = Π1≤i≤k ni · Π2≤i≤k n0i.

(4) P1 divides what he got from Pk by his n01; the result now is the product
P = Π1≤i≤k ni · Π2≤i≤k n0i. Then P1 publishes P .

(5) Now all participants Pi, except P1, broadcast their n0i, possibly over insecure
channels, and compute Π2≤i≤k n0i. Then they divide P by the result to finally
get Π1≤i≤k ni.



8 SECRECY WITHOUT ONE-WAY FUNCTIONS

5. Secure computation of symmetric functions

In this section, we show how our method can be easily generalized to allow secure
computation of any expression of the form

∑k
i=1 nr

i , where ni are parties’ private num-
bers, k is the number of parties, and r ≥ 1 an arbitrary integer. We simplify our
method here by removing the “noise”, to make the exposition more transparent.

5.1. The protocol (computing the sum of powers).

(1) P1 initiates the process by sending a random element n0 to P2.
(2) Each Pi, 2 ≤ i ≤ k − 1, does the following. Upon receiving an element m from

Pi−1, he adds his nr
i to m and sends the result to Pi+1.

(3) Pk adds his nr
k to whatever he has received from Pk−1 and sends the result to

P1.
(4) P1 subtracts (n0 − nr

1) from what he got from Pk; the result now is the sum of
all nr

i , 1 ≤ i ≤ k.

Now that the parties can securely compute the sum of any powers of their ni, they
can also compute any symmetric function of ni. However, in the course of computing
a symmetric function from sums of different powers of ni, at least some of the parties
will possess several different polynomials in ni, so chances are that at least some of the
parties will be able to recover at least some of the ni. On the other hand, because of
the symmetry of all expressions involved, there is no way to tell which ni belongs to
which party.

5.2. Open problem. Now it is natural to ask:

Problem 1. What other functions (other than the sum and the product) can be securely
computed without revealing intermediate results to any party?

To be more precise, we note that one intermediate result is inevitably revealed to
the party who finishes computation, but this cannot be avoided in any scenario. For
example, after the parties have computed the sum of their private numbers, each party
also knows the sum of all numbers except his own. What we want is that no other
intermediate results are ever revealed.

To give some insight into this problem, we consider a couple of examples of computing
simple functions different from the sum and the product of the parties’ private numbers.

Example 2. We show how to compute the function f(n1, n2, n3) = n1n2 + n2n3 in
the spirit of the present paper, without revealing (or even computing) any intermediate
results, i.e., without computing n1n2 or n2n3.

(1) P2 initiates the process by sending a random element n0 to P3.
(2) P3 adds his n3 to n0 and sends n3 + n0 to P1.
(3) P1 adds his n1 to n0 + n3 and sends the result to P2.
(4) P2 subtracts n0 from n0 + n3 + n1 and multiplies the result by n2. This is now

n1n2 + n2n3.



SECRECY WITHOUT ONE-WAY FUNCTIONS 9

Example 3. The point of this example is to show that functions that can be computed
by our method do not have to be homogeneous (in case the reader got this impression
based on the previous examples).

The function that we compute here is f(n1, n2, n3) = n1n2 + g(n3), where g is any
computable function.

(1) P1 initiates the process by sending a random element a0 to P2.
(2) P2 multiplies a0 by his n2 and sends the result to P3.
(3) P3 multiplies a0n2 by a random element c0 and sends the result to P1.
(4) P1 multiplies a0n2c0 by his n1, divides by a0, and sends the result, which is

n1n2c0, back to P3.
(5) P3 divides n1n2c0 by c0 and adds g(n3), to end up with n1n2 + g(n3).

Note that in this example, the parties used more than just one loop of transmissions
in the course of computation. Also, information here was sent “in both directions” in
the circuit.

Remark 2. Another collection of examples of multiparty computation without revealing
intermediate results can be obtained as follows. Suppose, without loss of generality, that
some function f(n1, . . . , nk) can be computed by our method in such a way that the last
step in the computation is performed by the party P1, i.e., P1 is the one who ends up with
f(n1, . . . , nk) while no party knows any intermediate result g(n1, . . . , nk) of this compu-
tation. Then, obviously, P1 can produce any function of the form F (n1, f(n1, . . . , nk))
(for a computable function F ) as well. Examples include nr

1+n1n2 · · ·nk for any r ≥ 0;
nr

1 + (n1n2 + n3)s for any r, s ≥ 0, etc., etc.

6. (Bit) commitment

While it is fairly obvious that a secure (bit) commitment between two parties is
impossible without a one-way function, we show here that it is possible if the number
of parties is at least 3. Generalizing the standard concept (see e.g. [8]) of a two-party
(bit) commitment scheme, we define an n-party (bit) commitment scheme to be a two-
phase protocol through which each of the n parties can commit himself to a value such
that the following two requirements are satisfied:

(1) Secrecy: at the end of the commitment phase, none of the n parties gains any
information about any other party’s committed value.

(2) Unambiguity: suppose that the commitment phase is successfully completed. Then,
if later the parties perform the decommitment phase (sometimes called the reveal phase),
each party’s committed value can be recovered (collectively by other parties) without
ambiguity.

To make our ideas more transparent, we start with the simplest case where there are
just 3 parties: P1, P2, and P3, and no two of them form a coalition against the third
one. Suppose they want to commit to integers n1, n2, and n3 (modulo some m ≥ 2),
respectively. More precisely, the scenario is as follows. During the commitment phase,
the parties exchange various pieces of information about their integers ni. After that,



10 SECRECY WITHOUT ONE-WAY FUNCTIONS

the parties “decommit”, or reveal, their integers and prove to each other that the
integers ni that they revealed are the same that they committed to.

All computations below are performed modulo a fixed integer m ≥ 2.
(1) Each participant Pi randomly splits his integer ni in a sum of two integers:

ni = ri + si. If the participants want to commit to bits rather than integers,
then Pi would split the “0” bit as either 0+0 or 1+1, and the “1” bit as either
0+1 or 1+0.

(2) (Commitment phase.) P1 sends r1 to P2, then P2 sends r1 + r2 to P3, then P3

sends r1 + r2 + r3 to P1. In the “opposite direction”, P3 sends s3 to P2, then
P2 sends s2 + s3 to P1, then P1 sends s1 + s2 + s3 to P3.

After the commitment phase, P1 has s1, s2 + s3, r1, and r1 + r2 + r3

(therefore also r2 + r3), so he cannot possibly recover any ni other
than his own. (He can recover n2 +n3, but this does not give him any
information about either n2 or n3). Then, P2 has s2, s3, r1, and r2, so
he, too, cannot possibly recover any ni other than his own. Finally, P3

has s3, r3, r1 + r2, and s1 + s2 + s3 (therefore also s1 + s2), so he, too,
cannot possibly recover any ni other than his own, (He can recover
n1 + n2, but this does not give him any information about either n1

or n2).
(3) (Decommitment phase starts.) Note that during the decommitment steps below,

each participant transmits information that somebody else had committed to
before. This way, each piece of transmitted information can be corroborated
by two parties, which prevents cheating since we are assuming that no two
participants form a coalition.

(4) P3 sends n1 + n2 to both P1 and P2. Now P1 knows n2, and P2 knows n1.
(5) P2 sends r1 to P3. Now P3 can recover r2 from r1 and r1 + r2.
(6) P1 sends s2 + s3 to P3. Now P3 can extract s2 from this sum, and then, since

he has r2, recover n2, and then also n1 since P3 already knows n1 + n2.
(7) P1 sends r1 + r2 + r3 to P2. Now P2 can recover r3 and therefore n3 = r3 + s3.

This protocol can be obviously generalized to 3m participants for arbitrary m ≥ 1
by splitting the players into triples and applying the above protocol to each triple. It
can also be generalized to an arbitrary number k ≥ 3 of participants with a circular
arrangement of k secure channels, but we leave details to the reader.

Remark 3. A question that one might now ask, if only out of curiosity, is: would this
scheme work with any arrangement of secure channels other than a union of disjoint
circuits of length ≥ 3? The answer to this question is “no”. Indeed, if in the graph
of secure channels there is a vertex (corresponding to P1, say) of degree 0, then any
information sent out by P1 will be available to everybody, so other participants will
know n1 unless P1 uses a one-way function to conceal it. If there is a vertex (again,
corresponding to P1) of degree 1, this would mean that P1 has a secure channel of
communication with just one other participant, say P2. Then any information sent out
by P1 will be available at least to P2, so P2 will know n1 unless P1 uses a one-way
function to conceal it. So, every vertex in the graph should have degree at least 2, which



SECRECY WITHOUT ONE-WAY FUNCTIONS 11

implies that every vertex is included in a circuit. It follows, in particular, that the total
number of secure channels should be at least k, by the number of participants.

7. (Bit) commitment between two parties

Now we show how our unconditionally secure commitment scheme for 3 parties from
Section 6 can be used to arrange an unconditionally secure commitment between just
two parties. This is similar, in spirit, to the idea of Rivest [15], where an extra par-
ticipant is introduced to bring the number of parties up to 3. However, an important
difference between our proposal and that of [15] is that the extra participant in [15] is
a “trusted initializer”, which means that (i) he is allowed to generate randomness; (ii)
he can transmit information to “real” participants over secure channels.

By contrast, our extra participant is a “dummy”, i.e., (i) he is not allowed to gen-
erate randomness; (ii) he can receive information from “real” participants over secure
channels and perform simple arithmetic operations.

One possible real-life interpretation of such a “dummy” would be an online calculator
that can combine inputs from different users. Also note that in our scheme below the
“dummy” is unaware of the committed values, which is useful in case the two “real”
participants do not want their commitments to ever be revealed to the third party;
for example, such a “dummy” could be a mediator between two parties negotiating a
divorce settlement.

Thus, let A (Alice) and B (Bob) be two “real” participants, and D (Dummy) the
“dummy”. Suppose A and B want to commit to integers n1 and n2, respectively.

(1) A and B randomly split their integers ni in a sum of two integers: ni = ri + si.
(2) (Commitment.) A sends s1 to B, and B sends r2 to A. Then, A sends r1 + r2

to D, and B sends s1 + s2 to D.
(3) (Decommitment.) D reveals r1 + r2 + s1 + s2 = n1 + n2 both to A and B.
(4) Now A knows (n1+n2)−n1 = n2, and B knows (n1+n2)−n2 = n1, so cheating

by either party is impossible.

8. k-n oblivious transfer

An oblivious transfer protocol is a protocol by which a sender sends some informa-
tion to the receiver, but remains oblivious as to what is received. The first form of
oblivious transfer was introduced in 1981 by Rabin [14]. Rabin’s oblivious transfer was
later shown to be equivalent to “1-2 oblivious transfer”; the latter was subsequently
generalized to 1-n oblivious transfer and to k-n oblivious transfer [3]. In the latter
case, the receiver obtains a set of k messages from a collection of n messages. The
set of k messages may be received simultaneously (“non-adaptively”), or they may be
requested consecutively, with each request based on previous messages received. All
the aforementioned constructions use encryption, so in particular they use one-way
functions. The first proposal that did not use one-way functions (and therefore offered
unconditionally secure oblivious transfer) appeared in the paper by Rivest [15] that we
have already cited in our Section 7.



12 SECRECY WITHOUT ONE-WAY FUNCTIONS

In this section, we offer an unconditionally secure k-n oblivious transfer protocol that
is essentially different from that of Rivest in a similar way that our bit commitment
protocol in Section 7 is different from Rivest’s unconditionally secure bit commitment
protocol [15]. More specifically, the extra participant in [15] is a “trusted initializer”,
which means, in particular, that (i) he is allowed to generate randomness; (ii) he can
“consciously” transmit information to “real” participants over secure channels.

By contrast, our extra participant is a “dummy”, i.e., (i) he is not allowed to gen-
erate randomness; (ii) he can receive information from “real” participants over secure
channels, but he transmits information upon specific requests only.

Again, let A (Alice) and B (Bob) be two “real” participants, and D (Dummy) the
“dummy”, e.g., a computer. Suppose A has a collection of n messages, and B wants to
obtain k of these messages, without A knowing which messages B has received. Suppose
that all messages are integers mi, 1 ≤ i ≤ n.

(1) A randomly splits her integers mi in a sum of two integers: mi = ri + si.
(2) A sends the (ordered) set of all ri, 1 ≤ i ≤ n, to D, and the (ordered) set of all

si, 1 ≤ i ≤ n, to B.
(3) B sends to D the set of indices j1, . . . , jk corresponding to the messages mj he

wants to receive.
(4) D sends to B the (ordered) set rj1 , . . . , rjk

.
(5) B recovers mj1 , . . . , mjk

as a sum of relevant rj and sj .

9. Mental poker

“Mental poker” is the common name for a set of cryptographic problems that con-
cerns playing a fair game over distance without the need for a trusted third party. One
of the ways to describe the problem is: how can 2 players deal cards fairly over the
phone? Several protocols for doing this have been suggested, including [17], [5], [9]
and [1]. As with the bit commitment, it is rather obvious that a fair card dealing to
two players over distance is impossible without a one-way function, or even a one-way
function with trapdoor. However, it turns out to be possible if the number of players
is at least 3, assuming, of course, that there are secure channels for communication
between at least some of the players. In our proposal, we will be using k secure chan-
nels for k ≥ 3 players P1, . . . , Pk, and these k channels will be arranged in a circuit:
P1 → P2 → . . . → Pk → P1.

To begin with, suppose there are 3 players: P1, P2, and P3 and 3 secure channels:
P1 → P2 → P3 → P1.

The first protocol, Protocol 1 below, is for distributing all integers from 1 to m to
the players in such a way that each player gets about the same number of integers.
(For example, if the deck that we want to deal has 52 cards, then two players should
get 17 integers each, and one player should get 18 integers.) In other words, Protocol
1 allows one to randomly split a set of m integers into 3 disjoint sets.

The second protocol, Protocol 2, is for collectively generating random integers mod-
ulo a given integer M . This very simple but useful primitive can be used: (i) for
collectively generating, uniformly randomly, a permutation from the group Sm. This



SECRECY WITHOUT ONE-WAY FUNCTIONS 13

will allow us to assign cards from a deck of m cards to the m integers distributed by
Protocol 1; (ii) introducing “dummy” players as well as for “playing” after dealing
cards.

9.1. Protocol 1. For notational convenience, we are assuming below that we have to
distribute integers from 1 to r = 3s to 3 players.

To begin with, all players agree on a parameter N , which is a positive integer of a
reasonable magnitude, say, 10.

(1) each player Pi picks, uniformly randomly, an integer (a “counter”) ci between
1 and N , and keeps it private.

(2) P1 starts with the “extra” integer 0 and sends it to P2.
(3) P2 sends to P3 either the integer m he got from P1, or m+1. More specifically,

if P2 gets from P1 the same integer m less than or equal to c2 times, then he
sends m to P3; otherwise, he sends m+1 and keeps m (i.e., in the latter case m
becomes one of “his” integers). Having sent out m + 1, he “resets his counter”,
i.e., selects, uniformly randomly between 1 and N , a new c2. He also resets his
counter if he gets the number m for the first time, even if he does not keep it.

(4) P3 sends to P1 either the integer m he got from P2, or m+1. More specifically,
if P3 gets from P2 the same integer m less than or equal to c3 times, then he
sends m to P1; otherwise, he sends m + 1 and keeps m. Having sent out m + 1,
he selects a new counter c3. He also resets his counter if he gets the number m
for the first time, even if he does not keep it.

(5) P1 sends to P2 either the integer m he got from P3, or m+1. More specifically,
if P1 gets from P3 the same integer m less than or equal to c1 times, then he
sends m to P2; otherwise, he sends m + 1 and keeps m. Having sent out m + 1,
he selects a new counter c1. He also resets his counter if he gets the number m
for the first time, even if he does not keep it.

(6) This procedure continues until one of the players gets s integers (not counting
the “extra” integer 0). After that, a player who already has s integers just
“passes along” any integer that comes his way, while other players keep following
the above procedure until they, too, get s integers.

(7) The protocol ends as follows. When all 3s integers, between 1 and 3s, are
distributed, the player who got the last integer, 3s, keeps this fact to himself
and passes this integer along as if he did not “take” it.

(8) The process ends when the integer 3s makes N + 1 “full circles”.

We note that the role of the “extra” integer 0 is to prevent P3 from knowing that P2

has got the integer 1 if it happens so that c2 = 1 in the beginning.
We also note that this protocol can be generalized to arbitrarily many players in

the obvious way, if there are k secure channels for communication between k players,
arranged in a circuit.

9.2. Protocol 2. Now we describe a protocol for generating random integers modulo
some integer M collectively by 3 players. As in Protocol 1, we are assuming that there
are secure channels for communication between the players, arranged in a circuit.



14 SECRECY WITHOUT ONE-WAY FUNCTIONS

(1) P2 and P3 uniformly randomly and independently select private integers n2 and
n3 (respectively) modulo M .

(2) P2 sends n2 to P1, and P3 sends n3 to P1.
(3) P1 computes the sum m = n2 + n3 modulo M .

Note that neither P2 nor P3 can cheat by trying to make a “clever” selection of their
ni because the sum, modulo M , of any integer with an integer uniformly distributed
between 0 and M − 1, is an integer uniformly distributed between 0 and M − 1.

Finally, P1 cannot cheat simply because he does not really get a chance: if he miscal-
culates n2+n3 modulo M , this will be revealed at the end of the game. (All players keep
contemporaneous records of all transactions, so that at the end of the game, correctness
could be verified.)

To generalize Protocol 2 to arbitrarily many players P1, . . . , Pk, k ≥ 3, we can just
engage 3 players at a time in running the above protocol. If, at the same time, we want
to keep the same circular arrangement of secure channels between the players that we
had in Protocol 1, i.e., P1 → P2 → . . . Pk → P1, then 3 players would have to be Pi+1,
Pi, Pi+2, where i would run from 1 to k, and the indices are considered modulo k.

Protocol 2 can now be used to collectively generate, uniformly randomly, a permu-
tation from the group Sm. This will allow us to assign cards from a deck of m cards
to the m integers distributed by Protocol 1. Generating a random permutation from
Sm can be done by taking a random integer between 1 and m (using Protocol 2) se-
quentially, ensuring that there is no repetition. This “brute-force” method will require
occasional retries whenever the random integer picked is a repeat of an integer already
selected. A simple algorithm to generate a permutation from Sm uniformly randomly
without retries, known as the Knuth shuffle, is to start with the identity permutation
or any other permutation, and then go through the positions 1 through (m − 1), and
for each position i swap the element currently there with an arbitrarily chosen element
from positions i through m, inclusive (again, Protocol 2 can be used here to produce
a random integer between i and m). It is easy to verify that any permutation of m
elements will be produced by this algorithm with probability exactly 1

m! , thus yielding
a uniform distribution over all such permutations.

After this is done, we have m cards distributed uniformly randomly to the players,
i.e., we have:

Proposition 1. If m cards are distributed to k players using Protocols 1 and 2, then
the probability for any particular card to be distributed to any particular player is 1

k .

9.3. Using “dummy” players while dealing cards. We now show how a combina-
tion of Protocol 1 and Protocol 2 can be used to deal cards to just 2 players. If we have
2 players, they can use a “dummy” player (e.g. a computer), deal cards to 3 players as
in Protocol 1, and then just ignore the “dummy”’s cards, i.e., “put his cards back in
the deck”. We note that the “dummy” in this scenario would not generate randomness;
it will be generated for him by the other two players using Protocol 2. Namely, if we
call the “dummy” P3, then the player P1 would randomly generate c31 between 1 and
N and send it to P3, and P2 would randomly generate c32 between 1 and N and send
it to P3. Then P3 would compute his random number as c3 = c31 + c32 modulo N .



SECRECY WITHOUT ONE-WAY FUNCTIONS 15

Similarly, “dummy” players can help k “real” players each get a fixed number s of
cards, because Protocol 1 alone is only good for distributing all cards in the deck to
the players, dealing each player about the same number of cards. We can introduce m
“dummy” players so that (m + k) · s is approximately equal to the number of cards in
the deck, and position all the “dummy” players one after another as part of a circuit
P1 → P2 → . . . Pm+k → P1. Then we use Protocol 1 to distribute all cards in the deck
to (m + k) players taking care that each “real” player gets exactly s cards. As in the
previous paragraph, “dummy” players have “real” ones generate randomness for them
using Protocol 2.

After all cards in the deck are distributed to (m+k) players, “dummy” players send
all their cards to one of them; this “dummy” player now becomes a “dummy dealer”,
i.e., he will give out random cards from the deck to “real” players as needed in the
course of a subsequent game, while randomness itself will be supplied to him by “real”
players using Protocol 2.

10. Summary of the properties of our card dealing (Protocols 1 and 2)

Here we summarize the properties of our Protocols 1 and 2 and compare, where
appropriate, our protocols to the card dealing protocol of [1].

1. Uniqueness of cards. Yes, by the very design of Protocol 1.

2. Uniform random distribution of cards. Yes, because of Protocol 2; see our
Proposition 1 in Section 9.2.

3. Complete confidentiality of cards. Yes, by the design of Protocol 1.

4. Number of secure channels for communication between k ≥ 3 players: k,
arranged in a circuit.

By comparison, the card dealing protocol of [1] requires 3k secure channels.

5. Average number of transmissions between k ≥ 3 players: O(N
2 mk), where

m is the number of cards in the deck, and N ≈ 10. This is because in Protocol 1,
the number of circles (complete or incomplete) each integer makes is either 1 or the
minimum of all the counters ci at the moment when this integer completes the first
circle. Since the average of ci is at most N

2 , we get the result because within one circle
(complete or incomplete) there are at most k transmissions. We note that in fact, there

is a precise formula for the average of the minimum of ci in this situation:
PN

j=1 jk

Nk ,
which is less than N

2 if k ≥ 2.
By comparison, in the protocol of [1] there are O(mk2) transmissions.

6. Total length of transmissions between k ≥ 3 players: N
2 mk · log2 m bits. This

is just the average number of transmissions times the length of a single transmission,
which is a positive integer between 1 and m.

By comparison, total length of transmissions in [1] is O(mk2 log k).

7. Computational cost of Protocol 1: 0 (because there are no computations, only
transmissions).



16 SECRECY WITHOUT ONE-WAY FUNCTIONS

By comparison, the protocol of [1] requires computing products of up to k permuta-
tions from the group Sk to deal just one card; the total computational cost therefore
is O(mk2 log k).

11. Secret sharing

Secret sharing refers to method for distributing a secret amongst a group of partici-
pants, each of whom is allocated a share of the secret. The secret can be reconstructed
only when a sufficient number of shares are combined together; individual shares are
of no use on their own.

More formally, in a secret sharing scheme there is one dealer and k players. The
dealer gives a secret to the players, but only when specific conditions are fulfilled. The
dealer accomplishes this by giving each player a share in such a way that any group of
t (for threshold) or more players can together reconstruct the secret but no group of
fewer than t players can. Such a system is called a (t, k)-threshold scheme (sometimes
written as a (k, t)-threshold scheme).

Secret sharing was invented by Shamir [16] and Blakley [2], independent of each other,
in 1979. Both proposals assumed secure channels for communication between the dealer
and each player. In our proposal here, the number of secure channels is equal to 2k,
where k is the number of players, because in addition to the secure channels between
the dealer and each player, we have k secure channels for communication between the
players, arranged in a circuit: P1 → P2 → . . . → Pk → P1.

The advantage over Shamir’s and other known secret sharing schemes that we are
going to get here is that nobody, including the dealer, ends up knowing the shares (of
the secret) owned by any particular players. The disadvantage is that our scheme is a
(k, k)-threshold scheme only.

We start by describing a subroutine for distributing shares by the players among
themselves. More precisely, k players want to split a given number in a sum of k
numbers, so that each summand is known to one player only, and each player knows
one summand only.

11.1. The Subroutine (distributing shares by the players among themselves).
Suppose a player Pi receives a number M that has to be split in a sum of k private
numbers. In what follows, all indices are considered modulo k.

(1) Pi initiates the process by sending M − mi to Pi+1, where mi is a random
number (could be positive or negative).

(2) Each subsequent Pj does the following. Upon receiving a number m from Pj−1,
he subtracts a random number mj from m and sends the result to Pj+1. The
number mj is now Pj ’s secret summand.

(3) When this process gets back to Pi, he adds mi to whatever he got from Pi−1;
the result is his secret summand.

Now we get to the actual secret sharing protocol.



SECRECY WITHOUT ONE-WAY FUNCTIONS 17

11.2. The protocol (secret sharing (k, k)-threshold scheme). The dealer D wants
to distribute shares of a secret number N to k players Pi so that, if Pi gets a number
si, then

∑k
i=1 si = N .

(1) D arbitrarily splits N in a sum of k integers: N =
∑k

i=1 ni.
(2) The loop: at Step i of the loop, D sends ni to Pi, and Pi initiates the above

Subroutine to distribute shares nij of ni among the players, so that
∑k

j=1 nij =
ni.

(3) After all k steps of the loop are completed, each player Pi ends up with k

numbers nji that sum up to si =
∑k

j=1 nji. It is obvious that
∑k

i=1 si = N .

Acknowledgement. Both authors are grateful to Max Planck Institut für Mathematik,
Bonn for its hospitality during the work on this paper.

References

[1] I. Bárány, Z. Füredi, Mental poker with three or more players, Inform. and Control 59 (1983),
84-93.

[2] G. R. Blakley, Safeguarding cryptographic keys, Proceedings of the National Computer Confer-
ence 48 (1979), 313-317.

[3] G. Brassard, C. Crépeau and J.-M. Robert, All-or-nothing disclosure of secrets, In Advances in
Cryptology - CRYPTO ’86, pp. 234-238, Lecture Notes Comp. Sc. 263, Springer, 1986.

[4] D. Chaum, C. Crépeau, and I. Damgard, Multiparty unconditionally secure protocols (extended
abstract), Proceedings of the Twentieth ACM Symposium on the Theory of Computing, ACM,
1988, pp. 11-19.

[5] C. Crépeau, A zero-knowledge poker protocol that achieves confidentiality of the players’ strategy
or how to achieve an electronic poker face, Advances in cryptology - CRYPTO ’86, pp. 239-247,
Lecture Notes Comp. Sc. 263, Springer, 1986.

[6] I. Damgard, M. Geisler, M. Kroigard, Homomorphic encryption and secure comparison, Int. J.
Appl. Cryptogr. 1 (2008), 22-31.

[7] I. Damgard, Y. Ishai, Scalable secure multiparty computation, Advances in cryptology -
CRYPTO 2006, 501-520, Lecture Notes in Comput. Sci. 4117, Springer, Berlin, 2006.

[8] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University
Press, 2007.

[9] S. Goldwasser and S. Micali, Probabilistic Encryption and How to Play Mental Poker Keeping
Secret All Partial Information, in Proceedings of the 14th Annual ACM symp. on Theory of
computing, ACM-SIGACT, May 1982, pp. 365–377.

[10] S. Goldwasser, S. Micali, Probabilistic encryption, J. Comput. System Sci. 28 (1984), 270-299.
[11] D. Grigoriev, I. Ponomarenko, Constructions in public-key cryptography over matrix groups,

Contemp. Math., Amer. Math. Soc. 418 (2006), 103–119.
[12] R. Impagliazzo and M. Luby, One-way functions are essential for complexity based cryptography,

in: FOCS’89, IEEE Computer Society, 1989, pp. 230–235.
[13] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC-Press

1996.
[14] M. Rabin, How to exchange secrets by oblivious transfer, Technical Report TR-81, Aiken Com-

putation Laboratory, Harvard University, 1981.
[15] R. Rivest, Unconditionally Secure Commitment and Oblivious Transfer Schemes Using Private

Channels and a Trusted Initializer, preprint, 1999.
[16] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612-613.



18 SECRECY WITHOUT ONE-WAY FUNCTIONS

[17] A. Shamir, R. Rivest, and L. Adleman, Mental poker, Technical Report LCS/TR-125, Massa-
chusetts Institute of Technology, April 1979.

[18] A. C. Yao, Protocols for secure computations (Extended Abstract), 23rd annual symposium on
foundations of computer science (Chicago, Ill., 1982), 160–164, IEEE, New York, 1982.

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
E-mail address: dmitry.grigoryev@math.univ-lille1.fr

Department of Mathematics, The City College of New York, New York, NY 10031
E-mail address: shpil@groups.sci.ccny.cuny.edu


