
Non-Interactive Key Exchange⋆

Eduarda S.V. Freire1,⋆⋆, Dennis Hofheinz2,⋆ ⋆ ⋆, Eike Kiltz3,†

, and Kenneth G. Paterson1,‡

1 Royal Holloway
2 Karlsruhe Institute of Technology

3 Ruhr-Universität Bochum

Abstract Non-interactive key exchange (NIKE) is a fundamental but much-overlooked cryp-
tographic primitive. It appears as a major contribution in the ground-breaking paper of Diffie
and Hellman, but NIKE has remained largely unstudied since then. In this paper, we provide
different security models for this primitive and explore the relationships between them. We
then give constructions for secure NIKE in the Random Oracle Model based on the hardness
of factoring and in the standard model based on the hardness of a variant of the decisional
Bilinear Diffie Hellman Problem for asymmetric pairings. We also study the relationship be-
tween NIKE and public key encryption (PKE), showing that a secure NIKE scheme can be
generically converted into an IND-CCA secure PKE scheme. Our conversion also illustrates the
fundamental nature of NIKE in public key cryptography.

Keywords: non-interactive key exchange, public-key cryptography, pairings.

1 Introduction

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables two parties, who
know each others’ public keys, to agree on a symmetric shared key without requiring any interaction.
The canonical example of a NIKE scheme can be found in the seminal paper by Diffie and Hellman
[1]: let G be a group of prime order p with generator g, and assume Alice has public key gx ∈ G
and private key x ∈ Zp, while Bob has public key gy ∈ G and private key y ∈ Zp. Then Alice
and Bob can both compute the value gxy ∈ G without exchanging any messages. More properly,
Alice and Bob should hash this key together with their identities in order to derive a symmetric key
H(Alice, Bob, gxy).

This example encapsulates in a nutshell all the basic features required of a NIKE scheme: users
should agree on some common parameters (p, G and g here), then create their key pairs. Once these
are computed and the public keys distributed, any pair of users can set up a shared key without
further exchange of messages. The security properties desired of NIKE are, informally at least, clear:
compromise of one user’s private key should not affect the security of shared keys between pairs of
uncorrupted users; compromise of one shared key should not undermine the security of other shared
keys. Naturally, since the primitive is non-interactive, one cannot hope to obtain any kind of forward
security properties. In practice, the public keys will be certified, and consideration needs to be given
to modelling the key registration process.

NIKE has real-world applications. In wireless and sensor networks, conserving battery power is a
prime concern, and so the energy cost of communication must be minimised. Thus using key estab-
lishment methods that minimise the number of bits that need to be transmitted is of fundamental
importance. In particular, when faced with a jamming adversary, reducing the total number of rounds
of interaction needed to establish a key is particularly helpful. NIKE is an excellent option in solving
this problem, since a key can be established with minimal communication and interaction: assuming
the public keys are pre-distributed, all that is needed is an exchange of identifiers for those keys, and
often this exchange must take place anyway, in order to establish communications. A recent paper

⋆ This is the full version of a paper with the same title to be presented at PKC 2013.
⋆⋆ Eduarda S.V. Freire was supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal Holloway,

University of London.
⋆ ⋆ ⋆ Dennis Hofheinz was supported by a DFG grant (GZ HO 4534/2-1).

† Eike Kiltz was funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation and the
German Federal Ministry for Education and Research.

‡ Kenneth G. Paterson was supported by EPSRC Leadership Fellowship EP/H005455/1.

[2] gives a detailed evaluation of the energy costs of interactive and non-interactive key exchange
protocols in the ID-based and PKI settings for wireless communications with a jamming adversary,
demonstrating that significant energy savings can be made by adopting a non-interactive approach
to key establishment. Its non-interactive nature makes NIKE an abstract building block that is quali-
tatively different from interactive key exchange: e.g., to achieve deniable authentication, [3] explicitly
requires a non-interactive key exchange. But NIKE can also be used as a basis for interactive key
exhange [4]: one can use the shared key in a MAC to authenticate an exchange of ephemeral Diffie-
Hellman values. Finally, NIKE can be used to build very simple non-interactive designated verifier
signature schemes [5], again using the shared key in a MAC to authenticate messages. Thus NIKE
appears in various guises throughout the literature.

Despite its appearing in the very first paper on public key cryptography, the NIKE primitive
has so far received scant attention as a primitive in its own right. Cash, Kiltz and Shoup (CKS) [6]
provided a basic security model for NIKE and analysed the Diffie-Hellman-based scheme above, as
well as a twinned variant of it, in the Random Oracle Model (ROM). There is also some work in the
ID-based setting [7,8,9,10], also all restricted to the ROM.

Our contributions: Our contention is that NIKE is long overdue for more serious attention and
development. In this paper, we initiate the systematic study of NIKE in the public key setting,
providing: models and their relationships; constructions for secure NIKE in the Random Oracle Model
and in the standard model in the challenging setting where the adversary can introduce arbitrary
public keys into the system; and a construction for IND-CCA secure public key encryption (PKE)
from any secure NIKE. Let us expand on each of these contributions in turn.

Models: It would seem that definitions and security models for interactive key exchange
(e.g., [11,12,13,14]) could provide a natural starting point for formalising NIKE. However, here we
take the CKS definition [6] for NIKE as our starting point. One reason for using a case-tailored
NIKE definition is simplicity: existing security models for interactive key exchange give considerable
attention to properties which are irrelevant in the NIKE setting. (For instance, forward security,
multiple sessions, and in particular the pairing of sessions play no role in a non-interactive setting.)
Another reason for a case-tailored NIKE definition is that we can focus on adversarial key registration
queries; these are usually only implicitly [14] (or not at all [11,13]) considered in the standard models
for interactive key exchange4. However, in our setting, adversarial key registrations pose the main
technical obstacle to achieve NIKE security, as we will explain below.

The CKS security model for NIKE uses an indistinguishability- and game-based approach to
define security, with the adversary being required to distinguish real from random keys in responses
to its test queries. The model does allow the adversary to register public keys of his choice in the
system and then to make queries for the shared keys between these “corrupted” users and honest
(non-adversarially controlled) users, so-called corrupt reveal queries. This translates in the real world
to minimising the assumptions made about certification procedures followed by the Certification
Authority (CA) in the PKI supporting the NIKE: it means that the CA is not assumed to check
that a public key submitted for certification has not been submitted before, and does not check that
the party submitting the public key knows the corresponding private key. The model for NIKE in [6]
is similar to, and presumably inspired by, the early work of Shoup [12] on interactive key exchange,
where capturing so-called PKI attacks, also known as rogue-key attacks, was intrinsic to the security
modelling. This modelling approach is referred to elsewhere in the literature as the plain setting
(see [16,17] and the references therein) or the bare PKI setting [3]. The CKS model is certainly
more challenging than settings where proofs of knowledge or proofs of possession of private keys are
assumed to be given during registration, or where the adversary must reveal its secret key directly
(as with the knowledge of secret key assumption used in [18,19]). However, the CKS model has some
shortcomings: the adversary is not allowed to directly query for the shared keys held between pairs of
honest users, but instead only gets to see real or random values for these via test queries. Moreover
the model does not allow an adversary to query for the private keys of honestly registered users.

Therefore, as a necessary precursor to the further development of NIKE, we start by exploring
different models for NIKE and their relationships (Section 2). In summary, we introduce three new
security models for NIKE and show that they are all polynomially equivalent to one another and to

4 We mention that some security analyses (e.g., [15]) and Shoup’s security model [12] do explicitly consider
adversarial key registration queries.

2

the original CKS model from [6]. One of our models, the m-CKS-heavy model, augments the CKS
model and effectively allows all conceivable queries, without allowing the adversary to win trivially. It
is our preferred security model for NIKE. Another of our models, CKS-light, allows only two honest
users, no corruption of honest users, and a single test query. Thus it is particularly simple and so easy
to use when analyzing specific NIKE schemes; moreover our results showing equivalence between the
models ensure that security in this model implies security in the preferred m-CKS-heavy model.

We stress that all these models allow the adversary to register public keys of his choice in the
system, so are in the plain setting. However, for completeness, we also briefly consider the HKR or
honest key registrations setting in which the adversary cannot register keys on its own. It is easy
to see that the HKR setting provides strictly weaker security guarantees than our default security
setting with dishonest key registrations. For instance, the already mentioned Diffie-Hellman NIKE
scheme without hashing (such that shared keys are of the form gxy) can be shown secure in the HKR
setting under the Decisional Diffie-Hellman assumption, but is easily seen to be completely insecure
in our default setting5.

Constructions for NIKE: In Section 4, we give two concrete constructions for NIKE schemes meet-
ing our CKS-light security definition, and hence secure in our preferred m-CKS-heavy model (with
dishonest key registrations). Our two constructions are inspired by public key encryption (PKE)
schemes which are secure against chosen-ciphertext attacks (IND-CCA secure). We note that dealing
with corrupt reveal queries requires techniques to guard against active attacks, which in part explains
the connection to IND-CCA security. Indeed, we will also show how to go in the reverse direction,
converting any secure NIKE scheme into an IND-CCA secure PKE scheme, see below. We stress,
however, that we cannot simply take any IND-CCA secure PKE scheme and directly interpret it as
a NIKE scheme.6 Rather, our constructions for NIKE exploit specific properties of the underlying
PKE schemes. In fact, our belief is that a generic construction for secure NIKE from PKE is unlikely
to be forthcoming.

The first scheme acts as a warm-up. It is provably secure under the factoring assumption in the
Random Oracle Model (ROM) and uses ideas from [20] to analyse the basic Diffie-Hellman scheme,
where keys are of the form H(Alice, Bob, gxy), in the group of signed quadratic residues. We note that
closely related schemes were analysed in [6], but in different groups and under different assumptions.
Specifically, a twinned version of the scheme was proved secure under the CDH assumption, while it
is stated that the basic Diffie-Hellman scheme is secure under the Strong DH assumption. We remark
that the latter claim of [6] is problematic. Concretely, the Strong DH assumption is not (directly)
sufficient to show that the basic Diffie-Hellman scheme is secure. Namely, the corresponding security
reduction requires two DDH oracles – one for each of the two users sharing the key on which the
adversary wants to be challenged – while the Strong DH assumption supplies only one. Certainly
this problem could be solved instead by appealing to a suitable gap-DH assumption. We show how
to overcome this problem in the group of signed quadratic residues without the need to rely on a
gap assumption. We then proceed to sketch how to transport this scheme to the standard model,
under the additional assumption that the adversary only registers valid public keys. Because of the
extra assumption, this scheme does not strictly speaking meet our security definitions, and would
require validity to be enforced by some means in an interactive registration protocol (for example,
via a proof of correctness of the public key). This limitation of our standard model, factoring-based
solution reflects the technical challenge involved in achieving our “bare PKI” security notions.

Our second NIKE scheme is provably secure in the standard model and combines a specific
weak Programmable Hash Function [21] whose output lies in a pairing group and a Chameleon
hash function. This enables the simulation in our security proof for the scheme to handle the tricky
queries for shared keys involving an honestly generated public key and an adversarially chosen public

5 Concretely, since shared keys do not depend on party identities in the unhashed DH-NIKE, an adversary A
can (a) register the key gx of an honest party Alice as its own key, and (b) ask for the shared key between
A and another honest party Bob with key gy. This immediately yields the shared key gxy between Alice
and Bob. Because of the homomorphic properties of the DH-NIKE, a simple modification of this attack
also works if A is not allowed to register keys of existing users.

6 One reason is that it is not clear what should correspond to the NIKE public key: a PKE public key, a
PKE ciphertext, or a combination of both? Besides, the corresponding security experiments for NIKE and
PKE schemes are rather different: there usually is one challenge ciphertext in a PKE security experiment,
while there are at least two challenge users in a NIKE security experiment.

3

key. Similar ideas were used in the context of HIBE in [22]. We also make use of the pairing to provide
a means of checking that public keys coming from the adversary are in some sense well-formed. We
work with asymmetric pairings for efficiency at high security levels (and because it does not add any
real complexity to the description of our scheme). The scheme’s security relies on a natural variant
of the Decisional Bilinear Diffie-Hellman (DBDH) assumption for the asymmetric setting.

From NIKE to PKE: In Section 5, we explore the connections between NIKE and public key en-
cryption (PKE). That such connections exist should not be too much of a surprise: it is folklore that
the ElGamal encryption scheme [23] can be seen as arising from the Diffie-Hellman NIKE scheme by
making the sender’s key pair (gx, x) ephemeral and using the receiver’s public key gy to create the
basis for a shared key gxy. In fact, a simple transformation shows that every NIKE that is secure in
the simpler HKR setting can be turned into a public key encryption scheme that is secure against
chosen-plaintext attacks (IND-CPA secure). Similar connections were explored in the ID-based setting
in [10].

In our default setting with dishonest key registrations, we provide a simple, generic construction
for PKE from NIKE that is also in the spirit of the original Diffie-Hellman–to–ElGamal conversion.
The construction takes a NIKE scheme that is secure in our CKS-light model (with dishonest key
registrations) and a strongly one-time secure signature scheme as inputs, and produces from these
components a Key Encapsulation Mechanism (KEM) that we prove to be IND-CCA secure. A secure
PKE from such a KEM can be obtained using standard results. At a high level, the key pair for the
KEM is a randomly generated key pair (pk, sk) from the NIKE scheme, ciphertexts are also randomly
generated public keys pk′ from the NIKE scheme (together with a one-time signature that binds the
public key to an identity), while the encapsulated key is the shared key computed from sk′ and pk; the
receiver computes the same key from sk and pk′, assuming the one-time signature verifies. In order
to prove the KEM to be IND-CCA secure, we exploit the presence of corrupt reveal queries in the
NIKE security model in an essential way to handle certain decapsulation queries. The resulting KEM
is almost as efficient as the underlying NIKE scheme. In the HKR setting, the same transformation
(only without one-time signatures) shows that CKS-light security of the NIKE implies IND-CPA
security of the resulting PKE scheme.

The fact that secure NIKE implies IND-CCA-secure PKE, one of the most important primitives
in cryptography, illustrates the fundamental role and utility of NIKE. We believe that this connection
should spur further research on the topic.

2 Non-interactive Key Exchange and Security Models

2.1 Non-interactive Key Exchange

Following [6], we formally define a Non-Interactive Key Exchange (NIKE) scheme in the public key
setting to be a collection of three algorithms: CommonSetup, NIKE.KeyGen and SharedKey together
with an identity space IDS and a shared key space SHK. Note that identities in the scheme and
security model are merely used to track which public keys are associated with which users – we are
not in the identity-based setting.

– CommonSetup: On input 1k, outputs params, a set of system parameters.

– NIKE.KeyGen: On input params and an identity ID ∈ IDS, outputs a public key/secret key pair
(pk, sk). This algorithm is probabilistic and can be executed by any user. We assume, without
loss of generality, that params is included in pk.

– SharedKey: On input an identity ID1 ∈ IDS and a public key pk1 along with another identity
ID2 ∈ IDS and a secret key sk2, outputs either a shared key in SHK for the two identities, or a
failure symbol ⊥. This algorithm is assumed to always output ⊥ if ID1 = ID2.

For correctness, we require that, for any pair of identities ID1, ID2, and corresponding key pairs
(pk1, sk1) and (pk2, sk2), algorithm SharedKey satisfies the constraint:

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1).

4

2.2 Definitions of Security for Non-interactive Key Exchange

Cash, Kiltz and Shoup [6] proposed a security model for NIKE schemes in the public key setting,
denoted here by the CKS model. This model abstracts away all considerations concerning certification
and PKI in a particularly nice way. It allows an adversary to obtain honestly generated public keys,
but also to then associate such public keys with other identities, and to register dishonestly generated
public keys (for which the adversary need not know the corresponding private keys). This dishonest
key registration (DKR) setting (abstractly) models a PKI where minimal assumptions are made
about the actions of the Certificate Authority (CA): the CA is not assumed to check that a public
key has not been previously registered to another user, and does not demand a proof of knowledge or
possession of the private key when issuing a certificate on a public key. This conservative approach
to modelling is fully appropriate given the great diversity in how CAs operate in the real world. The
model can be seen as a natural adaptation of the approach of Shoup [12] for modelling interactive
key exchange to the NIKE setting and is analogous to the plain setting studied in [16,17].

However, there are some obvious omissions from the model, including the ability of an adversary
to “corrupt” honestly generated public keys to learn the corresponding private keys, and the ability
of a user to directly learn the key shared between two honest parties in the system (which could be
possible, for example, because of cryptanalysis of a scheme making use of the shared key). Equivalent
queries in the ID-based setting were permitted in the model introduced in [10].

For this reason, we augment the original CKS model with the “missing” queries, introducing the
m-CKS-heavy model. We regard this as providing the “correct” model for NIKE. We also introduce
two further models, the CKS-heavy and CKS-light models. These differ from m-CKS-heavy and the
original CKS model only in the numbers and types of query that the adversary is allowed to make.
Next we present in detail the m-CKS-heavy model. Then in Table 1 we summarize the differences
between these security models in the DKR setting.

The m-CKS-heavy model: Our model is stated in terms of a game between an adversary A and a
challenger C. In this game, C takes as input the security parameter 1k, runs algorithm CommonSetup

of the NIKE scheme and gives A params. The challenger takes a random bit b and answers oracle
queries for A until A outputs a bit b̂. The challenger answers the following types of queries for A:

– Register honest user ID : A supplies an identity ID ∈ IDS. On input params and ID, the chal-
lenger runs NIKE.KeyGen to generate a public key/secret key pair (pk, sk) and records the tuple
(honest , ID, pk, sk). The challenger returns pk to A.

– Register corrupt user ID : In this type of query, A supplies both an identity ID ∈ IDS and a
public key pk. The challenger records the tuple (corrupt , ID, pk,⊥). We stress that A may make
multiple “Register corrupt user ID” queries for the same ID during the experiment. In that case,
only the most recent (corrupt , ID, pk,⊥) entry is kept.

– Extract queries: Here A supplies an identity ID that was registered as an honest user. The chal-
lenger looks for a tuple (honest , ID, pk, sk) containing ID and returns sk to A.

– Reveal queries: Here A supplies a pair of registered identities ID1, ID2, subject only to the re-
striction that at least one of the two identities was registered as honest. The challenger runs
SharedKey using the secret key of one of the honest identities and the public key of the other
identity and returns the result to A. Note that here the adversary is allowed to make reveal queries
between two users that were originally registered as honest users. We denote by honest reveal the
queries involving two honest users and by corrupt reveal the queries involving an honest user and
a corrupt user.

– Test queries: Here A supplies two distinct identities ID1, ID2 that were both registered as honest.
The challenger returns ⊥ if ID1 = ID2. Otherwise, it uses the bit b to answer the queries. If b = 0,
the challenger runs SharedKey using the public key for ID1 and the secret key for ID2 and returns
the result to A. If b = 1, the challenger generates a random key, records it for later, and returns
that key to the adversary. In this case, to keep things consistent, the challenger returns the same
random key for the pair ID1, ID2 every time A queries for their paired key, in either order.

A’s queries may be made adaptively and are arbitrary in number. To prevent trivial wins for the
adversary, no query to the reveal oracle is allowed on any pair of identities selected for test queries
(in either order), and no extract query is allowed on any of the identities involved in test queries.

5

Model
Register Register

Extract
Honest Corrupt

Test
Honest Corrupt Reveal Reveal

CKS-light 2 ✓ ✗ ✗ ✓ 1
CKS ✓ ✓ ✗ ✗ ✓ ✓
CKS-heavy ✓ ✓ ✓ ✓ ✓ 1
m-CKS-heavy ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Types of queries for different security models in the dishonest key registration (DKR) PKI model
(aka plain/bare model). Notation: ✓means that an adversary is allowed to make an arbitrary number of
queries; ✗ means that no queries can be made; numbers represent the number of queries allowed to an
adversary.

Also, we demand that no identity registered as corrupt can later be the subject of a register honest
user ID query, and vice versa.

When the adversary finally outputs b̂, it wins the game if b̂ = b. For an adversary A, we define its
advantage in this security game as:

Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, qT) = |Pr[b̂ = b]− 1/2|

where qH , qC , qE , qHR, qCR and qT are the numbers of register honest user ID queries, register
corrupt user ID queries, extract queries, honest reveal queries, corrupt reveal queries and test queries
made by A, respectively. We say that a NIKE scheme is (t, ϵ, qH , qC , qE , qHR, qCR, qT)-secure in the
m-CKS-heavy model if there is no adversary with advantage at least ϵ that runs in time t and makes at
most qH register honest user ID queries, etc. Informally, we say that a NIKE scheme is m-CKS-heavy
secure if there is no efficient adversary having non-negligible advantage in k, where efficient means
that the running time and numbers of queries made by the adversary are bounded by polynomials in
k.

Comparing the models: Table 1 outlines the properties of our other security models in the DKR
setting, in terms of restrictions on the queries that can be made by the adversary. It is apparent that
the m-CKS-heavy model is the strongest model. It differs from the CKS-heavy model only in allowing
multiple test queries. The m-CKS-heavy model represents a strengthening of the original CKS model
by allowing extract and honest reveal queries, whereas the CKS model only allows the adversary
to gain information about honestly generated shared keys via test queries. The CKS-light model is
simplest of all, involving only two honestly registered identities, removing the extract and honest
reveal queries, and allowing only a single test query. We prove in Appendix B that it is polynomially
equivalent to the m-CKS-heavy model. In fact, we prove there the following theorem:

Theorem 1. The m-CKS-heavy, CKS-heavy, CKS and CKS-light security models are all polynomi-
ally equivalent. More specifically, for any scheme NIKE, we have the following results (where advantages
for the CKS-heavy, CKS and CKS-light security models are defined in the obvious way):

CKS-heavy ⇒ m-CKS-heavy: For any adversary A against NIKE in the m-CKS-heavy model, there
is an adversary B that breaks NIKE in the CKS-heavy model with

AdvCKS-heavy
B (k, qH , qC , qE , q

′
HR, qCR) = Advm-CKS-heavy

A (k, qH , qC , qE , qHR, qCR, qT)/qT ,

where q′HR ≤ qHR + qT . The converse, CKS-heavy ⇐ m-CKS-heavy is trivial.
CKS-light ⇒ CKS: For any adversary A against NIKE in the CKS model, there is an adversary B

that breaks NIKE in the CKS-light model with

AdvCKS-light
B (k, q′C , q

′
CR) ≥ 2 ·AdvCKS

A (k, qH , qC , qCR, qT)/qH
2qT ,

where q′C ≤ qC + qH and q′CR ≤ qCR. The converse, CKS-light ⇐ CKS is trivial.
CKS-light ⇒ CKS-heavy: For any adversary A against NIKE in the CKS-heavy model, there is an

adversary B that breaks NIKE in the CKS-light model with

AdvCKS-light
B (k, q′C , q

′
CR) ≥ 2 ·AdvCKS-heavy

A (k, qH , qC , qE , qHR, qCR)/qH
2,

where q′C ≤ qC + qH and q′CR ≤ qCR. The converse, CKS-light ⇐ CKS-heavy is trivial.

6

Model
Register Register

Extract
Honest Corrupt

Test
Honest Corrupt Reveal Reveal

HKR CKS-light 2 ✗ ✗ ✗ ✗ 1
HKR CKS ✓ ✗ ✗ ✗ ✗ ✓
HKR CKS-heavy ✓ ✗ ✓ ✓ ✗ 1
HKR m-CKS-heavy ✓ ✗ ✓ ✓ ✗ ✓

Table 2. Types of queries for different security models in the honest key registration (HKR) PKI model.

Thus, while the m-CKS-heavy model is our preferred model, it suffices to analyse schemes in
the CKS-light model if one is not overly concerned about concrete security. However, we note that
various factors are involved in the reductions. In particular a factor of qT qH

2 is lost in going from
the m-CKS-heavy to the CKS-light model. This reflects the proof techniques used in establishing the
bounds, specifically the use of hybrid arguments. It is an interesting open problem to either prove
tighter relations between the models, or to prove that such results are not possible.

Security models in the honest key registration (HKR) setting: For completeness we also provide NIKE
security models in the honest key registration setting where dishonest key registration queries are
disallowed. An overview of the models is given in Table 2. We remark that Theorem 1 carries over to
the HKR setting simply by setting qC and qCR to zero in the theorem statement and proofs. So all
the security models from Table 2 are equivalent to one another. As pointed out in the introduction,
constructing NIKE schemes in the HKR setting is much easier than in the more realistic DKR setting.

3 Intractability Assumptions

3.1 The Group of Signed Quadratic Residues, the BBS generator, and the Strong
Diffie-Hellman Assumption

The factoring assumption: Let n(k) be a function and δ a constant with 0 ≤ δ < 1/2. Let RSAgen be
an algorithm with input 1k that generates elements (N,P,Q) such that N = PQ is an n-bit Blum
integer and all prime factors of ϕ(N)/4 are pairwise distinct and have at least δn bits. These conditions
ensure that (JN , ·) is cyclic and that the square g of a random element in Z∗

N , generates QRN with high
probability. That is, ⟨g⟩ = QRN . For such N , we recall the definition of the group of signed quadratic
residues QR+

N from [20] (see also [24,25]) which is defined as the set {|x| : x ∈ QRN}, where |x| is the
absolute value when representing elements of ZN as the set {−(N − 1)/2, . . . , (N − 1)/2}. (QR+

N , ·)
is a cyclic group of order ϕ(N)/4 whose elements are efficiently recognisable given only N as input.

For any algorithm A, we write

AdvfacA,RSAgen(k) = Pr[{P,Q} $←− A(N) : (N,P,Q)
$←− RSAgen(1k)].

The factoring assumption for RSAgen is that AdvfacA,RSAgen(k) is negligible for all PPT algorithms A.

The BBS generator: Let BBSN : QR+
N → {0, 1}k be the Blum-Blum-Shub pseudorandom number

generator. (That is, BBSN (X) = (lsbN (X), lsbN (X2), . . . ,lsbN (X2k−1

)), where lsbN (X) denotes the
least significant bit of X ∈ QR+

N .) Recall that the factoring assumption implies the computational
indistinguishability of the distributions

(N,X2k ,BBSN (X)) and (N,X2k , R),

where N
$←− RSAgen(1k), and X

$←− QR+
N and R

$←− {0, 1}k are chosen uniformly. (See also [26,
Theorem 2] for a summary why this holds.) Concretely, under the factoring assumption, the advantage

AdvBBS
B,RSAgen(k) :=

∣∣∣Pr[B(N,X2k ,BBSN (X)) = 1]− Pr[B(N,X2k , R) = 1]
∣∣∣

is negligible for any PPT adversary B.

7

The Strong DH assumption: In [20] it is shown that if the factoring assumption holds, then the Strong
DH assumption holds relative to RSAgen. This assumption is that there is no PPT algorithm having
non-negligible advantage in solving the CDH problem on input (N, g,X, Y) when given an oracle
for DDHg,X(·, ·). Here g is a randomly selected generator of QR+

N , X and Y are selected uniformly

from QR+
N , the solution to the CDH problem is defined as g(dloggX)(dloggY), and the DDH oracle

DDHg,X(Ŷ , Ẑ) returns 1 if Ŷ dloggX = Ẑ and 0 otherwise.
We will require a variant of the Strong DH assumption, which we name the Double Strong DH

(DSDH) assumption. This can be stated as follows. Let (N,P,Q)← RSAgen(1k) and let g be a ran-
domly selected generator of QR+

N , andX, Y be selected uniformly from QR+
N . Then the Double Strong

DH problem is to solve the CDH problem on input (N, g,X, Y), that is to compute g(dloggX)(dloggY),
when given oracles for DDHg,X(·, ·) and DDHg,Y (·, ·). The DSDH assumption relative to RSAgen is
that there is no PPT algorithm having non-negligible advantage in solving this problem.

Theorem 2. If the factoring assumption holds relative to RSAgen, then the DSDH assumption also
holds relative to RSAgen. In particular, for every algorithm A solving the Double Strong DH problem,
there exists a factoring algorithm B (with roughly the same running time as A) such that

AdvdsdhA,RSAgen(k) ≤ AdvfacB,RSAgen(k) +O(2−δn(k)).

Proof. The original proof of [20, Theorem 2] shows how to handle a single DDH oracle DDHg,X(·, ·).
By symmetry of the set-up used in the proof, the same procedure can also be used to (simultaneously)
handle the oracle DDHg,Y (·, ·).

3.2 Parameter generation algorithms for Asymmetric Pairings

Our pairing based scheme will be parameterized by a type 2 pairing parameter generator, denoted by
G2. This is a polynomial time algorithm that on input a security parameter 1k, returns the description
of three multiplicative cyclic groups G1, G2 and GT of the same prime order p, generators g1, g2 for G1,
G2 respectively, and a bilinear non-degenerate and efficiently computable pairing e : G1 ×G2 → GT .
We assume that G2 also outputs the description of an efficiently computable isomorphism ψ : G2 → G1

and that g1 = ψ(g2). Throughout, we write PG2 = (G1,G2,GT , g1, g2, p, e, ψ) for a set of groups and
other parameters with the properties just described.

3.3 The Decisional Bilinear Diffie-Hellman Assumption for Type 2 Pairings (DBDH-2)

Let PG2 = (G1,G2,GT , g1, g2, p, e, ψ) as above. We consider the following version of the Deci-
sional Bilinear Diffie-Hellman problem for type 2 pairings, as introduced by Galindo in [27]: Given
(g2, g

a
2 , g

b
2, g

c
1, T) ∈ G3

2 ×G1 ×GT as input, the problem is to decide whether or not T = e(g1, g2)
abc,

where g1 = ψ(g2). More formally, we associate the following experiment to a type 2 pairing parameter
generator G2 and an adversary B.

Experiment Expdbdh-2B,G2 (k)

PG2 $←− G2(1k)
a, b, c, z

$←− Zp

β
$←− {0, 1}

If β = 1 then T ← e(g1, g2)
abc else T ← e(g1, g2)

z

β′ $←− B(1k,PG2, ga2 , gb2, gc1, T)
If β = β′ then return 0 else return 1

The advantage of B in the above experiment is defined as

Advdbdh-2B,G2 (k) =

∣∣∣∣Pr[Expdbdh-2B,G2 (k) = 1]− 1

2

∣∣∣∣ .
We say that the DBDH-2 assumption relative to G2 holds if Advdbdh-2B,G2 is negligible in k for all PPT
algorithms B.

8

4 Constructions for Non-interactive Key Exchange

4.1 A Construction in the Random Oracle Model from Factoring

We specify how to build a NIKE scheme, NIKEfac, that is secure in the CKS-light security model
under the factoring assumption relative RSAgen in the ROM. Our scheme makes use of a hash function
H : {0, 1}∗ → {0, 1}k which is modelled as a random oracle in the security proof. The component
algorithms of the scheme NIKEfac are defined as follows:

CommonSetup(1k) NIKE.KeyGen(params, ID)

(N,P,Q)
$←− RSAgen(1k) x

$←− Z⌊N/4⌋;

g
$←− QR+

N , where ⟨g⟩ = QR+
N X ← gx

params← (H,N, g) pk ← X; sk ← x
Return params Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 ̸∈ QR+

N or pk2 ̸∈ QR+
N return ⊥

else if

{
ID1 < ID2 return H(ID1, ID2, pk1

sk2)

ID2 < ID1 return H(ID2, ID1, pk1
sk2)

Here we are assuming that the identities ID come from a space with a natural ordering <.

Theorem 3. The scheme NIKEfac is secure in the ROM under the factoring assumption relative to
RSAgen. In particular, suppose A is an adversary against NIKEfac in the CKS-light security model.
Then there exists a factoring adversary C with:

AdvCKS-light
A,NIKEfac

(k) ≤ AdvfacC,RSAgen(k) +O(2−δn(k)).

The proof of Theorem 3 is given in Appendix C.

4.2 Towards a factoring-based scheme in the standard model

The security proof of NIKEfac above crucially uses the statistical properties of the random oracle
H. If we accept an interactive key registration, we can however give a factoring-based NIKE scheme
in the standard model. The basis of this scheme is the factoring-based IND-CCA secure encryption
scheme of Hofheinz and Kiltz [26]. However, in adapting their scheme to the NIKE setting, we will
have to find a way to simultaneously cope with two challenge ciphertexts (which correspond to the
public keys of the challenge identities). To cope with this modified setting, we will set up a simulation
that is able to decrypt all but two ciphertexts (resp. NIKE public keys).

In our description, let RSAgen as before, let ChamH : {0, 1}∗×RCham → Z2k be a chameleon hash
function (see also Appendix A). Now consider the following scheme NIKEfac-int:

CommonSetup(1k)

(N,P,Q)
$←− RSAgen(1k)

g, u0, u1, u2
$←− QR+

N ,
where ⟨g⟩ = QR+

N

hk, ck
$←− Cham.KeyGen(1k)

params← (N, g, u0, u1, u2, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− Z⌊N/4⌋; r

$←− RCham

Z ← gx·2
3k

;
t← ChamHhk(Z||ID; r)
Y ← u0u

t
1u2

t2 ; X ← Y x

pk← (Z,X, r); sk← x
Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 ̸∈ QR+

N ×QR+
N ×RCham or sk2 ̸∈ Z⌊N/4⌋ return ⊥

Parse pk1 =: (Z1, X1, r1) and sk2 =: x2

Return BBSN (Zx2·22k
1)

Note that correctness of the scheme follows from Zx2·22k
1 = gx1·x2·25k = Zx1·22k

2 . To prove security,
we need to rely on the consistency of public keys. Concretely, the security reduction we will give can

9

only authentically answer corrupt reveal queries for corrupt user keys pk = (Z,X, r) that satisfy Z =

gx·2
3k

, X = (u0u
t
1u

t2

2)x for t = ChamHhk(Z||ID; r) and some x. Unlike in our upcoming pairing-based
scheme, this kind of consistency is not (obviously) efficiently verifiable. Hence, the key registration
process must ensure that only consistent user keys are registered, e.g., by having the user prove
consistency in zero-knowledge (interactively, using x as witness).

On top of assuming consistent keys, we will also have to make an assumption about the distribution
of (or rather, the ability to generate) primes. Namely, we will need to assume a PPT algorithm
PrimeGen that, on input a 2k-bit prime ρ, outputs a prime α such that α mod ρ has statistical
distance O(2−k) from the uniform distribution over Zρ. Such an algorithm PrimeGen exists. This is
an easy consequence of Dirichlet’s theorem on the distribution of primes in arithmetic progressions:
our generator simply samples integers of the form α0 + i · ρ for uniformly chosen α0 ∈ Zρ and
i = 1, 2, . . ., and checks them for primality. This algorithm can be rigorously proven to be efficient
under the Generalized Riemann Hypothesis.

Theorem 4. Under the factoring assumption relative to RSAgen, given an algorithm PrimeGen as
above, and assuming that the chameleon hash function ChamH is collision-resistant, the scheme
NIKEfac-int is secure against all adversaries that only register consistent (in the sense above) user
keys. In particular, suppose A is such an adversary against NIKEfac in the CKS-light security model.
Then there exists a BBS distinguisher B and a collision-finder ACH with:

AdvCKS-light
A,NIKEfac-int

(k) ≤ AdvBBS
B,RSAgen(k) + AdvcollACH,ChamH(k) +O(2−k). (1)

The proof of Theorem 4 is given in Appendix D.

4.3 A Construction in the Standard Model from Pairings

We specify how to build a NIKE scheme, NIKEdbdh-2, that is secure in the CKS-light security
model under the DBDH-2 assumption in the standard model. Our construction makes use of a tu-
ple PG2 = (G1,G2,GT , g1, g2, p, e, ψ), output by a parameter generator G2, and a chameleon hash
function ChamH : {0, 1}∗ ×RCham → Zp. This can be instantiated efficiently using the discrete-log
based construction from [28] (see Appendix A for further details of chameleon hash functions). The
component algorithms of the scheme NIKEdbdh-2 are defined as follows:

CommonSetup(1k)

PG2 $←− G2(1k),
where PG2 = (G1,G2,GT , g1, g2, p, e, ψ)

u0, u1, u2, S
$←− G∗

1

hk, ck
$←− Cham.KeyGen(1k)

params← (PG2, u0, u1, u2, S, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− Zp; r

$←− RCham

Z ← gx2 ;
t← ChamHhk(Z||ID; r);
Y ← u0u

t
1u2

t2 ; X ← Y x

pk ← (X,Z, r); sk ← x
Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If ID1 = ID2 return ⊥
Parse pk1 as (X1, Z1, r1) and sk2 as x2
t1 ← ChamHhk(Z1||ID1; r1)

If e(X1, g2) ̸= e(u0u
t1
1 u2

t1
2

, Z1)
then K1,2 ←⊥
else K1,2 ← e(Sx2 , Z1)

Return K1,2

The check in the SharedKey algorithm for valid public keys can be implemented by evaluating the
bilinear map twice. It is clear that SharedKey defined in this way satisfies the requirement that entities
ID1 and ID2 are able to compute a common key. To see this, note that e(Sx2 , Z1) = e(S, g2)

x1,x2 . The
identity space for this construction, IDS, is {0, 1}∗, while the space of shared keys is SHK = GT .
Public keys and parameters are compact. For example, at the 128-bit security level, using BN curves
[29] and point compression, public keys consist of 768 bits plus an element from RCham.

10

As stated before, we can prove the above NIKE scheme to be secure under the DBDH-2 assumption
in the sense of the CKS-light security model. Interestingly, our scheme can be generalised to use
any weak (2,poly)-PHF [21] in combination with a chameleon hash function. That is, Y (in the
NIKE.KeyGen algorithm) would be the output of the weak (2,poly)-PHF on input t, where t is the
output of the chameleon hash function. We have given a specific construction here because suitable
weak PHFs are currently rare. A further generalisation of our scheme could use any randomised
(2,poly)-PHF and avoid the chameleon hash, but no constructions for these are currently known.

Theorem 5. Assume ChamH is a family of chameleon hash functions. Then NIKEdbdh-2 is secure
under the DBDH-2 assumption relative to generator G2. In particular, suppose A is an adversary
against NIKEdbdh-2 in the CKS-light security model. Then there exists a DBDH-2 adversary B with:

Advdbdh-2B,G2 (k) ≥ AdvCKS-light
A,NIKEdbdh-2

(k)−AdvcollACH,ChamH(k).

For the proof, see Appendix E.

5 From Non-interactive Key Exchange to Public Key Encryption

We give a conversion that takes a NIKE scheme that is secure in the CKS-light security model plus
a strongly one-time secure signature scheme, and produces from it a KEM that is IND-CCA secure.
From such a KEM, it is easy to construct an IND-CCA secure public key encryption scheme [30].

The formal definitions of KEM and OTS and their security can be found in Appendix A.

5.1 The Conversion from NIKE to KEM

We now present our conversion from a NIKE scheme to a KEM. For a NIKE scheme NIKE and an
OTS scheme OTS, we construct a KEM KEM(NIKE, OTS) with the following algorithms:

– KEM.KeyGen(1k): This algorithm runs the algorithm CommonSetup(1k) of NIKE to obtain a set of
system parameters, params. Then it picks ID ∈ IDS uniformly and runs NIKE.KeyGen(params, ID)
to obtain a key pair (pk, sk). It sets pkKEM = (params, ID, pk) and skKEM = (ID, sk).

– Enc(pkKEM): This algorithm parses pkKEM as (params, ID, pk), runs OTSKeyGen to obtain a pair
(vk , sigk). This is repeated until vk ̸= ID. Next, it runs NIKE.KeyGen(params, ID′ = vk) of NIKE to
obtain a key pair (pk′, sk′) and runs OTSSign(sigk , pk′) to obtain σ, a signature on pk′. It then runs
SharedKey(ID, pk, ID′ = vk , sk′) of scheme NIKE to obtain a key K ∈ SHK. The output is
(K,C = (vk , pk′, σ)).

– Dec(skKEM, C): This algorithm first parses C as (vk , pk′, σ) and skKEM as (ID, sk). Next, it runs
OTSVfy(vk , pk′, σ) and returns ⊥ if the output is reject or if vk = ID. Otherwise, it runs
SharedKey(ID′ = vk , pk′, ID, sk) and outputs the result, which may be ⊥.

Notice that the ciphertexts in this scheme consist of a verification key from the OTS scheme, a
public key from the NIKE scheme, and a one-time signature, while the encapsulated keys are elements
of SHK. As our next result shows, the resulting KEM is automatically IND-CCA secure if the NIKE
scheme is secure in the CKS-light security model.

Theorem 6. Suppose the NIKE scheme NIKE is secure in the CKS-light security model and OTS is a
strongly secure one-time signature scheme. Then KEM(NIKE, OTS) is an IND-CCA secure KEM. More
precisely, for any adversary A against KEM(NIKE, OTS), there exists an adversary B against NIKE in
the CKS-light security model or an adversary C against OTS having the same advantage. Moreover,
if A makes qD decapsulation queries, then B makes qD register corrupt user queries and qD corrupt
reveal queries, while B’s running time is roughly the same as that of A.

For the proof, see Appendix F.
Applying the above construction to the pairing-based NIKE scheme from the previous section

results in an IND-CCA secure KEM with public keys (ID, pk) that consist of an identity string, two
group elements (one in G1 and one in G2), and a key for the Chameleon hash function. Ciphertexts are
slightly longer, containing in addition a verification key and a signature from the one-time signature
scheme7.
7 Arguably, one might also include the public parameters params when evaluating the public key size.

11

6 Conclusions and Open Problems

We provided different security models for NIKE and explored the relationships between them. We
then gave constructions for secure NIKE in the ROM and in the standard model. We also studied
the relationship between NIKE and PKE, showing that a secure NIKE implies an IND-CCA secure
PKE scheme.

There are several interesting open problems that arise from our work. One is to construct pairing-
free NIKE schemes in the standard model. A challenge to doing so is that our pairing-based construc-
tion uses the pairing in a fundamental way in order to provide a publicly computable check on the
validity of public keys. The RSA/factoring setting seems particularly challenging in this respect – we
recall that our standard model, factoring-based scheme required that the adversary only register valid
public keys, a condition that could be enforced in practice by having an interactive key registration
protocol and insisting on proofs of validity during that protocol. Clearly, it is desirable from both a
practical and a theoretical perspective to obtain schemes that are secure in the plain setting, where
no such protocol is required.

Another open problem is to construct ID-based NIKE schemes that are provably secure in the
standard model, moving beyond the ROM schemes analysed in [8,10]. Starting with known IBE
schemes may be profitable, but the fact that these generally have randomised private key generation
algorithms seems to make it hard to work backwards from IBE to ID-based NIKE.

Finally, it would be interesting to consider three-party NIKE schemes based on Joux’s protocol
[31]. Currently, there is no security model for such schemes, and no constructions which can handle
adversarially-generated public keys.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory
22(6) (1976) 644–654

2. Çağatay Çapar, Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based
analysis of wireless security protocols. Information and Computation (to appear)

3. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability of authentication. In
Reingold, O., ed.: TCC. Volume 5444 of Lecture Notes in Computer Science., Springer (2009) 146–162

4. Boyd, C., Mao, W., Paterson, K.G.: Key agreement using statically keyed authenticators. In Jakobsson,
M., Yung, M., Zhou, J., eds.: ACNS. Volume 3089 of Lecture Notes in Computer Science., Springer (2004)
248–262

5. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In Maurer,
U.M., ed.: EUROCRYPT. Volume 1070 of Lecture Notes in Computer Science., Springer (1996) 143–154

6. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In Smart, N.P., ed.:
EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer (2008) 127–145

7. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on
Cryptography and Information Security. (2000) 26–28

8. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on pairings. Discrete
Applied Mathematics 154(2) (2006) 270–276

9. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.: Strongly-resilient and non-
interactive hierarchical key-agreement in MANETs. In Jajodia, S., López, J., eds.: ESORICS. Volume
5283 of Lecture Notes in Computer Science., Springer (2008) 49–65

10. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key distribution, identity-based
encryption and trapdoor discrete log groups. Des. Codes Cryptography 52(2) (2009) 219–241

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In Stinson, D.R., ed.: CRYPTO.
Volume 773 of Lecture Notes in Computer Science., Springer (1993) 232–249

12. Shoup, V.: On formal models for secure key exchange (version 4) (1999)
13. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks.

In Preneel, B., ed.: EUROCRYPT. Volume 1807 of Lecture Notes in Computer Science., Springer (2000)
139–155

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels.
In Pfitzmann, B., ed.: EUROCRYPT. Volume 2045 of Lecture Notes in Computer Science., Springer
(2001) 453–474

15. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In Shoup, V., ed.: CRYPTO.
Volume 3621 of Lecture Notes in Computer Science., Springer (2005) 546–566

16. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In
Juels, A., Wright, R.N., di Vimercati, S.D.C., eds.: ACM Conference on Computer and Communications
Security, ACM (2006) 390–399

12

17. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty signatures against
rogue-key attacks. In Naor, M., ed.: EUROCRYPT. Volume 4515 of Lecture Notes in Computer Science.,
Springer (2007) 228–245

18. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Desmedt, Y., ed.: Public Key Cryptography. Volume 2567 of Lecture
Notes in Computer Science., Springer (2003) 31–46

19. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisig-
natures without random oracles. In Vaudenay, S., ed.: EUROCRYPT. Volume 4004 of Lecture Notes in
Computer Science., Springer (2006) 465–485

20. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In Halevi, S., ed.:
CRYPTO. Volume 5677 of Lecture Notes in Computer Science., Springer (2009) 637–653

21. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In Lee, D.H., Wang, X.,
eds.: ASIACRYPT. Volume 7073 of Lecture Notes in Computer Science., Springer (2011) 647–666

22. Chatterjee, S., Sarkar, P.: Generalization of the selective-ID security model for HIBE protocols. In Yung,
M., Dodis, Y., Kiayias, A., Malkin, T., eds.: Public Key Cryptography. Volume 3958 of Lecture Notes in
Computer Science., Springer (2006) 241–256

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory 31(4) (1985) 469–472

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM
Journal on Computing 18(1) (1989) 186–208

25. Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. Journal of Cryptology 13(2)
(2000) 221–244

26. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factoring. In Joux, A., ed.:
EUROCRYPT. Volume 5479 of Lecture Notes in Computer Science., Springer (2009) 313–332

27. Galindo, D.: Boneh-Franklin identity based encryption revisited. In Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M., eds.: ICALP. Volume 3580 of Lecture Notes in Computer Science., Springer
(2005) 791–802

28. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. (2000)
29. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In Preneel, B., Tavares,

S.E., eds.: Selected Areas in Cryptography. Volume 3897 of Lecture Notes in Computer Science., Springer
(2005) 319–331

30. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing 33 (2003) 167–226

31. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In Bosma, W., ed.: ANTS. Volume 1838 of
Lecture Notes in Computer Science., Springer (2000) 385–394

32. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separa-
tions for preimage resistance, second-preimage resistance, and collision resistance. In Roy, B.K., Meier,
W., eds.: FSE. Volume 3017 of Lecture Notes in Computer Science., Springer (2004) 371–388

33. Shoup, V.: OAEP reconsidered. J. Cryptology 15(4) (2002) 223–249

A Basic Definitions

A.1 Collision Resistant Hash Functions

Let CRF : F ×M → Y be a family of keyed-hash functions and let AH be an adversary. CRF is
said to be collision resistant if, for a hash function CRFf ∈ CRF (where the hash key f is chosen at
random from F), it is infeasible for any efficient adversary AH to find two distinct values m and m′

such that CRFf (m) = CRFf (m
′). More formally, following [32], we define

AdvcollAH,CRH(k) = |Pr[f
$←− F ; (m,m′)

$←− AH(f) :

(m ̸= m′) ∧ (CRFf (m) = CRFf (m
′))]|.

The hash function family is said to be collision resistant if AdvcollAH,CRH is negligible in k for any
polynomial-time adversary AH.

A.2 Target Collision Resistant Hash Functions

The difference between a target collision resistant hash function TCRf and a collision resistant hash
function CRFf is that, in the former case, it is infeasible for an adversary, given a value m, to find a
distinct value m′ such that TCRf (m) = TCRf (m

′). More formally, we define

13

AdvcollAH,TCR(k) = |Pr[f
$←− F ,m $←−M; m′ ← AH(f,m) :

(m ̸= m′) ∧ (TCRf (m) = TCRf (m
′))]|.

The hash function is said to be target collision resistant if AdvcollAH,TCR is negligible in k for any
polynomial-time adversary AH.

A.3 Chameleon Hash Functions

Chameleon hash functions [28] can be thought of as collision resistant hash functions with a trapdoor
for finding collisions. Let k be a security parameter. A chameleon hash function ChamH : D×RCham →
I, where D is the domain, RCham the randomness space and I the range, is associated with a pair of
public and private keys (the latter called a trapdoor). These keys are denoted respectively by hk and
ck and are generated by a PPT algorithm Cham.KeyGen(1k). The public key hk defines a chameleon
hash function, denoted ChamHhk(·, ·). On input a message m and a random string r, this function
generates a hash value ChamHhk(m, r) which satisfies the following properties:
Collision resistance There is no efficient algorithm that on input the public key hk can find pairs
m1, r1 and m2, r2 where m1 ̸= m2 such that ChamHhk(m1, r1) = ChamHhk(m2, r2), except with neg-
ligible probability in k.

Trapdoor collisions There is an efficient algorithm that on input the secret key ck, any pair m1, r1
and any additional message m2, finds a value r2 such that ChamHhk(m1, r1) = ChamHhk(m2, r2).
Also, for uniformly and independently chosen m1, r1 and m2, r2 is independently and uniformly
distributed over RCham.

Uniformity All mesages m induce the same probability distribution on
ChamHhk(m, r) for r chosen uniformly at random. This property prevents a third party, examin-
ing the value hash, from deducing any information about the hashed message.

More formally, we define the advantage of an adversary ACH against ChamH as

AdvcollACH,ChamH(k) = |Pr[hk
$←− Cham.KeyGen(1k); (m1, r1,m2, r2)

$←− ACH(hk) :

(m1 ̸= m2) ∧ (ChamHhk(m1, r1) = ChamHhk(m2, r2))]|.

The composition of a chameleon hash function and a (regular) collision resistant hash function
(where the latter is applied first) results in a chameleon hash function.

A.4 KEMs and KEM Security

A key encapsulation mechanism KEM = (KEM.KeyGen, Enc, Dec) consists of three algorithms:

– KEM.KeyGen, a probabilistic polynomial-time key generation algorithm that on input 1k, outputs
a public key/secret key pair (pk, sk).

– Enc, a probabilistic polynomial-time encapsulation algorithm that takes as input a public key pk
and outputs a symmetric key K ∈ K, where K is the symmetric key space of the KEM, and a
ciphertext C.

– Dec, a deterministic polynomial-time decapsulation algorithm that takes as input a secret key sk
and a ciphertext C, and outputs either a key K ∈ K or a special symbol ⊥.

For correctness we require that for all k ∈ N and all (K,C)← Enc(pk), we have

Pr[Dec(sk, C) = K] = 1.

Chosen-ciphertext security for a KEM is defined in terms of the following IND-CCA experiment
(from [26]), where an adversary A is allowed to adaptively query a decapsulation oracle with cipher-
texts of its choice and obtain the corresponding keys.

14

Definition 1 (IND-CCA security of a KEM). Let KEM = (KEM.KeyGen, Enc, Dec) be a key en-
capsulation mechanism. For any PPT algorithm A, we define the following experiments:

Experiment ExpCCA−real
A,KEM (k) Experiment ExpCCA−rand

A,KEM (k)

(pk, sk)← KEM.KeyGen(1k) (pk, sk)← KEM.KeyGen(1k)

K
$←− K

(K∗, C∗)← Enc(pk) (K∗, C∗)← Enc(pk)

Return ADec(sk,·)(pk,K∗, C∗) Return ADec(sk,·)(pk,K,C∗)

In the above experiment, the decapsulation oracle Dec(sk, ·), when queried with a ciphertext C ̸= C∗,
returns K ← Dec(sk, C); (Dec(sk, ·) ignores queries C = C∗. The advantage of A in breaking KEM’s
IND-CCA security is defined to be:

AdvCCA
A,KEM(k, qD) =

1

2

∣∣∣Pr[ExpCCA−real
A,KEM (k) = 1]− Pr[ExpCCA−rand

A,KEM (k) = 1]
∣∣∣ .

where qD is a bound on the number of decapsulation queries made by A. A KEM scheme is said to
be IND-CCA secure if AdvCCA

A,KEM(k, qD) is negligible for all polynomial-time adversaries A.

A.5 One-time signatures

A one-time signature (OTS) scheme OTS = (OTSKeyGen, OTSSign, OTSVfy) consists of three algo-
rithms:

– OTSKeyGen, a probabilistic polynomial-time key generation algorithm that on input 1k, outputs
a verfication/signing key pair (vk , sigk).

– OTSSign, a probabilistic polynomial-time signing algorithm that takes as input a signing key sigk
and a message m outputs a signature σ.

– OTSVfy, a deterministic polynomial-time verification algorithm that takes as input a verification
key vk , a message m and a signature σ, and outputs either reject or accept.

For correctness we require that for all k ∈ N, all (vk , sigk)← OTSKeyGen(1k), all messages m, and
all σ ← OTSSign(sigk ,m), we have

Pr[OTSVfy(vk ,m, σ) = accept] = 1.

Strong security for an OTS scheme is defined in terms of the following experiment.

Definition 2. Let OTS = (OTSKeyGen, OTSSign, OTSVfy) be an OTS. For any PPT algorithm A, we
define the following experiment:

Experiment ExpOTS
A,OTS(k)

(vk , sigk)← OTSKeyGen(1k)

(m∗, σ∗)← AOTSSign(sigk ,·)(vk)
Return (OTSVfy(vk ,m∗, σ∗) = accept) and (m∗, σ∗) ̸= (m,σ))

In the above experiment, the signing oracle OTSSign(sigk , ·) can only be queried once on some message
m which results in a signature σ. The advantage of A in breaking OTS’s strong one-time security is
defined to be:

AdvA,OTS(k) = Pr[ExpOTS
A,OTS(k) = 1].

An OTS scheme is said to be strongly secure if AdvA,OTS(k) is negligible for all polynomial-time
adversaries A.

15

B Relationships between NIKE Security Models

We show that the four NIKE security models discussed in Section 2.2 are polynomially equivalent.
Note that the proofs contain many parts in common, but we give them here in full detail for com-
pleteness.

Theorem 7 (CKS-heavy ⇔ m-CKS-heavy). A NIKE scheme NIKE is secure in the m-CKS-
heavy model if and only if it is secure in the CKS-heavy model. In more detail, for any adversary A
against NIKE in the m-CKS-heavy model, there is an adversary B that breaks NIKE in the CKS-heavy
model with

AdvCKS-heavy
B (k, qH , qC , qE , q

′
HR, qCR) = Advm-CKS-heavy

A (k, qH , qC , qE , qHR, qCR, qT)/qT ,

where q′HR ≤ qHR + qT . Conversely, for any B against NIKE in the CKS-heavy model, there is an A
that breaks NIKE in the m-CKS-heavy model with

Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, 1) = AdvCKS-heavy

B (k, qH , qC , qE , qHR, qCR).

Proof. Clearly, security in the sense of the m-CKS-heavy model implies security in the sense of
the CKS-heavy model, since the latter model is a limited case of the former. Here we prove that
if a NIKE scheme NIKE is secure in the CKS-heavy model, it is also secure in the m-CKS-heavy
model. We use the hybrid argument technique to relate the model with a single test query (the CKS-
heavymodel) to a model allowing multiple test queries (the m-CKS-heavy model) for a fixed bit b.
We assume that there exists an adversary A against NIKE in the m-CKS-heavy model with advantage
Advm-CKS-heavy

A (k, qH , qC , qE , qHR, qCR, qT) = |Pr[b̂ = b] − 1/2|. Without loss of generality, we will
assume that the qT test queries made by A are all distinct. We will also assume that there are no
two test queries (IDA, IDB) and (IDB , IDA). This assumption is also without loss of generality by
correctness of NIKE. We consider a sequence of indistinguishable games G0, G1, . . . , GqT , all defined
over the same probability space. Starting from the actual adversarial game G0 (attack game with
respect to an adversary A against NIKE in the m-CKS-heavy model), when b = 1 (that is, test queries
will always be answered with random keys), we make slight modifications between successive games,
in such a way that the adversary’s view is still indistinguishable among the games. The last game,
Game GqT , will be exactly like Game G0, except that this time A’s challenger will use b = 0 to
answer A’s test queries. Note that this means that A can distinguish games Game G0 and Game GqT

with advantage Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, qT) = |Pr[A(G0) = 1]−Pr[A(GqT) = 1]|. We

write A(Gi) to denote adversary A playing in game Gi. For every i, 0 ≤ i ≤ qT , we define a hybrid
variable Hi where the first i elements are the actual shared keys associated to the corresponding
users involved in the first i test queries, and the qT − i following elements are random keys. That

is, Hi = (K(·,·)
(1), . . . ,K(·,·)

(i), R(i+1), . . . , R(qT)), where K
(i)
(·,·) denotes the paired key between the

two identities involved in the i-st test query and R(j), i + 1 ≤ j ≤ qT , represents random keys. A’s
challenger will use Hi to answer test queries in game Game Gi.

Game G0. Define G0 to be the original game as described in the m-CKS-heavy security model
when b = 1.

Game Gi (1 ≤ i ≤ qT). This game is identical to game Game Gi−1, except that whenever A
makes its i-th test query on a pair of identities, say IDA and IDB , A’s challenger will return to A the
actual shared key, K(IDA,IDB), between those identities. Note that Games Gi and Gi+1 differ in only
one single test query.

We now construct an adversary B against NIKE in the sense of the CKS-heavy model. B plays the
CKS-heavy security game with challenger C and acts as a challenger for A.
C takes as input the security parameter 1k, runs algorithm CommonSetup of the NIKE scheme and

gives B params. C then takes a random bit b and answers any oracle queries for B until B outputs a
bit b̂.
B chooses a uniformly random i ∈ {0, . . . , qT − 1}, and invokes A on the vector

H = (K(·,·)
(1), . . . ,K(·,·)

(i), α,R(i+2), . . . , R(qT)). That is, in order to answer the first i test queries,
B makes honest reveal queries on the same pair of identities to C, obtaining real shared keys. B then
returns the shared keys to A. Whenever A makes its (i+ 1)-st test query, B will make the same test
query to its challenger, receiving a value α. B gives α to A. For all other test queries, B will respond

16

with a random value. For all other queries made by A, B passes these queries to C and then relays
the responses to A.

Now, if α is the actual key associated to the identities involved in the test query test i+1(·, ·), then
A was playing game Gi+1. Otherwise, if α is a random value, A was playing game Gi. Whenever A
terminates by outputting a bit b̂, then B outputs the same bit. Note that by our assumption the qT
test queries made by A are all distinct. So, B will never make an honest reveal query on the same
pair of identities that will be involved in its test query. Note also that as explained before, the only
difference between games Gi and Gi+1 is a single test query.

Let G′
0 and G′

1 be the games played by B against NIKE in the CKS-heavy model when b = 0 and
b = 1, respectively. We have:

Pr[B(G′
0) = 1] =

1

qT

qT−1∑
i=0

Pr[A(Gi+1) = 1]

and

Pr[B(G′
1) = 1] =

1

qT

qT−1∑
i=0

Pr[A(Gi) = 1].

It therefore follows that:

AdvCKS-heavy
B (k, qH , qC , qE , q

′
HR, qCR) = |Pr[B(G′

0) = 1]− Pr[B(G′
1) = 1]| =

1

qT

∣∣∣∣∣
qT−1∑
i=0

Pr[A(Gi+1) = 1]−
qT−1∑
i=0

Pr[A(Gi) = 1]

∣∣∣∣∣ =
1

qT
|Pr[A(G0) = 1]− Pr[A(GqT) = 1]| =

Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, qT)/qT .

This concludes our proof. ⊓⊔

Theorem 8 (CKS-light ⇔ CKS). A NIKE scheme NIKE is secure in the CKS model if and only
if it is also secure in the CKS-light model. In more detail, for any adversary A against NIKE in the
CKS model, there is an adversary B that breaks NIKE in the CKS-light model with

AdvCKS-light
B (k, q′C , q

′
CR) ≥ 2AdvCKS

A (k, qH , qC , qCR, qT)/qH
2qT ,

where q′C ≤ qC + qH and q′CR ≤ qCR. Conversely, for any B against NIKE in the CKS-light model,
there is an A that breaks NIKE in the CKS model with

AdvCKS
A (k, 2, qC , qCR, 1) = AdvCKS-light

B (k, qC , qCR).

Proof. Clearly, security in the sense of the CKS model implies security in the sense of the CKS-light
model. Here we prove that if a NIKE scheme NIKE is secure in the CKS-light model, then it is also
secure in the CKS model. We assume that there exists an adversary A against NIKE in the CKS model
with advantage AdvCKS

A (k, qH , qC , qCR, qT) = |Pr[b̂ = b] − 1/2|. We consider a sequence of games
G0, G1, . . . , GqT , all defined over the same probability space. Starting from the actual adversarial
game G0 (attack game with respect to an adversary A against NIKE in the CKS model), when b = 1
(that is, test queries will always be answered with random keys), we make slight modifications between
successive games, in such a way that the adversary’s view is still indistinguishable among the games.
The last game, Game GqT , will be exactly like Game G0, except that this time A’s challenger will
use b = 0 to answer A’s test queries. Note that this means that A can distinguish games Game G0

and Game GqT with advantage AdvCKS
A (k, qH , qC , qCR, qT) = |Pr[A(G0) = 1]−Pr[A(GqT) = 1]|. We

write A(Gi) to denote adversary A playing in game Gi. For every i, 0 ≤ i ≤ qT , we define a hybrid
variable Hi where the first i elements are the actual shared keys associated to the corresponding
users involved in the first i test queries, and the qT − i following elements are random keys. That

is, Hi = (K(·,·)
(1), . . . ,K(·,·)

(i), R(i+1), . . . , R(qT)), where K
(i)
(·,·) denotes the paired key between the

two identities involved in the i-th test query and R(j), i + 1 ≤ j ≤ qT , represents random keys. A’s
challenger will use Hi to answer test queries in game Game Gi.

17

Game G0. Define G0 to be the original game as described in the CKS security model when b = 1.
Game Gi (1 ≤ i ≤ qT). This game is identical to game Game Gi−1, except that whenever A

makes its i-th test query on a pair of identities, say IDA and IDB , A’s challenger will return to A the
actual shared key, K(IDA,IDB), between those identities. Note that Games Gi and Gi+1 differ in only
one single test query.

We now construct an adversary B against NIKE in the sense of the CKS-light model. B plays the
CKS-light security game with challenger C and acts as a challenger for A.
C takes as input the security parameter 1k, runs algorithm CommonSetup of the NIKE scheme and

gives B params. C then takes a random bit b and answers oracle queries for B until B outputs a bit b̂.
Let qT and qH be bounds on the number of test queries and register honest user ID queries,

respectively, made to B by A in the course of its attack. Without loss of generality, we assume that
the qT test queries are all distinct. B chooses a random i ∈ {0, . . . , qT − 1} and two distinct indices
I and J uniformly at random from {1, 2, . . . , qH}. Effectively B is guessing that the I-th and J-th
identities to be honestly registered by A will be involved in the (i+ 1)-st test query made by A.
A makes a series of queries which B answers as follows:

– Register corrupt user ID : If A makes a register corrupt user ID query, supplying (ID, pk), then B
makes the same register corrupt user ID query to C. C records the tuple (corrupt , ID, pk,⊥).

– Register honest user ID : Here A supplies a string ID to B. If this is the I-th or J-th such
query, then B makes the same register honest user ID query to C, setting IDI = ID or IDJ = ID as
appropriate. On input params and ID, C runs NIKE.KeyGen, generating a key pair (pk, sk), records
(honest , ID, pk, sk) and returns pk to B. If ID /∈ {IDI , IDJ}, then B generates a key pair (pk, sk),
by running algorithm NIKE.KeyGen on input params and ID, and makes a register corrupt user
ID query to C on inputs the string ID and the public key pk. B then gives pk to A.

– Corrupt reveal : Whenever A supplies two identities ID, ID′, where ID was registered by A as
corrupt and ID′ was registered as honest, B will check if ID′ ∈ {IDI , IDJ}. If so, B will make the
same corrupt reveal query to C, obtaining K(ID,ID′), and give the result to A. If ID′ /∈ {IDI , IDJ},
B runs SharedKey on input (ID, pkID, ID

′, skID′). Note that in this case, B has skID′ because it
generated for itself the pair (pkID′ , skID′). B gives K(ID′,ID′) to A.

– Test : B answers A’s test queries according to the vector

H = (K
(1)
(·,·), . . . ,K

(i)
(·,·), α,R

(i+2), . . . , R(qT)).

That is, B will answer the first i test queries with the actual shared keys associated to the
corresponding users involved in those test queries, the (i+ 1)-st test query with a value that can
be either the actual shared key associated to the users involved in that test query or a random
value, and the other qT − i− 1 test queries with random values. Next, we explain in more detail
exactly how B handles A’s test queries.

When A makes its j-th (j ≤ i) test query on a pair of identities {ID, ID′}, that were registered
as honest users, B will check if {ID, ID′} = {IDI , IDJ}. If so, B aborts the simulation. Otherwise,
suppose |{ID, ID′} ∩ {IDI , IDJ}| ≤ 1. Then we consider 3 cases:

1. ID ∩ {IDI , IDJ} ≠ ∅ and ID′ ∩ {IDI , IDJ} = ∅

This means that B registered ID′ as corrupt user and ID as honest user. B runs SharedKey
on input (ID, pkID, ID

′, skID′). Note that B has skID′ because it generated for itself the pair
(pkID′ , skID′). B gives K(ID,ID′) to A.

2. ID ∩ {IDI , IDJ} = ∅ and ID′ ∩ {IDI , IDJ} ≠ ∅

This means that B registered ID as corrupt user and ID′ as honest user. B runs SharedKey
on input (ID′, pkID′ , ID, skID). Note that B has skID because it generated for itself the pair
(pkID, skID). B gives K(ID,ID′) to A.

3. {ID, ID′} ∩ {IDI , IDJ} = ∅

Here both of the identities, ID and ID′ were registered by B as corrupt users, so that B cannot
make a corrupt reveal query on them. Instead B runs SharedKey on inputs (ID′, pkID′ , ID, skID),
and returns K(ID,ID′) to A.

18

When A makes its (i + 1)-st test query on a pair of identities {ID, ID′}, B checks if {ID, ID′} =
{IDI , IDJ}. If not, B aborts the simulation. If {ID, ID′} = {IDI , IDJ}, B makes the same test query
to C receiving α. B gives α to A. For all other test queries B will respond with a random value.

Whenever A terminates by outputting a bit b̂, then B outputs the same bit. Now, if α is the actual
key K(IDA,IDB) associated to (IDA, IDB) (the identities involved in the (i + 1)-st test query made by
A), then A was playing game Game Gi+1. Otherwise, if α is a random value, A was playing game
Game Gi.

We now assess B’s success probability. Let G′
0 and G′

1 be the games played by B against NIKE in
the CKS-light model when b = 0 and b = 1, respectively. Let F denote the event that B is not forced
to abort during its simulation. It is easy to see that Pr(F) ≥ 1/

(
qH
2

)
≥ 2/qH

2.
We have:

Pr[B(G′
0) = 1] = Pr[F]

1

qT

qT−1∑
i=0

Pr[A(Gi+1) = 1]

and

Pr[B(G′
1) = 1] = Pr[F]

1

qT

qT−1∑
i=0

Pr[A(Gi) = 1]

It therefore follows that:

AdvCKS-light
B (k, q′C , q

′
CR) = |Pr[B(G′

0) = 1]− Pr[B(G′
1) = 1]|

=
Pr[F]

qT

∣∣∣∣∣
qT−1∑
i=0

Pr[A(Gi+1) = 1]−
qT−1∑
i=0

Pr[A(Gi) = 1]

∣∣∣∣∣
=

Pr[F]

qT
|Pr[A(G0) = 1]− Pr[A(GqT) = 1]|

=
Pr[F]

qT
AdvCKS

A (k, qH , qC , qCR, qT)

≥ 2AdvCKS
A (k, qH , qC , qCR, qT)/qH

2qT .

This concludes our proof. ⊓⊔

Theorem 9 (CKS-heavy⇔ CKS-light). A NIKE scheme NIKE is secure in the CKS-heavy model
if and only if it is also secure in the CKS-light model. In more detail, for any adversary A against
NIKE in the CKS-heavy model, there is an adversary B that breaks NIKE in the CKS-light model with

AdvCKS-light
B (k, q′C , q

′
CR) ≥ 2AdvCKS-heavy

A (k, qH , qC , qE , qHR, qCR)/qH
2,

where q′C ≤ qC + qH and q′CR ≤ qCR. Conversely, for any B against NIKE in the CKS-light model,
there is an A that breaks NIKE in the CKS-heavy model with

AdvCKS-heavy
A (k, 2, qC , 0, 0, qCR) = AdvCKS-light

B (k, qC , qCR).

Proof. Clearly, security in the sense of the CKS-heavy model implies security in the sense of the
CKS-light model. Here we prove that if a NIKE scheme NIKE is secure in the CKS-light model,
it is also secure in the CKS-heavy model. Suppose there is an adversary A against NIKE in the
CKS-heavy model with advantage AdvCKS-heavy

A (k, qH , qC , qE , qHR, qCR). We show how to construct
an algorithm B against NIKE in the CKS-light model that uses A to break NIKE with advantage
AdvCKS-light

B (k, q′C , q
′
CR) ≥ 2AdvCKS-heavy

A (k, qH , qC , qE , qHR, qCR)/qH
2, where k is the security pa-

rameter.
B plays the CKS-light security game with challenger C and acts as a challenger for A.
C takes as input the security parameter 1k, runs algorithm CommonSetup of the NIKE scheme and

gives B params. C then takes a random bit b and answers oracle queries for B until B outputs a bit b̂.
Let qH be a bound on the number of register honest user ID queries made to B by A in the course

of its attack. B chooses two distinct indices I and J uniformly at random from {1,2,. . .,qH}.A makes
a series of queries which B answers as follows:

– Register corrupt user ID : If A makes a register corrupt user ID query supplying (ID, pk) as input,
B makes the same register corrupt user ID query to C. C records the tuple (corrupt , ID, pk,⊥).

19

– Register honest user ID : Here A supplies a string ID to B. If this is the I-th or J-th such query,
then B sets IDI = ID or IDJ = ID as appropriate. Then B makes the same register honest user ID
query to C. On input params and ID, C runs NIKE.KeyGen, generating a key pair (pk, sk), records
(honest , ID, pk, sk) and returns pk to B. B gives pk to A. Otherwise, when this is not the I-th
or J-th such query, B generates a key pair (pk, sk), by running algorithm NIKE.KeyGen on input
params and ID, and makes a register corrupt user ID query to C on inputs the string ID and the
public key pk. B then gives pk to A.

– Extract : Whenever A makes an extract query on a user identity ID, that was registered by A as
honest, B checks if ID ∈ {IDI , IDJ}. If so, B aborts the simulation. If ID /∈ {IDI , IDJ}, B finds ID
in the list (honest , ID, pk, sk) and returns sk to A.

– Honest reveal : Whenever A supplies two identities ID, ID′, where ID and ID′ were registered by A
as honest users, B will check if {ID, ID′} = {IDI , IDJ}. If so, B aborts the simulation. (Note that
in this case B does not have either of the secret keys needed to compute the paired key between
the two identities.) Otherwise, B runs SharedKey on the appropriate inputs. (Note that in this
case, B has at least one of the secret keys needed to execute SharedKey.)

– Corrupt reveal : Now, if A supplies two identities ID, ID′, where ID was registered by A as corrupt
and ID′ was registered as honest, B will check if ID′ ∈ {IDI , IDJ}. If so, B will make a Corrupt
reveal query to C obtaining the shared key between ID and ID′, K(ID,ID′). B then returns the result
to A. If ID′ /∈ {IDI , IDJ}, then this means that B has skID′ . Then B runs SharedKey using skID′

as an input and returns K(ID,ID′) to A.
– Test : Whenever A makes its test query on a pair of user identities {IDA, IDB}, B checks if
{IDA, IDB} = {IDI , IDJ}. If so, B makes a test query to C on {IDA, IDB} and gives the result to
A. If not, B aborts simulation.

This completes our description of B’s simulation. When A terminates by outputting a bit b̂ then
B outputs the same bit. We now assess B’s success probability. Let F denote the event that B is not
forced to abort during its simulation. It is easy to see that Pr(F) ≥ 1/

(
qH
2

)
≥ 2/qH

2. Thus, we see
that:

AdvCKS-light
B (k, q′C , q

′
CR) ≥ 2AdvCKS-heavy

A (k, qH , qC , qE , qHR, qCR)/qH
2.

This concludes the proof. ⊓⊔

C Proof of Theorem 3

Proof. Suppose A is an adversary against NIKEfac in the CKS-light security model. We first show
how to construct an adversary B that uses A to solve the Double Strong DH problem in the group
of Signed Quadratic Residues (QR+

N), where N is generated by RSAgen, and then use Theorem 2 to
construct a factoring adversary C. B’s input is (N, g,X = gx, Y = gy), where g is a generator of QR+

N

and (gx, gy) is an instance of the CDH problem in QR+
N . B’s task is to compute gxy, given access to

two decisional oracles DDHg,X(·, ·) and DDHg,Y (·, ·). B acts as a challenger for A.
B gives A the tuple (H,N, g), where H is a random oracle controlled by B. B maintains a list

L, initially empty, to store random oracle responses or responses to paired keys. A makes a series of
queries which B answers as follows.

– Register honest user ID : When B receives register honest user ID queries for identities A and B,
B sets pkA = X and pkB = Y .

– Register corrupt user ID : Here, B receives a public key pk and a string ID from A, and registers
them. As in the original attack game, B aborts if ID equals one of the honest identities, A or B.

– Corrupt reveal queries: In order to output the paired key between one of the two honest users,
say A, and a corrupt user, say D, B checks if A and D already appears in an entry of the form
(A,D, h,R) on the list L (without loss of generality, assume A < D). If so, then B returns

KA,D = R in response to A’s query. Otherwise, B replies with R
$←− {0, 1}k and adds (A,D,⊥, R)

to L. Notice that by setup skA = x = dloggX (unknown to B), so the ‘correct’ key would be

KA,D = H(A,D, pkxD). (We assume pkD ∈ QR+
N , otherwise B returns ⊥.)

– Test query : At some point during the simulation, A makes a single Test query on the pair of
identities (A,B). B outputs a randomly generated value R ∈ {0, 1}k. Notice that the ‘correct’
key KA,B that would be computed by B in responding to this query is equal to H(A,B, gxy)
(w.l.o.g. assuming A < B).

20

– H queries: On input (ID1, ID2, h), w.l.o.g. ID1, ID2 ∈ {0, 1}∗, ID1 < ID2, and h ∈ QR+
N , B answers

A’s H queries as follows. B checks if (ID1, ID2, h,R) is already on the list for some R; If so, it
outputs R. Otherwise, B checks if an entry of the form (ID1, ID2,⊥, R) is on the list for at least
ID1 or ID2 equals one of the two honest identities A or B. So let ID1 = A (ID1 = B), that is,
pk1 = X (pk1 = Y). If ID2 is also a registered identity, then B checks if h is the ‘correct’ DH
value for (ID1, ID2) using one of the DDH oracles (note that B does not know the secret key
x = dloggX (y = dloggY)). That is, if DDHg,X(pk2, h) = 1 (DDHg,Y (pk2, h) = 1), then h = pkx2
(h = pky2) and B adds (ID1, ID2, h,R) to the list and returns R. Note that entries of the form
(ID1, ID2,⊥, R) are only added to the list when one of the identities ID1 or ID2 is A or B and
the other is registered. Finally, if no entry of either of the above forms already appears on the
list, that is, no (ID1, ID2, h,R) and no (ID1, ID2,⊥, R), then B picks a random value R ∈ {0, 1}k,
returns R and adds (ID1, ID2, h,R) to L.

This completes our description of B’s simulation. LetG denote the event thatA queries the random
oracle H with (A,B, h) or (B,A, h) for h = gxy, then it efficiently solved B’s own CDH challenge. This
can be noticed by B (with the help of oracle DDHg,X(·, ·) or DDHg,Y (·, ·)) and B can return gxy. Note
that if A does not query H on (A,B, gxy) or (B,A, gxy), then A’s advantage is zero because it cannot
disinguish real from random answers to Test queries. Hence, ifA has non-negligible success probability,
then this query must be made by A. We then see that AdvdsdhB,RSAgen(k) ≥ AdvCKS-light

A,NIKEfac
+ O(2−δn(k)),

where the O(2−δn(k)) term accounts for the statistical difference between the distribution of gx and
gy in the real game (where x, y ∈ Z⌊N/4⌋) and the simulation (where x, y ∈ Zϕ(N)/4). Combining

these facts with Theorem 2, we have that AdvCKS-light
A,NIKEfac

(k) ≤ AdvfacC,RSAgen(k)+O(2−δn(k)), concluding
the proof. ⊓⊔

D Proof of Theorem 4

Proof. Our proof largely follows the IND-CCA security proof for the factoring-based PKE scheme
from [26]. Loosely speaking, our system parameters params correspond to a PKE public key in
the scheme of [26]; NIKE user keys pk correspond to PKE ciphertexts; and the NIKE shared key
computation roughly corresponds to PKE decryption. The main difference between the NIKE and
PKE schemes is that in a NIKE scheme, two user keys are “paired” to generate a shared secret key.
In a PKE scheme, a single ciphertext is decrypted “on its own.” In particular, there are two NIKE
honest identities (for which a Test query is issued), while there is only one PKE challenge ciphertext.

More formally, assume a CKS-light adversary A that only registers consistent keys. We use A
to construct a BBS distinguisher B. Our distinguisher B gets as input a modulus N , along with a

random D ∈ QR+
N and a challenge C ∈ {0, 1}k. B’s goal is to distinguish the cases C = BBSN (D1/2k)

and uniform C. To this end, B will simulate the CKS-light game for A.
First, we will assume that in the original CKS-light game, any two public keys (honest or registered

by A) lead to the different hash values t ← ChamHhk(Z||ID; r). A straightforward reduction to the
collision resistance of ChamH justifies this assumption and leads to the AdvcollACH,ChamH term in (1).

Next, we let B use the chameleon hash trapdoor ck in its simulation. Concretely, we let B initially
uniformly choose the hash values t1 and t2 for the two (at that point unknown) honest identitities
ID1, ID2. (Later on, when A decides on ID1 and ID2, we let B use ck to generate ChamH randomness
r1, r2 such that ti = ChamHhk(Zi||IDi; ri) for the corresponding public keys.) B then sets up

g = Dα1·α2 ui = Daigbi2
3k

(0 ≤ i ≤ 2).

Here, α1, α2 ← PrimeGen(1n+k, ρ) (for a uniform 2(n+k)-bit prime ρ) are primes generated using the
assumed algorithm PrimeGen. By assumption about PrimeGen, we have that the αi mod ρ (and thus
the αi mod ϕ(N)/4) are statistically close to uniform. (In particular, we can assume αi > 22k.) The
arising (negligible) statistical defect is accounted for by the O(2−k) term in (1). Furthermore, bi ∈
Z⌊N/4⌋ and ai ∈ Z⌊N/4⌋ are uniformly chosen, such that a(t) := a0+a1t+a2t

2 := (t−t1)(t−t2) ∈ Z[t].
We will also write b(t) := b0+ b1t+ b2t

2 ∈ Z[t] for brevity. B invokes A with the resulting parameters
params = (N, g, u0, u1, u2, hk). The honest keys pkIDi

= (Zi, Xi, ri) are computed using

Zi = Dα3−i

(
= g1/αi

)
Xi = Dα3−i·b(ti)

(
= (u0u

ti
1 u

t2i
2)

1

αi·23k
)

21

and randomness ri that ensures ChamHhk(Zi||IDi; ri) = ti. This implicitly sets xi = 1/(αi · 23k), such
that the shared key between ID1 and ID2 is BBSN (gx1x22

5k

) = BBSN (D2−k

). Hence, B’s challenge C
can be directly embedded as A’s test challenge key.

It remains to describe how B answers A’s Corrupt reveal queries for (IDi, ID) (with i ∈ {1, 2}
and ID ̸= ID1, ID2). We can assume that ID’s public key pkID = (Z,X, r) is consistent, so that Z =

gx·2
3k

, X = (u0u
t
1u

t2

2)x for t = ChamHhk(Z||ID; r). To compute the shared key BBSN (g(x/αi)·22k) =

BBSN (Dx·α3−i·22k), it suffices to compute Dx·22k . However, Dx·22k can be computed from

X

Zb(t)
=

Dx·a(t)gx·b(t)·2
3k

gx·b(t)·23k
= Dx·a(t)

and Z = gx·2
3k

= Dx·α1·α2·23k , using the extended Euclidean algorithm in the exponent and the fact
that gcd(a(t), α1 · α2 · 23k) | 22k (which holds because a(t) ≤ 22k and the αi > 22k are prime).

This completes the description of our simulation. Assuming that no ChamH collision occurs, and
ignoring the statistical defect arising from the not quite uniform αi mod ϕ(N)/4, we get the following:

– when B’s challenge C equals BBSN (D2−k

), then B simulates the CKS-light game with A and a
real challenge key;

– when B’s challenge C is uniform, then B simulates the CKS-light game with A and a random
challenge key.

Thus, B is a successful BBS distinguisher whenever A is successful in the CKS-light game. (1) follows.

E Proof of Theorem 5

Proof. We proceed via a sequence of games. Let Si be the event that A is successful in Game i.

Game 0. Let Game 0 be the original attack game as described in the CKS-light security model. By
definition, we have that:

AdvCKS-light
A,NIKEdbdh-2

(k) = |Pr[S0]− 1/2|.

Game 1. (Eliminate hash collisions.) In this game, the challenger changes its answers to register
corrupt user ID queries as follows: let A and B be the identities of the two honest users, and let their
public keys be (XA, ZA, rA), (XB , ZB , rB) respectively. Let D be the identity of a user that is the
subject of a register corrupt user ID query with pkD = (XD, ZD, rD). If tD = ChamHhk(ZD||D; rD) =
ChamHhk(ZA||A; rA) or tD = ChamHhk(ZD||D; rD) = ChamHhk(ZB ||B; rB), the challenger aborts
(note that in this case the challenger created a collision in ChamHhk). Otherwise, it continues as in
the previous game.

Let abortChamH be the event that a collision was found. Until abortChamH happens, Game 0 and
Game 1 are identical. By the difference lemma [33], we have

|Pr[S1]− Pr[S0]| ≤ Pr[abortChamH].

Furthermore,

Pr[abortChamH] ≤ AdvcollACH,ChamH(k).

Game 2. In this game a DBDH-2 adversary B on inputs (g2, g
a
2 , g

b
2, g

c
1, T) ∈ G3

2 × G1 × GT , where
a, b, c ∈ Zp, runs adversary A against NIKEdbdh-2 simulating the challenger’s behaviour as in Game 1.
B’s job is to determine whether T equals e(g1, g2)

abc or a random element from GT , where g2 is a
generator of G2 and g1 = ψ(g2) is a generator of G1.
B runs Cham.KeyGen(1k) to obtain a key pair for a chameleon hash function, (hk, ck) (here ck is the

trapdoor information for the chameleon hash). It then selects m1,m2
$←− {0, 1}∗ and r1, r2

$←− RCham,
where RCham is the chameleon hash function’s randomness space. B computes tA = ChamHhk(m1; r1)
and tB = ChamHhk(m2; r2).

Let p(t) = p0 + p1t+ p2t
2 be a polynomial of degree 2 over Zp such that p(tA) = p(tB) = 0. Let

q(t) = q0 + q1t+ q2t
2 be a random polynomial of degree 2 over Zp. Then B sets ui = (gc1)

pig1
qi and

22

S = gc1. Since qi
$←− Zp, we have ui

$←− G1. Note that then u0u
t
1u

t2

2 = (gc1)
p(t)g1

q(t). In particular,

YA = g
q(tA)
1 and YB = g

q(tB)
1 , where q(tA) and q(tB) are known values.

B then answers the following queries:

– Register honest user ID : When B receives a register honest user ID query for identityA from adver-
sary A, it uses the trapdoor information ck of the chameleon hash function to obtain rA ∈ RCham

such that
ChamHhk(g

a
2 ||A; rA) = ChamHhk(m1; r1) = tA. Notice that, according to the definition of chameleon

hash functions (see Appendix A), rA is uniformly distributed over RCham and independent from
r1. Similarly, when B receives a second register honest user ID query for identity B from A, it
obtains rB ∈ RCham such that ChamHhk(g

b
2||B; rB) = ChamHhk(m2; r2) = tB . Then rB is also

uniformly distributed over RCham. Now B sets:

pkA = ((ψ(ga2)
q(tA)

, ga2 , rA) and pkB = ((ψ(gb2)
q(tB)

, gb2, rB).

These are correct public keys since p(tA) = p(tB) = 0.
– Register corrupt user ID : Here, B receives a public key pk and a string ID from A, and registers

them. As in the original attack game, B aborts if ID equals one of the honest identities, A or B.
– Corrupt reveal queries: In order to output the paired key between one of the two honest users,

say A, and a corrupt user, say D, B first checks if pkD = (XD, ZD, rD) is a valid public key using
the pairing. If not, it rejects the query. This makes sure that pkD is of the form (Y d

D, g
d
2 , rD) for

some d ∈ Zp, where YD = (gc1)
p(tD)

g
q(tD)
1 and rD ∈ R. This means that XD = (gcd1)

p(tD)
g
dq(tD)
1 .

Thus, gcd1 can be computed from XD, ZD = gd2 and rD by:

gcd1 = (XD/ψ(ZD)
q(tD)

)
1/p(tD) mod p

,

where we use the property that p(tD) ̸= 0 mod p, which follows from the facts that p is a poly-
nomial of degree 2 with roots tA, tB and that tD ̸= tA, tB (because we have eliminated hash
collisions already in Game 1).
Now writing pkA = (XA, ZA, rA) for the public key of the honest user A, the shared key between
A and D can be correctly computed as:

KA,D = e(gcd1 , ZA).

– Test query : Return T .

This completes our description of B’s simulation. Note that distinguishing the real case from
the random case for A in Game 2 is equivalent to solving the DBDH-2 problem. To see this, note

that for user A, we have ZA = ga2 and XA = ψ(ZA)
q(tA)

, while for user B, we have ZB = gb2 and

XB = ψ(ZB)
q(tB)

. Hence KA,B = e((gc1)
b
, ZA) = e((gc1)

a
, ZB) = e(g1, g2)

abc.
Now, since B’s simulation properly handles all of A’s queries and sets up all values with the correct

distributions, we have: Pr[S2] = Pr[S1].

Game 3. (Replace the challenge.) In this game B replaces the value T with a random element from
GT . Since T is now completely independent of the challenge bit, we have: Pr[S3] = 1/2.
Game 2 and Game 3 are identical unless adversary A can distinguish e(g1, g2)

abc from a random
element. Therefore we have:

|Pr[S3]− Pr[S2]| ≤ Advdbdh-2B,G2 (k).

By collecting the probabilities relating the different games, we have

AdvCKS-light
A,NIKEdbdh-2

= |Pr[S0]− 1/2|

≤ |Pr[S1] + AdvcollACH,ChamH(k)− 1/2|

≤ |Pr[S2] + AdvcollACH,ChamH(k)− 1/2|

≤ |Pr[S3] + Advdbdh-2B,G2 (k) + AdvcollACH,ChamH(k)− 1/2|

≤ Advdbdh-2B,G2 (k) + AdvcollACH,ChamH(k)

Thus,
Advdbdh-2B,G2 (k) ≥ AdvCKS-light

A,NIKEdbdh-2
(k)−AdvcollACH,ChamH(k).

This concludes our proof. ⊓⊔

23

Remark: We note that the map ψ in PG2 is only used in the security proof for the NIKE scheme
NIKEdbdh-2 and not in the scheme itself.

F Proof of Theorem 6

Proof. Let A be an adversary against KEM(NIKE, OTS). We build B, an adversary against the NIKE
scheme in the CKS-light security model.
B, on input params, a set of system parameters, picks one identity ID1 uniformly at random

and runs OTSKeyGen to obtain (vk , sigk). It sets ID2 = vk and makes two register honest user
queries on ID1 and ID2 receiving public keys pk1, pk2. B then sets pkKEM = (params, ID1, pk1). B
also makes a test query on ID1, ID2. It receives in reply a value K̂, which is either the real key,
K∗ = SharedKey(ID1, pk1, ID2, sk2), or a random key K from SHK. B sets C∗ = (ID2, pk2, σ

∗), where
σ∗ ← OTSSign(sigk , pk2) and gives (pkKEM, K̂, C

∗) to A.
A now makes Dec queries which B handles as follows. For each such query with input C, B parses

C as (ID′, pk′, σ′) and check the signature σ′ using vk ′ = ID′. If ID′ = ID2 and (pk′, σ′) ̸= (pk2, σ
∗),

then we can build another adversary C against the strong security of OTS. (This is done using the
same simulation as above with the difference that sk1 and sk2 are known but vk comes from the OTS
experiment. The signing oracle is used to generate σ∗ for the challenge ciphertext.) If ID′ = ID1, it
returns ⊥. Assuming ID′ ̸∈ {ID1, ID2}, B makes a register corrupt user query on input ID′. B then
makes a corrupt reveal query on ID1, pk1, ID

′, pk′ to get either a key K ∈ SHK, or ⊥, and returns
the result to A.

This completes our description of B’s simulation. A’s view is identical when playing either against
B in this simulation or against its real KEM challenger. Note that in the KEM real game Dec(skKEM, C),
where C = (vk ′ = ID′, pk′, σ′), should return SharedKey(ID′, pk′, ID1, sk1) or ⊥ if the signature
does not verify or if ID′ = ID1. Note also that in the KEM real game, the challenge query should
be answered with either Enc(pkKEM) = (K∗, C∗), where K∗ = SharedKey(ID1, pk1, ID2, sk2) and
C∗ = (ID2, pk2, σ

∗), or a pair (K,C∗), with K chosen at random from SHK. This is exactly what is
done in B’s simulation.

Whenever A outputs a bit b̂, B outputs the same bit. Then we have that B’s advantage in breaking
the NIKE scheme is the same as A’s in breaking the KEM. Counting queries made B in response to
A’s queries completes the proof. ⊓⊔

24

