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Abstract. Implementation attacks pose a serious threat for the security
of cryptographic devices and there are a multitude of countermeasures
that are used to prevent them. Two countermeasures used in implemen-
tations of block ciphers to increase the complexity of such attacks are
the use of dummy rounds and redundant computation with consistency
checks to prevent fault attacks. In this paper we present several counter-
measures based on the idea of infective computation. Our countermea-
sures ensure that a fault injected into a cipher, dummy, or redundant
round will infect the ciphertext such that an attacker cannot derive any
information on the secret key being used. This has one clear advantage:
the propagation of faults prevents an attacker from being able to conduct
any fault analysis on any corrupted ciphertexts. As a consequence, there
is no need for any test at the end of an implementation to determine if
a fault has been injected and a ciphertext can always be returned.
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1 Introduction

Implementation attacks are currently one of the most powerful threats for cryp-
tographic devices. Instead of considering a cryptographic device like a smart card
as a black box, these attacks try to benefit from characteristics of the implemen-
tation, either by measuring properties of the device during a computation or by
actively manipulating the execution of an algorithm. These can be grouped into
two main types: Passive attacks based on measuring and analyzing properties



of the device (referred to as a side-channel attack), and active attacks where an
attacker seeks to modify the behavior of a device (referred to as a fault attack).
Both attack methods may reveal cryptographic keys used inside a device, irre-
spective of the theoretical (black-box) security of the underlying cryptographic
algorithm.

Side-channel analysis was introduced to the cryptographic community by
Kocher [1], who noted that the time taken to compute a cryptographic algo-
rithm can potentially reveal the cryptographic key being used. The idea of the
attack was later extended by Kocher et al. [2], who noted that the power con-
sumption of a microprocessor depends on the code being executed. Moreover,
the instantaneous power consumption is dependent on the data being manipu-
lated at that point in time (typically proportional to the Hamming weight of
the data [3]). This allows information on cryptographic keys to be determined,
since one can verify a hypothetical set of values that occur after the input is
combined with a key. It was later observed that the same attacks could be ap-
plied to the electromagnetic emanations surrounding a microprocessor [4, 5]. A
suitable countermeasure to such attacks is to mask all intermediate states of an
algorithm with some random value [6, 7]. One can further complicate the task
of an attacker by executing an algorithm in some non-deterministic order, such
that data is not processed at a set point in time. This spreads the information
an attacker would want to exploit over numerous points in time. One way to
introduce time randomization in an implementation of a block cipher is the use
of dummy rounds. That is, each round observed by an attacker will be a dummy
round with some probability, and produce false hypotheses for an attacker.

Fault analysis seeks to exploit the effect of a fault inserted into an instance
of a cryptographic algorithm [8–10]. When implementing a block cipher a simple
countermeasure is, as for side-channel analysis, to use time randomization, e.g.
dummy rounds, that can render precise fault injection more difficult. However,
dummy rounds do not affect an attacker directly, since injecting a fault into a
dummy round will have no observable effect. Another simple countermeasure is
to introduce redundancy in a certain number of rounds at the beginning and the
end of a block cipher. This can, for instance, involve repeating the execution of
functions in software implementations or using parallel blocks in hardware. At
the end of the redundant computation the implementation checks if all redun-
dantly computed results are equal and suppresses the output if they are not.

Contribution. In this paper we show how one can link cipher rounds, dummy
rounds, and redundant rounds to further increase the security in implementa-
tions of block ciphers. The countermeasures disturb the ciphering process each
time a fault is injected into a cipher, dummy, or redundant round, and give an
attacker no information with which to deduce information on a secret key. As
a consequence, an implementation does not need to use any consistency checks,
which may themselves become targets for a fault attack and which inherently
leak information about the success of fault injection.



Our countermeasures even provide some protection against an adversary who
attempts to inject the same fault in both (all) branches of redundant compu-
tation to bypass the final consistency check. While the check actually aids the
adversary since it will only output the ciphertext if the fault injection was suc-
cessful, our proposed algorithms always output a ciphertext (exploitable or not).
Thus, an adversary has to analyze the output without knowing whether the fault
injection was successful and the output contains exploitable information, or not.

Organization. The rest of this paper is organized as follows: Section 2 provides
background information on fault analysis of block cipher implementations and
countermeasures. Section 3 presents our countermeasures and their application
to S-P networks and Feistel ciphers. Section 4 provides the security evaluation of
the countermeasures in both cases. Section 5 explains how the countermeasures
can be hardened to prevent the detection of dummy rounds by side-channel
analysis and Section 6 concludes the paper.

2 Background

Since the introduction of fault attacks by Boneh et al. [9], the idea of exploiting
erroneous results to reveal secrets was applied to many cryptographic algorithms.
The ideas are steadily improved for reducing the number of faults required. For
example, it is noted in [11] that a single fault may be sufficient to break an
AES implementation by using differential fault analysis. For such attacks, the
same plaintext is encrypted twice, while a fault is injected during one of the
computations. From the resulting difference in the outputs, the secret key or
parts of it are derived. In contrast to differential fault analysis, collision fault
analysis [8] relies on finding a plaintext that maps to the same output as a faulty
encryption of a different plaintext. This technique is often applied to attack early
rounds of an algorithm. Safe-error attacks [12] and ineffective fault analysis [10]
do not require the actual output of the computation. The information whether
the result is erroneous is sufficient. The same idea can also be used to easily
detect dummy operations in a computation.

In order to detect fault attacks some kind of redundancy is typically in-
troduced into implementations of cryptographic algorithms. A straightforward
approach is computing the same algorithm twice and comparing the results. If
the results differ, the output of the algorithm is suppressed. In order to protect
the algorithm without repeating it, the proposals include limiting the repetition
to a few rounds, introducing a parity byte for the state [13], and generating
digest values that are tailored to the operations of the cipher [14]. While these
approaches try to reduce the overhead compared to doubling the cipher, other
proposals aim at a higher detection rate for injected faults, such as involving the
inverse round-function of the cipher for the check [15] and enlarging the field the
algorithm computes in [16].

However, irrespective of how the redundancy is introduced, the check of
the result before it is released is a potential target for an adversary. Kim and



Quisquater demonstrated that one can attack a cryptographic algorithm and
then inject a fault in the verification stage [17]. The natural response would be
to make the verification itself redundant but van Woudenberg et al. [18] have
shown that three faults can be used to attack two tests after the execution of a
cryptographic algorithm, i.e. inject one fault in the algorithm itself and use two
faults to overcome the redundant verification.

In order to prevent an adversary from using multiple fault-injection to bypass
checking routines, Yen and Joye introduced the principle of infective comput-
ing [12]. Their proposal defines a method of generating RSA signatures where
any fault injected into a computation changes the output of the cryptographic
algorithm in such a way that it does not reveal any secret information. That
is, the output of the cryptographic algorithm should not be exploitable. The
usual way to implement infective computation is to introduce a (secret) error
in an input, then to compute the result, and finally to remove the effect of the
previously introduced error. If a fault is injected in the computation, then the
output of the algorithm is incorrect and cannot be exploited because the initial
error is unknown. An alternative way is to introduce additional computation on
secret data in the algorithm that will have no effect on the result, if no fault is
injected.

In the following section we describe how the latter approach can be applied
to block ciphers using dummy rounds.

3 Smart Use of Dummy Rounds and Redundant
Computation

We first explain how our approach can be used to make smart use of dummy
rounds. This leads to an algorithm where dummy rounds can no longer be iden-
tified by fault injection, and where a fault injected into a dummy round renders
the ciphertext useless to an attacker. Then we extend the approach to redundant
implementations with dummy rounds.

We provide algorithms for the application of our countermeasures to S-P
networks and Feistel ciphers that use the following notation:

BlockCipher — The entire block cipher under consideration which takes a
plaintext P and enciphers it with a secret key K to produce a ciphertext C.
We will consider a block cipher that consists of n rounds.

RoundFunction — The round function of the block cipher. It operates on a
given register and requires the correct subkey ki for that round.

RandomBit — This function returns a random bit that governs whether a dummy
round will occur or not. If this bit is equal to zero a dummy round will be
computed, otherwise a cipher round will take place. This function can be
replaced by any suitable function that returns one bit, if, for example, one
wants to limit the number of dummy rounds that could occur in a given
instantiation of the block cipher.

We denote a bitwise logical AND operation by ∧, a bitwise logical NOT
operation by ¬, and a bitwise logical exclusive-OR (XOR) operation by ⊕.



3.1 Smart Use of Dummy Rounds

We propose a countermeasure where a dummy round takes a secret input value
β that is known to produce a result of β after one round when combined with
the secret dummy round-key k0. That is

RoundFunction(β, k0) = β .

The result of the dummy round is then XORed into the cipher state, and then
XORed with β, ensuring that any fault is propagated into the block cipher.
The result of the dummy round further overwrites β held in registers. This
ensures that any fault is propagated into subsequent dummy rounds. The same
operations are conducted when a cipher round is computed. This means that any
fault that modifies the output of a dummy round will affect the input of every
subsequent round, making any collision or differential fault analysis impossible.

Application to S-P networks. Algorithm 1 shows how the countermeasure
can be applied to a straightforward implementation of a S-P network. The

Algorithm 1: S-P network with smart dummy rounds.

Input: P , ki for i ∈ {1, . . . , n+ 1} (n+ 1 subkeys from key K), (β, k0).
Output: C = BlockCipher(P,K)

1 State: R0 ← P ; Dummy state R1 ← β ; i← 1 ;

2 while i ≤ n do
3 λ← RandomBit() ; // λ = 0 implies a dummy round
4 κ← i λ ;
5 R¬λ ← RoundFunction(R¬λ, kκ) // infection of the dummy state
6 R0 ← R0 ⊕R1 ⊕ β ; // infection of the cipher state
7 i← i+ λ ;

8 end

9 return R0

algorithm clearly achieves the goal of propagating a fault injected into a dummy
round into every subsequent round.

Application to Feistel ciphers. Another commonly used mechanism for block
ciphers is the Feistel structure. This operates by dividing the input of one round
into two equally sized sets and using a round function on one set before combining
it with the other set using an XOR. For example, if we define Li and Ri as the
left and right hand inputs to the ith round of a block cipher respectively, then
Li+1 and Ri+1 are computed in the following manner:

Li+1 ← Ri

Ri+1 ← RoundFunction(Ri, ki+1)⊕ Li.



Algorithm 2 shows how the countermeasure can be applied to a straightforward
implementation of a Feistel cipher. It uses the following additional notation: let
Pr be the right-hand side and Pl be the left-hand side of the plaintext, respec-
tively. Further, let α be some arbitrary, constant value where the relationship
between α, β and k0 is RoundFunction(β, k0)⊕ α = β.

Algorithm 2: Feistel cipher with smart dummy rounds.

Input: P , ki for i ∈ {1, . . . , n} (n subkeys from key K), (β, α, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← Pr ; Dummy state R1 ← β ; i← 1 ;
2 State T0 ← Pl ; T1 ← α ;

3 while i ≤ n do
4 λ← RandomBit() ; // λ = 0 implies a dummy round
5 κ← i λ ;
6 R¬λ ← RoundFunction(R¬λ, kκ)⊕ T¬λ // infection of the dummy state
7 R0 ← R0 ⊕R1 ⊕ β ; // infection of the cipher state
8 T0 ← T0 ⊕R1 ⊕ β ; // infection of the cipher state
9 i← i+ λ ;

10 end

11 return T0‖R0

We can note that a fault in a dummy round will affect both R0 and T0 and
therefore provoke a larger change in the resulting ciphertext.

3.2 Smart Use of Redundant Rounds and Dummy Rounds

Algorithms 1 and 2 both achieve the goal of propagating faults injected into
a dummy round into every subsequent round. However, both algorithms still
require the output of some of the first and last rounds to be checked to prevent
collision and differential fault analysis based on a fault injected into a cipher
round.

To overcome this limitation we further propose algorithms where each round
is repeated and any fault in a single round (cipher, dummy, or redundant round)
will affect the resulting ciphertext such that no information is available to an
attacker. This means that a verification stage is not necessary since an attacker
will not receive any information from a fault. As before, an attacker will not be
able to determine if any particular round is a dummy round by means of fault
injection.

Note that repeating each round implies that each round can be observed twice
through some side-channel, which can ease side-channel analysis. However, the
time randomization due to the dummy rounds provides some level of protection.
In addition, although each cipher round is repeated, this will occur in a somewhat
random manner. That is, a cipher round may be followed by a dummy round



or a redundant round with some probability determined by how RandomBit is
defined, and the round counter only increases once the redundant round has
been computed.

As above, we assume that β and k0 are chosen such that the result of the
round function is β. That is

RoundFunction(β, k0) = β .

The algorithms also use additional notation:

SNLF — This stands for Some NonLinear Function, which is used to ensure
that any fault in the block cipher will not provide an attacker with any
information. We discuss the reasons for this in more detail in Section 4. In
our algorithms we assume that SNLF(0) 7→ 0.

Application to S-P networks. Algorithm 3 shows how the countermeasure
can be applied to a redundant implementation of an S-P network.

Algorithm 3: Redundant S-P Network with Dummy Rounds.

Input: P , ki for i ∈ {1, . . . , n+ 1} (n+ 1 subkeys from key K), (β, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← P ; Redundant state R1 ← P ; Dummy state R2 ← β ;
2 C0 ← 0 ; C1 ← 0 ; C2 ← β ; i← 0 ;

3 while i < 2n do
4 λ← RandomBit() ; // λ = 0 implies a dummy round
5 κ← (i ∧ λ)⊕ 2 (¬λ) ;
6 ζ ← di/2eλ ; // ζ is actual round counter, 0 for dummy
7 Rκ ← RoundFunction(Rκ, kζ) ;
8 Cκ ← Rκ ⊕ C2 ⊕ β ; // infect Cκ to propagate a fault
9 ε← λ(¬(i ∧ 1)) · SNLF(C0 ⊕ C1) ; // check if i is even

10 R2 ← R2 ⊕ ε ;
11 R0 ← R0 ⊕ ε ;
12 i← i+ λ ;

13 end

14 R0 ← R0 ⊕ RoundFunction(R2, k0)⊕ β ;

15 return R0

Algorithm 3 progresses by computing the same round twice before advancing
to the next round using i as a counter. When i is an even number the difference
between the result of a cipher round and a redundant round should be equal to
zero and any difference is XORed into β. This difference also goes through some
nonlinear function to make it difficult for an attacker to make any hypotheses
about any fault that has been induced. If i is an odd number, or a dummy



round occurs, the difference between the cipher round and the redundant round
is multiplied by zero since it will be non-zero during the normal functioning of the
algorithm. Tables 1(a), 1(b) and 1(c) illustrate the functioning of the algorithm
with examples.

Table 1. Examples of Algorithm 3.

(a) A dummy round. A fault will
change C2 infecting every subse-
quent round.

λ = 0

κ← (i ∧ λ)⊕ 2 (¬λ) = 2
ζ ← di/2eλ = 0
R2 ← RoundFunction(R2, k0) = β
C2 ← R2 ⊕ C2 ⊕ β = β
ε← 0 · SNLF(C0 ⊕ C1) = 0
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i+ 0

(b) A round where i is even. A
fault will change R0 that will
infect every subsequent round
where i is odd and every round
after the next dummy round.

i = even, λ = 1

κ← (i ∧ λ)⊕ 2 (¬λ) = 0
ζ ← di/2e
R0 ← RoundFunction(R0, kζ)
C0 ← R0 ⊕ C2 ⊕ β = R0

ε← 0 · SNLF(C0 ⊕ C1) = 0
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i+ 1

(c) A round where i is odd. A
fault will change R1 that will
infect every subsequent round
where i is even and every round
after the next dummy round.

i = odd, λ = 1

κ← (i ∧ λ)⊕ 2 (¬λ) = 1
ζ ← di/2e
R1 ← RoundFunction(R1, kζ)
C1 ← R1 ⊕ C2 ⊕ β = R1

ε← 1 · SNLF(C0 ⊕ C1)
R2 ← R2 ⊕ ε
R0 ← R0 ⊕ ε
i← i+ 1

An extra dummy round is added to the end of the algorithm to ensure that
any fault that has been propagated through the algorithm masks the ciphertext
in such a way that no information is available to an attacker. Moreover, this
will ensure the countermeasure is effective if an attacker is able to affect the
RandomBit function such that no dummy rounds occur.

The extra dummy round and the use of the nonlinear function are discussed
in more detail using an example in Section 4. We do not need to add a dummy
round at the beginning of the block cipher to protect against collision fault
analysis since an attacker will not be able to find a collision. That is, if an
attacker injects a fault in one of the early rounds of a block cipher, the effect of



this fault will be propagated by the proposed countermeasure in such a way that
an attacker cannot hope to find a collision by making hypotheses on a subset of
the secret key bits.

Application to Feistel ciphers. In Algorithm 4 we define a redundant algo-
rithm for use with Feistel ciphers using the same principles.

Algorithm 4: Redundant Feistel Cipher with Dummy Rounds.

Input: P , ki for i ∈ {1, . . . , n} (n subkeys from key K), (β, α, k0).
Output: C = BlockCipher(P,K)

1 State R0 ← Pr ; Redundant State R1 ← Pr ; Dummy state R2 ← β ;
2 State T0 ← Pl ; Redundant State T1 ← Pl ; Dummy state T2 ← α ;
3 C0 ← 0 ; C1 ← 0 ; C2 ← β ; i← 1 ;

4 while i ≤ 2n do
5 λ← RandomBit(); // λ = 0 implies a dummy round
6 κ← (i ∧ λ)⊕ 2 (¬λ) ;
7 ζ ← di/2eλ ; // ζ is actual round counter, 0 for dummy
8 Rκ ← RoundFunction(Rκ, kζ)⊕ Tκ ;
9 Cκ ← Rκ ⊕ C2 ⊕ β ; // infect Cκ to propagate a fault

10 ε← λ(¬(i ∧ 1)) · SNLF(C0 ⊕ C1) ; // check if i is even
11 T0 ← T0 ⊕ ε ;
12 R0 ← R0 ⊕ ε ;
13 R2 ← R2 ⊕ ε ;
14 i← i+ λ ;

15 end

16 C2 ← RoundFunction(R2, k0)⊕ T2 ⊕ β ;
17 R0 ← R0 ⊕ C2 ;

18 return T0‖R0

Remark. In our algorithms we assume that the block cipher consists of either
an S-P network or a Feistel construction. In both cases it is straightforward to
compute a constant pair (β, k0) resp. triplet (α, β, k0) by simply inverting the
round function and choosing a suitable k0 for a chosen β (and α).

In defining the countermeasures to protect a secure implementation, one
would use a redundant implementation to protect a certain number of rounds at
the beginning and the end of the block cipher. That is, one would use a round as
defined in Algorithm 1 resp. 2 for rounds that do not require explicit protection
and a round as defined in Algorithm 3 resp. 4 for those that do. Further, the
dummy rounds should not be distinguishable from every other round by means
of side-channel analysis. We detail how this can be achieved in Section 5.



3.3 Performance

We assess the performance overhead of the proposed algorithms, first for S-P
networks and then for Feistel ciphers. We begin with determining the cost of
making “normal” dummy rounds smart, then we add the cost of making the im-
plementations redundant. We assume that the baseline implementation already
uses dummy rounds, and the analysis is independent of the chosen function
RandomBit, i.e. of the number of dummy rounds. The number of redundant
rounds is also not covered by our analysis.

For S-P networks, the overhead to make dummy rounds smart (Algorithm 1)
is: one additional constant (β) the size of the cipher state, and two XOR opera-
tions on operands the size of the cipher state in each round. The generation of
the random bits, the additional (dummy) rounds, and the second cipher state
are already required by using dummy rounds without our countermeasure.

In order to further equip the implementation of the S-P network with smart
redundant rounds, as done in Algorithm 3, four additional states, and one round
execution followed by two XORs at the end of the implementation are required.
In addition, some nonlinear function, six XORs and four logic operations have
to be computed for each round.

For Feistel ciphers, the overhead to make dummy rounds smart (Algorithm 2)
is: one additional state of half the block size, two constants of half the block size
(α and β), and four additional XOR operations on operands half the block size
per round.

The fault protection for Feistel ciphers in Algorithm 4 requires five additional
states of half the block size, and one round execution followed by three XORs
at the end of the implementation. Moreover, each round requires an additional
evaluation of some nonlinear function, seven XOR operations, and four logic
operations. Table 2 shows a summary of the results.

Table 2. Performance overheads: from dummy rounds to smart dummy rounds (left),
and from smart dummy rounds to smart dummy rounds with redundancy (right).

Smart Dummy rounds + Redundant Rounds
Overall per round Overall per round

S-P Network
+ 1 Const + 2 XOR + 4 States + 6 XOR

+ 2 XOR + 4 Logic
+ 1 RF + 1 NLF

Feistel Cipher
+ 1/2 State + 4 XOR + 5/2 States + 7 XOR
+ 2/2 Const + 3 XOR + 4 Logic

+ 1RF + 1 NLF



4 Evaluating the Countermeasure

In this section we evaluate the security of the above presented redundant algo-
rithms for S-P networks and Feistel ciphers. We describe how the weakest in-
stance of the presented countermeasure would affect the strongest attacks avail-
able. Any other attacks from the literature will typically require a more complex
analysis, e.g. a larger fault, more faulty ciphertexts, or a fault further into the
algorithm, and the effect of the last dummy round will become more pronounced.
Some complex attacks and those requiring particular circumstances, such as col-
lision fault analysis, are not considered since they are completely prevented by
the countermeasure.

4.1 S-P networks

In this section we discuss Algorithm 3 in terms of its resistance to differential
fault analysis. To demonstrate this we use the AES as an example, since it will
be the most likely instance of our countermeasure in S-P networks.

The Advanced Encryption Standard (AES) [19] was standardized in 2001
from a proposal by Daemen and Rijmen [20]. Note that we restrict ourselves
to considering AES-128 and that in discussing the AES we consider that all
variables are arranged in a 4× 4 array of bytes, known as the state matrix. For
example the 128-bit plaintext P = (p1, p2, . . . , p16)(256) is arranged as follows:

p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16

 .

The encryption itself is conducted by the repeated use of a round function that
comprises the following operations executed in sequence:

SubBytes — The only nonlinear step of the block cipher, consisting of a substi-
tution table applied to each byte of the state.

ShiftRows — A byte-wise permutation of the state that operates on each row.
MixColumns — Each column of the state matrix is considered as a vector where

each of its four elements belong to F(28). A 4×4 matrix M whose elements
are also in F(28) is used to map this column into a new vector. This operation
is applied to the four columns of the state matrix. Here M is defined as

M =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


where all the elements in M are elements of F(28) expressed in decimal. This
function is not included in the last round.



AddRoundKey — XORs each byte of the array with a byte from a corresponding
subkey. An initial subkey addition precedes the first round.

The simplest, yet strongest, example of differential fault analysis was pro-
posed by Piret and Quisquater [21], where it is assumed that a one byte fault is
induced at the beginning of the ninth round. If, for example, the byte at index
one is modified by a fault, the difference between the result and what it ought
to be at the end of the ninth round becomes:

2 θ 0 0 0
θ 0 0 0
θ 0 0 0
3 θ 0 0 0


An attacker can compare a faulty and the correct ciphertext using the following
relationship, using the notation defined above,

2 θ = S−1(c1 ⊕ k1)⊕ S−1(c′1 ⊕ k1)

θ = S−1(c14 ⊕ k14)⊕ S−1(c′14 ⊕ k14)

θ = S−1(c11 ⊕ k11)⊕ S−1(c′11 ⊕ k11)

3 θ = S−1(c8 ⊕ k8)⊕ S−1(c′8 ⊕ k8) ,

where c′i and ki for i ∈ {1, . . . , 16} represents the bytes from the state matrix
of the faulty ciphertext and the last subkey respectively. This will allow the 232

possible key hypotheses for {k1, k8, k11, k14} to be reduced to 28 possibilities.
The procedure can then be repeated to derive the entire last subkey.

With our countermeasures in place, the equations would become:

2 θ = S−1(c1 ⊕ k1)⊕ S−1(c′1 ⊕ k1 ⊕ (b1 ⊕ γ1))

θ = S−1(c14 ⊕ k14)⊕ S−1(c′14 ⊕ k14 ⊕ (b14 ⊕ γ14))

θ = S−1(c11 ⊕ k11)⊕ S−1(c′11 ⊕ k11 ⊕ (b11 ⊕ γ11))

3 θ = S−1(c8 ⊕ k8)⊕ S−1(c′8 ⊕ k8 ⊕ (b8 ⊕ γ8)) ,

where we define bi for i ∈ {1, . . . , 16} as the output of the SNLF(C0 ⊕ C1) at
the end of the penultimate round, and γi for i ∈ {1, . . . , 16} as the result of the
last dummy round. The SNLF cannot be implemented as the SubBytes operation
since it does not map a zero to a zero as required, but one could, for example,
use inversion in F(28).

In this example we consider that the MixColumns operation is not included to
simplify the analysis. However, an equivalent analysis would be straightforward
if the dummy round included a MixColumns operation. One can simplify the
above by rewriting each bi ⊕ γi, for i ∈ {1, 8, 11, 14}, as one unknown byte.
However, an attacker will not be able to use the equations to reduce the number
of possible keys since there will be 248 solutions.



4.2 Feistel structures

We discuss Algorithm 4 in terms of its resistance to differential fault analysis
and use the Data Encryption Standard (DES) as an example. We consider DES
relevant since it is still widely used in banking.

DES was introduced by NIST in the mid 1970s [22], and was the first openly
available cryptography standard. DES can be considered as a transformation of
two 32-bit variables (L0, R0), i.e. the message block, through sixteen iterations
of the Feistel structure to produce a ciphertext block (L16, R16). The Expansion
and P-permutations are bitwise permutations. For clarity of expression, these
permutations will not always be considered and the round function for round n
will be written as:

Ln = Rn−1

Rn = S(Rn−1 ⊕Kn)⊕ Ln−1

where S is a nonlinear substitution function.

In this section we describe the strongest attack that can be applied to an
implementation of DES. This fault attack on DES involves injecting a fault in
the fifteenth round and was described by Biham and Shamir [23]. The last round
of DES can be expressed in the following manner:

R16 = S(R15 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ L15 .

For ease of expression we ignore the bitwise permutations since they will only
impact an implementation of the described attack. If a fault occurs during the
execution of the fifteenth round, i.e. R15 is randomized by a fault to become
R′15, then:

R′16 = S(R′15 ⊕K16)⊕ L15

= S(L′16 ⊕K16)⊕ L15

and
R16 ⊕R′16 = S(L16 ⊕K16)⊕ L15 ⊕ S(L′16 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ S(L′16 ⊕K16) .

This provides an equation in which only the last subkey, K16, is unknown. All
of the other variables are available from the ciphertext block. This equation holds
for each S-box in the last round, which means that it is possible to search for key
hypotheses in sets of six bits. This will return an expected 224 key hypotheses
for the last round key and, therefore, 232 hypotheses for the block cipher key.

If an attacker attempts to apply this attack to an instance of Algorithm 4,
the last dummy round would need to be taken into account. A faulty ciphertext
would have the form:

R′16 = S(R′15 ⊕K16)⊕ L15 ⊕ (b⊕ γ)

= S(L′16 ⊕K16)⊕ L15 ⊕ (b⊕ γ) ,



where b denotes the result of the SNLF(C0 ⊕ C1) function at the end of the
last round and γ denotes the result of the last dummy round. We obtain the
difference

R16 ⊕R′16 = S(L16 ⊕K16)⊕ S(L′16 ⊕K16)⊕ (b⊕ γ) .

As in the previous example, this would have too many solutions to provide any
information on the last subkey since b⊕ γ is unknown.

5 Further Strengthening the Countermeasure

In Algorithm 1 we require that

RoundFunction(β, k0) = β . (1)

If the pair (β, k0) is fixed for a given implementation, the computation during all
dummy rounds will be identical. Therefore, the pattern in a given side-channel
generated by a dummy round would have a given form. An attacker could po-
tentially exploit this weakness to identify dummy rounds by cross correlation or
template analysis [24].

To solve this problem one can simply refresh the pair (β, k0) with a frequency
determined by how powerful an attacker is assumed to be. More precisely, one
would randomly generate β (or k0) and change k0 (or β) such that (1) holds.
This fully randomizes the computation during a dummy round but it may still
be possible to identify a dummy round as a round with equal input and output.

A better, but also more costly, approach would be to generate a triplet of
random values (β, k0, δ) where

RoundFunction(β, k0) = δ .

The input and output of a dummy round would be random and an attacker
would no longer be able to identify a dummy round. However, this approach
requires that the effect of the δ be corrected. For example, in Algorithm 1, line 6
would need to be replaced with

R0 ← R0 ⊕R1 ⊕ β ⊕ δ.

This makes the countermeasure more expensive but ensures that an attacker
would be unable to identify a dummy round by any means.

The application of this latter idea to Algorithm 2 would require a randomly
generated quartet (β, k0, α, δ), since we would require that

RoundFunction(β, k0)⊕ α = δ .

Otherwise, strengthening the countermeasure for Feistel ciphers would be similar
to strengthening that for S-P networks in Algorithm 1.



6 Conclusion

In this paper we describe algorithms where dummy and redundant rounds can
be used to implement infective computation in block ciphers. This would allow
a block cipher to be implemented where no check is required to detect whether a
fault has occurred since no information would be available to an attacker. This
would prevent an attacker from implementing a multiple-fault attack that affects
tests at the end of a block cipher [25, 18].

We have demonstrated that the algorithms will be secure against the strongest
available differential fault analysis that can be applied to AES and DES. We
have not demonstrated this for all fault attacks that have been described in the
literature since many attacks will not be possible. For example, collision fault
analysis requires an attacker to inject a fault in one of the first rounds of a block
cipher to produce a faulty ciphertext. The attacker will then try to find a plain-
text that will produce the same ciphertext without a fault. Given that such a
fault will re-infect the implementation numerous times, such an attack becomes
impossible.

The current state-of-the-art in implementing block ciphers is to implement
some form of consistency check in order to detect faults, so that the output can
be withheld if a fault has occurred. This is potentially vulnerable to an attacker
who can inject the same fault into both redundant paths of the algorithm, thus
by-passing the check at the end of the algorithm. This would be a complex at-
tack, but the verification would aid an attacker since a faulty result would only
appear once the fault injection is successful. With our countermeasures an at-
tacker will always receive a ciphertext. Thus, an adversary has to analyze the
output without knowing whether the fault injection was successful and the out-
put contains exploitable information, or not. Given that injecting two identical
faults into a single run of an unknown implementation with random dummy
rounds is very hard and will only succeed with a very low probability, it would
be very difficult to determine at what point a sufficient number of exploitable
faulty ciphertexts have been collected, and to distinguish them from the ones
that do not provide any information on the secret key.

The use of the proposed countermeasures will also help to avoid a situation
where a new fault attack is published that allows an attacker to exploit faults
over more rounds than that considered necessary when a given algorithm is
implemented. This is because such attacks will typically require a relatively
large number of faulty ciphertexts [26, 27], and our countermeasure will insert
faulty ciphertexts containing no information into the analysis. This will hinder
or prevent new attacks.
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