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Abstract

In this paper, we present the first inner-product encryption (IPE) schemes that are
unbounded in the sense that the public parameters do not impose additional limitations on
the predicates and attributes used for encryption and decryption keys. All previous IPE
schemes were bounded, or have a bound on the size of predicates and attributes given public
parameters fixed at setup. The proposed unbounded IPE schemes are fully (adaptively)
secure and fully attribute-hiding in the standard model under a standard assumption, the
decisional linear (DLIN) assumption. In our unbounded IPE schemes, the inner-product
relation is generalized, where the two vectors of inner-product can be different sizes and it
provides a great improvement of efficiency in many applications. We also present the first
fully secure unbounded attribute-based encryption (ABE) schemes, and the security is proven
under the DLIN assumption in the standard model. To achieve these results, we develop
novel techniques, indexing and consistent randomness amplification, on the (extended) dual
system encryption technique and the dual pairing vector spaces (DPVS).
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1 Introduction

1.1 Background

1.1.1 IPE and ABE

The notions of inner-product encryption (IPE) and attribute-based encryption (ABE) introduced
by Katz, Sahai and Waters [7] and Sahai and Waters [20] constitute an advanced class of en-
cryption, functional encryption (FE), and provide more flexible and fine-grained functionalities
in sharing and distributing sensitive data than traditional symmetric and public-key encryption
as well as identity-based encryption (IBE).

In FE, there is a relation R(v, x), that determines whether a secret key associated with a
parameter v can decrypt a ciphertext encrypted under another parameter x. The parameters
for IPE are expressed as vectors �x (for encryption) and �v (for a secret key), where R(�v, �x) holds,
i.e., a secret key with �v can decrypt a ciphertext with �x, iff �v · �x = 0. (Here, �v · �x denotes
the standard inner-product.) In ABE systems, either one of the parameters for encryption and
secret key is a set of attributes, and the other is an access policy (structure) or (monotone)
span program over a universe of attributes, e.g., a secret key for a user is associated with an
access policy and a ciphertext is associated with a set of attributes, where a secret key can
decrypt a ciphertext, iff the attribute set satisfies the policy. If the access policy is for a secret
key, it is called key-policy ABE (KP-ABE), and if the access policy is for encryption, it is
ciphertext-policy ABE (CP-ABE).

For some applications, the parameters for encryption are required to be hidden from cipher-
texts. To capture the security requirement, Katz, Sahai and Waters [7] introduced attribute-
hiding (based on the same notion for hidden vector encryption (HVE) by Boneh and Waters
[5]), a security notion for FE that is stronger than the basic security requirement, payload-
hiding. Roughly speaking, attribute-hiding requires that a ciphertext conceal the associated
parameter as well as the plaintext, while payload-hiding only requires that a ciphertext conceal
the plaintext. A weaker notion of attribute-hiding than the original one [7] was given by [8].
The weaker notion is called weakly attribute-hiding, and the original one is fully attribute-hiding.
Informally, in the fully attribute-hiding, the secrecy of attribute x is ensured even against an
adversary having a secret key with v such that R(v, x) holds (i.e., no information is released
on x except R(v, x) holds), while it is ensured only when R(v, x) does not hold in the weakly
attribute-hiding (see Definition 5 for the definition of the fully attribute-hiding).

To the best of our knowledge, the widest class of attribute-hiding FE is IPE [7, 8, 14, 16]
(KSW08, LOS+10, OT10 and OT12 schemes). Inner-products for IPE represent a fairly wide
class of relations including equality tests as the simplest case (i.e., anonymous IBE and HVE
are very special classes of attribute-hiding IPE), disjunctions or conjunctions of equality tests,
and, more generally, CNF or DNF formulas. We note, however, that inner-product relations
are less expressive than a class of relations (on span programs) for ABE, while existing ABE
schemes for such a wider class of relations are not attribute-hiding but only payload-hiding.

Among the existing IPE schemes, only the OT12 IPE scheme [16] achieves the full (adaptive)
security and fully attribute-hiding simultaneously, whereas other attribute-hiding IPE schemes
[7, 13, 8, 14] are selectively secure or weakly attribute-hiding, and some IPE schemes [1, 15]
only achieve payload-hiding. As for ABE, Lewko et.al. and Okamoto-Takashima ABE schemes
[8, 14] are fully secure in the standard model, while ABE schemes [20, 6, 18, 22] before [8, 14]
were selectively secure.
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1.1.2 Unbounded IPE and ABE

All previous constructions of IPE and ABE except the Lewko-Waters ABE scheme [11] have
restriction, or are bounded, in the choice of the parameters for secret key and encryption once the
public parameters have been set. The only unbounded ABE scheme [11], however, is selectively
secure, while they presented an unbounded hierarchical identity-based encryption (HIBE) that
is fully secure in the standard model. No unbounded IPE scheme has been presented. Therefore,
no fully secure and unbounded scheme for an advanced class of encryption like IPE or ABE has
been presented.

In practice, it is highly desirable that the parameters for secret key and encryption should
be flexible or unbounded by the public parameters fixed at setup, since if we set the public pa-
rameters for a possible maximum size (e.g., the maximum dimension of predicate and attribute
vectors for IPE), the size of the public parameters should be huge.

Removing the restrictions for fully secure IPE and ABE, however, is quite challenging. As
mentioned above, no fully secure and unbounded scheme for an advanced class of encryption like
IPE or ABE has been presented. The difficulty resides in the existing techniques for proving
the full (or adaptive) security of such an advanced class of encryption.

The only known technique to prove the full security of an (attribute-hiding) IPE or ABE
system is the dual system encryption by Waters [21] and its extension [16]. In the techniques,
information theoretical arguments (e.g., conceptual change due to the same distribution and the
independent randomness of two distributions etc.) over some (hidden) parts of a secret-key and
challenge ciphertext play a key role in the security proof, provided that the adversary follows
the secret-key-query condition in the security games. To execute a security proof based on the
information theoretical arguments, an appropriate distribution of randomness consistent with
the key-query condition should be supplied in the proof games transformed from the original
proof game.

As for bounded IPE and ABE schemes, the public parameters can supply immanent ran-
domness enough for the arguments, since the size of parameters for secret-keys and encryption
is bounded by the public parameters. For example, when the dimension of vectors for IPE is
required to be n, the public parameters whose size is O(n) with respect to n should be given
in bounded IPE, and the size of secret randomness to generate the public parameter is O(n2).
Such an amount of randomness can be enough for the arguments over n-dimensional vectors.

In contrast, for unbounded IPE and ABE schemes, some (unbounded amount of) randomness
whose distribution is consistent with the key-query condition should be supplied in addition to
the randomness provided by the public parameters. For example, even when the dimension of
vectors for IPE is required to be n, the size of the public parameters is O(1) in unbounded IPE,
i.e., the size of secret randomness to generate the public parameters is O(1). Clearly, such a
size of randomness is not sufficient for the information theoretical arguments over n-dimensional
vectors. Therefore, any additional source of randomness should be provided, and the distribution
of the randomness should be specific (i.e., consistent with the key-query condition). For the
unbounded HIBE scheme [11], where the equality (un-)matching is the key-query condition,
a simple compression technique works well to create such randomness since equality can be
simply compressed with preserving the property. The key-query condition for IPE and ABE,
however, is in general much more complicated than just the equality matching for (H)IBE, and
no technique was known to create randomness consistent with such a complicated condition in
some security proofs. This is a reason why [11] succeeds in realizing a fully secure unbounded
HIBE but not for ABE (and not for IPE).
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1.1.3 Restriction on IPE

The existing IPE schemes have another restriction on the parameters (i.e., vectors) for secret
key and encryption that the dimensions of �x (for encryption) and �v (for a secret key) should
be equivalent. Such a restriction may be considered to be inevitable for the inner-product
relation on �v ·�x, but it is required to be relaxed in various applications to improve the efficiency,
especially in unbounded IPE systems where the setup (public) parameters give no restriction on
the dimensions of vectors.

Let us consider an example on a genetic profile data of an individual. It is desirable that
such a sensitive data be treated as encrypted data even for data processing and retrievals.
Although a genetic profile may include a large amount of information, only a part of the profile
is examined in many applications. For example, let X1, . . . , X100 be variables of 100 genetic
properties and x1, . . . , x100 be Alice’s values of these variables. To evaluate if f(x1, . . . , x100) =
0 for any examination (multivariate) polynomial f with degree 3, or the truth value of the
corresponding predicate φf (x1, . . . , x100), the attribute vector �x of Alice should be a monomial
vector of Alice’s values with degree 3, �x := (1, x1, . . . , x100, x

2
1, x1x2, . . . , x

2
100, x

3
1, x

2
1x2, . . . , x

3
100),

whose dimension is around 106. A predicate vector �v for a secret key can be associated with
predicate φf .

To ensure the private data processing of �x, it should be encrypted (say c for a ciphertext of
�x) by a fully attribute-hiding IPE scheme, since whether φf (x1, . . . , x100) holds can be examined
with releasing no other information by checking whether c can be decrypted by a secret key
with �v (i.e., R(�v, �x) holds). Here, if c is encrypted by fully attribute-hiding IPE, it releases no
information on �x except that R(�v, �x) holds, or φf (x1, . . . , x100) holds, however, if it is encrypted
by weakly attribute-hiding IPE, such desirable security cannot be ensured.

Let a predicate for �v be ((X5 = a) ∨ (X16 = b)) ∧ (X57 = c), which focuses only three
factors, X5, X16, X57, among the 100 genetic properties. It can be represented by a polynomial
equation, r1(X5−a)(X16− b)+ r2(X57− c) = 0 (where r1, r2

U← Fq), i.e., (r1ab− r2c)− r1bX5−
r1aX16 + r2X57 + r1X5X16 = 0. In order that r1(x5 − a)(x16 − b) + r2(x57 − c) = 0 iff �v · �x = 0,
vector �v should be ((r1ab − r2c), 0, . . . , 0,−r1b, 0, . . . , 0,−r1a, 0, . . . , 0, r2, 0, . . . , 0, r1, 0, . . . , 0),
whose dimension is equivalent to that of �x, i.e., around 106, although the effective dimension of
�v is just 5. This is due to the above-mentioned restriction on the inner-product relation of the
existing IPE schemes. The size of secret key for �v then should be in proportion to the dimension
of �v (and �x), around 106. This example shows us a strong practical motivation, especially for
unbounded IPE schemes, to relax this restriction on the inner-product relation and to shorten
the length of the secret key to that in proportion to the effective dimension, e.g., 5, instead of
around 106.

1.2 Our Results

1. This paper introduces a new concept of IPE, generalized IPE, which relaxes the above-
mentioned restriction of IPE and consists of three types of IPE, Types 0, 1 and 2. Here
the notion of Types 1 and 2 is introduced in this paper, and Type 0 is the traditional one
(see Remark below).

Remark: We now roughly explain the three types of inner-product relations. To re-
lax the above-mentioned restriction on the inner-product relation, we introduce a new
type of inner-product (generalized inner-product) for �v and �x, where their dimensions
can be different (say n and n′ for the dimensions of �v and �x). In this notion, vector
�v and �x are expressed by {(t, vt) | t ∈ I�v, �I�v = n} and {(t, xt) | t ∈ I�x, �I�x = n′},
respectively, where t ∈ N is an index for vectors, whose semantics is given by each ap-
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Table 1: Comparison of attribute-hiding IPE schemes, where |G| and |GT | represent size of an
element of G and that of GT , respectively. AH, IP, PK, SK, CT, GSD and eDDH stand for
attribute-hiding, inner-product, master public key (public parameters), secret key, ciphertext,
general subgroup decision [3] and extended decisional Diffie-Hellman [8], respectively. And,
n := �I�v and n′ := �I�x. (Then, n = n′ except for the proposed unbounded IPE schemes.)

KSW08 [7] LOS+10 [8] OT10 [14] OT12 [16] Proposed IPE

(basic) (variant)
(type 1 or 2)
Section 5.1

(type 0)
Section 5.3

Bounded or
Unbounded

bounded bounded bounded bounded unbounded

Restriction on
IP relation

restricted∗ restricted restricted restricted relaxed restricted

Security
selective &
fully-AH

adaptive &
weakly-AH

adaptive &
weakly-AH

adaptive &
fully-AH

adaptive &
fully-AH

Order
of G

composite prime prime prime prime

Assump.
2 variants
of GSD

n-eDDH DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G| O(1)|G| O(1)|G|
SK size (2n+ 1)|G| (2n+ 3)|G| (3n+ 2)|G| (4n+ 2)|G| 11|G| (15n+ 5)|G| (21n+ 9)|G|
CT size

(2n+ 1)|G|
+ |GT |

(2n+ 3)|G|
+ |GT |

(3n+ 2)|G|
+ |GT |

(4n+ 2)|G|
+ |GT |

(5n+ 1)|G|
+ |GT |

(15n′ + 5)|G|
+ |GT |

(21n′ + 9)|G|
+ |GT |

* It can be easily relaxed.

plication. Here note that we abuse the same vector notation, �v, for the new expres-
sion as well as for the conventional one, (v1, . . . , vn). In the above-mentioned exam-
ple, �x := {(1, 1), (2, x1), . . . , (101, x100), (102, x2

1), (103, x1x2), . . . , (n′, x3
100)} where I�x :=

{1, 2, . . . , n′}, and �v := {(1, r1ab − r2c), (6,−r1b), (17,−r1a), (58, r2), (517, r1)} where
I�v := {1, 6, 17, 58, 517}. The generalized inner-product of �v over �x is defined by

∑
t∈I�v vtxt

if I�v ⊆ I�x. Otherwise, it is undefined. By using the generalized inner-product notion, the
secret key size can be in proportion to the effective dimension (e.g., 5 instead of around
106).

We then introduce three types of IPE schemes. For Type 1, relation R(�v, �x) holds iff the
generalized inner-product of �v over �x is 0, while for Type 2 it holds iff the generalized
inner-product of �x over �v is 0. We call Type 0 for the conventional inner-products, i.e.,
relation R(�v, �x) is defined by the standard inner-product of �v and �x, where �v and �x have
the same dimension (in other words, the inner-product for Type 0 is defined iff these
dimensions are equivalent.)

2. We present the first unbounded inner-product encryption (IPE) schemes. The proposed
unbounded IPE schemes are fully (adaptively) secure and fully attribute-hiding in the
standard model under a standard assumption, the decisional linear (DLIN) assumption.
The proposed unbounded IPE schemes consist of the above-mentioned types of generalized
IPE, Types 0, 1 and 2, For comparison of attribute-hiding IPE schemes, see Table 1.

3. We present the first unbounded KP- and CP-ABE schemes that are fully secure (adaptively
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Table 2: Comparison of KP-ABE Schemes, where |G| represents the size of an element of G, and
PK, SK, CT and GSD stand for master public key (public parameters), secret key, ciphertext
and general subgroup decision [3], respectively. And, d, n, nmax, � and kmax are the number
of sub-universes of attributes, the number of attributes for a CT, the maximum number of
attributes for a CT, the row size of an access policy matrix for a SK and the maximum value
of the degree of access policies, respectively.

LW11 [11] LOS+10 [8] OT10 [14] Proposed KP-ABE

(basic) (modified) (basic) (modified)
(basic)

Section 6.1
(modified)
Section 6.2

Bounded or
Unbounded

unbounded bounded bounded unbounded

Security selective full full full
Order of G composite composite prime prime
Assump. GSD GSD DLIN DLIN
Degree of

access policies
arbitrary 1 arbitrary 1 arbitrary 1 arbitrary

PK size O(1)|G| O(nmax)|G| O(d)|G| O(1)|G|
SK size O(�)|G| O(�)|G| O(�)|G| O(�)|G|
CT size O(n)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G|

payload-hiding) in the standard model. The proposed unbounded ABE schemes are fully
secure under the DLIN assumption, and are for a wide class of relations, non-monotone
access structures. See Table 2 for comparison of KP-ABE schemes.

Remark: Similarly to the existing fully secure ABE schemes in the standard model
[8, 14, 10] except [12], our basic ABE scheme (Section 6.1) has a restriction that the degree
of access policies is 1 1. A modified KP-ABE scheme is shown in Section 6.2 to relax the
restriction or to achieve an arbitrary degree k of access policies with preserving the fully
secure and unbounded property. It, however, shares a shortcoming of the existing fully
secure (modified) ABE schemes [8, 14, 10] that the ciphertext size grows linearly with k.
Here, a (maximum) value of k can be determined in each application of our ABE scheme,
while the public parameters are fixed and commonly shared by all applications and users.

1.3 Key Techniques

As mentioned above, the difficulty of realizing a fully secure unbounded IPE or ABE scheme
arises from the hardness of supplying an unbounded amount of randomness consistent with
the complicated key-query condition for the (dual system encryption) security arguments on
IPE or ABE. To overcome this difficulty, we develop novel techniques, indexing and consistent
randomness amplification, on the dual system encryption and the dual pairing vector spaces
(DPVS). Roughly speaking, the indexing technique is for supplying a source of unbounded
amount of randomness and the consistent randomness amplification technique is for amplifying
the randomness of the source through a computational assumption (e.g., the DLIN assumption

1Informally, the degree may imply the number of appearance of a variable in a formula, e.g., formula ((x =
a) ∨ (x = b)) ∧ (y = c) has degree 2 for variable x. For the definition of the degree of access policies in our
schemes, see Section 6.2. The degree should be a bit differently defined in [20, 6, 18, 22, 8, 10], where degree 1
is called one-use.
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in our case) and the randomness of hidden bases as well as for adjusting the distribution of
the amplified randomness to be consistent with a condition. This methodology could provide a
general framework for proving the security in unbounded situations.

In DPVS, a pair of dual (or orthonormal) bases for N -dimensional linear spaces, B :=
(b1, . . . , bN ) and B

∗ := (b∗1, . . . , b∗N ), are randomly generated using a secret random linear
transformation X (random N × N matrix) (see Section 2). In a typical application of DPVS
to cryptography, a part of B (say B̂) is used as a public key (public parameters), and B

∗ as a
secret key, where X is the top level secret key and the source of randomness.

In a typical construction of bounded IPE schemes [8, 14, 16] which are based on DPVS,
once a basis of DPVS, a part of the basis of a N -dimensional space is published as public
parameters, the dimension n of predicate and attribute vectors for secret key and encryption
is bounded or fixed, e.g., n ≤ N/4 (i.e., N = O(n)). The full security is proven through the
information theoretical arguments, and the randomness of secret matrix X (e.g., the amount of
the randomness is O(n2)) supplies enough randomness for the arguments.

In contrast, the dimension, n, of the predicate and attribute vectors is not bounded by the
public parameters in unbounded IPE. For example, in one of the proposed IPE schemes (Section
5), the public parameters consist of a constant number of elements, 9 elements of bases (or 105
pairing group elements), B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b14, b15), where random

matrices of constant sizes, X0
U← F

5×5
q and X1

U← F
15×15
q , are employed to generate the public

parameters. The randomness of the public parameters, just a constant amount with respect to
n, is clearly insufficient for the (dual system encryption) arguments on the proof of full security.

To supply additional randomness for the purpose, in our IPE schemes, we introduce a tech-
nique called indexing, where two-dimensional index vectors, σt(1, t) and μt(t,−1) are embedded
into ciphertext ct and secret key k∗

t , respectively, where σt and μt are freshly random for each t.
In our IPE scheme (Section 5) where n = n′ for simplicity, for example, secret key (k∗

1, . . . ,k
∗
n)

for �v := (v1, . . . , vn) can be expressed by a coefficient vector, (μt(t,−1), δvt, . . .), for t = 1, . . . , n,
over basis B

∗, i.e., k∗
t := (μt(t,−1), δvt, . . .)B∗ and ciphertext (c1, . . . , cn) for �x := (x1, . . . , xn)

can be expressed by ct := (σt(1, t), ωxt, . . .)B for t = 1, . . . , n, where δ, ω are randomly selected.
While the size of the public parameters or its randomness is constant in n, an unbounded
amount of randomness, {μt}t=1,...,n, {σt}t=1,...,n, can be supplied to secret key and ciphertext.
This is a key idea of the indexing technique.

Although the technique supplies an unbounded amount of randomness, i.e., O(n)-size of
randomness, it is not enough for our purpose. We need more and a specific distribution of
randomness. This is because: in the proof of full security on dual system encryption and the
extension, such a real randomness provided by the indexing technique should be expanded into
a hidden part in spaces over bases B and B

∗, and the distribution should be also adjusted to
(or consistent with) the key-query condition for IPE or ABE. For this purpose, i.e., in order
to amplify the randomness to a hidden subspace and to adjust it to a specific distribution, we
develop another technique, consistent randomness amplification.

For a bit more detailed explanation of the consistent randomness amplification technique,
we will briefly review a hidden part (subspace) of DPVS. As mentioned above, in a typical appli-
cation of DPVS to cryptography, a part of B (say B̂) is used as a public key (public parameters).
Therefore, the basis, B−B̂, is information theoretically concealed against an adversary, i.e., even
an infinite power adversary has no idea on which basis is selected as B− B̂ when B̂ is published.
The underlying dual vector spaces, span〈B〉 and span〈B∗〉, are 15-dimensional for our IPE scheme
(Type 1 or 2) and 14-dimensional for our ABE scheme. The subspaces employed for public pa-
rameters are just 6-dimensional and other 2 dimensional basis can be public. Hence, the basis
for the remaining 7 or 6-dimensional subspace is information theoretically concealed (uncertain).
The consistent randomness amplification technique is executed over these 7 or 6-dimensional
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hidden subspaces. For example, as mentioned above, a real secret key {k∗
t } and ciphertext

{ct} are expressed by k∗
t := (μt(t,−1), δvt, st, 07 , . . .)B∗ and ct := (σt(1, t), ωxt, ω̃, 07 , . . .)B.

This technique provides a transformation (for the dual system encryption technique and the
extension) to the following forms: k∗

t := (μt(t,−1), δvt, st, 04, (πvt, at) · Ut, 0 , . . .)B∗ and ct :=

(σt(1, t), ωxt, ω̃, . . . , (τxt, τ̃) · Zt, 0 , . . .)B, where Zt is an independently random 2 × 2 ma-
trix for each t and Ut := (ZT

t )−1, and other new variables are random. Here, the box-framed
parts are the information theoretically hidden subspaces, the randomness of the hidden parts is
amplified and the distribution of (πvt, at) · Ut and (τxt, τ̃) · Zt is consistent with the key-query
condition.

The consistent randomness amplification technique is composed of several computational
and conceptual (information theoretical) transformations. One of the key tricks of the trans-
formations is to amplify a source of randomness to a hidden part by applying a computational
assumption, the DLIN assumption. Another computational trick is to swap two vectors in
different positions under DLIN. Information theoretical key tricks are inter-subspace and intra-
subspace types of conceptual transformations (see Section 7 for more details).

The security proofs of our IPE and ABE schemes are hierarchically constructed in a modular
manner. The very top level of the security proof is based on the dual system encryption and
its extension. Several problems in the middle level support the top level arguments. Our key
techniques, the indexing and consistent randomness amplification techniques, which are also
constructed in a hierarchical manner, are employed in the lowest level to reduce the hardness of
the middle level problems to the DLIN assumption. The top level of the security proof of our
IPE scheme (for κ = 1) is outlined in Section 5.1.7, and that of our ABE scheme is outlined in
the upper part of Figure 2 in Appendix A.4.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected
from A according to its distribution. When A is a set, y U← A denotes that y is uniformly
selected from A. We denote the finite field of order q by Fq, Fq \ {0} by F

×
q , and the set

of positive integers by N. A vector symbol denotes a vector representation over Fq, e.g., �x
denotes (x1, . . . , xn) ∈ F

n
q . The vector �0 is abused as the zero vector in F

n
q for any n. XT

denotes the transpose of matrix X. I� and 0� denote the � × � identity matrix and the � × �
zero matrix, respectively. A bold face letter denotes an element of vector space V, e.g., x ∈ V.
When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B

∗ := (b∗1, . . . , b∗N ),
(x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i . �e1 and �e2 denote the canonical

basis vectors in F
2
q , i.e., �e1 := (1, 0) and �e2 := (0, 1). GL(n,Fq) denotes the general linear group

of degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G 
= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) 
= 1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing groups (q,G,GT , G, e) with security parameter λ.
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Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V,

where ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V × V → GT . The pairing is defined by
e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V.

This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) 
= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and
outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional
V. It can be constructed by using Gbpg.

For matrix W := (wi,j)i,j=1,...,N ∈ F
N×N
q and element x := (G1, . . . , GN ) in N -dimensional

V, xW denotes (
∑N

i=1Giwi,1, . . . ,
∑N

i=1Giwi,N ) =(
∑N

i=1wi,1Gi, . . . ,
∑N

i=1wi,NGi) by a natural
multiplication of a N -dim. row vector and a N × N matrix. Thus it holds an associative law,
i.e., (xW1)W2 = x(W1W2).

For the asymmetric version of DPVS, see Appendix A.2 in [14]. We describe random dual
orthonormal basis generator Gob, which is used as a subroutine in our IPE and ABE schemes.

Gob(1λ, (Nt)t=0,1) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), ψ

U← F
×
q ,

for t = 0, 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j=1,...,Nt

U← GL(Nt,Fq), X∗
t := (ϑt,i,j)i,j=1,...,Nt := ψ · (XT

t )−1, hereafter,

�χt,i and �ϑt,i denote the i-th rows of Xt and X∗
t for i = 1, . . . , Nt, respectively,

bt,i := (�χt,i)At =
∑Nt

j=1 χt,i,jat,j for i = 1, . . . , Nt, Bt := (bt,1, . . . , bt,Nt),

b∗t,i := (�ϑt,i)At =
∑Nt

j=1 ϑt,i,jat,j for i = 1, . . . , Nt, B
∗
t := (b∗t,1, . . . , b∗t,Nt

),

gT := e(G,G)ψ, param := ({paramVt
}t=0,1, ψG, gT ), return (param,B,B∗).

We note that gT = e(bt,i, b∗t,i) for t = 0, 1; i = 1, . . . , Nt. Hereafter, for simplicity, we denote
N := N1,V := V1,A := A1,B := B1 and B

∗ := B
∗
1 for variables with t = 1.

3 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN: Decisional Linear Assumption [4]) The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β U← {0, 1}. For a probabilistic machine F , we define the advantage of F for the DLIN prob-
lem as: AdvDLIN

F (λ) :=
∣∣∣Pr

[
F(1λ, �)→1

∣∣∣ � R←GDLIN
0 (1λ)

]
−Pr

[
F(1λ, �)→1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary F , the advantage
AdvDLIN

F (λ) is negligible in λ.
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4 Definitions of Generalized Inner-Product Encryption (IPE)
and Attribute-Based Encryption (ABE)

4.1 Generalized Inner-Product Encryption

This section defines generalized inner product encryption (IPE) and its security.
The parameters of generalized inner-product predicates are expressed as a vector �x :=

{(t, xt) | t ∈ I�x, xt ∈ Fq} \ {�0} with finite index set I�x ⊂ N for encryption and a vector
�v := {(t, vt) | t ∈ I�v, vt ∈ Fq} \ {�0} with finite index set I�v ⊂ N for a secret key, respectively.
Here there are three types of unbounded IPE with respect to the decryption condition. For
Type 1, R(�v, �x) = 1 iff I�v ⊆ I�x and

∑
t∈I�v vtxt = 0. For Type 2, R(�v, �x) = 1 iff I�v ⊇ I�x and∑

t∈I�x vtxt = 0.
We will consider Type 0 inner-product predicate only for conventional prefix type vectors

�v := (v1, . . . , vn) and �x := (x1, . . . , xn′). For Type 0, R(�v, �x) = 1 iff n = n′ and �v · �x :=∑n
t=1 vtxt = 0.

Definition 4 An inner product encryption scheme (for generalized inner-product relation R(�v, �x))
consists of probabilistic polynomial-time algorithms Setup,KeyGen, Enc and Dec. They are given
as follows:

Setup takes as input security parameter 1λ. It outputs public parameters pk and (master) secret
key sk.

KeyGen takes as input public parameters pk, secret key sk, and vector �v. It outputs a corre-
sponding secret key sk�v.

Enc takes as input public parameters pk, message m in some associated message space, msg,
and vector �x. It returns ciphertext ct�x.

Dec takes as input the master public key pk, secret key sk�v and ciphertext ct�x. It outputs either
m′ ∈ msg or the distinguished symbol ⊥.

A generalized IPE scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ), all vectors �v and �x, all secret keys sk�v

R← KeyGen(pk, sk, �v), all messages m, all
ciphertext ct�x

R← Enc(pk,m, �x), it holds that m = Dec(pk, sk�v, ct�x) if R(�v, �x) = 1. Otherwise, it
holds with negligible probability.

Definition 5 The model for defining the adaptively fully-attribute-hiding security of IPE against
adversary A (under chosen plaintext attacks) is given by the following game:

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives public param-
eters pk to A.

Phase 1 A may adaptively make a polynomial number of key queries for vectors, �v, to the
challenger. In response, the challenger gives the corresponding key sk�v

R← KeyGen(pk, sk, �v)
to A.

Challenge A submits challenge vectors (�x(0), �x(1)) with the same index set I�x(0) = I�x(1) (or
n′(0) = n′(1) for Type 0) and challenge messages (m(0),m(1)), subject to the following
restrictions:

• Any key query �v in Phase 1 satisfies R(�v, �x(0)) = R(�v, �x(1)) = 0, or
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• Two challenge messages are equal, i.e., m(0) = m(1), and any key query �v in Phase
1 satisfies R(�v, �x(0)) = R(�v, �x(1)).

The challenger flips a coin b
U← {0, 1}, and gives ct�x(b)

R← Enc(pk,m(b), �x(b)) to A.

Phase 2 Phase 1 is repeated with the above restriction for key query �v and challenge, (�x(0), �x(1))
and (m(0),m(1)).

Guess A outputs a bit b′, and wins if b′ = b.

The advantage of A in the above game is defined as AdvIPE,AH
A (λ) := Pr[A wins ] − 1/2 for

any security parameter λ. An IPE scheme is adaptively fully-attribute-hiding (AH) against cho-
sen plaintext attacks if all probabilistic polynomial-time adversaries A have at most negligible
advantage in the above game. For each run of the game, the variable s is defined as s := 0 if
m(0) 
= m(1) for challenge messages m(0) and m(1), and s := 1 otherwise.

4.2 Attribute-Based Encryption with Non-Monotone Access Structures

4.2.1 Span Programs and Non-Monotone Access Structures

Definition 6 (Span Programs [2]) Let {p1, . . . , pn} be a set of variables. A span program
over Fq is a labeled matrix M̂ := (M,ρ) where M is a (�× r) matrix over Fq and ρ is a labeling
of the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labeled by one literal),
i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input
sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of those rows whose labels are set
to 1 by the input δ, i.e., either rows labeled by some pi such that δi = 1 or rows labeled by some
¬pi such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1]
or [ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is the j-th row
of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear combination of
the rows of Mδ gives the all one vector �1. (The row vector has the value 1 in each coordinate.) A
span program computes a Boolean function f if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive literals
{p1, . . . , pn}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now introduce a non-
monotone access structure with evaluating map γ that is employed in the proposed attribute-
based encryption schemes.

Definition 7 (Access Structures) Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a
set of attributes, each of which is expressed by a pair of sub-universe id and value of attribute,
i.e., (t, v), where t ∈ {1, . . . , d} and v ∈ Fq.

We now define such an attribute to be a variable p of a span program M̂ := (M,ρ), i.e., p :=
(t, v). An access structure S is span program M̂ := (M,ρ) along with variables p := (t, v), p′ :=
(t′, v′), . . ., i.e., S := (M,ρ) such that ρ : {1, . . . , �} → {(t, v), (t′, v′), . . . ,¬(t, v),¬(t′, v′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}, where 1 ≤ t ≤ d means
that t is an element of some subset of {1, . . . , d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program M̂ :=
(M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, vi)]∧[(t, xt) ∈ Γ]∧[vi = xt]
or [ρ(i) = ¬(t, vi)] ∧ [(t, xt) ∈ Γ] ∧ [vi 
= xt]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.
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We now construct a secret-sharing scheme for a non-monotone access structure or span
program.

Definition 8 A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be �× r matrix. Let column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then, s0 := �1 · �fT =∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �fT is the vector of �
shares of the secret s0 and the share si belongs to ρ(i).

2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts Γ, i.e.,
�1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist constants {αi ∈ Fq |
i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these

constants {αi} can be computed in time polynomial in the size of matrix M .

4.2.2 Key-Policy Attribute-Based Encryption

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret key) is associated
with attributes Γ (resp. access structure S). Relation R for KP-ABE is defined as R(S,Γ) = 1
iff access structure S accepts Γ.

Definition 9 (Key-Policy Attribute-Based Encryption: KP-ABE) A key-policy attribute-
based encryption scheme consists of probabilistic polynomial-time algorithms Setup,KeyGen,Enc
and Dec. They are given as follows:

Setup takes as input security parameter 1λ. It outputs public parameters pk and master secret
key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access structure S :=
(M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message space msg,
and a set of attributes, Γ := {(t, xt)|xt ∈ Fq, 1 ≤ t ≤ d}. It outputs a ciphertext ctΓ.

Dec takes as input public parameters pk, secret key skS for access structure S, and ciphertext
ctΓ that was encrypted under a set of attributes Γ. It outputs either m′ ∈ msg or the
distinguished symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ), all access structures S, all secret keys skS

R← KeyGen(pk, sk,S), all messages m,
all attribute sets Γ, all ciphertexts ctΓ

R← Enc(pk,m,Γ), it holds that m = Dec(pk, skS, ctΓ) if S

accepts Γ. Otherwise, it holds with negligible probability.

Definition 10 The model for defining the adaptively payload-hiding security of KP-ABE under
chosen plaintext attack is given by the following game:

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives public param-
eters pk to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of key queries, S,
to the challenger. The challenger gives skS

R← KeyGen(pk, sk,S) to the adversary.
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Challenge The adversary submits two messages m(0),m(1) and a set of attributes, Γ, provided
that no S queried to the challenger in Phase 1 accepts Γ. The challenger flips a coin
b

U← {0, 1}, and computes ct
(b)
Γ

R← Enc(pk,m(b),Γ). It gives ct
(b)
Γ to the adversary.

Phase 2 Phase 1 is repeated with the restriction that no queried S accepts challenge Γ.

Guess The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the above game is defined as AdvKP-ABE,PH
A (λ) := Pr[A wins ]−

1/2 for any security parameter λ. A KP-ABE scheme is adaptively payload-hiding secure if all
polynomial time adversaries have at most a negligible advantage in the above game.

4.2.3 Ciphertext-Policy Attribute-Based Encryption

Definition 11 (Ciphertext-Policy Attribute-Based Encryption : CP-ABE) A ciphertext-
policy attribute-based encryption scheme consists of four algorithms.

Setup takes as input security parameter. It outputs the public parameters pk and a master key
sk.

KeyGen takes as input a set of attributes, Γ := {(t, xt)|xt ∈ Fq, 1 ≤ t ≤ d}, pk and sk. It
outputs a decryption key.

Enc takes as input public parameters pk, message m in some associated message space msg,
and access structure S := (M,ρ). It outputs the ciphertext.

Dec takes as input public parameters pk, decryption key skΓ for a set of attributes Γ, and
ciphertext ctS that was encrypted under access structure S. It outputs either m′ ∈ msg or
the distinguished symbol ⊥.

A CP-ABE scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ), all attribute sets Γ, all decryption keys skΓ

R← KeyGen(pk, sk,Γ), all messages m,
all access structures S, all ciphertexts ctS

R← Enc(pk,m,S), it holds that m = Dec(pk, skΓ, ctS)
with overwhelming probability, if S accepts Γ.

Definition 12 The model for proving the adaptively payload-hiding security of CP-ABE under
chosen plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives the public
parameters pk to the adversary.

Phase 1 The adversary is allowed to issue a polynomial number of queries, Γ, to the challenger
or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated with Γ.

Challenge The adversary submits two messages m(0),m(1) and an access structure, S :=
(M,ρ), provided that the S does not accept any Γ sent to the challenger in Phase 1.
The challenger flips a random coin b

U← {0, 1}, and computes ct
(b)
S

R← Enc(pk,m(b),S). It
gives ct

(b)
S

to the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, Γ, to the challenger
or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated with Γ, provided that S does not
accept Γ.
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Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as AdvCP-ABE,PH
A (λ) := Pr[b′ =

b] − 1/2 for any security parameter λ. A CP-FE scheme is adaptively payload-hiding secure if
all polynomial time adversaries have at most a negligible advantage in the above game.

We note that the model can easily be extended to handle chosen-ciphertext attacks (CCA)
by allowing for decryption queries in Phase 1 and 2.

5 Proposed IPE Schemes

5.1 Type 1 IPE Scheme

5.1.1 Construction Idea for Our Type 1 and 2 IPE Schemes

In the existing constructions [13, 8, 14, 15, 16, 17] of IPE on DPVS, around cn (c ≥ 1) di-
mensional vector spaces are used for n-dimensional attribute and predicate vectors. Here, the
vectors are encoded in an n-dimensional subspace. Although this is a typical strategy of con-
structing IPE on DPVS, we cannot employ this idea in the unbounded setting, where we can
use only constant dimensional spaces. In our construction, each component xt of �x (resp. vt
of �v) is encoded in a constant dimensional space. In order to meet the decryption condition,
we employ the indexing technique and n-out-of-n secret sharing trick. For example, in Type
1 construction, 4-dimensional vector (μt(t,−1), δvt, st) is encoded in key k∗

t , and (σt(1, t), ωxt,
ω̃) is encoded in ciphertext ct. The first 2-dimension is used for indexes, and st in the fourth
component of k∗

t is for the secret sharing. Informally, a ciphertext can be decrypted if all n
pieces of shares st are recovered. A Type 2 IPE scheme can be constructed from our Type 1
scheme by setting the secret-sharing mechanism in the ciphertext side instead of the secret key
side.

5.1.2 Construction

Let d := poly(λ), where poly(·) is an arbitrary polynomial. Random dual basis generator
Gob(1λ, (Nt)t=0,1) is defined at the end of Section 2. We refer to Section 1.4 for notations on
DPVS.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
12, b

∗
13),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, �v := {(t, vt) | t ∈ I�v ⊆ {1, . . . , d}}) : st, δ, η0
U← Fq for t ∈ I�v, s0 :=

∑
t∈I�v st,

k∗
0 := ( −s0, 0, 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷︸︸︷ 2︷ ︸︸ ︷ 2︷︸︸︷
for t ∈ I�v, μt, ηt,1, ηt,2 U← Fq, k∗

t := ( μt(t, −1), δvt, st, 07, ηt,1, ηt,2, 02 )B∗ ,

return sk�v := (I�v,k∗
0, {k∗

t }t∈I�v).
Enc(pk, m, �x := {(t, xt) | t ∈ I�x ⊆ {1, . . . , d}}) : ω, ω̃, ζ, ϕ0

U← Fq,

c0 := ( ω̃, 0, ζ, 0, ϕ0 )B0 , cT := gζTm,

4︷ ︸︸ ︷ 7︷︸︸︷ 2︷︸︸︷ 2︷ ︸︸ ︷
for t ∈ I�x, σt, ϕt,1, ϕt,2 U← Fq, ct := ( σt(1, t), ωxt, ω̃, 07, 02, ϕt,1, ϕt,2 )B,
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return ct�x := (I�x, c0, {ct}t∈I�x , cT ).
Dec(pk, sk�v := (I�v,k∗

0, {k∗
t }t∈I�v), ct�x := (I�x, c0, {ct}t∈I�x , cT )) :

if I�v ⊆ I�x, K := e(c0,k
∗
0) ·

∏
t∈I�v e(ct,k

∗
t ), return m′ := cT /K,

else return ⊥.
[Correctness] If I�v ⊆ I�x and

∑
t∈I�v vtxt = 0, e(c0,k

∗
0) ·

∏
t∈I�v e(ct,k

∗
t ) =

g−eωs0+ζ
T ·∏t∈I�v g

δωvtxt+eωst
T = g−eωs0+ζ

T · gδω(
P

t∈I�v
vtxt)+eω(

P
t∈I�v

st)

T = g−eωs0+ζ+eωs0
T = gζT .

5.1.3 Security

Theorem 1 The proposed Type 1 IPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines F ’s, whose running times are essen-
tially the same as that of A, such that for any security parameter λ, the advantage AdvIPE,AH

A (λ)
is upper-bounded by the sum of the right hand of Eq. (1) and the right hand of Eq. (2). The sum
is given by the total of (ν(12d2 + 6d+ 3) + 4d+ 6) advantages of DLIN for F algorithms, which
are F machines with parameters (h, ι, p, j, l) as described in Lemmas 1 and 2. Here, ν is the
maximum number of A’s key queries.

Theorem 1 is proven based on Lemmas 1 and 2.

Proof. First, we execute a preliminary game transformation from Game 0 (original security
game in Definition 5) to Game 0’, which is the same as Game 0 except that flips a coin κ U← {0, 1}
before setup, and the game is aborted in step 3 if κ 
= s. We define that A wins with probability
1/2 when the game is aborted (and the advantage in Game 0’ is Pr[A wins ] − 1/2 as well).
Since κ is independent from s, the game is aborted with probability 1/2. Hence, the advantage
in Game 0’ is a half of that in Game 0, i.e., AdvIPE,AH,0′

A (λ) = 1/2 · AdvIPE,AH
A (λ). Moreover,

Pr[A wins] = 1/2 · (Pr[A wins | κ = 0]+Pr[A wins | κ = 1]) in Game 0’ since κ is uniformly and
independently generated. As for the conditional probability with κ = 0, i.e., Pr[A wins | κ = 0],
Lemma 1 (Eq. (1)) holds. As for the conditional probability with κ = 1, i.e., Pr[A wins | κ = 1],
Lemma 2 (Eq. (2)) holds. Since AdvIPE,AH

A (λ) = 2 · AdvIPE,AH,0′
A (λ) = Pr[A wins | κ = 0] +

Pr[A wins | κ = 1] − 1 = (Pr[Awins |κ = 0] − 1/2) + (Pr[Awins |κ = 1] − 1/2), we obtain
Theorem 1 from Lemmas 1 and 2. ��
Lemma 1 The proposed Type 1 IPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption when κ = 0.

For any adversary A, there exist probabilistic machines F1-0,F1-1,F1-2,F2-1,F2-2-1, . . . ,F2-2-5,
F3, whose running times are essentially the same as that of A, such that for any security pa-
rameter λ,

Pr[A wins in Game 0′ | κ = 0]− 1/2 ≤ AdvDLIN
F1-0

(λ) + AdvDLIN
F1-1

(λ) +
∑d

p=1

∑2
j=1 AdvDLIN

F1-2-p-j
(λ)∑ν

h=1

(
AdvDLIN

F2-h-1
(λ) +

∑d
p=1

∑2
j=1

(
AdvDLIN

F2-h-2-p-1-j
(λ) + AdvDLIN

F2-h-2-p-2-j
(λ)+∑

l=1,...,d; l �=p
(
AdvDLIN

F2-h-2-p-3-j-l
(λ) + AdvDLIN

F2-h-2-p-4-j-l
(λ)

)
+ AdvDLIN

F2-h-2-p-5-j
(λ)

))
+∑2

j=1 AdvDLIN
F3-j

(λ) + ε, (1)

where F1-2-p-j(·) := F1-2(h, p, j, ·),F2-h-1(·) := F2-1(h, ·),F2-h-2-p-1-j(·) := F2-2-1(h, p, j, ·),
F2-h-2-p-2-j(·) := F2-2-2(h, p, j, ·),F2-h-2-p-3-j-l(·) := F2-2-3(h, p, j, l, ·),F2-h-2-p-4-j-l(·) := F2-2-4(h, p,
j, l, ·),F2-h-2-p-5-j(·) := F2-2-5(h, p, j, ·),F3-j(·) := F3(j, ·), ν is the maximum number of A’s key
queries and ε := (20d2ν + 10dν + 5ν + 10ν + 20)/q.
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Proof outline (resp. proof) of Lemma 1 is given in Section 5.1.5 (resp. 5.1.6).

Lemma 2 The proposed Type 1 IPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption when κ = 1.

For any adversary A, there exist probabilistic machines F1-0,F1-1,F1-2,F2-1,F2-2-1, . . . ,F2-2-5,
F2-3-1, . . . ,F2-3-5,F2-4, whose running times are essentially the same as that of A, such that for
any security parameter λ,

Pr[A wins in Game 0′ | κ = 1]− 1/2 ≤ AdvDLIN
F1-0

(λ) + AdvDLIN
F1-1

(λ) +
∑d

p=1

∑2
j=1 AdvDLIN

F1-2-p-j
(λ)∑ν

h=1

(
AdvDLIN

F2-h-1
(λ) +

∑3
ι=2

∑d
p=1

∑2
j=1

(
AdvDLIN

F2-h-ι-p-1-j
(λ) + AdvDLIN

F2-h-ι-p-2-j
(λ)+∑

l=1,...,d; l �=p
(
AdvDLIN

F2-h-ι-p-3-j-l
(λ) + AdvDLIN

F2-h-ι-p-4-j-l
(λ)

)
+ AdvDLIN

F2-h-ι-p-5-j
(λ)

)
+∑2

j=1 AdvDLIN
F2-4-j

(λ)
)

+ ε, (2)

where F1-2-p-j(·) := F1-2(h, p, j, ·),F2-h-1(·) := F2-1(h, ·),F2-h-ι-p-1-j(·) := F2-ι-1(h, p, j, ·),
F2-h-ι-p-2-j(·) := F2-ι-2(h, p, j, ·),F2-h-ι-p-3-j-l(·) := F2-ι-3(h, p, j, l, ·),F2-h-ι-p-4-j-l(·) := F2-ι-4(h, p, j,
l, ·),F2-h-ι-p-5-j(·) := F2-ι-5(h, p, j, ·) for ι = 2, 3, F2-4-j(·) := F2-4(j, ·), ν is the maximum number
of A’s key queries and ε := (40d2ν + 20dν + 10ν + 10d+ 10)/q.

Proof outline (resp. proof) of Lemma 2 is given in Section 5.1.7 (resp. 5.1.8).

5.1.4 Lemmas (and Problems) for the proof of Lemmas 1 and 2

Computational Problems and Assumptions for Proofs of Lemmas 1 and 2 While
our IPE scheme uses 15 dimensional space V, our KP-ABE in Section 6.1 uses 14 dimensional V.
This 1-dimensional difference arises from the difference of the required security, fully-attribute-
hiding for IPE but only payload-hiding for KP-ABE. The security of our KP-ABE is proven
using Problem 1-ABE and 2-ABE. Note that while these problems are made for KP-ABE, they
are also key techniques or basic building blocks for the security proof of IPE. The security proofs
for Problems 1-ABE and 2-ABE (Lemmas 23 and 24) are given in Appendix A.4. The security
proofs of IPE and ABE are reduced to the security (intractability) of these problems.

We will introduce 5 computational problems on DPVS for our IPE, Problems 1-IPE, . . .,
5-IPE. These are classified into 3 types, ones based on Problem 1-ABE, ones based on Problem
2-ABE, and ones directly reduced from DLIN. Since the security of Problems 1-ABE and 2-ABE
is proven using the indexing and consistent randomness amplification techniques, the security
of the former two types essentially depends on these techniques.

The security lemma of Problem 1-IPE for unbounded IPE is reduced to that of Problem
1-ABE (Lemma 32 in Appendix A.1.1), and the security lemmas of Problems 2-IPE and 4-IPE
are reduced to that of Problem 2-ABE (Lemma 33 in Appendix A.1.2). The security proofs of
the other problems (Problems 3-IPE and 5-IPE) are not based on Problems 1-ABE or 2-ABE,
but can be directly reduced from the DLIN assumption.

Definition 13 (Problem 1-IPE) Problem 1-IPE is to guess β, given (param, B̂0, B̂
∗
0, B̂, B̂

∗,
eβ,0, {eβ,t,i}t=1,...,d;i=1,2, ẽβ,1, ẽ2)

R← GP1-IPE
β (1λ, d), where

GP1-IPE
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),

ϕ0, ω
U← Fq, τ

U← F
×
q ,

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
12, b

∗
13),
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e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 , Zt
U← GL(2,Fq) for t = 1, . . . , d,

for t = 1, . . . , d; i = 1, 2; �e1 := (1, 0), �e2 := (0, 1) ∈ F
2
q , σt,i, ϕt,i,1, ϕt,i,2

U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
e0,t,i := ( σt,i(1, t), ω�ei, 07, 02, ϕt,i,1, ϕt,i,2 )B,
e1,t,i := ( σt,i(1, t), ω�ei, τ�ei, 02, τ�ei Zt, 0, 02, ϕt,i,1, ϕt,i,2 )B,
ẽ0,1 := ( σ̃, 03, 07, 02, ϕ̃1, ϕ̃2 )B,
ẽ1,1 := ( σ̃, 03, 06, θ, 02, ϕ̃1, ϕ̃2 )B,

ẽ2 := σ̃b2,

return (param, B̂0, B̂
∗
0, B̂, B̂

∗, eβ,0, {eβ,t,i}t=1,..,d;i=1,2, ẽβ,1, ẽ2),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 1-IPE is defined
as: AdvP1-IPE

B (λ) :=
∣∣∣Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1-IPE
0 (1λ, n)

]
−Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1-IPE
1 (1λ, n)

]∣∣∣ .
Lemma 3 Problem 1-IPE is computationally intractable under the DLIN assumption.

For any adversary B, there exist probabilistic machines F0,F1,F2, whose running times
are essentially the same as that of B, such that for any security parameter λ, AdvP1-IPE

B (λ) ≤
AdvDLIN

F0
(λ)+AdvDLIN

F1
(λ)+

∑d
p=1

∑2
j=1 AdvDLIN

F2-p-j
(λ)+ ε, where F2-p-j(·) := F2(p, j, ·), ε := (10d+

5)/q.

Lemma 3 is proven in Appendix A.1.1.

Definition 14 (Problem 2-IPE) Problem 2-IPE is to guess β, given (param, B̂0, B̂
∗
0, B̂, B̂

∗,
h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,..,d;i=1,2)
R← GP2-IPE

β (1λ, d), where

GP2-IPE
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),

δ, η0, ϕ0, ω
U← Fq, τ, ρ

U← F
×
q ,

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂
∗
0 := (b∗0,1, .., b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12, b

∗
12, b

∗
13),

h∗
0,0 := (δ, 0, 0, η0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, η0, 0)B∗
0
, e0 := (ω, τ, 0, 0, ϕ0)B0 ,

Zt
U← GL(2,Fq), Ut := (Z−1

t )T, for t = 1, .., d,
for t = 1, . . . , d; i = 1, 2; �e1 := (1, 0), �e2 := (0, 1) ∈ F

2
q ,

μt,i, σt,i, ηt,i,1, ηt,i,2, ϕt,i,1, ϕt,i,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗

0,t,i := ( μt,i(t, −1), δ�ei, 07, ηt,i,1, ηt,i,2 02 )B∗ ,

h∗
1,t,i := ( μt,i(t, −1), δ�ei, 04, ρ�ei Ut, 0, ηt,i,1, ηt,i,2 02 )B∗ ,

et,i := ( σt,i(1, t), ω�ei, τ�ei, 02, τ�ei Zt, 0, 02, ϕt,i,1, ϕt,i,2 )B,

return (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2-IPE,

AdvP2-IPE
B (λ), is similarly defined as in Definition 13.

Lemma 4 Problem 2-IPE is computationally intractable under the DLIN assumption.
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For any adversary B, there exist probabilistic machines F1,F2-1, . . . ,F2-5, whose running
times are essentially the same as that of B, such that for any security parameter λ, AdvP2-IPE

B (λ) ≤
AdvDLIN

F1
(λ) +

∑d
p=1

∑2
j=1

(
AdvDLIN

F2-p-1-j
(λ) + AdvDLIN

F2-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F2-p-3-j-l
(λ)+

AdvDLIN
F2-p-4-j-l

(λ)
)

+ AdvDLIN
F2-p-5-j

(λ)
)

+ ε, where F2-p-1-j(·) := F2-1(p, j, ·),F2-p-2-j(·) := F2-2(p, j, ·),
F2-p-3-j-l(·) := F2-3(p, j, l, ·),F2-p-4-j-l(·) := F2-4(p, j, l, ·),F2-p-5-j(·) := F2-5(p, j, ·) and ε :=
(20d2 + 10d+ 5)/q.

Lemma 4 is proven in Appendix A.1.2.

Definition 15 (Problem 3-IPE) Problem 3-IPE is to guess β, given (param,B0,B
∗
0,B, B̂

∗,
h∗, eβ)

R← GP3-IPE
β (1λ), where

GP3-IPE
β (1λ) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),

r, u, ω, τ, zi, ηi, ϕi
U← Fq for i = 1, 2, B̂

∗ := (b∗1, b
∗
2, b

∗
4, b

∗
6, . . . , b

∗
15),

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗ := ( 02, u, 0, 04, r, 02, η1, η2, 02 )B∗ ,
e0 := ( 04, 04, z1, z2, 0, 02, ϕ1, ϕ2 )B,
e1 := ( 02, ω, 0, τ, 03, z1, z2, 0, 02, ϕ1, ϕ2 )B,

return (param,B0,B
∗
0,B, B̂

∗,h∗, eβ),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 3-IPE,

AdvP3-IPE
B (λ), is similarly defined as in Definition 13.

Lemma 5 Problem 3-IPE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F whose running times are essen-

tially the same as that of B, such that for any security parameter λ, AdvP3-IPE
B (λ) ≤ AdvDLIN

F (λ)+
ε, where ε := 5/q.

Lemma 5 is proven by combining proofs of (straightforward extensions of) Lemmas 1 and 2
in [14].

Definition 16 (Problem 4-IPE) Problem 4-IPE is to guess β, given (param, B̂0, B̂
∗
0, B̂, B̂

∗,
h∗

0, e0, {h∗
β,t,i, et,i}t=1,..,d;i=1,2)

R← GP4-IPE
β (1λ, d), where

GP4-IPE
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)), η0, ϕ0, τ, ρ
U← Fq,

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b11, b14, b15),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12, b

∗
13),

h∗
0 := (0, ρ, 0, η0, 0)B∗

0
, e0 := (0, τ, 0, 0, ϕ0)B0 ,

Zt
U← GL(2,Fq), Ut := (Z−1

t )T, for t = 1, .., d,
for t = 1, . . . , d; i = 1, 2; �e1 := (1, 0), �e2 := (0, 1) ∈ F

2
q ,

μt,i, σt,i, ηt,i,1, ηt,i,2, ϕt,i,1, ϕt,i,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗

0,t,i := ( μt,i(t, −1), 02, 04, ρ�ei Ut, 0, ηt,i,1, ηt,i,2 02 )B∗ ,

h∗
1,t,i := ( μt,i(t, −1), 02, ρ�ei, 05, ηt,i,1, ηt,i,2 02 )B∗ ,

et,i := ( σt,i(1, t), 02, τ�ei, 02, τ�ei Zt, 0, 02, ϕt,i,1, ϕt,i,2 )B,

return (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2),
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for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 4-IPE,

AdvP4-IPE
B (λ), is similarly defined as in Definition 13.

Lemma 6 Problem 4-IPE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F3-1, . . . ,F3-5, whose running times

are essentially the same as that of B, such that for any security parameter λ, AdvP4-IPE
B (λ) ≤∑d

p=1

∑2
j=1

(
AdvDLIN

F3-p-1-j
(λ) + AdvDLIN

F3-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F3-p-3-j-l
(λ) + AdvDLIN

F3-p-4-j-l
(λ)

)
+AdvDLIN

F3-p-5-j
(λ)

)
+ ε, where F3-p-1-j(·) := F3-1(p, j, ·),F3-p-2-j(·) := F3-2(p, j, ·), F3-p-3-j-l(·) :=

F3-3(p, j, l, ·),F3-p-4-j-l(·) := F3-4(p, j, l, ·),F3-p-5-j(·) := F3-5(p, j, ·) and ε := (20d2 + 10d)/q.

Lemma 6 is proven in a similar manner to Lemma 4.

Definition 17 (Problem 5-IPE) Problem 5-IPE is to guess β, given (param,B0,B
∗
0, B̂,B

∗,
h∗
β , {ej}j=0,1)

R← GP8-IPE
β (1λ), where

GP5-IPE
β (1λ) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),

τi, θi, ρ
U← Fq for i = 0, 1, B̂ := (b1, .., b4, b6, . . . , b10, b12, . . . , b15),

for i = 0, 1; η1, η2, ϕi,1, ϕi,2
U← Fq,

4︷︸︸︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗

0 := ( 04, ρ, 06, η1, η2 02 )B∗ ,
h∗

1 := ( 04, 06, ρ, η1, η2 02 )B∗ ,
ei := ( 04, τi, 05, θi, 02, ϕi,1, ϕi,2 )B,

return (param,B0,B
∗
0, B̂,B

∗,h∗
β , {ei}i=0,1),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 5-IPE,

AdvP5-IPE
B (λ), is similarly defined as in Definition 13.

Lemma 7 Problem 5-IPE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F whose running times are essen-

tially the same as that of B, such that for any security parameter λ, AdvP5-IPE
B (λ) ≤ AdvDLIN

F (λ)+
ε, where ε := 8/q.

Lemma 7 is proven in a similar manner to Lemma 4 in [16] (i.e., security of Problem 3 in
[16]).

Next is a key probabilistic (or information-theoretic) lemma used in the proofs of Lemmas
11 and 19.

Lemma 8 (Lemma 3 in [14]) For p ∈ Fq, let Cp := {(�x,�v)|�x · �v = p} ⊂ V × V ∗ where
V is n-dimensional vector space F

n
q , and V ∗ its dual. For all (�x,�v) ∈ Cp, for all (�r, �w) ∈

Cp, Pr [�xU = �r ∧ �vZ = �w] = Pr [�xZ = �r ∧ �vU = �w] = 1
/
� Cp, where Z U← GL(n,Fq), U :=

(Z−1)T.

5.1.5 Proof Outline of Lemma 1

At the top level of strategy of the security proof, we follow the dual system encryption method-
ology proposed by Waters [21]. In the methodology, ciphertexts and secret keys have two forms,
normal and semi-functional. In the proof herein, we also introduce another form of secret keys
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called pre-semi-functional, which is called nominally semi-functional in [9]. The real system
uses only normal ciphertexts and normal secret keys, and semi-functional ciphertexts and semi-
functional/pre-semi-functional keys are used only in a sequence of security games for the security
proof.

To prove this theorem, we employ Game 0’ (defined in the proof of Theorem 1) through
Game 4. As in the original dual system encryption, challenge ciphertexts have a final (or
randomized) form in the final game (Game 4). In the proof herein, we also use another form of
ciphertext, which we call semi-randomized form, in Game 3. This form and an additional game
transformation from Game 3 to 4 is necessary for achieving security using limited randomness
in public parameters.

In Game 1, the challenge ciphertext is changed to semi-functional. When at most ν key
queries are issued, there are 2ν game changes from Game 1 (Game 2-0-2), Game 2-1-1, Game
2-1-2, through Game 2-ν-2.

In Game 2-h-1, the first (h − 1) keys are semi-functional and the h-th key is pre-semi-
functional, while the remaining keys are normal, and the challenge ciphertext is semi-functional.
In Game 2-h-2, the first h keys are semi-functional (i.e., and the h-th key is semi-functional),
while the remaining keys are normal, and the challenge ciphertext is semi-functional.

The next game (Game 3) with semi-randomized challenge ciphertext is conceptually changed
from Game 2-ν-2, and the final game (Game 4) with randomized challenge ciphertext is com-
putationally changed from Game 3. As usual, we prove that the advantage gaps between
neighboring games are negligible. In this proof outline, we ignore a negligible factor in the
(informal) descriptions of this proof outline. For example, we say “A is bounded by B” when
A ≤ B + ε(λ) where ε(λ) is negligible in security parameter λ.

When at most ν key queries are issued by an adversary, we set a sequence of sk := sk�v’s,
i.e., (sk(1)∗, . . . , sk(ν)∗), in the order of the adversary’s queries. A normal secret key, sk

(h)∗norm
�v ,

is the correct form of the secret key of the proposed IPE scheme, and is expressed by Eq. (3).
Similarly, a normal ciphertext ctnorm

�x , is expressed by Eq. (4). A pre-semi-functional secret key,
sk

(h)∗ psemi
�v , is expressed by Eq. (6), a semi-functional secret key, sk

(h)∗ semi
�v , is expressed by

Eq. (7), and a semi-functional ciphertext, ctsemi
�x , is expressed by Eq. (5). A semi-randomized

ciphertext is expressed by Eq. (8), and a randomized ciphertext is expressed by Eq. (9).
To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of

Problem 1-IPE (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0’ (or
1) (against an adversary A) by using an instance with β

U← {0, 1} of Problem 1-IPE. We then
show that the distribution of the secret keys and challenge ciphertext replied by the simulator
is equivalent to those of Game 0’ when β = 0 and Game 1 when β = 1. That is, the advantage
gap between Games 0 and 1 is bounded by the advantage of Problem 1-IPE (Lemma 9). The
advantage of Problem 1-IPE is proven to be bounded by that of the DLIN assumption (Lemma
3).

The advantage gap between Games 2-(h− 1)-2 and 2-h-1 is similarly shown to be bounded
by the advantage of Problem 2-IPE (i.e., advantage of the DLIN assumption) (Lemmas 10 and
4).

The distributions of pre-semi-functional secret key sk
(h)∗ psemi
�v (Eq. (6)) and semi-functional

secret key sk
(h)∗ semi
�v (Eq. (7)) are distinguishable by the simulator or challenger, but the joint

distributions of (sk(h)∗ psemi
�v , ctsemi

�x ) and (sk(h)∗ semi
�v , ctsemi

�x ) along with the other keys are (infor-
mation theoretically) equivalent for the adversary’s view, when �v and �x are not orthogonal.
Therefore, as shown in Lemma 11, the advantages of Games 2-h-1 and 2-h-2 are equivalent.

We show that Game 2-ν-2 can be conceptually changed to Game 3 (Lemma 12) by using
the fact that basis vectors of b0,2 and b∗0,3 are unknown to the adversary (and matrices Zt are
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uniformly and independently distributed).
Finally, we show the advantage gap between Games 3 and 4 is bounded by the advantage

of Problem 3-IPE (i.e., advantage of the DLIN assumption) (Lemmas 13 and 5).

5.1.6 Proof of Lemma 1

To prove Lemma 1, we consider the following games. In Game 0’, a part framed by a box
indicates positions of coefficients to be changed in a subsequent game. In the other games,
a part framed by a box indicates coefficients which were changed in an experiment from the
previous game. Games proceed as follows:

Game 0’⇒ Game 1⇒ ( for h = 1, . . . , ν; Game 2-h-1⇒ Game 2-h-2 )⇒ Game 3⇒ Game 4

Game 0’ : Same as Game 0 except that flip a coin κ
U← {0, 1} before setup, and the game is

aborted in step 3 if κ 
= s. In order to prove Lemma 1, we consider the case with κ = 0. The
reply to a key query for �v := {(t, vt) | t ∈ I�v} is:

k∗
0 := ( −s0, 0 , 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st 04, 02 , 0, �ηt, 02 )B∗ .

⎫⎪⎪⎬
⎪⎪⎭ (3)

This is called a normal key. The challenge ciphertext for challenge plaintexts (m(0),m(1)) and
attributes �x(b) := {(t, x(b)

t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) is:

c0 := ( ω̃, 0 , ζ , 0, ϕ0 )B0 , cT := gζTm
(b),

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�x, ct := ( σt(1, t), ωx

(b)
t , ω̃ 02 , 02, 02 , 0, 02, �ϕt )B,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4)

where b U← {0, 1}. This is called a normal ciphertext.

Game 1: Same as Game 0’ except that the challenge ciphertext is:

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 , cT := gζTm
(b),

for t ∈ I�x,
4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

ct := ( σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, (τx(b)

t , τ̃) · Zt , 0, 02, �ϕt )B,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

where τ, τ̃ U← F
×
q , Zt

U← GL(2,Fq), and all the other variables are generated as in Game 0’.
This is called a semi-functional ciphertext.

Game 2-h-1 (h = 1, . . . , ν): Game 2-0-2 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-2 except the reply, (k∗

0, {k∗
t }t∈I�v), for the h-th key query for �v := {(t, vt) | t ∈ I�v} are:

k∗
0 := ( −s0, −a0 , 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st, 04, (πvt, at) · Ut , 0, �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭ (6)
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where at
U← Fq, a0 :=

∑
t∈I�v at, Ut := (Z−1

t )T for Zt
U← GL(2,Fq) used in Eq. (19) and t ∈ I�v,

and π
U← Fq. All the other variables are generated as in Game 2-(h − 1)-2. This is called a

pre-semi-functional key.

Game 2-h-2 (h = 1, . . . , ν): Game 2-h-2 is the same as Game 2-h-1 except the reply,
(k∗

0, {k∗
t }t∈I�v), for the h-th key query for �v := {(t, vt) | t ∈ I�v} are:

k∗
0 := ( −s0, r0 , 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st, 04, �rt , 0, �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭ (7)

where r0
U← Fq, �rt

U← F
2
q . All the other variables are generated as in Game 2-h-1. This is called

a semi-functional key.

Game 3: Same as Game 2-ν-2 except that the challenge ciphertext is:

c0 := ( ω̃, τ̃ , ζ ′ , 0, ϕ0 )B0 , cT := gζTm
(b),

for t ∈ I�x,
4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

ct := ( σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, zt,1, zt,2 , 0, 02, �ϕt )B,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

where ζ ′, zt,1, zt,2
U← Fq, and all the other variables are generated as in Game 2-ν-2. This is

called a semi-randomized ciphertext.

Game 4: Same as Game 3 except that the challenge ciphertext is:

c0 := ( ω̃, τ̃ , ζ ′, 0, ϕ0 )B0 , cT := gζTm
(b),

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�x, ct := ( σt(1, t), 0 , ω̃, 0 , τ̃ , 02, zt,1, zt,2, 0, 02, �ϕt )B,

⎫⎪⎪⎬
⎪⎪⎭ (9)

where all the variables are generated as in Game 3. Note that the ciphertext is independent
from bit b. This is called a randomized ciphertext.

Let Adv
(0′)
A (λ), Adv

(1)
A (λ),Adv

(2-h-j)
A (λ) (h = 1, . . . , ν; j = 1, 2), Adv

(3)
A (λ) and Adv

(4)
A (λ) be

the advantage of A in Game 0, 1, 2-h-j, 3 and 4 when κ = 0, respectively. Adv
(0′)
A (λ) is equivalent

to Pr[Awins |κ = 0] and it is obtained that Adv
(4)
A (λ) = 0 by Lemma 14.

We will show five lemmas (Lemmas 9-13) that evaluate the gaps between pairs of Adv
(0′)
A (λ),

Adv
(1)
A (λ),Adv

(2-h-1)
A (λ),Adv

(2-h-2)
A (λ) for h = 1, . . . , ν, Adv

(3)
A (λ) and Adv

(4)
A (λ). From these lem-

mas, we obtain Pr[Awins |κ = 0] = Adv
(0′)
A (λ) ≤

∣∣∣Adv
(0′)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν
h=1

(∣∣∣Adv
(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)

∣∣∣+ ∣∣∣Adv
(2-h-1)
A (λ)− Adv

(2-h-2)
A (λ)

∣∣∣)+
∣∣∣Adv

(2-ν-2)
A (λ)− Adv

(3)
A (λ)

∣∣∣+∣∣∣Adv
(3)
A (λ)− Adv

(4)
A (λ)

∣∣∣
+Adv

(4)
A (λ) ≤ AdvP1-IPE

B1
(λ) +

∑ν
h=1 AdvP2-IPE

B2-h
(λ) + AdvP3-IPE

B3
(λ) + (2ν + 4)/q. Therefore, from

Lemmas 3–5, we obtain the upperbound in Lemma 1. This completes the proof of Lemma 1. ��
Lemmas 9–13 are proven in Appendix A.2.

Lemma 9 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1-IPE

B1
(λ).
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Figure 1: Structures of Reductions: The upper one is that used in [16], and the lower one is
that used in the proof of Lemma 2.

Lemma 10 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2-IPE

B2-h
(λ) + 2/q, where B2-h(·) := B2(h, ·).

Lemma 11 For any adversary A, for any security parameter λ, Adv
(2-h-1)
A (λ) = Adv

(2-h-2)
A (λ).

Lemma 12 For any adversary A, for any security parameter λ, |Adv
(2-ν-2)
A (λ) − Adv

(3)
A (λ)| ≤

1/q.

Lemma 13 For any adversary A, there exists a probabilistic machine B3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3)
A (λ) −

Adv
(4)
A (λ)| ≤ AdvP3-IPE

B3
(λ) + 3/q.

Lemma 14 For any adversary A, Adv
(4)
A (λ) = 0.

Proof. The value of b is independent from A’s view in Game 4. Hence, Adv
(4)
A (λ) = 0. ��

5.1.7 Proof Outline of Lemma 2

Structure of Game Transformation for Proof of Lemma 2 At the top level strategy of
the security proof, an extended form of the dual system encryption (DSE), which was introduced
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in [16], is employed. We will first explain the extended methodology comparing with the original
DSE, briefly.

In the original form [21, 14], the first goal of game transformations is to insert a pair of
random coefficients in a hidden subspace of challenge ciphertext and queried keys (e.g., Game
2-h-2 in the proof of Lemma 1), and then the random distribution of the pairs is reflected to the
real (or normal) encoded part, i.e., the challenge vector �x(b) is totally randomized (e.g., Game
3 in the proof of Lemma 1). For dealing with the κ = 1 case, the main difficulty resides in
how to change a (normal) secret key queried with �v to another form, without knowing whether
R(�v, �x(b)) = 0 or not (non-matching or matching). Here, an adversary may issue key queries
with �v before issuing the challenge ciphertext query with �x(b) (b = 0, 1) and two possible cases,
R(�v, �x(b)) = 0 (for all b = 0, 1) and R(�v, �x(b)) = 1 (for all b = 0, 1), are allowed.

Here, a key fact is that R(�v, �x(0)) = R(�v, �x(1)) = R(�v, ω0�x
(0) + ω1�x

(1)) for ω0, ω1
U← Fq with

all but negligible probability. Based on that relation, our goal of game transformations turns
out to change a challenge ciphertext to the ciphertext for unbiased vector ω0�x

(0) + ω1�x
(1) with

respect to bit b ∈ {0, 1}. For achieving that change, [16] also used hidden subspace in a different
manner from the original DSE (e.g., the proof of Lemma 1). In [16], only �v is encoded in a
hidden subspace of the temporal forms of a secret key, and a random vector in span〈�x(0), �x(1)〉 is
encoded in the corresponding hidden subspace for the temporal and final forms of a ciphertext.
The change is based on a pairwise independence lemma (Lemma 8), which can be only applied
one by one for a pair of key and ciphertext. Since the encoded vectors (�v, ω0�x

(0) + ω1�x
(1))

have non-uniform distribution, which are different from the original DSE case, we need one
more n-dimensional block to accumulate the transformed pairs of coefficients. Moreover, the
swapping of coefficients between two (hidden) blocks is achieved by a computational change in
[16]. After that, [16] has unbiased ciphertext for b ∈ {0, 1} by reflecting the accumulated results
to real encoding part, by a conceptual change.

In this paper, we must accomplish the above transformations with limited public parameter
randomness. We turn to the outline of our game transformation. Figure 1 compares the
structures of the security reductions in [16] (the upper figure) and that for Lemma 2 (the lower
figure). The security of the schemes is hierarchically reduced to the intractability of the DLIN
problem. In [16], three types of computational changes by Problems 1, 2, and 3 and three types
of conceptual changes (Types 1, 2, and 3) are used alternately. With limited randomness in
public parameters, Type 2 conceptual change is impossible to achieve, so we need an alternative
mean for our purpose.

Type 2 conceptual change is shaded in the reduction used in [16]. In fact, that change is
given by combining 3 conceptual changes, in which the first and third conceptual changes are
not achievable under unbounded setting. The changes needed public parameter randomness
for each index t, which generates hidden (from the adversary) parameters in transient games.
Therefore, we replace these changes by computational changes in our reduction, i.e., (a part of)
the computational change by Problem 2-IPE and the computational change by Problem 4-IPE,
respectively. Together with the central conceptual change (of Type 4), these changes are also
shaded in the lower one of Figure 1.

Game Description At the top level strategy of the security proof, an extended form of
the dual system encryption (DSE), which was introduced in [16], is employed. In our game
transformations, ciphertexts have four forms, normal, 1-st temporary, 2-nd temporary, and
unbiased, and secret keys have four forms, normal, 1-st temporary, 2-nd temporary, and final.
The real system uses only normal ciphertexts and normal secret keys, and the other types of
ciphertexts and keys are used only in a sequence of security games for the security proof.

To prove this lemma, we only consider the κ = 1 case. We employ Game 0’ (described in
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Table 3: Outline of Game Descriptions

Game Challenge Queried keys
ciphertext 1 · · · h− 1 h h+ 1 · · · ν

0’ normal normal
1-1-1 1-st temp. normal
1-1-2 1-st temp. 1-st temp. normal
1-1-3 2-nd temp. 1-st temp. normal
1-1-4 2-nd temp. 2-nd temp. normal
1-1-5 2-nd temp. final normal

...
1-h-1 1-st temp. final normal
1-h-2 1-st temp. final 1-st temp. normal
1-h-3 2-nd temp. final 1-st temp. normal
1-h-4 2-nd temp. final 2-nd temp. normal
1-h-5 2-nd temp. final final normal

...
1-ν-5 2-nd temp. final final

2 unbiased final

the proof of Theorem 1) through Game 2. When at most ν secret key queries are issued by an
adversary, there are 5ν game changes from Game 0’ (Game 1-0-5), Game 1-1-1 through Game
1-ν-5.

In Game 1-h-1, the challenge ciphertext is changed to 1-st temporary form, and the first
h− 1 keys are final form, while the remaining keys are normal. In Game 1-h-2, the h-th key is
changed to 1-st temporary form while the challenge ciphertext and the remaining keys are the
same as in Game 1-h-1. In Game 1-h-3, the challenge ciphertext is changed to 2-nd temporary
form while all the queried keys are the same as in Game 1-h-2. In Game 1-h-4 and 1-h-5, the
h-th key is changed to 2-nd temporary and final form while the remaining keys and the challenge
ciphertext are the same as the previous games, i.e., in Game 1-h-3 and 1-h-4, respectively. At
the end of the Game 1 sequence, in Game 1-ν-5, all the queried keys are final form (and the
challenge ciphertext is 2-nd temporary form), which allows the next conceptual change to Game
2. In Game 2, the challenge ciphertext is changed to unbiased form (while all the queried keys
are final form). In the final game, advantage of the adversary is zero.

We summarize these changes in Table 3, where shaded parts indicate the challenge ciphertext
or queried key(s) which were changed in a game from the previous game

As usual, we prove that the advantage gaps between neighboring games are negligible. In
this proof outline, we ignore a negligible factor in the (informal) descriptions of this proof
outline. For example, we say “A is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible
in security parameter λ.

A normal secret key, sk∗ norm (with vector �v), is the correct form of the secret key of the
proposed IPE scheme, and is expressed by Eq. (10). Similarly, a normal ciphertext (with vector
�x), ct norm, is expressed by Eq. (11). A 1-st and 2-nd temporary ciphertexts, i.e., ct temp1 and
ct temp2, are expressed by Eq. (12) and Eq. (14), respectively. An unbiased ciphertext is expressed
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by Eq. (17). A 1-st and 2-nd temporary secret key, i.e., sk∗ temp1 and sk∗ temp2, are expressed by
Eq. (13) and Eq. (15), respectively. A final key, sk∗ final, is expressed by Eq. (16).

To prove that the advantage gap between Games 0’ and 1-1-1 is bounded by the advantage
of Problem 1-IPE (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0’
(or 1-1-1) (against an adversary A) by using an instance with β

U← {0, 1} of Problem 1-IPE.
We then show that the distribution of the secret keys and challenge ciphertext replied by the
simulator is equivalent to those of Game 0’ when β = 0 and those of Game 1-1-1 when β = 1.
That is, the advantage of Problem 1-IPE is equivalent to the advantage gap between Games 0’
and 1-1-1 (Lemma 15). The advantage of Problem 1-IPE is proven to be equivalent to that of
the DLIN assumption (Lemma 3).

The advantage gaps between Games 1-h-1 and 1-h-2, and Games 1-h-i and 1-h-(i + 1) for
i = 3, 4 are shown to be bounded by the advantages of computational problems, i.e., Problems 2-
IPE, 4-IPE, 5-IPE, respectively (Lemmas 17, 19, 20). These advantages are also upper-bounded
by sums of advantages of the DLIN assumption (Lemmas 4, 6, 7).

In Lemma 18, we show that Game 1-h-2 can be conceptually changed to Game 1-h-3. In
this conceptual change, we use the fact that all key queries �v satisfy R(�v, �x(0)) = R(�v, �x(1)) = 1
or R(�v, �x(0)) = R(�v, �x(1)) = 0. Here, we notice that 1-st temporary key and 1-st temporary chal-
lenge ciphertext, (sk∗ temp1, cttemp1), are equivalent to 1-st temporary key and 2-nd temporary
challenge ciphertext, (sk∗ temp1, cttemp2), except that random linear combination τ0�x

(0) + τ1�x
(1)

(with τ0, τ1
U← Fq) is used in ctemp2

t instead of τ�x(b) (with τ
U← Fq) for the 9-th and 10-th

coefficients in ctemp1
t for any t ∈ I�x. This conceptual change is based on Lemma 8.

We then show that Game 1-ν-5 can be conceptually changed to Game 2 (Lemma 21) by
using the fact that parts of bases, b11 and b∗3, are unknown to the adversary.

5.1.8 Proof of Lemma 2

To prove Lemma 2, we consider the following games. In Game 0’, a part framed by a box
indicates positions of coefficients to be changed in a subsequent game. In the other games,
a part framed by a box indicates coefficients which were changed in an experiment from the
previous game. Games proceed as in Figure 1 in Section 5.1.7.

Game 0’ : Same as Game 0 except that flip a coin κ
U← {0, 1} before setup, and the game is

aborted in step 3 if κ 
= s. In order to prove Lemma 1, we consider the case with κ = 1. The
reply to a key query for �v := {(t, vt) | t ∈ I�v} is:

k∗
0 := ( −s0, 02 , 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st 02 , 02, 03 , �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭ (10)

The challenge ciphertext for challenge plaintext m := m(0) = m(1) and attributes �x(b) :=
{(t, x(b)

t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) is:

c0 := ( ω̃, 02 , ζ, 0, ϕ0 )B0 , cT := gζTm,
4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

for t ∈ I�x, ct := ( σt(1, t), ωx
(b)
t , ω̃ 02 , 02, 03 , 02, �ϕt )B,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (11)

where b U← {0, 1}
Game 1-h-1 (h = 1, . . . , ν): Game 1-0-5 is Game 0’. Game 1-h-1 is the same as Game
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1-(h− 1)-5 except the challenge ciphertext is:

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 , cT := gζTm,

for t ∈ I�x,
4︷ ︸︸ ︷

ct := ( σt(1, t), ωx
(b)
t , ω̃,

7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
τx

(b)
t , τ̃ , 02, (τx(b)

t , τ̃) · Zt , θ0x(0)
t + θ1x

(1)
t , 02, �ϕt )B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where τ, τ̃ , θ0, θ0
U← Fq, Zt

U← GL(2,Fq), and all the other variables are generated as in Game
1-(h− 1)-5.

Game 1-h-2 (h = 1, . . . , ν): Game 1-h-2 is the same as Game 1-h-1 except the reply,
(k∗

0, {k∗
t }t∈I�v), for the h-th key query for �v := {(t, vt) | t ∈ I�v} are:

k∗
0 := ( −s0, −a0 , 1, η0, 0 )B∗

0
,
4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

for t ∈ I�v, k∗
t := ( μt(t, −1), δvt, st, 04, (πvt, at) · Ut , 0, �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭(13)

where at
U← Fq, a0 :=

∑
t∈I�v at, Ut := (Z−1

t )T for Zt
U← GL(2,Fq) used in Eq. (19) and t ∈ I�v,

and π U← Fq. All the other variables are generated as in Game 1-h-1.

Game 1-h-3 (h = 1, . . . , ν): Same as Game 1-h-2 except that that the challenge ciphertext
is:

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 , cT := gζTm,

for t ∈ I�x,
4︷ ︸︸ ︷

ct := ( σt(1, t), ωx
(b)
t , ω̃,

7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
τ0x

(0)
t + τ1x

(1)
t , τ̃ , 02, (τ0x

(0)
t + τ1x

(1)
t , τ̃) · Zt , θ0x(0)

t + θ1x
(1)
t , 02, �ϕt )B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

where τ0, τ1
U← Fq, and all the other variables are generated as in Game 1-h-2.

Game 1-h-4 (h = 1, . . . , ν): Same as Game 1-h-3 except the reply, (k∗
0, {k∗

t }t∈I�v), for the
h-th key query for �v := {(t, vt) | t ∈ I�v} are:

k∗
0 := ( −s0, −a0, 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st, πvt, at , 02, 02 , 0, �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭(15)

where all the variables are generated as in Game 1-h-3.

Game 1-h-5 (h = 1, . . . , ν): Same as Game 1-h-4 except the reply, (k∗
0, {k∗

t }t∈I�v), for the
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h-th key query for �v := {(t, vt) | t ∈ I�v} are:

k∗
0 := ( −s0, −a0, 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷
for t ∈ I�v, k∗

t := ( μt(t, −1), δvt, st, 0 , at, 04, π̃vt , �ηt, 02 )B∗ ,

⎫⎪⎪⎬
⎪⎪⎭ (16)

where all the variables are generated as in Game 1-h-4.

Game 2: Game 2 is the same as Game 1-ν-5 except that the challenge ciphertext is:

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 , cT := gζTm,

for t ∈ I�x,
4︷ ︸︸ ︷

ct := ( σt(1, t), ω0x
(0)
t + ω1x

(1)
t , ω̃,
7︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

τ0x
(0)
t + τ1x

(1)
t , τ̃ , 02, (τ0x

(0)
t + τ1x

(1)
t , τ̃) · Zt, θ0x(0)

t + θ1x
(1)
t , 02, �ϕt )B,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

where ω0, ω1
U← Fq, and all the other variables are generated as in Game 1-ν-5.

Let Adv
(0′)
A (λ), Adv

(1-h-j)
A (λ) (h = 1, . . . , ν; j = 1, . . . , 5) and Adv

(2)
A (λ) be the advantage of A

in Game 0′, 1-h-j and 2 when κ = 1, respectively. Adv
(0′)
A (λ) is equivalent to Pr[Awins |κ = 1]

and it is obtained that Adv
(2)
A (λ) = 0 by Lemma 22.

We will show seven lemmas (Lemmas 15-21) that evaluate the gaps between pairs of Adv
(0′)
A (λ),

Adv
(1-h-1)
A (λ), . . . ,Adv

(1-h-5)
A (λ), for h = 1, . . . , ν and Adv

(2)
A (λ). From these lemmas, we ob-

tain Pr[Awins in Game 0′ |κ = 1] = Adv
(0′)
A (λ) ≤ ∑ν

h=1

(∣∣∣Adv
(1-(h−1)-5)
A (λ)− Adv

(1-h-1)
A (λ)

∣∣∣+∑4
j=1

∣∣∣Adv
(1-h-j)
A (λ)− Adv

(1-h-(j+1))
A (λ)

∣∣∣)+
∣∣∣Adv

(1-ν-5)
A (λ)− Adv

(2)
A (λ)

∣∣∣+Adv
(2)
A (λ) ≤ AdvP1-IPE

B1
(λ)

+
∑ν

h=1

(
AdvP2-IPE

B2-h
(λ) + AdvP4-IPE

B3-h
(λ) + AdvP5-IPE

B4-h
(λ)

)
+ (15ν + 1)/q. Therefore, from Lemmas

3, 4, 6 and 7, we obtain the upperbound of Pr[Awins in Game 0′ |κ = 1] in Lemma 2. This
completes the proof of Lemma 2. ��

Lemmas 15–21 are proven in Appendix A.3.

Lemma 15 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1-1-1)
A (λ)| ≤ AdvP1-IPE

B1
(λ) + 1/q.

Lemma 16 Let h ≥ 2. For any adversary A, for any security parameter λ, |Adv
(1-(h−1)-5)
A (λ)−

Adv
(1-h-1)
A (λ)| ≤ 1/q.

Lemma 17 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-1)
A (λ) −

Adv
(1-h-2)
A (λ)| ≤ AdvP2-IPE

B2-h
(λ) + 2/q, where B2-h(·) := B2(h, ·).

Lemma 18 For any adversary A, for any security parameter λ, Adv
(1-h-2)
A (λ) = Adv

(1-h-3)
A (λ).
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Lemma 19 For any adversary A, there exists a probabilistic machine B3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-3)
A (λ) −

Adv
(1-h-4)
A (λ)| ≤ AdvP4-IPE

B3-h
(λ) + 4/q, where B3-h(·) := B3(h, ·).

Lemma 20 For any adversary A, there exists a probabilistic machine B4, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-4)
A (λ) −

Adv
(1-h-5)
A (λ)| ≤ AdvP5-IPE

B4-h
(λ), where B4-h(·) := B4(h, ·).

Lemma 21 For any adversary A, for any security parameter λ, |Adv
(1-ν-5)
A (λ) − Adv

(2)
A (λ)| ≤

1/q.

Lemma 22 For any adversary A, Adv
(2)
A (λ) = 0.

Proof. The value of b is independent from A’s view in Game 3. Hence, Adv
(2)
A (λ) = 0. ��

5.2 Type 2 IPE Scheme

Let d := poly(λ), where poly(·) is an arbitrary polynomial.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 15)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
12, b

∗
13),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, �v := {(t, vt) | t ∈ I�v ⊆ {1, . . . , d}}) : ω, ω̃, η0
U← Fq,

k∗
0 := ( ω̃, 0, 1, η0, 0 )B∗

0
,

4︷ ︸︸ ︷ 7︷︸︸︷ 2︷ ︸︸ ︷ 2︷︸︸︷
for t ∈ I�v, μt, ηt,1, ηt,2 U← Fq, k∗

t := ( μt(t, −1), ωvt, ω̃, 07, ηt,1, ηt,2, 02 )B∗ ,

return sk�v := (I�v,k∗
0, {k∗

t }t∈I�v).
Enc(pk, m, �x := {(t, xt) | t ∈ I�x ⊆ {1, . . . , d}}) : st, δ, ζ, ϕ0

U← Fq for t ∈ I�x, s0 :=
∑

t∈I�x st,

c0 := ( −s0, 0, ζ, 0, ϕ0 )B0 , cT := gζTm,

4︷ ︸︸ ︷ 7︷︸︸︷ 2︷︸︸︷ 2︷ ︸︸ ︷
for t ∈ I�x, σt, ϕt,1, ϕt,2 U← Fq, ct := ( σt(1, t), δxt, st, 07, 02, ϕt,1, ϕt,2 )B,

return ct�x := (I�x, c0, {ct}t∈I�x , cT ).
Dec(pk, sk�v := (I�v,k∗

0, {k∗
t }t∈I�v), ct�x := (I�x, c0, {ct}t∈I�x , cT )) :

if I�v ⊇ I�x, K := e(c0,k
∗
0) ·

∏
t∈I�x e(ct,k

∗
t ), return m′ := cT /K,

else return ⊥.

Correctness is shown in a similar manner to the Type 1 IPE scheme.

Theorem 2 The proposed Type 2 IPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

Theorem 2 is proven in a similar manner to Theorem 1.
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5.3 Type 0 IPE Scheme

5.3.1 Construction Idea for Our Type 0 IPE Scheme

In Type 1 construction, 4-dimensional vector (μt(t,−1), δvt, st) is encoded in key k∗
t , and

(σt(1, t), ωxt, ω̃) is encoded in ciphertext ct. Here, secret-sharing system, st for t ∈ I�v, in
k∗
t are used to assure one of the decryption conditions, I�v ⊆ I�x. In Type 0 scheme, to achieve

its decryption condition I�v = I�x for �v := (v1, . . . , vn), �x := (x1, . . . , xn′) i.e., that is equivalent
to n = n′, we use the above mechanism also to ciphertext side. Then, in our Type 0 scheme,
we encode 5-dimensional (μt(t,−1), δvt, st, δ̃) in the first part of k∗

t , and (σt(1, t), ωxt, ω̃, ft) in
the first part of ct with random μt, σt, ω, ω̃, δ, δ̃, st, ft

U← Fq.

5.3.2 Construction and Security

Let d := poly(λ), where poly(·) is an arbitrary polynomial.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 9, N := 21)),
B̂0 := (b0,1, b0,2, b0,5, b0,8, b0,9), B̂ := (b1, .., b4, b19, . . . , b21),

B̂
∗
0 := (b∗0,1, b

∗
0,2, b

∗
0,5, . . . , b

∗
0,7), B̂

∗ := (b∗1, .., b
∗
4, b

∗
16, . . . , b

∗
18),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).
KeyGen(pk, sk, �v := (v1, . . . , vn) such that n ≤ d) :

st, δ, δ̃, η0,1, η0,2
U← Fq for t = 1, . . . , n, s0 :=

∑n
t=1 st,

k∗
0 := ( −s0, δ̃, 02, 1, η0,1, η0,2, 02 )B∗

0
,

for t = 1, . . . , n, μt, ηt,1, .., ηt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷ ︸︸ ︷ 3︷︸︸︷
k∗
t := ( μt(t, −1), δvt, st, δ̃, 010, ηt,1, .., ηt,3, 03 )B∗ ,

return sk�v := {k∗
t }t=0,...,n.

Enc(pk, m, �x := (x1, . . . , xn′) such that n′ ≤ d) :

ft, ω, ω̃, ζ, ϕ0,1, ϕ0,2
U← Fq for t = 1, . . . , n, f0 :=

∑n′
t=1 ft,

c0 := ( ω̃, −f0, 02, ζ, 02, �ϕ0 )B0 , cT := gζTm,

for t = 1, . . . , n′, σt, ϕt,1, .., ϕt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷︸︸︷ 3︷ ︸︸ ︷
ct := ( σt(1, t), ωxt, ω̃, ft, 010, 03, ϕt,1, .., ϕt,3 )B,

return ct�x := ({ct}t=0,...,n′ , cT ).
Dec(pk, sk�v := {k∗

t }t=0,...,n, ct�x := ({ct}t=0,...,n′ , cT )) :
if n = n′, K :=

∏n
t=0 e(ct,k

∗
t ), return m′ := cT /K, else return ⊥.

Correctness of the scheme can be shown in a similar manner to that of our Type 1 IPE.

Theorem 3 The proposed Type 0 IPE scheme is adaptively fully-attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

Theorem 3 is proven in a similar manner to Theorem 1.
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6 Proposed ABE Schemes

6.1 Basic KP-ABE Scheme

6.1.1 Construction

We define function ρ̃ : {1, .., �} → {1, .., d} by ρ̃(i) := t if ρ(i)= (t, v) or ρ(i)=¬(t, v), where ρ
is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is injective
for S := (M,ρ) in skS. For the modified scheme without such a restriction, see Section 6.2. Let
d := poly(λ), where poly(·) is an arbitrary polynomial.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F

r
q , s0 := �1 · �fT, �sT := (s1, . . . , s�)T := M · �fT,

η0
U← Fq, k∗

0 := (−s0, 0, 1, η0, 0)B∗
0
,

for i = 1, . . . , �, μi, θi, ηi,1, ηi,2
U← Fq,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si + θivi, −θi 06, ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si(vi, −1), 06, ηi,1, ηi,2, 02 )B∗ ,

return skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ).

Enc(pk, m, Γ := {(t, xt) | 1 ≤ t ≤ d}) : ω, ζ, ϕ0
U← Fq,

c0 := (ω, 0, ζ, 0, ϕ0)B0 , cd+1 := gζTm,

for (t, xt) ∈ Γ, σt, ϕt,1, ϕt,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
ct := ( σt(1, t), ω(1, xt), 06, 02, ϕt,1, ϕt,2 )B,

return ctΓ := (Γ, c0, {ct}(t,xt)∈Γ, cd+1).
Dec(pk, skS := (S,k∗

1, . . . ,k
∗
� ), ctΓ := (Γ, c0, {ct}(t,xt)∈Γ, cd+1)) :

If S := (M,ρ) accepts Γ := {(t, xt)}, then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, vi) ∧ (t, vi) ∈ Γ]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi 
= xt] },

K := e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,vi)

e(ct,k∗
i )
αi

∏
i∈I ∧ ρ(i)=¬(t,vi)

e(ct,k∗
i )
αi/(vi−xt),

return m′ := cd+1/K, else return ⊥.
[Correctness] If S := (M,ρ) accepts Γ := {(t, xt)},
K = g−ωs0+ζ

T

∏
i∈I ∧ ρ(i)=(t,vi)

gωαisi
T

∏
i∈I ∧ ρ(i)=¬(t,vi)

g
ωαisi(vi−xt)/(vi−xt)
T = g

ω(−s0+
P

i∈I αisi)+ζ

T =

gζT .
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6.1.2 Structural Comparison of our KP-ABE Scheme with the KP-ABE in [14]

We compare our unbounded KP-ABE with the existing bounded one [14].
Okamoto-Takashima [14] gave an adaptively secure KP-FE scheme on DPVS framework, and

the specialized KP-ABE scheme, i.e., nt := 2, is given in Appendix G.1 in the full version of the
paper. Ciphertexts (CT) and secret-keys (SK) of the scheme have dimension 7 = 2 + 2 + 2 + 1,
where the first 2 dimension is the real-encoding part (real part, for short) for CT and SK vectors,
the second is the hidden part for semi-functional CT and SK, the third is the SK randomness
part, and the fourth is the CT randomness part. CT and SK of our KP-ABE have the same
form, but dimension of each part is different, with 14 = 4+6+2+2 inner-structure. Particularly,
6 dimensional hidden part is crucial for our security proof of an elaborated Problem 2-ABE.
For the outline of the proof, see Section 7.

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
CT & SK in
[14] KP-ABE

: ( real hidden SK ran. CT ran. ),

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
CT & SK in
our KP-ABE

: ( real hidden SK ran. CT ran. ).

6.1.3 Security

Theorem 4 The proposed KP-ABE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines F1-1,F1-2,F2-1-0, . . . ,F2-1-5,F2-2-0,
. . . ,F2-2-5, whose running times are essentially the same as that of A, such that for any security
parameter λ,

AdvKP-ABE
A (λ) ≤ AdvDLIN

F1-1
(λ) +

∑d
p=1

∑2
j=1 AdvDLIN

F1-2-p-j
(λ)∑ν

h=1

∑2
ι=1

(
AdvDLIN

F2-h-ι-0
(λ) +

∑d
p=1

∑2
j=1

(
AdvDLIN

F2-h-ι-p-1-j
(λ) + AdvDLIN

F2-h-ι-p-2-j
(λ)+∑

l=1,...,d; l �=p
(
AdvDLIN

F2-h-ι-p-3-j-l
(λ) + AdvDLIN

F2-h-ι-p-4-j-l
(λ)

)
+ AdvDLIN

F2-h-ι-p-5-j
(λ)

))
+ ε,

where F1-2-p-j(·) := F1-2(h, p, j, ·),F2-h-ι-0(·) := F2-ι-0(h, ·),F2-h-ι-p-1-j(·) := F2-ι-1(h, p, j, ·),
F2-h-ι-p-2-j(·) := F2-ι-2(h, p, j, ·),F2-h-ι-p-3-j-l(·) := F2-ι-3(h, p, j, l, ·),F2-h-ι-p-4-j-l(·) := F2-ι-4(h, p, j,
l, ·),F2-h-ι-p-5-j(·) := F2-ι-5(h, p, j, ·) for ι = 1, 2, ν is the maximum number of A’s key queries
and ε := (40d2ν + 20dν + 10ν + 10d+ 5)/q.

As shown in Section 1.3, the central part of the proof of Theorem 4 is that of Lemma 24
(see Section 7 for the proof outline, and Appendix A.4 for the proof). The top level of the proof
of this theorem (see Section 6.1.4) is similar to that in [14] using Lemmas 23 and 24.

Definition 18 (Problem 1-ABE) Problem 1-ABE is to guess β, given (param, B̂0, B̂
∗
0, B̂, B̂

∗,
eβ,0, {eβ,t,i}t=1,...,d;i=1,2)

R← GP1-ABE
β (1λ, d), where

GP1-ABE
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

ϕ0, ω
U← Fq, τ

U← F
×
q ,

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12),

e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 , Zt
U← GL(2,Fq) for t = 1, . . . , d,
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for t = 1, . . . , d; i = 1, 2; �e1 := (1, 0), �e2 := (0, 1) ∈ F
2
q , σt,i, ϕt,i,1, ϕt,i,2

U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
e0,t,i := ( σt,i(1, t), ω�ei, 06, 02, ϕt,i,1, ϕt,i,2 )B,
e1,t,i := ( σt,i(1, t), ω�ei, τ�ei, 02, τ�ei Zt, 02, ϕt,i,1, ϕt,i,2 )B,

return (param, B̂0, B̂
∗
0, B̂, B̂

∗, eβ,0, {eβ,t,i}t=1,..,d;i=1,2),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 1-ABE,

AdvP1-ABE
B (λ), is similarly defined as in Definition 13.

Lemma 23 Problem 1-ABE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F1,F2, whose running times are

essentially the same as that of B, such that for any security parameter λ, AdvP1-ABE
B (λ) ≤

AdvDLIN
F1

(λ) +
∑d

p=1

∑2
j=1 AdvDLIN

F2-p-j
(λ) + ε, where F2-p-j(·) := F2(p, j, ·), ε := (10d+ 5)/q.

Lemma 23 is proven in Appendix A.4.3.

Definition 19 (Problem 2-ABE) Problem 2-ABE is to guess β, given (param, B̂0, B̂
∗
0, B̂, B̂

∗,
h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,..,d;i=1,2)
R← GP2-ABE

β (1λ, d), where

GP2-ABE
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

δ, η0, ϕ0, ω
U← Fq, τ, ρ

U← F
×
q ,

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂
∗
0 := (b∗0,1, .., b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12),

h∗
0,0 := (δ, 0, 0, η0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, η0, 0)B∗
0
, e0 := (ω, τ, 0, 0, ϕ0)B0 ,

Zt
U← GL(2,Fq), Ut := (Z−1

t )T, for t = 1, .., d,
for t = 1, . . . , d; i = 1, 2;

�e1 := (1, 0), �e2 := (0, 1) ∈ F
2
q , μt,i, σt,i, ηt,i,1, ηt,i,2, ϕt,i,1, ϕt,i,2

U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗

0,t,i := ( μt,i(t, −1), δ�ei, 06, ηt,i,1, ηt,i,2 02 )B∗ ,

h∗
1,t,i := ( μt,i(t, −1), δ�ei, 04, ρ�ei Ut, ηt,i,1, ηt,i,2 02 )B∗ ,

et,i := ( σt,i(1, t), ω�ei, τ�ei, 02, τ�ei Zt, 02, ϕt,i,1, ϕt,i,2 )B,

return (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2),

for β
U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2-ABE,

AdvP2-ABE
B (λ), is similarly defined as in Definition 13.

Lemma 24 Problem 2-ABE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F1,F2-1, . . . ,F2-5, whose running

times are essentially the same as that of B, such that for any security parameter λ, AdvP2-ABE
B (λ) ≤

AdvDLIN
F1

(λ) +
∑d

p=1

∑2
j=1

(
AdvDLIN

F2-p-1-j
(λ) + AdvDLIN

F2-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F2-p-3-j-l
(λ)+

AdvDLIN
F2-p-4-j-l

(λ)
)

+ AdvDLIN
F2-p-5-j

(λ)
)

+ ε, where F2-p-1-j(·) := F2-1(p, j, ·),F2-p-2-j(·) := F2-2(p, j, ·),
F2-p-3-j-l(·) := F2-3(p, j, l, ·),F2-p-4-j-l(·) := F2-4(p, j, l, ·),F2-p-5-j(·) := F2-5(p, j, ·) and ε :=
(20d2 + 10d+ 5)/q.

Lemma 24 is proven in Appendix A.4.4.
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6.1.4 Proof of Theorem 4

Proof Outline of Theorem 4: At the top level of strategy of the security proof, we follow the
dual system encryption methodology over dual pairing vector space (DPVS) described in [14].
To prove the security of KP-ABE, we use Problems 1-ABE and 2-ABE, instead of Problems 1
and 2 in [14]. The rest of the proof is similar to that in [14].

Proof of Theorem 4: To prove Theorem 4, we consider the following games. In Game 0,
a part framed by a box indicates positions of coefficients to be changed in a subsequent game.
In the other games, a part framed by a box indicates coefficients which were changed in an
experiment from the previous game. Games proceed as follows (see Figure 2 in Appendix A.4):

Game 0 ⇒ Game 1 ⇒ ( for h = 1, .., ν; Game 2-h-1 ⇒ Game 2-h-2 ⇒ Game 2-h-3 ) ⇒
Game 3

Game 0 : Original game. That is, the reply to a key query for S := (M,ρ) is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si + θivi, −θi, 04, 02 , ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si(vi, −1), 04, 02 , ηi,1, ηi,2, 02 )B∗ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

where μi, θi, η0, ηi,1, ηi,2
U← Fq, �f

U← F
r
q , s0 := �1 · �fT, �sT := (s1, . . . , s�)T := M · �fT. The

challenge ciphertext for challenge plaintext (m(0),m(1)) and attributes Γ := {(t, xt)|1 ≤ t ≤ d}
is:

c0 := (ω, 0 , ζ , 0, ϕ0)B∗
0
,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
for (t, xt) ∈ Γ, ct := ( σt(1, t), ω(1, xt), 02 , 02, 02 , 02, ϕt,1, ϕt,2 )B,

cd+1 := gζTm
(b),

where b U← {0, 1}, ω, ζ, σt, ϕ0, ϕt,1, ϕt,2
U← Fq.

Game 1: Same as Game 0 except that the challenge ciphertext is:

c0 := (ω, τ , ζ, 0, ϕ0)B0 ,

for (t, xt) ∈ Γ,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

ct := ( σt(1, t), ω(1, xt), τ(1, xt) , 02, τ(1, xt) · Zt , 02, ϕt,1, ϕt,2 )B,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19)

where τ U← F
×
q , Zt

U← GL(2,Fq), and all the other variables are generated as in Game 0.
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Game 2-h-1 (h = 1, . . . , ν): Game 2-0-3 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-3 except the reply, (k∗

i )i=0,...,�, for the h-th key query for S := (M,ρ) are:

k∗
0 := (−s0, −a0 , 1, η0, 0)B∗

0
, (20)

for i = 1, . . . , �,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si + θivi, −θi,

6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
04, (ai + πivi, −πi) · Ut , ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷

k∗
i := ( μi(t, −1), si(vi, −1),

6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
04, ai(vi, −1) · Ut , ηi,1, ηi,2, 02 )B∗ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

where �g U← F
r
q, a0 := �1 · �gT, �aT := (a1, . . . , a�)T := M · �gT, Ut := (Z−1

t )T for Zt
U← GL(2,Fq)

used in Eq. (19) and t = 1, . . . , d, and πi
U← Fq for i = 1, . . . , �. All the other variables are

generated as in Game 2-(h− 1)-3.

Game 2-h-2 (h = 1, . . . , ν): Same as Game 2-h-1 except that k∗
0 of the reply for the h-th key

query is:

k∗
0 := (−s0, r0 , 1, η0, 0)B∗

0
, (22)

r0
U← Fq, and all the other variables are generated as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , ν): Game 2-h-3 is the same as Game 2-h-2 except (k∗
i )i=1,...,� of the

reply for the h-th key query are:

k∗
0 := (−s0, r0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t, −1), si + θivi, −θi, 04, 02 , ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t, −1), si(vi, −1), 04, 02 , ηi,1, ηi,2, 02 )B∗ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

where all the variables are generated as in Game 2-h-2.

Game 3: Game 3 is the same as Game 2-ν-3 except that c0 of the challenge ciphertext is:

c0 := (ω, τ, ζ ′ , 0, ϕ0)B0 , cd+1 := gζTm
(b),
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where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are generated as in

Game 2-ν-3.

Let Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h-j)
A (λ) (h = 1, . . . , ν; j = 1, 2, 3) and Adv

(3)
A (λ) be the advan-

tage of A in Game 0, 1, 2-h-j and 3, respectively. Adv
(0)
A (λ) is equivalent to AdvKP-ABE,PH

A (λ)
and it is obtained that Adv

(3)
A (λ) = 0 by Lemma 30.

We will show five lemmas (Lemmas 25-29) that evaluate the gaps between pairs of Adv
(0)
A (λ),

Adv
(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-3)
A (λ), for h = 1, . . . , ν and Adv

(3)
A (λ). From these lemmas,

we obtain AdvKP-ABE,PH
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν
h=1

(∣∣∣Adv
(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)

∣∣∣+∑2
j=1

∣∣∣Adv
(2-h-j)
A (λ)− Adv

(2-h-(j+1))
A (λ)

∣∣∣)+
∣∣∣Adv

(2-ν-3)
A (λ)− Adv

(3)
A (λ)

∣∣∣+
Adv

(3)
A (λ) ≤ AdvP1-ABE

B1
(λ)+

∑ν
h=1

(
AdvP2-ABE

B2-h-1
(λ) + AdvP2-ABE

B2-h-2
(λ)

)
+(4ν+1)/q. Therefore, from

Lemmas 23 and 24, we obtain the upperbound of AdvKP-ABE,PH
A (λ) in Theorem 4. This completes

the proof of Theorem 4. ��

Lemma 25 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1-ABE

B1
(λ).

Lemma 26 For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2-ABE

B2-h-1
(λ) + 2/q, where B2-h-1(·) := B2-1(h, ·).

Lemma 27 For any adversary A, for any security parameter λ, Adv
(2-h-1)
A (λ) = Adv

(2-h-2)
A (λ).

Lemma 28 For any adversary A, there exists a probabilistic machine B2-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2)
A (λ) −

Adv
(2-h-3)
A (λ)| ≤ AdvP2-ABE

B2-h-2
(λ) + 2/q, where B2-h-2(·) := B2-2(h, ·).

Lemma 29 For any adversary A, |Adv
(3)
A (λ)− Adv

(2-ν-3)
A (λ)| ≤ 1/q.

Lemma 30 For any adversary A, Adv
(3)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence, Adv
(3)
A (λ) =

0. ��

6.2 Modified KP-ABE Scheme with Arbitrary Degree

6.2.1 Construction

Let function ρ̃ : {1, . . . , �} → {1, . . . , d} be ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) = ¬(t, v), where
ρ is given in access structure S := (M,ρ). Let kt be the number of elements of preimage set
ρ̃−1(t), i.e., kt := #ρ̃−1(t), and the kt elements of ρ̃−1(t) are expressed by {i1, . . . , ikt | 1 ≤
i1 ≤ i2 ≤ · · · ≤ ikt ≤ �} in the ascending order. Degree k of access structure (M,ρ) is defined
by max1≤t≤d(kt). For t = 1, . . . , d and ij ∈ ρ̃−1(t) (j = 1, . . . , kt), we define ρ̂ : {1, . . . , �} → Fq

by ρ̂(ij) := �t, j�, where �t, j� := t · 2�|q|/2	 + j ∈ Fq with t, j = O(λc) for a constant c and
|q| = Θ(λ).

In the proposed scheme shown in Section 6.1, we assume that ρ̃ is injective (or degree k is
1) for S := (M,ρ) with decryption key skS. Using a simple encoding technique given in [8] with
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some modification to our situation, we can easily construct a fully secure unbounded KP-ABE
scheme where ρ̃ is not necessarily injective, or arbitrary (unbounded) degree k is available.

Suppose that the maximum degree kmax is given to users, i.e., the degree k of any access
policy with decryption key skS is at most kmax. With this condition, in the modified scheme,
an extended index t̂ := �t, j� = ρ̂(i) for i ∈ {1, . . . , �} is employed for decryption key in place of
t = ρ̃(i) with the original proposed scheme where 1 ≤ j ≤ kt ≤ kmax for each t. Note that map ρ̂
is always injective, even when ρ̃ is not injective. The size of the secret key of the modified scheme
is the same as that of the original scheme. A ciphertext for attribute set Γ consists of components
for (t, xt) ∈ Γ in the original scheme, while a ciphertext for attribute set Γ consists of components
for (�t, j�, xt) ∈ Γ̂ in the modified scheme, where Γ̂ := {(�t, j�, xt) | (t, xt) ∈ Γ, j = 1, . . . , kmax}.
Therefore, the ciphertext size of the modified scheme is kmax times greater than that of the
original scheme, and a user who makes a ciphertext should know the value of kmax.

Let d := poly(λ), where poly(·) is an arbitrary polynomial. Random dual basis generator
Gob(1λ, (Nt)t=0,1) is defined at the end of Section 2. We refer to Section 1.4 for notations on
DPVS.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F

r
q , s0 := �1 · �fT, �sT := (s1, . . . , s�)T := M · �fT,

η0
U← Fq, k∗

0 := (−s0, 0, 1, η0, 0)B∗
0
,

for i = 1, . . . , �, μi, θi, ηi,1, ηi,2
U← Fq,

if ρ(i) = (t, vi), t̂ := �t, j� := ρ̂(i),
4︷ ︸︸ ︷ 6︷︸︸︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t̂, −1), si + θivi, −θi 06, ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi), t̂ := �t, j� := ρ̂(i),
4︷ ︸︸ ︷ 6︷︸︸︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t̂, −1), si(vi, −1), 06, ηi,1, ηi,2, 02 )B∗ ,

return skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ).

Enc(pk, m, Γ := {(t, xt) | 1 ≤ t ≤ d}) : Γ̂ := {(�t, j�, xt) | (t, xt) ∈ Γ, j = 1, . . . , kmax},
ω, ζ, ϕ0

U← Fq, c0 := (ω, 0, ζ, 0, ϕ0)B0 , cd+1 := gζTm,

for (�t, j�, xt) ∈ Γ̂; t̂ := �t, j�, σt̂, ϕt̂,1, ϕt̂,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
ct̂ := ( σt̂(1, t̂ ), ω(1, xt), 06, 02, ϕt̂,1, ϕt̂,2 )B,

return ctΓ := (Γ, c0, {ct̂}(t̂,xt)∈Γ̂, cd+1).

Dec(pk, skS := (S,k∗
1, . . . ,k

∗
� ), ctΓ := (Γ, c0, {ct̂}(t̂,xt)∈Γ̂, cd+1)) :

If S := (M,ρ) accepts Γ := {(t̂, xt̂)}, then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, vi) ∧ (ρ̂(i), vi) ∈ Γ̂]
∨ [ρ(i) = ¬(t, vi) ∧ (ρ̂(i), xt) ∈ Γ̂ ∧ vi 
= xt] },

38



K := e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,vi)

e(cρ̂(i),k
∗
i )
αi

∏
i∈I ∧ ρ(i)=¬(t,vi)

e(cρ̂(i),k
∗
i )
αi/(vi−xt),

return m′ := cd+1/K.

[Correctness] If S := (M,ρ) accepts Γ := {(t̂, xt̂)},
e(c0,k

∗
0)
∏
i∈I ∧ ρ(i)=(t,vi)

e(cρ̂(i),k∗
i )
αi
∏
i∈I ∧ ρ(i)=¬(t,vi)

e(cρ̂(i),k∗
i )
αi/(vi−xt) =

g−ωs0+ζ
T

∏
i∈I ∧ ρ(i)=(t,vi)

gωαisi
T

∏
i∈I ∧ ρ(i)=¬(t,vi)

g
ωαisi(vi−xt)/(vi−xt)
T = g

ω(−s0+
P

i∈I αisi)+ζ

T = gζT .

6.2.2 Security

Theorem 5 The modified KP-ABE scheme with arbitrary degree is adaptively payload-hiding
against chosen plaintext attacks under the DLIN assumption.

t (resp. ρ̃) in Theorem 4 is replaced by t̂ (resp. ρ̂) in Theorem 5. Since ρ̂ is injective in the
modified KP-ABE scheme, Theorem 5 is reduced from Theorem 4.

6.3 Basic CP-ABE Scheme

6.3.1 Construction

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) = ¬(t, v), where
ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is injective
for S := (M,ρ) with ciphertexts ctS. To remove this restriction, we can apply the technique in
Section 6.2 to the basic CP-ABE scheme.

Let d := poly(λ), where poly(·) is an arbitrary polynomial. Random dual basis generator
Gob(1λ, (Nt)t=0,1) is defined at the end of Section 2. We refer to Section 1.4 for notations on
DPVS.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, . . . , b4, b13, b14),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, . . . , b
∗
4, b

∗
11, b

∗
12),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗),

KeyGen(pk, sk, Γ := {(t, xt) | 1 ≤ t ≤ d}) : ω, ϕ0
U← Fq,

k∗
0 := (ω, 0, 1, ϕ0, 0)B∗

0
,

for (t, xt) ∈ Γ, σt, ϕt,1, ϕt,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
k∗
t := ( σt(1, t), ω(1, xt), 06, ϕt,1, ϕt,2, 02 )B∗

return skΓ := (Γ,k∗
0, {k∗

t }(t,xt)∈Γ).
Enc(pk, m, S := (M,ρ)) :

�f
U← F

r
q , s0 := �1 · �fT, �sT := (s1, . . . , s�)T := M · �fT, ζ, η0

U← Fq,

c0 := (−s0, 0, ζ, 0, η0)B0 , cd+1 := gζTm,

for i = 1, . . . , �,

if ρ(i) = (t, vi), μi, θi, ηi,1, ηi,2
U← Fq,

4︷ ︸︸ ︷ 6︷︸︸︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ci := ( μi(t, −1), si + θivi, −θi 06, 02, ηi,1, ηi,2 )B,
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if ρ(i) = ¬(t, vi), μi, ηi,1, ηi,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ci := ( μi(t, −1), si(vi, −1), 06, 02, ηi,1, ηi,2 )B,

return ctS := (S, c0, c1, . . . , c�, cd+1).
Dec(pk, skΓ := (Γ,k∗

0, {k∗
t }(t,xt)∈Γ), ctS := (S, c0, c1, . . . , c�, cd+1)) :

If S := (M,ρ) accepts Γ := {(t, xt)}, then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi 
= xt] }.

K := e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,vi)

e(ci,k∗
t )
αi

∏
i∈I ∧ ρ(i)=¬(t,vi)

e(ci,k∗
t )
αi/(vi−xt)

return m′ := cd+1/K.

[Correctness] If S := (M,ρ) accepts Γ := {(t, xt)},
e(c0,k

∗
0)
∏
i∈I ∧ ρ(i)=(t,vi)

e(ci,k∗
t )
αi ·∏i∈I ∧ ρ(i)=¬(t,vi)

e(ci,k∗
t )
αi/(vi−xt) =

g−ωs0+ζ
T

∏
i∈I ∧ ρ(i)=(t,vi)

gωαisi
T

∏
i∈I ∧ ρ(i)=¬(t,vi)

g
ωαisi(vi−xt)/(vi−xt)
T = g

ω(−s0+
P

i∈I αisi)+ζ

T = gζT .

6.3.2 Security

Theorem 6 The proposed CP-ABE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption.

The proof of Theorem 6 is similarly given to that of Theorem 4.

7 Consistent Randomness Amplification (Proof Outline of Lemma
24)

Lemma 24 is proven by the hybrid argument through 8d + 2 experiments (Appendix A.4.4).
To clarify the idea, we only consider several highlighted experiments. The highlighted game
transformation with the same experiment numbers as in Appendix A.4.4 consists of 5d + 2
experiments:

Experiment 0 ⇒ Experiment 1 ⇒

for p = 1, . . . , d;
Experiment 2-p-1 ⇒ Experiment 2-p-4 ⇒ Experiment 2-p-5 ⇒
Experiment 2-p-6 ⇒ Experiment 2-p-8

Section 7.1 gives basic building blocks for the transformation. Section 7.2 describes some useful
combinations of the basic changes. Section 7.3 explain the transformations through the high-
lighted experiments, and how randomness are amplified consistently (with the key condition).

7.1 Basic Changes

7.1.1 Basic Computational Changes

In the game description, we employ two types of elementary computational changes. Using
a (toy) example in 2-dimensional 3 blocks, i.e., total is 6-dimension, we illustrate them. The
first block is included in the real-encoding part, the second one is in the hidden part, and the
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third one is included in the ciphertext randomness part (resp. secret-key randomness part) for
the first type change (resp. second type change). (For the terminology, see Section 6.1.2.) We
remark that neither the first nor third part is described in the highlighted transformation in
Section 7.3, where coefficients only in the hidden part are described.
Type I : The first type change transforms a ciphertext element e := (ω�ψ, 02, �ϕ)B to ẽ :=
(ω�ψ, τ �ψ, �ϕ)B where a secret-key element h∗ has a form, (δ�ξ, 02, 02)B∗ , with ω, τ, δ

U← Fq, �ϕ
U←

F
2
q (and with any �ψ, �ξ ∈ F

2
q , not necessarily uniform ones). The transformation is given by

a special form of Problem 1 in [14], and the security is proven from the DLIN assumption.
Change of coefficients in the 6-dimensional space are given as: (Hereafter, a blank indicates
zero coefficients)

e = ω�ψ �ϕ

Type I−−−−−−−→ ẽ = ω�ψ τ �ψ �ϕ where h∗ = δ�ξ

Type II : The second type change transforms a key element h∗ := (δ�ξ, 02, �η)B∗ to h̃∗ :=
(δ�ξ, ρ�ξ, �η)B∗ where a ciphertext element e has a form, e := (ω�ψ, τ �ψ, 02)B, with ω, τ, δ, ρ

U←
Fq, �η

U← F
2
q (and with any �ψ, �ξ ∈ F

2
q , not necessarily uniform). The transformation is given

by a special form of Problem 2 in [14], and the security is proven from the DLIN assumption.
Change of coefficients in the 6-dimensional space are given as:

h∗ = δ�ξ �η

Type II−−−−−−−−→ h̃∗ = δ�ξ ρ�ξ �η where e = ω�ψ τ �ψ

7.1.2 Basic Information-Theoretical Changes

In the game description, we employ two types of elementary conceptual changes. Using a (toy)
example in 2-dimensional 2 blocks (resp. 1 block), i.e., total is 4-dimension (resp. 2-dimension),
with B := (b1, . . . , b4) and B

∗ := (b∗1, . . . , b∗4) (resp. B := (b1, b2) and B
∗ := (b∗1, b∗2)), we

illustrate them. All the blocks are included in the hidden part. Hence, they are described in
the highlighted transformation in Section 7.3, where coefficients only in the hidden part are
described.

Inter-subspace Type: We set new dual orthonormal bases D := (b1, b2,d3 := b3 +χb1,d4 :=
b4 + χb2) and D

∗ := (d∗
1 := b∗1 − χb∗3,d∗

2 := b∗2 − χb∗4, b∗3, b∗4) with χ ∈ Fq. Then, ciphertext
element e := (�ψ1, �ψ2)B with �ψ1, �ψ2 ∈ F

2
q is equal to (�ψ1 − χ�ψ2, �ψ2)D, and secret-key elements

h∗ := (�ξ1, �ξ2)B∗ with �ξ1, �ξ2 ∈ F
2
q is equal to (�ξ1, �ξ2 + χ�ξ1)D∗ . We remark that this change

affects all elements represented with B and B
∗. This change is represented by bases transform

matrix as Inter

(
I 0
χI I

)
, where I := I2 and 0 :=02. Change of coefficients of e and h∗ in the

4-dimensional space are given as:

e = �ψ1
�ψ2 h∗ = �ξ1 �ξ2

Inter

(
I 0
χI I

)
−−−−−−−−−−−−−−−→ �ψ1 − χ�ψ2

�ψ2
�ξ1 �ξ2 + χ�ξ1

Intra-subspace Type: We set new dual orthonormal bases D := (d1,d2) and D
∗ := (d∗

1,d
∗
2)

where U ∈ GL(2,Fq), Z := (U−1)T, (d1,d2)T := Z−1 · (b1, b2)T and (d∗
1,d

∗
2)

T := U−1 · (b∗1, b∗2)T.
Then, ciphertext element e := (�ψ)B with �ψ ∈ F

2
q is equal to (�ψZ)D, and secret-key elements
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h∗ := (�ξ)B∗ with �ξ ∈ F
2
q is equal to (�ξU)D∗ . We remark that this change affects all elements rep-

resented with B and B
∗. This change is represented by bases transform matrix as Intra

(
Z−1

)
.

Change of coefficients of e and h∗ in the 2-dimensional space are given as:

e = �ψ h∗ = �ξ
Intra(Z−1)−−−−−−−−−−→ e = �ψZ h∗ = �ξU

7.2 Combinations of Basic Changes

7.2.1 Combination for Coefficient Vector Swapping

For the transition from Experiment 2-p-1 to Experiment 2-p-4, we use a game change based
on a new type of computational change, the third type, which itself consisted of the first type
computational change and an inter-subspace type conceptual change. Using a (toy) example
in 2-dimensional 4 blocks, i.e., total is 8-dimension, we illustrate the third type change. The
first block is included in the real-encoding part, the second and third ones are in the hidden
part, and the fourth one is included in the secret-key randomness part. We remark that neither
the first nor fourth part is described in the highlighted transformation in Section 7.3, where
coefficients only in the hidden part are described.
Type III : The third type change transforms a key element h∗ := (δ�ξ, 02, 02, �η)B∗ to h̃∗ :=
(δ�ξ, θ�ξ,−θ�ξ, �η)B∗ where a ciphertext element e has a form, e := (ω�ψ, τ �ψ, τ �ψ, 02)B, with ω, τ, δ, θ U←
Fq, �η

U← F
2
q (and with any �ψ, �ξ ∈ F

2
q , not necessarily uniform). The change is composed of Type

I change and an inter-subspace type conceptual change, so the security is proven from the DLIN
assumption. Change of coefficients in the 8-dimensional space are given as:

e = ω�ψ τ �ψ τ �ψ h∗ = δ�ξ �η

Type III−−−−−−−−→ e = ω�ψ τ �ψ τ �ψ h̃∗ = δ�ξ −θ�ξ θ�ξ �η

The swapping using Type III changes is shown below pictorially, i.e., change of coefficients of
et and h∗

t (t = 1, . . . , d) in 4-dimensional space in the hidden part are given as follows:

t = 1 τ �ψ τ �ψ
...

...
...

p ρ�ξ
...

...
...

...
d τ �ψ τ �ψ ρ�ξ

Type
III−−−−−−→

1 τ �ψ τ �ψ
...

...
...

p (ρ−θ)�ξ θ�ξ
...

...
...

...
d τ �ψ τ �ψ ρ�ξ

Concep. change
on coeffs
(ρ− θ, θ)−−−−−−−−−−−−−−→

1 τ �ψ τ �ψ
...

...
...

p θ�ξ (ρ−θ)�ξ
...

...
...

...
d τ �ψ τ �ψ ρ�ξ

Type III−−−−−−−−→

1 τ �ψ τ �ψ
...

...
...

p ρ�ξ
...

...
...

...
d τ �ψ τ �ψ ρ�ξ
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7.2.2 Randomness Masking (Application of Basic Problem 5-p)

For the transition from Experiment 2-p-4 to Experiment 2-p-5, we use a randomness masking
transformation by applying Basic Problem 5-p in Definition 24. The problem consists of basic
transformations in Section 7.1 (Appendix A.4.2). Change of coefficients of et,i and h∗

t,i (t =
1, . . . , d; i = 1, 2) in 2-dimensional space in the hidden part are given below, where �ei ∈ F

2
q

(i = 1, 2) are canonical basis vectors and �χt,i for t = 1, . . . , p−1, p+1, . . . , d; i = 1, 2 are random
vectors in F

2
q . To achieve this computational change, we employ the fact that indexes σt(1, t)

(t 
= p) and μp(p,−1) have random inner-product values.

t = 1 τ�ei

...
...

p ρ�ei

...
d τ�ei

Application of
Basic Problem 5-p−−−−−−−−−−−−−−−−→

t = 1 �χ1,i

...
...

p τ�ei ρ�ei

...
...

d �χd,i

7.2.3 Key Combination of Three Basic Conceptual Changes

For the transition from Experiment 2-p-5 to Experiment 2-p-6, we use a key conceptual change
combined with three basic conceptual changes in Section 7.1.2, i.e., intra-subspace, inter-
subspace, and intra-subspace transformations, given below pictorially. Change of coefficients of
et,i and h∗

t,i (t = 1, . . . , d; i = 1, 2) in 4-dimensional space in the hidden part are given below,
where �ei ∈ F

2
q (i = 1, 2) are canonical basis vectors. After the series of the transformations, the

Up-multiplied canonical basis vectors ρ�eiUp are inserted to the second block p-th row.

t = 1 �χ<0>
1,i τ�eiZ1 ρ�eiU1

...
...

...
...

p τ�ei τ�eiZp ρ�ei

...
...

...
d �χ<0>

d,i τ�eiZd

Intra(Z−1
p )

in the
first block−−−−−−−−−−→

1 �χ<1>
1,i τ�eiZ1 ρ�eiU1

...
...

...
...

p τ�eiZp τ�eiZp ρ�eiUp

...
...

...
d �χ<1>

d,i τ�eiZd

Inter

(
I 0
I I

)
−−−−−−−−−−−−−→

1 �χ<2>
1,i τ�eiZ1 ρ�eiU1

...
...

...
...

p τ�eiZp ρ�eiUp ρ�eiUp

...
...

...
d �χ<2>

d,i τ�eiZd

Intra(ξρ−1Zp)
in the

first block−−−−−−−−−−−−→

1 �χ<3>
1,i τ�eiZ1 ρ�eiU1

...
...

...
...

p τ�eiZp ξ�ei ρ�eiUp

...
...

...
d �χ<3>

d,i τ�eiZd
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We will consider the effect to the other (i.e., t 
= p) rows in the first and second blocks. For
the second block, only coefficients in h∗

t,i (t 
= p) are effected, where only the second change
is related. Since the rows in the first block in h∗

t,i (t 
= p) are zero, the corresponding rows in
the second block remain unchanged after the change. For the first block, all three changes are
related in et,i. By the first change, coefficients �χ<0>

t,i (t 
= p) are changed to �χ<1>
t,i := �χ<0>

t,i Zp,
and changed to �χ<2>

t,i := �χ<1>
t,i − τ�eiZt by the second change, and �χ<3>

t,i := ξ−1ρ�χ<2>
t,i Z−1

p

by the third change. Consequently, �χ<3>
t,i := ξ−1ρ(�χ<0>

t,i − τ�eiZtZ
−1
p ). Note that if �χ<0>

t,i

are uniformly and independently distributed, then �χ<3>
t,i are so, and this is crucial for our

(highlighted) transformation in Section 7.3.

7.3 Highlighted Transformation for the Proof of Lemma 24

Our description focuses changes of coefficients in the hidden part with 2-dimensional 3 blocks i.e.,
total is 6-dimension, of ciphertexts elements et,i and secret-key elements h∗

t,i (t = 1, . . . , d; i =
1, 2).

Experiments 0 and 1: Experiment 0 is equal to a Problem 2-ABE instance with β := 0. In
Experiment 1, ρ�ei for i = 1, 2 are embedded to the first block of h∗

t,i, by Type II computational
change. Coefficients of the hidden part of et,i and h∗

t,i at Experiments 0 and 1 are given as
follows:

t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1
...
p
...
d

Type II−−−−−−−−→

t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�ei

...
...

p
...
d ρ�ei

Experiment 2-p Sequence: The goal of the Experiment 2-p sequence is to change the coef-
ficients ρ�ei in the p-th row in the first block of h∗

p,i to ρ�eiUp, and to transfer the changed one to
the third block (of the p-th row). In other words, it is to embed a new matrix Up to the third
block.

Just before the Experiment 2-p sequence, in Experiment 2-(p−1)-8, target matrices Ut, i.e.,
the adjoint matrices of Zt, for t < p are embedded in the t-th row of the third block in the
hidden part of h∗

t,i. Coefficients of the hidden part of et,i and h∗
t,i in Experiment 2-(p− 1)-8 are

given as follows:

t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei
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In Experiment 2-p-1, the first of the Experiment 2-p sequence, by the conceptual change

inter

(
I −I
0 I

)
between the first and second blocks, coefficient vectors τ�ei are embedded into

the second block of et,i respectively for i = 1, 2. Coefficients of the hidden part of et,i and h∗
t,i

in Experiment 2-p-1 are given as follows:

Inter

(
I −I
0 I

)
−−−−−−−−−−−−−−−→

t = 1 τ�ei τ�ei τ�eiZ1

...
...

...
...

p
...
d τ�ei τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Then, by a swapping transformation in Section 7.2.1, we achieve a swapping of coefficients
in the p-th row, between the first and second blocks of h∗

p,i. Coefficients of the hidden part of
et,i and h∗

t,i in Experiment 2-p-4 are given as follows:

Coefficient
swapping in
Section 7.2.1−−−−−−−−−−−−→

t = 1 τ�ei τ�ei τ�eiZ1

...
...

...
...

p
...
d τ�ei τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Next step to Experiment 2-p-5 is one of crucial points in the reduction. In the second block
of et,i, coefficient vectors except for the p-th row are changed to uniformly random. Since,
indexes μp,i(p,−1) in h∗

p,i and σt,i(1, t) in et,i for t 
= p have uniformly and independently dis-
tributed inner product values, application of Basic Problem 5-p can make such a randomization.
Coefficients of the hidden part of et,i and h∗

t,i in Experiment 2-p-5 are given as follows:

Application of
Basic Problem 5-p−−−−−−−−−−−−−−−−→

t = 1 τ�ei �χ1,i τ�eiZ1

...
...

...
...

p τ�ei τ�eiZp

...
...

...
d τ�ei �χd,i τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Note that, in Experiment 2-p-5, the p-th coefficients in the second block of ep,i are indepen-
dent from others in the same block. By applying a combined conceptual change composed of
intra- and inter-subspace type changes given in Section 7.2.3, random dual matrices (Up, Zp) are
embedded (Experiment 2-p-6). Note that since coefficients in the t-th (t 
= p) rows are random,
their distributions are not affected by the conceptual change. Coefficients of the hidden part of
et,i and h∗

t,i in Experiment 2-p-6 are given as follows:

Combined
concep. change
in Section 7.2.3−−−−−−−−−−−−−−→

t = 1 τ�ei �χ1,i τ�eiZ1

...
...

...
...

p τ�eiZp

...
...

...
d τ�ei �χd,i τ�eiZd

t = 1 ρ�eiU1

...
...

p ξ�ei ρ�eiUp

...
...

d ρ�ei

Here, we achieved the main aim, i.e., ρ�ei in the first block p-th row is changed to �eiUp (in
the second block), and it is embedded into the third block p-th row. Roughly speaking, the
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rest of the Experiment 2-p sequence reverses the process before Experiment 2-p-5, and arrives
at Experiment 2-p-8, i.e., the initial state of the Experiment 2-(p+ 1) sequence. Coefficients of
the hidden part of et,i and h∗

t,i in Experiment 2-p-8 are given as follows:

BP5-p and
Type I
changes−−−−−−−−−−→

t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�eiUp

...
...

d ρ�ei

Final Experiment: After all the Experiment 2-p sequences for p = 1, . . . , d, we reach Ex-
periment 2-d-8, where independent pairs of dual (adjoint) matrices (Ut, Zt) for t = 1, . . . , d are
embedded into the third block, i.e., which is equal to a Problem 2-ABE instance with β := 1.
Coefficients of the hidden part of et,i and h∗

t,i in Experiment 2-d-8 are given as follows:

t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p
...
d ρ�eiUd
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A Proofs of Lemmas

A.1 Proofs of Lemmas 3 and 4 in Section 5.1.4

A.1.1 Proof of Lemma 3

Lemma 3 Problem 1-IPE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F0,F1,F2, whose running times

are essentially the same as that of B, such that for any security parameter λ, AdvP1-IPE
B (λ) ≤

AdvDLIN
F0

(λ)+AdvDLIN
F1

(λ)+
∑d

p=1

∑2
j=1 AdvDLIN

F2-p-j
(λ)+ ε, where F2-p-j(·) := F2(p, j, ·), ε := (10d+

5)/q.

Proof. Lemma 3 is proven by a hybrid argument consisting of three experiments, i.e., Exp
1, 2, 3, where the differences of the experiments are given by a choice of (β1, β2) ∈ {0, 1}2 for
(eβ1,0, {eβ1,t,i}t=1,...,d; i=1,2) and ẽβ2,1. (The other variables are given in the same manner as in
Problem 1-IPE.) Exp 1 uses the choice of (β1, β2) = (0, 0), then is the same as Problem 1-IPE
for β = 0. Exp 2 uses the choice of (β1, β2) = (0, 1). Exp 3 uses the choice of (β1, β2) = (1, 1),
then is the same as Problem 1-IPE for β = 1. Therefore, Lemma 3 is obtained by combining of
Lemmas 31, 32 and 23. ��
Lemma 31 Exp 1 and 2 are computationally indistinguishable under the DLIN assumption.

For any adversary B, there exist a probabilistic machine F , whose running time is es-
sentially the same as that of B, such that for any security parameter λ, |Pr[Exp1B(λ) →
1]− Pr[Exp2B(λ)→ 1]| ≤ AdvDLIN

F (λ) + ε, where ε := 5/q.

Lemma 31 is proven in a similar manner to Lemma 1 in [14].
Problem 1-ABE is given in Definition 18 in Section 6.1.3.

Lemma 32 Exp 2 and 3 are computationally indistinguishable under the computational in-
tractability of Problem 1-ABE.

For any adversary B, there exist a probabilistic machine C, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, |Pr[Exp2B(λ) →
1]− Pr[Exp3B(λ)→ 1]| ≤ AdvP1-ABE

C (λ).

Proof. In order to prove Lemma 32, we construct a probabilistic machine C against Problem
1-ABE using an adversary B in an experiment (Exp 2 or 3) as a black box as follows: C is
given a Problem 1-ABE instance, (param, B̂0, B̂

∗
0, B̂, B̂

∗, eβ,0, {eβ,t,i}t=1,...,d;i=1,2). Note that the
dimension N := 14, and B̂ := (b1, . . . , b4, b13, b14), B̂∗ := (b∗1, . . . , b∗4, b∗11, b∗12). From the basis
vectors, C calculates new basis vectors in 15 dimensional spaces

di := (bi, 0)W, d∗
i := (b∗i , 0) (W−1)T for i = 1, . . . , 10,

d11 := (014, G)W, d∗
11 := (014, ψG) (W−1)T,

di := (bi−1, 0)W, d∗
i := (b∗i−1, 0) (W−1)T for i = 12, . . . , 15,

D̂ := (d1, . . . ,d4,d14,d15), D̂
∗ := (d∗

1, . . . ,d
∗
4,d

∗
12,d

∗
13),
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where W U← GL(15,Fq). Then, C calculates

{fβ,t,i := eβ,t,iW}t=1,...,d;i=1,2, ẽ1,1 := (σ̃, 09, θ, 02, φ̃1, φ̃2)D, ẽ2 := σ̃d2,

where σ̃, θ, φ̃1, φ̃2
U← Fq. C gives an instance � := (param, B̂0, B̂

∗
0, D̂, D̂

∗, eβ,0, {fβ,t,i}t=1,...,d;i=1,2,
ẽ1,1, ẽ2) to B. When β = 0 (resp.β = 1), � is an instance for Exp 2 (resp. Exp 3). Then, the
inequality in Lemma 32 holds, and this completes the proof of Lemma 32. ��

A.1.2 Proof of Lemma 4

Lemma 4 Problem 2-IPE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F1,F2-1, . . . ,F2-5, whose running

times are essentially the same as that of B, such that for any security parameter λ, AdvP2-IPE
B (λ) ≤

AdvDLIN
F1

(λ) +
∑d

p=1

∑2
j=1

(
AdvDLIN

F2-p-1-j
(λ) + AdvDLIN

F2-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F2-p-3-j-l
(λ)+

AdvDLIN
F2-p-4-j-l

(λ)
)

+ AdvDLIN
F2-p-5-j

(λ)
)

+ ε, where F2-p-1-j(·) := F2-1(p, j, ·),F2-p-2-j(·) := F2-2(p, j, ·),
F2-p-3-j-l(·) := F2-3(p, j, l, ·),F2-p-4-j-l(·) := F2-4(p, j, l, ·),F2-p-5-j(·) := F2-5(p, j, ·) and ε :=
(20d2 + 10d+ 5)/q.

Lemma 4 is proven by combining Lemma 33 and 24.

Lemma 33 Problem 2-IPE is computationally intractable under the computational intractabil-
ity of Problem 2-ABE.

For any adversary B, there exist a probabilistic machine C, whose running time is essentially
the same as that of B, such that for any security parameter λ, AdvP2-IPE

B (λ) ≤ AdvP2-ABE
C (λ).

Proof. In order to prove Lemma 33, we construct a probabilistic machine C against Problem
2-ABE using an adversary B against Problem 2-IPE as a black box as follows: C is given a
Problem 2-ABE instance, (param, B̂0, B̂

∗
0, B̂, B̂

∗,h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2). Note that the
dimension N := 14, and B̂ := (b1, . . . , b4, b13, b14), B̂∗ := (b∗1, . . . , b∗4, b∗11, b∗12). From the basis
vectors, C calculates new basis vectors in 15 dimensional spaces

di := (bi, 0)W, d∗
i := (b∗i , 0) (W−1)T for i = 1, . . . , 10,

d11 := (014, G)W, d∗
11 := (014, ψG) (W−1)T,

di := (bi−1, 0)W, d∗
i := (b∗i−1, 0) (W−1)T for i = 12, . . . , 15,

D̂ := (d1, . . . ,d4,d14,d15), D̂
∗ := (d∗

1, . . . ,d
∗
4,d

∗
12,d

∗
13),

where W U← GL(15,Fq). Then, C calculates

{ft,i := et,iW, p∗
β,t,i := h∗

β,t,i (W
−1)T}t=1,...,d;i=1,2.

C gives an instance � := (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
β,0, e0, {p∗

β,t,i,ft,i}t=1,...,d;i=1,2) to B. � is an
instance of Problem 2-IPE for β. Then, the inequality in Lemma 33 holds, and this completes
the proof of Lemma 33. ��

A.2 Proofs of Lemmas 9–13 in Section 5.1.6

Lemma 9 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1-IPE

B1
(λ).

Proof. In order to prove Lemma 9, we construct a probabilistic machine B1 against Problem
1-IPE using an adversary A in a security game (Game 0’ or 1) as a black box as follows:

49



1. B1 is given a Problem 1-IPE instance, (param, B̂0, B̂
∗
0, B̂, B̂

∗, eβ,0, {eβ,t,i}t=1,...,d;i=1,2, ẽβ,1,
ẽ2).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 provides A a public key pk := (1λ, param, B̂0, B̂) of Game
0’ (and 1), where B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b14, b15).

4. When a key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B1 answers normal key
(k∗

0, {k∗
t }t∈I�v) with Eq. (3), that is computed using B̂

∗
0, B̂

∗ of the Problem 1-IPE instance.

5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and �x(0) :=
{(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A, B1 computes

the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

c0 := eβ,0 + ζb0,3, ct := x
(b)
t eβ,t,1 + ξ1eβ,t,2 + ξ2b4, cT := gζTm

(b),

where ζ, ξ1, ξ2
U← Fq, b

U← {0, 1}, and (b0,3, eβ,0, {eβ,t,i}t=1,...,d;i=1,2, b4) is a part of the
Problem 1-IPE instance.

6. When a key query is issued by A after the encryption query, B1 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

It is straightforward that the distribution by B1’s simulation given a Problem 1-IPE instance
with β is equivalent to that in Game 0’ (resp. Game 1), when β = 0 (resp.β = 1). ��

Lemma 10 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2-IPE

B2-h
(λ) + 2/q, where B2-h(·) := B2(h, ·).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B2 against Problem
2-IPE using an adversary A in a security game (Game 2-(h − 1)-2 or 2-h-1) as a black box as
follows:

1. B2 is given an integer h and a Problem 2-IPE instance, (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
β,0, e0,

{h∗
β,t,j , et,j}t=1,...,d;j=1,2).

2. B2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2 provides A a public key pk := (1λ, param, B̂0, B̂) of Game
2-(h− 1)-2 (and 2-h-1), where B̂0 and B̂ are obtained from the Problem 2-IPE instance.

4. When the ι-th key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B2 answers as follows:

(a) When 1 ≤ ι ≤ h−1, B2 answers semi-functional key (k∗
0, {k∗

t }t∈I�v) with Eq. (7), that
is computed using B̂

∗
0, B̂

∗ of the Problem 2-IPE instance.
(b) When ι = h, B2 calculates (k∗

0, {k∗
t }t∈I�v) using (b0,1, b0,3, b

∗
4,h

∗
β,0, {h∗

β,t,j}t=1,...,d;j=1,2)
of the Problem 2-IPE instance as follows:

for t ∈ I�v, gt, ξt
U← Fq, p∗

β,0,t := gth
∗
β,0 + ξtb

∗
0,1, p∗

β,t,2 := gth
∗
β,t,2 + ξtb

∗
4,

k∗
0 := −∑t∈I�v p∗

β,0,t + b∗0,3,
for t ∈ I�v, k∗

t := vth
∗
β,t,1 + p∗

β,t,2.
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(c) When ι ≥ h+1, B2 answers normal key (k∗
0, {k∗

t }t∈I�v) with Eq. (3), that is computed
using B̂

∗
0, B̂

∗ of the Problem 2-IPE instance.

5. When B2 receives an encryption query with challenge plaintexts (m(0),m(1)) and �x(0) :=
{(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A, B2 computes

the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

c0 := e0 + ζb0,3, ct := x
(b)
t et,1 + θ1et,2 + θ2b4, cT := gζTm

(b),

where ζ, θ1, θ2
U← Fq, b

U← {0, 1}, and (b0,3, e0, {et,j}t=1,..,n;j=1,2) is a part of the Problem
2-IPE instance.

6. When a key query is issued by A after the encryption query, B2 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B2 outputs β′ := 1. Otherwise, B2 outputs β′ := 0.

Claim 1 The distribution of the view of adversary A in the above-mentioned game simulated
by B2 given a Problem 2-IPE instance with β ∈ {0, 1} is the same as that in Game 2-(h− 1)-2
(resp. Game 2-h-1) if β = 0 (resp. β = 1) except with probability 1/q (resp. 1/q).

Proof. It is straightforward that the distribution by B2’s simulation given a Problem 2-IPE
instance with β = 0 is equivalent to that in Game 2-(h− 1)-2 except that δ defined in Problem
2-IPE is zero, i.e., except with probability 1/q.

When β = 1, the challenge ciphertext in the above simulation is given as:

c0 := (ω̃, τ̃ , ζ, 0, ϕ0)B0 ,

for t ∈ I�x,
4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

ct := ( σ̃t(1, t), ωx
(b)
t , ω̃, (τx(b)

t , τ̃), 02, (τx(b)
t , τ̃) · Zt, 0, 02, ϕ̃t,1, ϕ̃t,2 )B,

where σ̃t := x
(b)
t σt,1 +σt,2, ω̃ := θ1ω+θ2, τ̃ := θ1τ, ϕ̃t,j := x

(b)
t ϕt,1,j+ϕt,2,j for j = 1, 2, ω, τ, {σt,j ,

ϕt,i,j}t∈I�x; i,j=1,2 are defined in Problem 2-IPE.
p∗
β,0,t,p

∗
β,t,2 for t ∈ I�v calculated in case (b) of steps 4 and 6 in the above simulation are

expressed as:

st := gtδ + ξt, ak := gkρ, p∗
0,0,t = (st, 0, 0, gtη0, 0)B∗

0
, p∗

1,0,t = (st, at, 0, gtη0, 0)B∗
0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
p∗

0,t,2 := ( gtμt,2(t, −1), 0, st, 07, gt(ηt,2,1, ηt,2,2), 02 )B∗ ,

p∗
1,t,2 := ( gtμt,2(t, −1), 0, st, 04, (0, at)Ut, 0, gt(ηt,j,1, ηt,j,2), 02 )B∗ ,

where δ, ρ, η0, {μt,2, Ut, ηt,2,1, ηt,2,2}t∈I�v are defined in Problem 2-IPE. Therefore, (k∗
0, {k∗

t }t∈I�v)
are expressed as:

s0 :=
∑n

t=1 st, a0 :=
∑n

t=1 at, η̃0 := (
∑n

t=1 gt)η0,

if β = 0, k̃∗
0 = (−s0, 0, 1, η̃0, 0)B∗

0
, if β = 1, k̃∗

0 = (−s0,−a0, 1, η̃0, 0)B∗
0
,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
if β = 0, k∗

t := ( μ̃t(t, −1), δvt, st, 07, η̃t,1, η̃t,2, 02 )B∗ ,

if β = 1, k∗
t := ( μ̃t(t, −1), δvt, st, 04, (ρvt, at) · Ut, 0, η̃t,1, η̃t,2, 02 )B∗ ,
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where δ, ρ, st, at, μ̃t := vtμt,1 + gtμt,2, η̃t,j := vtηt,j + gtηt,j for t ∈ I�v; j = 1, 2 are independently
and uniformly distributed. Therefore, (k∗

0, {k∗
t }t∈I�v) and (c0, {ct}t∈I�x) are distributed as in

Eqs. (6) and (5), respectively. Therefore, when β = 1, the distribution by B2’s simulation is
equivalent to that in Game 2-h-1 except that δ defined in Problem 2-IPE is zero, i.e., except
with probability 1/q. ��

This completes the proof of Lemma 10. ��

Lemma 11 For any adversary A, for any security parameter λ, Adv
(2-h-1)
A (λ) = Adv

(2-h-2)
A (λ).

Proof. It is clear that the distribution of the public-key and the ι-th key query’s answer for
ι 
= h in Game 2-h-1 and Game 2-h-2 are exactly the same. Therefore, to prove this lemma we
will show that the joint distribution of the h-th key query’s answer and the challenge ciphertext
in Game 2-h-1 and Game 2-h-2 are equivalent.

Let �rt := (πvt, at) · Ut, which is coefficients of the t-th key element k∗
t for t ∈ I�v, and

�wt := (τx(b)
t , τ̃) ·Zt, which is coefficients of the t-th ciphertext element ct for t ∈ I�x in Game 2-

h-1. Let n := �(I�v), n′ := �(I�x), and n elements of I�v are expressed by {t1, . . . , tn | 1 ≤ t1 ≤ t2 ≤
· · · ≤ tn ≤ d}. We will show that (a0, {�rt}t∈I�v , {�wt}t∈I�x) ∈ Fq ×

(
F

2
q

)n × (F2
q

)n′
are uniformly

and independently distributed from the other variables in the joint distribution of adversary
A’s view.

When I�v 
⊆ I�x, there exist an index ti ∈ I�v \ I�x, and coefficients �wti := (πvti , ati) · Uti
of k∗

ti is uniformly and independently distributed in F
2
q since Uti

U← GL(2,Fq) is uniformly
and independently distributed from the other variables in A’s view. Moreover, variables atj for
j = 1, . . . , i−1, i+1, . . . , n and a0 :=

∑
j=1,,...,i−1,i+1,...,n atj are also uniformly and independently

distributed in Fq since ati appears only in �wti in A’s view. Therefore, from Lemma 8, variables
(a0, {�rt}t∈I�v , {�wt}t∈I�x) are uniformly and independently distributed from the other variables.

When I�v ⊆ I�x, it holds that
∑

t∈I�v vtxt 
= 0 from the definition of the security game. Since
�rt · �wt = πτvtxt + τ̃ at, (a0, {�rt · �wt}t∈Iv) = (a0, �rt1 · �wt1 , . . . , �rtn · �wtn) are represented as⎛

⎜⎜⎜⎝
a0

�rt1 · �wt1
...

�rtn · �wtn

⎞
⎟⎟⎟⎠ = M ·

⎛
⎜⎜⎜⎝

π
at1
...
atn

⎞
⎟⎟⎟⎠ , where M :=

⎛
⎜⎜⎜⎝

0 1 . . . 1
τvt1xt1 τ̃

...
. . .

τvtnxtn τ̃

⎞
⎟⎟⎟⎠ (24)

The determinant of M is given by det(M) = (τ̃)n−1 τ(
∑n

i=1 vtixti) = (τ̃)n−1 τ(
∑

t∈I�v vtxt),
which is nonzero since

∑
t∈I�v vtxt 
= 0 with all but negligible probability 2/q, i.e., except when

τ = 0 or τ̃ = 0. Since fresh variables (π, {at}t∈I�v) appear only in (a0, {�rt · �wt}t∈I�v) in A’s view,
these variables (a0, {�rt · �wt}t∈I�v) are also fresh, i.e., uniformly and independently distributed
from the other variables. Then, from Lemma 8, variables (a0, {�rt}t∈I�v , {�wt}t∈I�x) are uniformly
and independently distributed from the other variables when I�v ⊆ I�x, too.

Therefore, the view of adversary A in the Game 2-h-1 is the same as that in Game 2-h-2.
This completes the proof of Lemma 11. ��

Lemma 12 For any adversary A, for any security parameter λ, |Adv
(2-ν-2)
A (λ)− Adv

(3)
A (λ)| ≤

1/q.

Proof. To prove Lemma 12, we will show distribution of public parameters, queried keys, and
challenge ciphertext, (param, B̂, {sk(h) := (k(h)∗

0 , {k(h)∗
t }t∈I�v)}h=1,...,ν , ct := (c0, {ct}t∈I�x , cT )), in

Game 2-ν-2 and that in Game 3 are equivalent.
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First, we note that a part of ciphertext {ct}t∈I�v in Game 2-ν-2 and that in Game 3 are

equivalently distributed since matrices {Zt U← GL(2,Fq)}t∈I�v of {ct}t∈I�v in Game 2-ν-2 are
uniformly and independently distributed from other variables.

For the distribution of k∗
0 and c0, we define new dual orthonormal bases (D0,D

∗
0) of V0 as

follows:
We generate χ U← Fq, and set

d0,2 := b0,2 − χb0,3, d∗
0,3 := b∗0,3 + χb∗0,2

D0 := (b0,1,d0,2, b0,3, . . . , b0,5), D
∗
0 := (b∗0,1, b

∗
0,2,d

∗
0,3, b

∗
0,4, b

∗
0,5).

We then easily verify that D0 and D
∗
0 are dual orthonormal, and are distributed the same as

the original bases, B0 and B
∗
0.

The t = 0 elements of keys and challenge ciphertext ({k(h)∗
0 }h=1,...,ν , c0) in Game 2-ν-2 are

expressed over bases (B0,B
∗
0) and (D0,D

∗
0) as

k
(h)∗
0 := ( −s(h)0 , r

(h)
0 , 1, η(h)

0 , 0 )B∗
0

= ( −s(h)0 , r
(h)
0 − χ, 1, η(h)

0 , 0 )D∗
0

= ( −s(h)0 , r̃
(h)
0 , 1, η(h)

0 , 0 )D∗
0

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 = ( ω̃, τ̃ , ζ + χτ̃ , 0, ϕ0 )D0 = ( ω̃, τ̃ , ζ ′, 0, ϕ0 )D0 ,

where cT := gζTm
(b),

where r̃(h)0 := r
(h)
0 − χ, ζ ′ := ζ + χτ̃ ∈ Fq are uniformly, independently (from other variables)

distributed since r(h)0 , χ
U← Fq, except for the case τ̃ = 0, i.e., except with probability 1/q.

In the light of the adversary’s view, both (B0,B
∗
0) and (D0,D

∗
0) are consistent with pub-

lic key pk := (1λ, param, B̂0, B̂). Therefore, {sk(h) := (k(h)∗
0 , {k(h)∗

t }t∈I�v)}h=1,...,ν and ct :=
(c0, {ct}t∈I�x , cT ) above can be expressed as keys and ciphertext in two ways, in Game 2-ν-2
over bases ((B0,B

∗
0), (B,B

∗)) and in Game 3 over bases ((D0,D
∗
0), (B,B

∗)). Thus, Game 2-ν-2
can be conceptually changed to Game 3. ��

Lemma 13 For any adversary A, there exists a probabilistic machine B3, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(3)
A (λ)−

Adv
(4)
A (λ)| ≤ AdvP3-IPE

B3
(λ) + 2/q.

Proof. In order to prove Lemma 13, we construct a probabilistic machine B3 against Problem
3-IPE using an adversary A in a security game (Game 3 or 4) as a black box as follows:

1. B3 is given a Problem 3-IPE instance, (param,B0,B
∗
0,B, B̂

∗,h∗, eβ).

2. B3 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B3 provides A a public key pk := (1λ, param, B̂0, B̂) of Game
3 (and 4), where B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b14, b15).

4. When a key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B3 answers (k∗
0, {k∗

t }t∈I�v) such
that

k∗
0 := ( −s0, 0, 1, η0, 0 )B∗

0
,

k∗
t := δ̃vth

∗ + ( μt(t, −1), 0, st, 06, �r ′t , 0, �ηt, 02 )B∗ for t ∈ I�v,

where st, μt, η0, δ̃
U← Fq, �r

′
t , �ηt

U← F
2
q , s0 :=

∑
t∈I�v st, and (B∗

0,h
∗, B̂∗ := (b1, b2, b4, . . . , b15))

is a part of the Problem 3-IPE instance.
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5. When B3 receives an encryption query with challenge plaintexts (m(0),m(1)) and vectors
�x(0) := {(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A, B3

computes the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

c0 := ( ω̃, τ̃ , ζ ′, 0, ϕ0 )B0 ,

ct := x
(b)
t eβ + ( σt(1, t), 0, ω̃, 0, τ̃ , 02, �z ′

t , 03, �ϕt )B for t ∈ I�x,
cT := gζTm

(b),

where ζ, ζ ′, ω̃, τ̃ , ϕ0
U← Fq, �z

′
t , �ϕt

U← F
2
q , b

U← {0, 1}, and (B0, eβ ,B) is a part of the Problem
3-IPE instance.

6. When a key query is issued by A after the encryption query, B3 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B3 outputs β′ := 0. Otherwise, B3 outputs β′ := 1.

Claim 2 The distribution of the view of adversary A in the above-mentioned game simulated
by B3 given a Problem 3-IPE instance with β ∈ {0, 1} is the same as that in Game 3 (resp.
Game 4) if β = 1 (resp. β = 0) with all but negligible probability 1/q.

Proof. We will consider the joint distribution of k
(h)∗
t for h = 1, . . . , ν; t ∈ I�v(h) and ct for

t ∈ I�x.
The h-th queried key {k(h)∗

t }h=1,...,ν for �v(h) := {(t, v(h)
t ) | t ∈ I�v(h)} generated in steps 4 and

6 is

k
(h)∗
t = δ̃(h)v

(h)
t h∗ + ( μ(h)

t (t, −1), 0, s(h)t , 04, �r
′ (h)
t , 0, �η(h)

t , 02 )B∗

= ( μ(h)
t (t, −1), δ̃(h)uv(h)

t , s
(h)
t , 04, �r

′ (h)
t + δ̃(h)v

(h)
t (r, 0), 0, �η′ (h)t , 02 )B∗

= ( μ(h)
t (t, −1), δ(h)v(h)

t , s
(h)
t , 04, �rt, 0, �η′ (h)t , 02 )B∗

where δ(h) := δ̃(h)u ∈ Fq, �r
(h)
t := �r

′ (h)
t +δ̃(h)v(h)

t (r, 0) are uniformly and independently distributed

since δ̃(h) U← Fq, �r
′ (h)
t

U← F
2
q , except for the case u = 0, i.e., except with probability 1/q.

When β = 0, ciphertext ct generated in step 5 is

ct = x
(b)
t e0 + ( σt(1, t), 0, ω̃, 0, τ̃ , 02, �z ′

t , 03, �ϕt )B

= ( σt(1, t), 0, ω̃, 0, τ̃ , 02, �z ′
t + x

(b)
t (z1, z2), 03, �ϕt )B

= ( σt(1, t), 0, ω̃, 0, τ̃ , 02, �zt, 03, �ϕt )B

where �zt := �z ′
t + x

(b)
t (z1, z2) ∈ F

2
q is uniformly and independently distributed since �z ′

t
U← F

2
q .

When β = 1, ciphertext ct generated in step 5 is

ct = x
(b)
t e0 + ( σt(1, t), 0, ω̃, 0, τ̃ , 02, �z ′

t , 03, �ϕt )B

= ( σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, �z ′

t + x
(b)
t (z1, z2), 03, �ϕt )B

= ( σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, �zt, 03, �ϕt )B

where �zt := �z ′
t + x

(b)
t (z1, z2) ∈ F

2
q are uniformly and independently distributed since �z ′

t
U← F

2
q .

Therefore, the above {ct}t∈I�x and c0 := ( ω̃, τ̃ , ζ ′, 0, ϕ0 )B0 , cT := gζTm
(b) give a challenge

ciphertext in Game 3 when β = 1, and that in Game 4 when β = 0. ��
From Claim 2,

∣∣∣Adv
(3)
A (λ)− Adv

(4)
A (λ)

∣∣∣ ≤ ∣∣∣Pr
[
B3(1λ, �)→1

∣∣∣ � R←GP3-IPE
0 (1λ)

]
−

Pr
[
B3(1λ, �)→1

∣∣∣ � R←GP3-IPE
1 (1λ)

]∣∣∣ + 2/q = AdvP3-IPE
B3

(λ) + 2/q. This completes the proof of
Lemma 13. ��
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A.3 Proofs of Lemmas 15–21 in Section 5.1.8

Lemma 15 For any adversary A, there exists a probabilistic machine B1, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ)−

Adv
(1-1-1)
A (λ)| ≤ AdvP1-IPE

B1
(λ) + 1/q.

Proof. In order to prove Lemma 15, we construct a probabilistic machine B1 against Problem
1-IPE using an adversary A in a security game (Game 0’ or 1-1-1) as a black box as follows:

1. B1 is given a Problem 1-IPE instance, (param,B0,B
∗
0, B̂, B̂

∗, eβ,0, {eβ,t,i}t=1,...,d;i=1,2, ẽβ,1,
ẽ2).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 provides A a public key pk := (1λ, param, B̂0, B̂) of Game
0’ (and 1-1-1), where B̂0 := (b0,1, b0,3, b0,5) and B̂ is obtained from the Problem 1-IPE
instance.

4. When a key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B1 answers normal key
(k∗

0, {k∗
t }t∈I�v) with Eq. (10), that is computed using B

∗
0, B̂

∗ of the Problem 1-IPE instance.

5. When B1 receives an encryption query with challenge plaintext m := m(0) = m(1) and
vectors �x(0) := {(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A,

B1 computes the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

c0 := eβ,0 + ζb0,3, cT := gζTm,

ct := (x(0)
t + x

(1)
t θ̃)(ẽβ,1 + tẽ2) + x

(b)
t eβ,t,1 + ξ1eβ,t,2 + ξ2b4 for t ∈ I�x,

where ζ, θ̃, ξ1, ξ2, ϕ0
U← Fq, b

U← {0, 1}, and (eβ,0, b0,3, ẽβ,1, ẽ2, {eβ,t,i}t∈I�x; i=1,2, b4) is a
part of the Problem 1-IPE instance.

6. When a key query is issued by A after the encryption query, B1 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

Claim 3 The distribution of the view of adversary A in the above-mentioned game simulated
by B1 given a Problem 1-IPE instance with β ∈ {0, 1} is the same as that in Game 0’ (resp.
Game 1-1-1) if β = 0 (resp. β = 1 with all but negligible probability 1/q).

Proof. We will consider the distribution of ct for t ∈ I�x.
When β = 0, ciphertext ct generated in step 5 is

ct = (x(0)
t + x

(1)
t θ̃)(ẽ0,1 + tẽ2) + x

(b)
t e0,t,1 + ξ1e0,t,2 + ξ2b4

= (x(0)
t + x

(1)
t θ̃)(σ̃(b1 + tb2)) + (x(b)

t σt,1 + ξ1σt,2)(b1 + tb2)

+ωx(b)
t b3 + (ξ1ω + ξ2)b4 + ϕ̃1b14 + ϕ̃2b15

= ((x(0)
t + x

(1)
t θ̃)σ̃ + x

(b)
t σt,1 + ξ1σt,2)(b1 + tb2) + ωx

(b)
t b3 + (ξ1ω + ξ2)b4 + ϕ̃1b14 + ϕ̃2b15

= ( σt(1, t), ωx
(b)
t , ω̃, 09, ϕ̃1, ϕ̃2 )B

where σt := (x(0)
t + x

(1)
t θ̃)σ̃ + x

(b)
t σt,1 + ξ1σt,2, ζ, ω, ω̃ := ξ1ω + ξ2, ϕ̃1, ϕ̃2 ∈ Fq are uniformly and

independently distributed.
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When β = 1, ciphertext ct generated in step 5 is

ct = (x(0)
t + x

(1)
t θ̃)(ẽ1,1 + tẽ2) + x

(b)
t e1,t,1 + ξ1e1,t,2 + ξ2b4

= ( σt(1, t), ωx
(b)
t , ω̃, 09, ϕ̃1, ϕ̃2 )B

+( 04, τx
(b)
t , ξ1τ, 02, (τx(b)

t , ξ1τ)Zt, θ(x
(0)
t + x

(1)
t θ̃), 04 )B

where σt := (x(0)
t + x

(1)
t θ̃)σ̃ + x

(b)
t σt,1 + ξ1σt,2, ζ, ω, ω̃ := ξ1ω + ξ2, τ, ξ1τ, θ, θθ̃, ϕ̃1, ϕ̃2 ∈ Fq are

uniformly and independently distributed with all but negligible probability 2/q, i.e., except
when τ = 0 or θ = 0.

Therefore, the above c1 and c0 := ( ω̃, 0, ζ, 0, ϕ0 )B0 , cT := gζTm give a challenge ciphertext
in Game 0’ when β = 0, and that in Game 1-1-1 when β = 1 with all but negligible probability
1/q. ��

From Claim 3,
∣∣∣Adv

(0′)
A (λ)− Adv

(1-1-1)
A (λ)

∣∣∣ ≤ ∣∣∣Pr
[
B1(1λ, �)→1

∣∣∣ � R←GP1-IPE
0 (1λ)

]
−

Pr
[
B1(1λ, �)→1

∣∣∣ � R←GP1-IPE
1 (1λ)

]∣∣∣ + 1/q = AdvP1-IPE
B1

(λ) + 1/q. This completes the proof of
Lemma 15. ��

Lemma 16 Let h ≥ 2. For any adversary A, for any security parameter λ, |Adv
(1-(h−1)-5)
A (λ)−

Adv
(1-h-1)
A (λ)| ≤ 1/q.

Proof. Since matrices {Zt}t∈I�x only appear in coefficients in {ct}t∈I�x in Games 1-(h− 1)-5 and
1-h-1, all coefficients {(τ0x(0)

t + τ1x
(1)
t , τ̃)Zt}t∈I�x in Game 1-(h − 1)-5 and {(τx(b)

t , τ̃)Zt}t∈I�x in
Game 1-h-1 are uniformly and independently distributed in F

2
q .

To finish the proof of Lemma 16, we will show distribution of public parameters, queried keys,
and challenge ciphertext, (param, B̂, {sk(h) := (k(h)∗

0 , {k(h)∗
t }t∈I

�v(h)
)}h=1,...,ν , ct := (c0, {ct}t∈I�x , cT )),

in Game 1-(h − 1)-5 and that in Game 1-h-1 are equivalent. For that purpose, we define new
dual orthonormal bases (D,D∗) of V (in Game 1-h-1) as follows:

We generate χ U← Fq, and set

d11 := b11 − χb5, d∗
5 := b∗5 + χb∗11

D := (b1, . . . , b10,d11, b12, . . . , b15), D
∗ := (b∗1, . . . , b

∗
4,d

∗
5, b

∗
6, . . . , b

∗
15).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Parts of queried keys and challenge ciphertext, {k(h)∗
t } and {ct}, in Game 1-h-1 are expressed

over bases (B,B∗) and (D,D∗) as

k
(h)∗
t := (μ(h)

t (t, −1), δ(h)v(h)
t , s

(h)
t , 0, . . . , �η

(h)
t , 02)B∗

= (μ(h)
t (t, −1), δ(h)v(h)

t , s
(h)
t , 0, . . . , �η

(h)
t , 02)D∗

ct := (σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t , τ̃ , 02, (τx(b)

t , τ̃) · Zt, θ0x(0)
t + θ1x

(1)
t , 02, �ϕt)B

= (σt(1, t), ωx
(b)
t , ω̃, τx

(b)
t + χ(θ0x

(0)
t + θ1x

(1)
t ), τ̃ , . . . , θ0x

(0)
t + θ1x

(1)
t , 02, �ϕt)D

= (σt(1, t), ωx
(b)
t , ω̃, τ0x

(0)
t + τ1x

(1)
t , τ̃ , . . . , θ0x

(0)
t + θ1x

(1)
t , 02, �ϕt)D

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(25)

where τb := τ + χθb, τ1−b := χθ1−b ∈ Fq are uniformly, independently (from other variables)

distributed since τ, χ U← Fq, except for the case θ1−b = 0, i.e., except with probability 1/q.
In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with pub-

lic key pk := (1λ, param, B̂0, B̂). Therefore, {sk(h) := (k(h)∗
0 , {k(h)∗

t }t∈I
�v(h)

)}h=1,...,ν and ct :=
(c0, {ct}t∈I�x , cT ) above can be expressed as keys and ciphertext in two ways, in Game 1-h-1
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over bases (B,B∗) and in Game 1-(h− 1)-5 over bases (D,D∗). Thus, Game 1-(h− 1)-5 can be
conceptually changed to Game 1-h-1.

Therefore, the view of adversary A in the Game 1-(h − 1)-5 is the same as that in Game
1-h-1. This completes the proof of Lemma 16. ��

Lemma 17 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-1)
A (λ) −

Adv
(1-h-2)
A (λ)| ≤ AdvP2-IPE

B2-h
(λ) + 2/q, where B2-h(·) := B2(h, ·).

Lemma 17 is proven in a similar manner to Lemma 10.

Lemma 18 For any adversary A, for any security parameter λ, Adv
(1-h-2)
A (λ) = Adv

(1-h-3)
A (λ).

Proof. It is clear that the distribution of the public-key and the ι-th key query’s answer for
ι 
= h in Game 1-h-2 and Game 1-h-3 are exactly the same. Therefore, to prove this lemma we
will show that the joint distribution of the h-th key query’s answer and the challenge ciphertext
in Game 1-h-2 and Game 1-h-3 are equivalent.

Let �rt := (πvt, at) · Ut, which is coefficients of the t-th key element k∗
t for t ∈ I�v, and

�w
(b)
t := (τbx

(b)
t , τ̃) · Zt, which is coefficients of the t-th ciphertext element ct for t ∈ I�v in Game

1-h-2. In Game 1-h-3, the ciphertext coefficients are given by �wunbias
t := (τ0x

(0)
t + τ1x

(1)
t , τ̃) ·Zt.

Let n := �(I�v), n′ := �(I�x), and n elements of I�v are expressed by {t1, . . . , tn | 1 ≤ t1 ≤ t2 ≤
· · · ≤ tn ≤ d}.

We will show that V (b) := (a0, {�rt}t∈I�v , {�w(b)
t }t∈I�x) ∈ Fq ×

(
F

2
q

)n × (F2
q

)n′
and V unbias :=

(a0, {�rt}t∈I�v , {�wunbias
t }t∈I�x) have the same distribution in A’s view.

When I�v 
⊆ I�x, both V (b) and V unbias are uniformly and independently distributed from the
other variables in A’s view as in the proof of Lemma 11.

Therefore, we will consider the case when I�v ⊆ I�x, below. Then, we first note that
R(�v, �x(0)) = R(�v, �x(1)) = R(�v, τ0�x(0) + τ1�x

(1)) with all but negligible probability. Therefore,
if R(�v, �x(0)) = R(�v, �x(1)) = 0, we can show that both V (b) and V unbias are uniformly and in-
dependently distributed from the other variables in A’s view from the proof of Lemma 11,
too.

When R(�v, �x(0)) = R(�v, �x(1)) = 1, i.e.,
∑

t∈I�v vtxt =
∑n

i=1 vtixti = 0, as in Eq. (24), since

⎛
⎜⎝

�rt1 · �w(b)
t1

...
�rtn · �w(b)

tn

⎞
⎟⎠ = M̃ ·

⎛
⎜⎜⎜⎝

π
at1
...
atn

⎞
⎟⎟⎟⎠ , where M̃ :=

⎛
⎜⎝

τvt1x
(b)
t1

τ̃
...

. . .

τvtnx
(b)
tn τ̃

⎞
⎟⎠

and the rank of M̃ is n with all but negligible probability 1/q, i.e., except when τ̃ = 0, inner
product values {p(b)

t := �rt · �w(b)
t }t∈I�v are uniformly distributed. And, among {p(b)

t }t∈I�v and a0, a
relation

∑
t∈I�v p

(b)
t = τ̃ a0 holds. Similarly, {punbias

t := �rt · �wunbias
t }t∈I�v are uniformly distributed,

and among {punbias
t }t∈I�v and a0, the relation

∑
t∈I�v p

unbias
t = τ̃ a0 also holds. This shows that

(a0, {p(b)
t }t∈I�v) and (a0, {punbias

t }t∈I�v) have the same distribution.
Therefore, from Lemma 8, V (b) and V unbias have the same joint distribution in this case,

too.
To finish the proof of Lemma 18, we will show distribution of public parameters, queried keys,

and challenge ciphertext, (param, B̂, {sk(h) := (k(h)∗
0 , {k(h)∗

t }t∈I
�v(h)

)}h=1,...,ν , ct := (c0, {ct}t∈I�x , cT )),
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in Game 1-h-2 and that in Game 1-h-3 are equivalent. For that purpose, we define new dual
orthonormal bases (D,D∗) of V as follows:

We generate χ U← Fq, and set

d11 := b11 − χb5, d∗
5 := b∗5 + χb∗11

D := (b1, . . . , b10,d11, b12, . . . , b15), D
∗ := (b∗1, . . . , b

∗
4,d

∗
5, b

∗
6, . . . , b

∗
15).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Parts of queried keys and challenge ciphertext, {k(h)∗
t } and {ct}, in Game 1-h-2 are expressed

over bases (B,B∗) and (D,D∗) as in Eq. (25) except for the case θ1−b = 0, i.e., except with
probability 1/q.

In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with pub-
lic key pk := (1λ, param, B̂0, B̂). Therefore, {sk(h) := (k(h)∗

0 , {k(h)∗
t }t∈I

�v(h)
)}h=1,...,ν and ct :=

(c0, {ct}t∈I�x , cT ) above can be expressed as keys and ciphertext in two ways, in Game 1-h-2
over bases (B,B∗) and in Game 1-h-3 over bases (D,D∗). Thus, Game 1-h-2 can be conceptu-
ally changed to Game 1-h-3.

Therefore, the view of adversary A in the Game 1-h-2 is the same as that in Game 1-h-3.
This completes the proof of Lemma 18. ��

Lemma 19 For any adversary A, there exists a probabilistic machine B3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-3)
A (λ) −

Adv
(1-h-4)
A (λ)| ≤ AdvP4-IPE

B3-h
(λ) + 4/q, where B3-h(·) := B3(h, ·).

Proof. In order to prove Lemma 19, we construct a probabilistic machine B3 against Problem
4-IPE using an adversary A in a security game (Game 1-h-3 or 1-h-4) as a black box as follows:

1. B2-2 is given a Problem 4-IPE instance, (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2).

2. B3 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B3 provides A a public key pk := (1λ, param, B̂0, B̂
′) of Game

1-h-3 (and 1-h-4), where B̂0 := (b0,1, b0,3, b0,5) and B̂
′ := (b1, . . . , b4, b14, b15).

4. When the ι-th key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B3 answers as follows:

(a) When 1 ≤ ι ≤ h−1, B3 answers final key (k∗
0, . . . ,k

∗
n) with Eq. (16), that is computed

using B̂
∗
0, B̂

∗ of the Problem 4-IPE instance.

(b) When ι = h, B3 calculates (k∗
0, {k∗

t }t∈I�v) using (b0,1, b0,3, b
∗
3, b

∗
4,h

∗
0, {h∗

β,t,i}t=1,...,d;i=1,2)
of the Problem 4-IPE instance as follows:

δ
U← Fq, st, gt, μ̃t, η̃t,1, η̃t,2

U← Fq for t ∈ I�v,
s0 :=

∑n
t=1 st, g0 :=

∑n
t=1 gt, k∗

0 := −(s0b∗0,1 + g0h
∗
0) + b∗0,3,

k∗
t := vt(δb∗3 + h∗

β,t,1) + stb
∗
4 + gth

∗
β,t,2 + μ̃t(tb∗1 − b∗2) + η̃t,1b

∗
12 + η̃t,2b

∗
13 for t ∈ I�v.

(c) When ι ≥ h+ 1, B3 answers normal key (k∗
0, {k∗

t }I�v) with Eq. (10), that is computed
using B̂

∗
0, B̂

∗ of the Problem 4-IPE instance.
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5. When B3 receives an encryption query with challenge plaintexts m := m(0) = m(1) and
�x(0) := {(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A, B3

computes the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

c0 := ω̃b0,1 + ξe0 + ζb0,3, cT := gζTm,

ct := ωx
(b)
t b3 + ω̃b4 + x

(b)
t et,1 + ξet,2 + (θ0x

(0)
t + θ1x

(1)
t )b13,

where ω, ω̃, ζ, ξ, θ0, θ1
U← Fq, b

U← {0, 1}, and ({b0,i}i=1,3, e0, {bi}i=3,4,13, {et,i}t∈I�x; i=1,2) is
a part of the Problem 4-IPE instance.

6. When a key query is issued by A after the encryption query, B3 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B3 outputs β′ := 1. Otherwise, B3 outputs β′ := 0.

Claim 4 The distribution of the view of adversary A in the above-mentioned game simulated
by B3 given a Problem 4-IPE instance with β ∈ {0, 1} is the same as that in Game 1-h-3 (resp.
Game 1-h-4) if β = 0 (resp. β = 1) except with probability 2/q.

Proof. We will consider the joint distribution of the h-th queried key (k∗
0, {k∗

t }t∈I�v) and chal-
lenge ciphertext (c0, {ct}t∈I�x) (and cT ).

The h-th queried key (k∗
0, {k∗

t }t∈I�v) for �v := {(t, vt) | t ∈ I�v} generated in steps 4 and 6 is

k∗
0 := −(s0b∗0,1 + g0h

∗
0) + b∗0,3 = ( −s0, −a0, 1, η̃0, 0 )B∗

0
, where a0 = g0ρ,

when β = 0,
k∗
t := vt(δb∗3 + h∗

t,1) + stb
∗
4 + gth

∗
t,2 + μ̃t(tb∗1 − b∗2) + η̃t,1b

∗
12 + η̃t,2b

∗
13

= ( ˜̃μt(t, −1), δvt, st, 04, (ρvt, at)Ut, 0, ˜̃ηt,1, ˜̃ηt,2, 02 )B∗ ,

when β = 1,
k∗
t := vt(δb∗3 + h∗

0,t,1) + stb
∗
4 + gth

∗
0,t,2 + μ̃t(tb∗1 − b∗2) + η̃t,1b

∗
12 + η̃t,2b

∗
13

= ( ˜̃μt(t, −1), δvt, st, ρvt, at, 04, 0, ˜̃ηt,1, ˜̃ηt,2, 02 )B∗ ,

where at = gtρ, ˜̃μt := vtμt,1+gtμt,2+μ̃, ˜̃ηt,i := vtηt,1,i+gtηt,2,i+η̃t,i for i = 1, 2, and ρ, μt,i, ηt,i,j , Ut
are defined in Problem 4-IPE. Note that a0 =

∑
t∈I�v at, and at, ˜̃μt are uniformly and indepen-

dently distributed since gt, μ̃t
U← Fq except for the case ρ = 0, i.e., except with probability

1/q.
c0 of the challenge ciphertext is given as

c0 := ω̃b0,1 + ξe0 + ζb0,3 = ( ω̃, τ̃ , ζ, 0, ϕ̃0 ),

where τ̃ := ξτ , which is uniformly and independently distributed since ξ U← Fq except for the
case τ = 0, i.e., except with probability 1/q.

The challenge ciphertext in the above simulation is given as:

ct := ωx
(b)
t b3 + ω̃b4 + x

(b)
t e0,t,1 + ξe0,t,2 + (θ0x

(0)
t + θ1x

(1)
t )b11

= ( σ̃t(1, t), ωx
(b)
t , ω̃, (τx(b)

t , τ̃), 02, (τx(b)
t , τ̃)Zt, θ0x

(0)
t + θ1x

(1)
t , 02, ϕ̃t,1, ϕ̃t,2 )B

where σ̃t := x
(b)
t σt,1+ξσt,2, ϕ̃t,j := x

(b)
t ϕt,1,j+ξϕt,2,j for j = 1, 2, and τ, {σt,j , ϕt,i,j , Zt}t∈I�x; i,j=1,2

are defined in Problem 4-IPE. Note that σ̃t, ϕ̃t,j are uniformly and independently distributed

since σt,2, ϕt,2,j
U← Fq except for the case ξ = 0, i.e., except with probability 1/q.
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Therefore, when β = 0 (resp.β = 1), the distribution by B2-2’s simulation is equivalent to
that in Game 1-h-3 (resp. Game 1-h-4) except with probability 2/q. ��

This completes the proof of Lemma 19. ��

Lemma 20 For any adversary A, there exists a probabilistic machine B4, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1-h-4)
A (λ) −

Adv
(1-h-5)
A (λ)| ≤ AdvP5-IPE

B4-h
(λ), where B4-h(·) := B4(h, ·).

Proof. In order to prove Lemma 20, we construct a probabilistic machine B4 against Problem
5-IPE using an adversary A in a security game (Game 1-h-4 or 1-h-5) as a black box as follows:

1. B4 is given a Problem 5-IPE instance, (param,B0,B
∗
0, B̂,B

∗,h∗
β , {ej}j=0,1).

2. B4 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B4 provides A a public key pk := (1λ, param, B̂0, B̂
′) of Game

1-h-4 (and 1-h-5), where B̂0 := (b0,1, b0,3, b0,5) and B̂
′ := (b1, . . . , b4, b14, b15).

4. When the ι-th key query is issued for vector �v := {(t, vt) | t ∈ I�v}, B4 answers as follows:

(a) When 1 ≤ ι ≤ h − 1, B4 answers final key (k∗
0, {k∗

t }t∈I�v) with Eq. (16), that is
computed using B

∗
0,B

∗ of the Problem 5-IPE instance.

(b) When ι = h, B4 calculates (k∗
0, {k∗

t }t∈I�v) using (B∗
0,B

∗,h∗
β) of the Problem 5-IPE

instance as follows:

δ, η0
U← Fq, μt, st, at

U← Fq, �ut, �ηt
U← F

2
q for t ∈ I�v,

s0 :=
∑

t∈I�v st, a0 :=
∑

t∈I�v at, k∗
0 := ( −s0, −a0, 1, η0, 0 )B∗

0
,

k∗
t := vthβ + ( μt(t, −1), δvt, st, 0, at, 05, �ηt, 02 )B∗ for t ∈ I�v.

(c) When ι ≥ h+1, B4 answers normal key (k∗
0, {k∗

t }t∈I�v) with Eq. (10), that is computed
using B

∗
0,B

∗ of the Problem 5-IPE instance.

5. When B4 receives an encryption query with challenge plaintexts m := m(0) = m(1) and
�x(0) := {(t, x(0)

t ) | t ∈ I�x}, �x(1) := {(t, x(1)
t ) | t ∈ I�x} with I�x := I�x(0) = I�x(1) from A, B4

computes the challenge ciphertext (c0, {ct}t∈I�x , cT ) such that

ω, ω̃, τ̃ , ζ, ϕ0, σt
U← Fq, �ϕt

U← F
2
q for t ∈ I�x,

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 , cT := gζTm,

ct := x
(0)
t e0 + x

(1)
t e1 + ( σt(1, t), ωx

(b)
t , ω̃, 0, τ̃ , 07, �ϕt )B for t ∈ I�x,

where b U← {0, 1}, and (B0, B̂, {ei}i=0,1) is a part of the Problem 5-IPE instance.

6. When a key query is issued by A after the encryption query, B4 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B4 outputs β′ := 1. Otherwise, B4 outputs β′ := 0.

Claim 5 The distribution of the view of adversary A in the above-mentioned game simulated
by B4 given a Problem 5-IPE instance with β ∈ {0, 1} is the same as that in Game 1-h-4 (resp.
Game 1-h-5) if β = 0 (resp. β = 1) except with probability 1/q (resp. 1/q).
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Proof. We will consider the joint distribution of the h-th queried key (k∗
0, {k∗

t }t∈I�v) and chal-
lenge ciphertext (c0, {ct}t∈I�x) (and cT ).

The challenge ciphertext in the above simulation is given as:

c0 := ( ω̃, τ̃ , ζ, 0, ϕ0 )B0 ,

ct := x
(0)
t e0 + x

(1)
t e1 + ( σt(1, t), ωx

(b)
t , ω̃, 0, τ̃ , 07, �ϕt )B

:= ( σt(1, t), ωx
(b)
t , ω̃, τ0x

(0)
t + τ1x

(1)
t , τ̃ , 06, θ0x

(0)
t + θ1x

(1)
t , �ϕ′

t )B for t ∈ I�x,
where {τi, θi}i=0,1 are defined in Problem 5-IPE.

k∗
0 of the h-th queried key for �v := {(t, vt) | t ∈ I�v} generated in steps 4 and 6 is

k∗
0 := ( −s0, −a0, 1, η0, 0 )B∗

0
,

When β = 0, the h-th queried key {k∗
t }t∈I�v for �v := {(t, vt) | t ∈ I�v} is

k∗
t := vth0 + ( μt(t, −1), δvt, st, 0, at, 05, �ηt, 02 )B∗

= ( μt(t, −1), δvt, st, ρvt, at, 05, �ηt, 02 )B∗ for t ∈ I�v.
When β = 1, the h-th queried key {k∗

t }t∈I�v for �v := {(t, vt) | t ∈ I�v} is

k∗
t := vth1 + ( μt(t, −1), δvt, st, 0, at, 05, �ηt, 02 )B∗

= ( μt(t, −1), δvt, st, 0, at, 04, ρvt, �ηt, 02 )B∗ for t ∈ I�v.
Therefore, when β = 0 (resp.β = 1), the distribution by B4’s simulation is equivalent to

that in Game 1-h-4 (resp. Game 1-h-5). ��
This completes the proof of Lemma 20. ��

Lemma 21 For any adversary A, for any security parameter λ, |Adv
(1-ν-5)
A (λ)− Adv

(2)
A (λ)| ≤

1/q.

Proof. To prove Lemma 21, we will show distribution of public parameters, queried keys, and
challenge ciphertext, (param, B̂, {sk(h) := {(k(h)∗

0 , {k(h)∗
t }t∈I

�v(h)
)}h=1,...,ν , ct := (c0, {ct}t∈I�x , cT )),

in Game 1-ν-5 and that in Game 2 are equivalent. For that purpose, we define new dual or-
thonormal bases (D,D∗) of V as follows:

We generate χ U← Fq, and set

d11 := b11 − χb3, d∗
3 := b∗3 + χb∗11

D := (b1, . . . , b10,d11, b12, . . . , b15), D
∗ := (b∗1, b

∗
2,d

∗
3, b

∗
4, . . . , b

∗
15).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Parts of queried keys and challenge ciphertext, {{k(h)∗
t }t∈I

�v(h)
}h=1,...,ν , {ct}t∈I�x , in Game

1-ν-5 are expressed over bases (B,B∗) and (D,D∗) as

k
(h)∗
t := ( μ(h)

t (t, −1), δ(h)v(h)
t , s

(h)
t , 0, a(h)

t , 04, π̃(h)v
(h)
t , �η

(h)
t , 02 )B∗

= ( μ(h)
t (t, −1), δ(h)v(h)

t , s
(h)
t , 0, a(h)

t , 04, π̃(h)v
(h)
t − χδ(h)v(h)

t , �η
(h)
t , 02 )D∗

= ( μ(h)
t (t, −1), δ(h)v(h)

t , s
(h)
t , 0, a(h)

t , 04, ξ(h)v
(h)
t , �η

(h)
t , 02 )D∗ ,

ct := ( σt(1, t), ωx
(b)
t , ω̃, 06, θ0x

(0)
t + θ1x

(1)
t , 02, �ϕt )B

= ( σt(1, t), ωx
(b)
t + χ(θ0x

(0)
t + θ1x

(1)
t ), ω̃, 06, θ0x

(0)
t + θ1x

(1)
t , 02, �ϕt )D

= ( σt(1, t), ω0x
(0)
t + ω1x

(1)
t , ω̃, 06, θ0x

(0)
t + θ1x

(1)
t , 02, �ϕt )D
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Figure 2: Structure of Hierarchical Reductions for the Proof of Theorem 4

where ωb := ω + χθb, ω1−b := χθ1−b and ξ(h) := π̃(h) − χδ(h) ∈ Fq are uniformly, independently

(from other variables) distributed since ω, χ, π̃(h) U← Fq, except for the case θ1−b = 0, i.e., except
with probability 1/q.

In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with pub-
lic key pk := (1λ, param, B̂0, B̂). Therefore, {sk(h) := {k(h)∗

0 , {k(h)∗
t }t∈I

�v(h)
}h=1,...,ν and ct :=

(c0, {ct}t∈I�x , cT ) above can be expressed as keys and ciphertext in two ways, in Game 1-ν-5
over bases (B,B∗) and in Game 2 over bases (D,D∗). Thus, Game 1-ν-5 can be conceptually
changed to Game 2. ��

A.4 Proofs of Lemmas 23 and 24 in Section 6.1.3

A.4.1 Outline

Intractability of (complicated) Problems 1-ABE and 2-ABE are reduced to that of the DLIN
Problem through several intermediate steps, or intermediate problems, as indicated below (Fig-
ure 2):

1. DLIN Problem (in Definition 3)

2. BP1, BP2, BP3-p, BP4-p, BP5-p, BP6, BP0 for p = 1, . . . , d : Basic Problems with DPVS
V0 of dimension 5 and V of dimension 14 (in Definitions 20–26)

3. P1-ABE, P2-ABE : Problems 1-ABE and 2-ABE (in Definitions 18 and 19)

We will explain how the simplest problem, DLIN, is sequentially transformed to more com-
plicated ones.

DLIN → Basic Problems : In this first reduction step, DLIN instances on (symmetric)
pairing group are transformed to a Basic Problem instance on the DPVS, V, i.e., higher
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level concept. The reductions are given in Lemmas 34–44 (Appendix A.4.2). The reduc-
tions are indicated in Figure 2 by arrows or dotted arrows. The proofs of reductions by
dotted arrows are similar to those in [14], and those by arrows are given in Appendix
A.4.2.

Basic Problems → P1-ABE, P2-ABE : The reductions are given in Lemmas 45–56 (Ap-
pendices A.4.3 and A.4.4). They are indicated in Figure 2 by arrows.

A.4.2 Basic Problems

Definition 20 (Basic Problem 1) Basic Problem 1 is to guess β, given (param,B0, B̂
∗
0,B, B̂

∗,
eβ,0, {eβ,i}i=1,2)

R← GBP1
β (1λ, d), where

GBP1
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂
∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5), B̂

∗ := (b∗1, . . . , b
∗
6, b

∗
9, . . . , b

∗
14),

ω, ϕ0
U← Fq, τ

U← F
×
q , e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for i = 1, 2; �ei := (0i−1, 1, 02−i) ∈ F
2
q , �ϕi

U← F
2
q ,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
e0,i := ( 02, ω�ei, 06, 02, �ϕi )B

e1,i := ( 02, ω�ei, τ�ei, 04, 02, �ϕi )B

return (param,B0, B̂
∗
0,B, B̂

∗, eβ,0, {eβ,i}i=1,2),

for β
U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 1,

AdvBP1
C (λ), is similarly defined as in Definition 13.

Lemma 34 For any adversary C, there exists a probabilistic machine F , whose running time
is essentially the same as that of C, such that for any security parameter λ, AdvBP1

C (λ) ≤
AdvDLIN

F (λ) + 5/q.

Lemma 34 is proven in a similar manner to Lemma 1 in [14].

Definition 21 (Basic Problem 2) Basic Problem 2 is to guess β, given (param, B̂0,B
∗
0, B̂,B

∗,
h∗
β,0, e0, {h∗

β,i, ei}i=1,2)
R← GBP2

β (1λ, d), where

GBP2
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂0 := (b0,1, b0,3, . . . , b0,5), B̂ := (b1, . . . , b6, b9, . . . , b14), δ, ω, η0
U← Fq, ρ, τ

U← F
×
q ,

h∗
0,0 := (δ, 0, 0, η0, 0)B0 , h∗

1,0 := (δ, ρ, 0, η0, 0)B0 , e0 := (ω, τ, 0, 0, 0)B0 ,

for i = 1, 2; �ei := (0i−1, 1, 02−i) ∈ F
2
q , �ηi

U← F
2
q ,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
h∗

0,i := ( 02, δ�ei, 06, �ηi, 02 )B∗ ,

h∗
1,i := ( 02, δ�ei, ρ�ei, 04, �ηi, 02 )B∗ ,

ei := ( 02, ω�ei, τ�ei, 04, 02, 02 )B

return (param, B̂0,B
∗
0, B̂,B

∗,h∗
β,0, e0, {h∗

β,i, ei}i=1,2),

for β
U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 2,

AdvBP2
C (λ), is similarly defined as in Definition 13.
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Lemma 35 For any adversary C, there exists a probabilistic machine F , whose running time
is essentially the same as that of C, such that for any security parameter λ, AdvBP2

C (λ) ≤
AdvDLIN

F (λ) + 5/q.

Lemma 35 is proven in a similar manner to Lemma 2 in [14].

Definition 22 (Basic Problem 3-p for p = 1, . . . , d) Basic Problem 3-p is to guess β, given
(param,B0,B

∗
0, B̂,B

∗, e0, {h∗
β,p,i, ei, gi}i=1,2)

R← GBP3-p
β (1λ, d), where

GBP3-p
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂ := (b1, . . . , b6, b11, . . . , b14), τ
U← F

×
q , e0 := (0, τ, 0, 0, 0)B0 ,

for i = 1, 2; �ei := (0i−1, 1, 02−i) ∈ F
2
q , �ηp,i

U← F
2
q , μp,i, θp,i

U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
h∗

0,p,i := ( μp,i(p,−1), 02, 06, �ηp,i, 02 )B∗ ,

h∗
1,p,i := ( μp,i(p,−1), 02, −θp,i�ei, θp,i�ei, 02, �ηp,i, 02 )B∗ ,

ei := ( 04, τ�ei, τ�ei, 02, 02, 02 )B

gi := ( 04, 04, τ�ei, 02, 02 )B

return (param,B0,B
∗
0, B̂,B

∗, e0, {h∗
β,p,i, ei, gi}i=1,2),

for β
U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 3,

AdvBP3-p
C (λ), is similarly defined as in Definition 13.

Lemma 36 For any adversary C, there exists a probabilistic machine F , whose running time
is essentially the same as that of C, such that for any security parameter λ, AdvBP3-p

Cp
(λ) ≤∑2

j=1 AdvDLIN
Fp,j

(λ) + 10/q, where Cp(·) := C(p, ·),Fp,j(·) := F(p, j, ·).

Lemma 36 is obtained by combining Lemma 37 and Lemma 38.

Definition 23 (Basic Problem 4-p for p = 1, . . . , d) Basic Problem 4-p is to guess β, given
(param,B0,B

∗
0, B̂,B

∗, {h∗
β,p,i}i=1,2)

R← GBP4-p
β (1λ, d), where

GBP4-p
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂ := (b1, . . . , b6, b9, . . . , b14),

for i = 1, 2; �ei := (0i−1, 1, 02−i) ∈ F
2
q , �ηp,i

U← F
2
q , μp,i, θp,i

U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗

0,p,i := ( μp,i(p,−1), 02, 06, �ηp,i, 02 )B∗ ,

h∗
1,p,i := ( μp,i(p,−1), 02, 02, θp,i�ei, 02, �ηp,i, 02 )B∗ ,

return (param,B0,B
∗
0, B̂,B

∗, {h∗
β,p,i}i=1,2),

for β U← {0, 1}. For a probabilistic adversary D, the advantage of D for Basic Problem 4,
AdvBP4-p

D (λ), is similarly defined as in Definition 13.

Lemma 37 For any adversary C, there exists a probabilistic machine D, whose running time
is essentially the same as that of C, such that for any security parameter λ, AdvBP3-p

Cp
(λ) ≤

AdvBP4-p
Dp

(λ), where Cp(·) := C(p, ·),Dp(·) := D(p, ·)
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Proof. D is given an integer p and a BP4-p instance (param,B0,B
∗
0, B̂,B

∗, {h∗
β,p,i}i=1,2). D can

calculate

e0 := (0, τ, 0, 0, 0)B0 ,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

ei := ( 04, τ�ei, 04, 02, 02 )B

gi := ( 04, 04, τ�ei, 02, 02 )B,

where τ U← Fq using B0 and B̂ in the BP4-p instance. D sets

d4+i := b4+i − b6+i, d∗
6+i := b∗6+i + b∗4+i, for i = 1, 2,

D := (b1, . . . , b4, d5,d6, b7, . . . , b14), D
∗ := (b∗1, . . . , b

∗
6, d∗

7,d
∗
8, b∗9, . . . , b

∗
14),

D̂ := (b1, . . . , b4, b9, . . . , b14).

D can calculate D̂, but cannot calculate all the D using B̂ given in the BP4-p instance. D then
gives integer p and (param,B0,B

∗
0, D̂,D

∗, e0, {h∗
β,p,i, ei, gi}i=1,2) to C, and outputs β′ ∈ {0, 1} if

C outputs β′.
With D and D

∗, h∗
0,p,i,h

∗
1,p,i, ei, gi are represented as

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
h∗

0,p,i := ( μp,i(p,−1), 02, 06, �ηp,i, 02 )D∗ ,

h∗
1,p,i := ( μp,i(p,−1), 02, −θp,i�ei, θp,i�ei, 02, �ηp,i, 02 )D∗ ,

ei := ( 04, τ�ei, τ�ei, 02, 02, 02 )D

gi := ( 04, 04, τ�ei, 02, 02 )D

Therefore, the distribution of (param,B0,B
∗
0, D̂,D

∗, e0, {h∗
β,p,i, ei, gi}i=1,2) is exactly the same

as
{
�
∣∣∣ � R← GBP3-p

β (1λ, d)
}

. ��

Lemma 38 For any adversary D, there exists a probabilistic machine F , whose running time
is essentially the same as that of D, such that for any security parameter λ, AdvBP4-p

Dp
(λ) ≤∑2

j=1 AdvDLIN
Fp,j

(λ) + 10/q, where Dp(·) := D(p, ·),Fp,j(·) := F(p, j, ·).
Lemma 38 is proven in a similar manner to Lemma 1 in [14].

Definition 24 (Basic Problem 5-p for p = 1, . . . , d) Basic Problem 5-p is to guess β, given
(param,B0,B

∗
0,B, B̂

∗,h∗
0, {h∗

p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2, {h̃∗
j}j=5,6,9,10)

R← GBP5-p
β (1λ, d), where

GBP5-p
β (1λ, d) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂
∗ := (b∗1, . . . , b

∗
6, b

∗
9, . . . , b

∗
14), ρ

U← Fq,

for l = 1, . . . , p− 1, p+ 1, . . . , d; i = 1, 2;

�ei := (0i−1, 1, 02−i) ∈ F
2
q , �ηp,i, �χl,i, �ϕl,i

U← F
2
q , μp,i, σl,i

U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
h∗
p,i := ( μp,i(p,−1), 02, 02, ρ�ei, 02, �ηp,i, 02 )B∗ ,

e0,l,i := ( σl,i(1, l), 02, 06, 02, �ϕl,i )B,
e1,l,i := ( σl,i(1, l), 02, 02, �χl,i, 02, 02, �ϕl,i )B,

h∗
0 := ρb∗0,2, h̃∗

j := ρb∗j for j = 5, 6, 9, 10,

return (param,B0,B
∗
0,B, B̂

∗,h∗
0, {h∗

p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2, {h̃∗
j}j=5,6,9,10),
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for β
U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 5,

AdvBP5-p
C (λ), is similarly defined as in Definition 13.

Lemma 39 For any adversary C, there exists a probabilistic machine F , whose running time
is essentially the same as that of C, such that for any security parameter λ, AdvBP5-p

Cp
(λ) ≤∑

l=1,...,p−1,p+1,...,d(AdvDLIN
Fp,l,1

(λ)+AdvDLIN
Fp,l,2

(λ))+ε, where Cp(·) := C(p, ·),Fp,l,ι(·) := F(p, l, ι, ·), ε :=
5(d− 1)/q.

Proof. Combining Lemmas 40, 42 and 43, AdvBP5-p
Cp

(λ) ≤ ∑
l=1,...,p−1,p+1,...,d AdvBP6

Dp,l
(λ) ≤∑

l=1,...,p−1,p+1,...,d(AdvBP0
Dp,l,1

(λ)+AdvBP0
Dp,l,2

(λ)) ≤∑l=1,...,p−1,p+1,...,d(AdvDLIN
Fp,l,1

(λ)+AdvDLIN
Fp,l,2

(λ))+
ε, where ε := 5(d− 1)/q. This completes the proof of Lemma 39. ��

Definition 25 (Basic Problem 6) Basic Problem 6 is to guess β, given (param,B0,B
∗
0,B, B̂

∗,
h∗

0, {h∗
i , eβ,i}i=1,2, {h̃∗

j}j=5,6,9,10)
R← GBP6

β (1λ), where

GBP6
β (1λ) : (param, (B0,B

∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂
∗ := (b∗1, . . . , b

∗
6, b

∗
9, . . . , b

∗
14),

for i = 1, 2; �ei := (0i−1, 1, 02−i) ∈ F
2
q , μi, ρ, σi

U← Fq, �χi, �ϕi
U← F

2
q ,

2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗
i := ( μi, 03, 02, ρ�ei, 02, 02, 02 )B∗ ,

e0,i := ( σi, 03, 06, 02, �ϕi )B,
e1,i := ( σi, 03, 02, �χi, 02, 02, �ϕi )B,

h∗
0 := ρb∗0,2, h̃∗

j := ρb∗j for j = 5, 6, 9, 10,

return (param,B0,B
∗
0,B, B̂

∗,h∗
0, {h∗

i , eβ,i}i=1,2, {h̃∗
j}j=5,6,9,10),

for β U← {0, 1}. For a probabilistic adversary D, the advantage of D for Basic Problem 6,
AdvBP6

D (λ), is similarly defined as in Definition 13.

Lemma 40 For any adversary C, there exists a probabilistic machine D, whose running time
is essentially the same as that of C, such that for any security parameter λ,
AdvBP5-p

Cp
(λ) ≤∑l=1,...,p−1,p+1,...,d AdvBP6

Dp,l
(λ), where Cp(·) := C(p, ·),Dp,l(·) := D(p, l, ·)

Proof. To prove Lemma 40, we consider the following experiments. Basic Problem 5-p is the
hybrid of the following Experiment 0, 1, . . . , p− 1, p+ 1, . . . , d, i.e.,
AdvBP5-p

Cp
(λ) =

∣∣∣Pr
[
Exp0

Cp
(λ)→ 1

]
− Pr

[
ExpdCp

(λ)→ 1
]∣∣∣. Therefore, from Lemma 41, we obtain

Lemma 40. ��

Experiments: In Experiment 0, a part framed by a box indicates positions of coefficients to
be changed in a subsequent game. In the other experiments, a part framed by a box indicates
coefficients which were changed in an experiment from the previous experiment. Experiments
proceed as follows:

Experiment 0 ⇒ Experiment 1 ⇒ · · · ⇒ Experiment p − 1 ⇒ Experiment p + 1 ⇒ · · · ⇒
Experiment d

For a probabilistic adversary Cp, we define an experiment Exp0
Cp

using Problem BP5-p gen-

erator GBP5-p
0 (1λ, d) in Definition 24 as follows:
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1. Cp is given � R← GBP5-p
0 (1λ, d).

2. Output β′ R← Cp(1λ, �).

Experiment 0 (Exp0
Cp

) : β = 0 case of Basic Problem 5. That is,

for l = 1, . . . , p− 1, p+ 1, . . . , d; i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

el,i := ( σl,i(1, l), 02, 02, 02 , 02, 02, �ϕl,i )B

where all variables are generated as in Basic Problem 5.

Experiment l (ExplCp
, for l = 1, . . . , p−1, p+1, . . . , d) : Same as Experiment l−1 if l 
= p+1

and p− 1 if l = p+ 1 except that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
el,i := ( σl,i(1, l), 02, 02, �χl,i , 02, 02, �ϕl,i )B

(26)

where �χl,i
U← F

2
q , and all the other variables are generated as in Experiment l − 1 if l 
= p + 1

and p− 1 if l = p+ 1.

Lemma 41 For any adversary C, there exists a probabilistic machine D, whose running time
is essentially the same as that of C, such that for any security parameter λ, |Pr[ExplCp,l

(λ) →
1] − Pr[Expl−1

Cp,l
(λ) → 1]| ≤ AdvBP6

Dp,l
(λ) if l 
= p + 1, |Pr[Expp+1

Cp,p+1
(λ) → 1] − Pr[Expp−1

Cp,p+1
(λ) →

1]| ≤ AdvBP6
Dp,p+1

(λ) if l 
= p+ 1, where Cp,l(·) := C(p, l, ·),Dp,l(·) := D(p, l, ·).
Proof. Since the case with l = p+ 1 is proven in a similar manner as the case with l 
= p+ 1,
hereafter, we deal with the l 
= p+ 1 case only.

Given a BP6 instance (param,B0,B
∗
0,B, B̂

∗, {h∗
i , eβ,i}i=1,2) and integers p, l, D calculates(

d1

d2

)
:= Z

(
b1

b2

)
:=

(
p l
−1 −1

)(
b1

b2

)
, where Z :=

(
p l
−1 −1

)
,(

d∗
1

d∗
2

)
:= U

(
b∗1
b∗2

)
:= (l − p)−1

( −1 1
−l p

)(
b∗1
b∗2

)
, where U :=

(
Z−1

)T
,

D := (d1,d2, b3, . . . , b14), D
∗ := (d∗

1,d
∗
2, b

∗
3, . . . , b

∗
14), D̂

∗ := (d∗
1,d

∗
2, b

∗
3, . . . , b

∗
6, b

∗
9, . . . , b

∗
14),

h∗
p,i := h∗

i , eβ,l,i := eβ,i,

and {eβ,t,i}t=1,...,d,t �=p,l; i=1,2, {h̃∗
j}j=5,6,9,10 with ρ, σt,i

U← Fq, �χt,i, �ϕt,i
U← F

2
q and dual basis

(D,D∗) as in the definition of Experiment l. D then gives � := (param,B0,B
∗
0,D, D̂

∗,
{h∗

p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2, {h̃∗
j}j=5,6,9,10) to C, and outputs β′ ∈ {0, 1} if C outputs β′.

Claim 6 When β = 0 (resp.β = 1), the distribution of � is exactly same as that of instances
in Experiment l − 1 (resp. Experiment l).

Proof. We will consider the joint distribution of (D, D̂∗, {h∗
p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2,

{h̃∗
j}j=5,6,9,10). {h∗

p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2 are given as

h∗
p,i := ( μp,i(1, 0), 04, ρ�ei, 02, �ηi, 02 )B∗ = ( μp,i(p, −1), 04, ρ�ei, 02, �ηi, 02 )D∗ ,

e0,l,i := ( σi(1, 0), 06, 02, 02, �ϕi )B = ( σ̃i(1, l), 06, 02, 02, �ϕi )D,

e1,l,i := ( σi(1, 0), 06, �χi, 02, �ϕi )B = ( σ̃i(1, l), 06, �χi, 02, �ϕi )D,
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where σ̃i := (p− l)σi since(
b∗1
b∗2

)
= U−1

(
d∗

1

d∗
2

)
= ZT

(
d∗

1

d∗
2

)
=
(
p −1
l −1

)(
d∗

1

d∗
2

)
,(

b1

b2

)
= Z−1

(
d1

d2

)
= UT

(
d1

d2

)
= (p− l)

(
1 l
−1 −p

)(
d1

d2

)
.

Since (B, B̂∗) and (D, D̃∗) have the same distribution, the distribution of � is exactly same as
that of instances in Experiment l − 1 (resp. Experiment l) when β = 0 (resp.β = 1). ��
Claim 6 completes the proof of Lemma 41. ��

For upper-bounding AdvBP6
Dp,l

(λ) by the advantage for the DLIN problem, we use an interme-
diate problem, Basic Problem 0, below.

Definition 26 (Basic Problem 0) Basic Problem 0 is to guess β, given (paramBP0,B, B̂
∗,

{h∗
i }i=1,2, eβ , κG, ξG, ρξG) R← GBP0

β (1λ), where

GBP0
β (1λ) : (paramBP0, (B,B

∗), κG, ξG) R← Gob(1λ, (N := 5)), B̂
∗ := (b∗1, b

∗
4, b

∗
5),

μ1, μ2, ρ, σ, χ1, χ2, φ1, φ2
U← Fq,

h∗
1 := ( μ1, ρ, 0, 0, 0 )B∗ , h∗

2 := ( μ2, 0, ρ, 0, 0 )B∗ ,

e0 := ( σ, 0, 0, φ1, φ2 )B, e1 := ( σ, χ1, χ2, φ1, φ2 )B,

return (paramBP0,B, B̂
∗, {h∗

i }i=1,2, eβ, κG, ξG, ρξG),

for β
U← {0, 1}. For a probabilistic adversary E, the advantage of E for Basic Problem 0,

AdvBP0
E (λ), is similarly defined as in Definition 13.

Lemma 42 For any adversary E, there exists a probabilistic machine F , whose running time
is essentially the same as that of E, such that for any security parameter λ, AdvBP0

E (λ) ≤
AdvDLIN

F (λ) + 5/q.

Proof. Given a DLIN instance (paramG, G, ξG, κG, δξG, σκG, Yβ), F calculates

paramV := (q,V,GT ,A, e) := Gdpvs(1λ, 5, paramG),

gT := e(κG, ξG)
(
= e(G,G)κξ

)
, paramBP0 := (paramV, gT ).

F sets 5× 5 matrices Π∗,Π as follows:

Π :=

⎛
⎜⎜⎜⎜⎝

ξ 1 1
π−1

1

π−1
2

κ 1
κ 1

⎞
⎟⎟⎟⎟⎠ , Π∗ :=

⎛
⎜⎜⎜⎜⎝

κ
−π1κ −π1ξ π1κξ
−π2κ −π2ξ π2κξ

ξ
ξ

⎞
⎟⎟⎟⎟⎠ ,

where π1, π2
U← Fq. Then, Π · (Π∗)T = κξ · I5. By using matrices Π and Π∗, F sets

u1 := (ξ, 0, 0, 1, 1)A, u2 := (0, 0, 0, π−1
1 , 0)A, u3 := (0, 0, 0, 0, π−1

2 )A,

u4 := (0, κ, 0, 1, 0)A, u5 := (0, 0, κ, 0, 1)A,

u∗
1 := (κ, 0, 0, 0, 0)A, u∗

2 := (−π1κ,−π1ξ, 0, π1κξ, 0)A, u∗
3 := (−π2κ, 0,−π2ξ, 0, π2κξ)A,

u∗
4 := (0, ξ, 0, 0, 0)A, u∗

5 := (0, 0, ξ, 0, 0)A,
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F can compute ui for i = 1, . . . , 5 and u∗
i for i = 1, 4, 5 from the above DLIN instance. Let

bases U := (ui)i=1,...,5, U
∗ := (u∗

i )i=1,...,5 of V. F then generates η, ϕ1, ϕ2
U← Fq such that η 
= 0,

and sets

v∗
1 := (ϕ1G,−π1ηG, 0, π1η(κG), 0) (= (ϕ1,−π1η, 0, π1ηκ, 0)A) ,

v∗
2 := (ϕ2G, 0,−π2ηG, 0, π2η(κG)) (= (ϕ2, 0,−π2η, 0, π2ηκ)A) ,

wβ := (δξG, σκG, σκG, Yβ , Yβ).

F generates a random matrix W U← GL(5,Fq), then calculates

b∗i := u∗
i W for i = 1, 4, 5, bi := ui (W−1)T for i = 1, . . . , 5,

B̂
∗ := (b∗1, b

∗
4, b

∗
5). B := (b1, . . . , b5),

f∗
i = v∗

i W for i = 1, 2, yβ = wβ (W−1)T.

F then gives (param,B, B̂∗, {f∗
i }i=1,2,yβ , κG, ξG, ηG) to E , where κG, ξG,G are contained in

the DLIN instance, and outputs β′ ∈ {0, 1} if E outputs β′.
If we set

ρ := ξ−1η, μ1 := ρπ1 + κ−1ϕ1, μ2 := ρπ2 + κ−1ϕ2,

then ρ 
= 0 (since η 
= 0),

v∗
1 = (ϕ1,−π1η, 0, π1ηκ, 0)A = ((μ1 − ρπ1)κ,−π1ρξ, 0, ρπ1κξ, 0)A

= μ1u
∗
1 + ρu∗

2 = (μ1, ρ, 0, 0, 0)U∗ ,

v∗
2 = (ϕ2, 0,−π2η, 0, π2ηκ)A = ((μ2 − ρπ2)κ, 0,−π2ρξ, 0, ρπ2κξ)A

= μ2u
∗
1 + ρu∗

3 = (μ2, 0, ρ, 0, 0)U∗ ,

f∗
1 = v∗

1 W = ((μ1, ρ, 0, 0, 0)U∗)W = (μ1, ρ, 0, 0, 0)B∗ .

f∗
2 = v∗

2 W = ((μ2, 0, ρ, 0, 0)U∗)W = (μ2, 0, ρ, 0, 0)B∗ ,

where ρ, μ1, μ2 are uniformly and independently distributed since η, ϕ1, ϕ2
U← Fq.

If β = 0, i.e., Yβ = Y0 = (δ + σ)G, then

w0 = (δξG, σκG, σκG, (δ + σ)G, (δ + σ)G) = (δξ, σκ, σκ, δ + σ, δ + σ)A

= δu1 + σu4 + σu5 = (δ, 0, 0, σ, σ)U

y0 = w0 (W−1)T = ((δ, 0, 0, σ, σ)U) (W−1)T = (δ, 0, 0, σ, σ)B.

Therefore, the distribution of (param,B, B̂∗, {f∗
i }i=1,2,y0, κG, ξG, κG, ξG, ηG = ρξG) is exactly

the same as
{
�
∣∣∣ � R← GBP0

0 (1λ)
}

when κ 
= 0 and ξ 
= 0, i.e., except with probability 2/q.
If β = 1, i.e., Yβ = Y1 (= ψG) is uniformly distributed in G, we set τ := ψ − δ − σ. Then

w1 = (δξG, σκG, σκG, (δ + τ + σ)G, (δ + τ + σ)G) = (δξ, σκ, σκ, δ + τ + σ, δ + τ + σ)A

= δu1 + π1τu2 + π2τu3 + σu4 + σu5 = (δ, π1τ, π2τ, σ, σ)U, and
y1 = w1 (W−1)T = ((δ, χ1, χ2, σ, σ)U) (W−1)T = (δ, χ1, χ2, σ, σ)B,

where χi := πiτ for i = 1, 2 are also uniformly and independently distributed. Therefore, the
distribution of (param,B, B̂∗, {f∗

i }i=1,2,y1, κG, ξG, ηG = ρξG) is exactly the same as{
�
∣∣∣ � R← GBP0

1 (1λ)
}

when κ 
= 0, ξ 
= 0 and ρ 
= 0, i.e., except with probability 3/q.

Therefore, AdvBP0
E (λ) ≤ AdvDLIN

F (λ) + 2/q + 3/q = AdvDLIN
F (λ) + 5/q. ��
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Lemma 43 For any adversary D, there exists a probabilistic machine E, whose running time
is essentially the same as that of D, such that for any security parameter λ, AdvBP6

Dp,l
(λ) ≤

AdvBP0
Ep,l,1

(λ) + AdvBP0
Ep,l,2

(λ), where Dp,l(·) := D(p, l, ·), Ep,l,ι(·) := E(p, l, ι, ·).

Proof. To prove Lemma 43, we consider the following experiments. Basic Problem 6 is the hy-
brid of the following Experiment 0, 1, 2, i.e., AdvBP6

Dp
(λ) =

∣∣∣Pr
[
Exp0

Dp
(λ)→ 1

]
− Pr

[
Exp2

Dp
(λ)→ 1

]∣∣∣.
Therefore, from Lemmas 48–56, and Lemmas in Appendix A.4.2, we obtain Lemma 43. ��

Experiments: In Experiment 0, a part framed by a box indicates positions of coefficients to
be changed in a subsequent game. In the other experiments, a part framed by a box indicates
coefficients which were changed in an experiment from the previous experiment.

For a probabilistic adversary Dp, we define an experiment Exp0
Dp

using Problem BP6 gener-
ator GBP6

0 (1λ, d) in Definition 24 as follows:

1. Dp is given � R← GBP6
0 (1λ, d).

2. Output β′ R← Dp(1λ, �).

Experiment 0 (Exp0
Cp

) : β = 0 case of Basic Problem 6. That is,

for i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

ei := ( σi 03, 02, 02 , 02, 02, �ϕi )B

where all variables are generated as in Basic Problem 6.

Experiment i (ExpiCp
, for i = 1, 2) : Same as Experiment i− 1 except that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
ei := ( σi, 03, 02, �χi , 02, 02, �ϕi )B

(27)

where �χi
U← F

2
q , and all the other variables are generated as in Experiment i− 1.

Lemma 44 For any adversary D, there exists a probabilistic machine E, whose running time
is essentially the same as that of D, such that for any security parameter λ, |Pr[ExpiDp,l

(λ) →
1]− Pr[Expi−1

Dp,l
(λ)→ 1]| ≤ AdvBP0

Ep,l
(λ), where Dp,l(·) := D(p, l, ·), Ep,l(·) := E(p, l, ·).

Proof. We will show only the case of i = 1 below. Lemma 44 when i = 2 is proven in a similar
way.
E is given a Basic Problem 0 instance

(paramBP0,B, B̂
∗, {h∗

i }i=1,2, eβ , κG, ξG, ρξG).

By using paramG := (q,G,GT , G, e) underlying paramBP0, E calculates

param0 := (q,V0,GT ,A0, e) := Gdpvs(1λ, 5, paramG),
param := (q,V,GT ,A, e) := Gdpvs(1λ, 14, paramG),
param�n := (param0, param, gT ),
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where gT is contained in paramBP0. E generates random matrices W0
U← GL(5,Fq),W

U←
GL(14,Fq), then sets

d0,ι := (0ι−1, κG, 05−ι)W0, d∗
0,ι := (0ι−1, ξG, 05−ι) (W−1

0 )T for ι = 1, . . . , 5,

d1 := (b1, 09)W, d∗
1 := (b∗1, 0

9)(W−1)T,
d7 := (b2, 09)W, d∗

7 := (b∗2, 0
9)(W−1)T, d8 := (b3, 09)W, d∗

8 := (b∗3, 0
9)(W−1)T,

d13 := (b4, 09)W, d∗
13 := (b∗4, 0

9)(W−1)T, d14 := (b5, 09)W, d∗
14 := (b∗5, 0

9)(W−1)T,
dι := (05, 0ι−2, κG, 010−ι)W, d∗

ι := (05, 0ι−2, ξG, 010−ι)(W−1)T for ι = 2, . . . , 6,
dι := (0ι+1, κG, 012−ι)W, d∗

ι := (0ι+1, ξG, 012−ι)(W−1)T for ι = 9, . . . , 12,

gβ,1 := (eβ , 09)W, gβ,2 := (σ2, 011, �ϕ2)D∗ ,where σ2
U← Fq, �ϕ2

U← F
2
q ,

p∗
0 := (0, ρξG, 03)(W−1

0 )T, p∗
i := (h∗

i , 0
9)(W−1)T for i = 1, 2,

p̃∗
j := (0j−1, ρξG, 014−j)(W−1)T for j = 5, 6, 9, 10,

where (v, 09) := (G̃1, . . . , G̃5, 09) for any v := (G̃1, . . . , G̃5) ∈ G
5. Then, D0 := (d0,i)i=1,...,5 and

D
∗
0 := (d∗

0,i)i=1,...,5, D := (di)i=1,...,14 and D
∗ := (d∗

i )i=1,...,14 are dual orthonormal bases. E can
compute D0 := (d0,1, . . . ,d0,5), D

∗
0 := (d∗

0,1, . . . ,d
∗
0,5), D := (d1, . . . ,d14), D̂

∗ := (d∗
1, . . . ,d

∗
6,d

∗
9,

. . . ,d∗
14) from B, B̂∗ := (b∗1, b∗4, b∗5), κG, and ξG. D then gives � := (param,D0,D

∗
0,D, D̂

∗,p∗
0, {p∗

i ,
gβ,i}i=1,2, {p̃∗

j}j=5,6,9,10) to D, and outputs β′ ∈ {0, 1} if D outputs β′.
We can see that the distribution of � is exactly the same as in Exp0

Cp
(resp. Exp1

Cp
) if β = 0

(resp.β = 1). ��

A.4.3 Proof of Lemma 23

Lemma 23. Problem 1-ABE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F1,F2, whose running times are

essentially the same as that of B, such that for any security parameter λ, AdvP1-ABE
B (λ) ≤

AdvDLIN
F1

(λ) +
∑d

p=1

∑2
j=1 AdvDLIN

F2-p-j
(λ) + ε, where F2-p-j(·) := F2(p, j, ·), ε := (10d+ 5)/q.

Proof. To prove Lemma 23, we consider the following experiments. Problem 1-ABE is the
hybrid of the following Experiment 0, 1, . . . , 2-d-2-2, i.e., AdvP1-ABE

B (λ) =
∣∣Pr

[
Exp0

B(λ)→ 1
]−

Pr
[
Exp2-d-2-2

B (λ)→ 1
]∣∣. Therefore, from Lemmas 45, 46, 47 and Lemmas in Appendix A.4.2,

we obtain Lemma 23. ��

Experiments In Experiment 0, a part framed by a box indicates positions of coefficients to be
changed in a subsequent experiment. In the other experiments, a part framed by a box indicates
coefficients which were changed in an experiment from the previous experiment. Experiments
proceed as follows:

Experiment 0 ⇒ Experiment 1 ⇒ (for p = 1, . . . , d; j = 1, 2; l = 1, 2; Experiment 2-p-j-l)

For a probabilistic adversary B, we define an experiment Exp0
B using Problem 1-ABE gen-

erator GP1-ABE
β (1λ, d) in Definition 18 as follows:

1. B is given � R← GP1-ABE
0 (1λ, d).

2. Output β′ R← B(1λ, �).
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DLIN

Figure 3: Structure of Reductions for the Proof of Lemma 23

Experiment 0 (Exp0
B) : β = 0 case of Problem 1-ABE. That is,

e0 := (ω, 0 , 0, 0, ϕ0)B0 ,

for t = 1, . . . , d; i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

et,i := ( σt,i(1, t), ω�ei, 02 , 02, 02 , 02, �ϕt,i )B

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(28)

where all variables are generated as in Problem 1-ABE.

Experiment 1 (Exp1
B) : Same as Experiment 0 except that

e0 := (ω, τ , 0, 0, ϕ0)B0 ,

for t = 1, . . . , d; i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

et,i := ( σt,i(1, t), ω�ei, τ�ei , 02, 02, 02, �ϕt,i )B

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(29)

where τ U← Fq, and all the other variables are generated as in Experiment 0.

Experiment 2-p-j-1 (Exp2-p-j-1
B , for p = 1, . . . , d; j = 1, 2) : Experiment 2-0-2-2 is Exper-

iment 1. Same as Experiment 2-(p − 1)-2-2 if j = 1, or Experiment 2-p-1-2 if j = 2 except
that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
ep,j := ( σp,j(1, p), ω�ej , τ�ej , 02, σ̃p,j(1, p) , 02, �ϕp,j )B

(30)

where σ̃p,j
U← Fq, and all the other variables are generated as in Experiment 2-(p − 1)-2-2 if

j = 1, or Experiment 2-p-1-2 if j = 2.

Experiment 2-p-j-2 (Exp2-p-j-2
B , for p = 1, . . . , d; j = 1, 2) : Same as Experiment 2-p-j-1

except that
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

ep,j := ( σp,j(1, p), ω�ej , τ�ej , 02, τ(zp,j,1, zp,j,2) , 02, �ϕp,j )B

(31)
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where zp,j,1, zp,j,2
U← Fq, and all the other variables are generated as in Experiment 2-p-j-1.

Let Zt :=
(
zt,1,1 zt,1,2
zt,2,1 zt,2,2

)
for t = 1, . . . , d, then et,j in the final experiment (Experiment

2-d-2-2) are expressed as

for t = 1, . . . , d; j = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

et,j := ( σt,j(1, t), ω�ej , τ�ej , 02, τ�ejZt, 02, �ϕt,j )B

where Zt
U← F

2×2
q . Therefore, the distribution in Experiment 2-d-2-2 and that in the β = 1 case

of Problem 1-ABE are equivalent except for the case that det(Zt) = 0 for some t, i.e., except
with probability d/q.

Lemmas In the following, we consider canonical (monomial) linear order in N
2. For (t1, i1), (t2, i2) ∈

N
2,

(t1, i1) < (t2, i2) ⇐⇒ (t1 < t2) or (t1 = t2 and i1 < i2),
(t1, i1) > (t2, i2) ⇐⇒ (t2, i2) < (t1, i1).

Lemma 45 For any adversary B, there exists a probabilistic machine C1, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(0)
B (λ) →

1]− Pr[Exp
(1)
B (λ)→ 1]| ≤ AdvBP1

C1
(λ).

Proof. Given a BP1 instance (param,B0, B̂
∗
0,B, B̂

∗, eβ,0, {eβ,i}i=1,2), C1 calculates

gt,i := σt,i(b1 + tb2) + eβ,i + ϕt,i,1b13 + ϕt,i,2b14,

where σt,i, ϕt,i,1, ϕt,i,2
U← Fq. C1 then sets B̂0 := (b0,1, b0,3, b0,5), B̂′∗

0 := (b∗0,1, b∗0,3, b∗0,4), B̂ :=
(b1, . . . , b4, b13, b14), B̂′∗ := (b∗1, . . . , b∗4, b∗11, b∗12).
C1 then gives � := (param, B̂0, B̂

′∗
0 , B̂, B̂

′∗, eβ,0, {gt,i}t=1,...,d;i=1,2) to B, and outputs β′ ∈ {0, 1}
if B outputs β′. If β = 0 (resp.β = 1), the distribution of � is exactly same as that of instances
in Experiment 0 (resp. Experiment 1). ��

Lemma 46 For any adversary B, there exists a probabilistic machine C2, whose running time is
essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-(p−1)-2-2)
B (λ)→

1]−Pr[Exp
(2-p-1-1)
B (λ)→ 1]| ≤ AdvBP1

C2-p-j
(λ) (j = 1), or |Pr[Exp

(2-p-1-2)
B (λ)→ 1]−Pr[Exp

(2-p-2-1)
B (λ)

→ 1]| ≤ AdvBP1
C2-p-j

(λ) (j = 2), where C2-p-j(·) := C2(p, j, ·).

Proof. Given integers (p, j) and a BP1 instance (param,B0, B̂
∗
0,B, B̂

∗, eβ,0, {eβ,i}i=1,2), C2
sets new dual orthonormal bases D := (d1, . . . ,d14) := (b3, b4, b1, b2, b9, b10, b7, b8, b5, b6, b11,
. . . , b14) and D

∗ := (d∗
1, . . . ,d

∗
14) := (b∗3, b∗4, b∗1, b∗2, b∗9, b∗10, b∗7, b∗8, b∗5, b∗6, b∗11, . . . , b∗14).

C2 then sets B̂0 := (b0,1, b0,3, b0,5), B̂′∗
0 := (b∗0,1, b∗0,3, b∗0,4), D̂ := (d1, . . . ,d4,d13,d14), D̂∗ :=

(d∗
1, . . . ,d

∗
4,d

∗
11,d

∗
12). C2 can calculate (D̂, D̂∗) from (B, B̂∗) in the BP1 instance.

C2 then calculates et,i for (t, i) < (p, j) as in Eq. (31) and et,i for (t, i) > (p, j) as in Eq. (29),

using D and ω̃, τ̃ , σt,i, zt,i,1, zt,i,2, ϕt,i,1, ϕt,i,2
U← Fq. Using ω̃, τ̃ , C2 calculates

g0 := (ω̃, τ̃ , 0, 0, ϕ0)D0 ,

gp,j := eβ,1 + peβ,2 + ω̃d2+j + τ̃d4+j ,
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where ϕ0
U← Fq. C2 then gives � := (param, B̂0, B̂

′∗
0 , B̂, B̂

′∗, g0, {et,i}(t,i) �=(p,j), gp,j) to B, and
outputs β′ ∈ {0, 1} if B outputs β′. When j = 1, if β = 0 (resp.β = 1), the distribution of
� is exactly same as that of instances in Experiment 2-(p − 1)-2-2 (resp. Experiment 2-p-1-1).
When j = 2, if β = 0 (resp.β = 1), the distribution of � is exactly same as that of instances in
Experiment 2-p-1-2 (resp. Experiment 2-p-2-1). ��
Lemma 47 For any adversary B, for any security parameter λ,
Pr[Exp

(2-p-j-1)
B (λ)→ 1] = Pr[Exp

(2-p-j-2)
B (λ)→ 1].

Proof. We generate Z U← GL(2,Fq), U := (Z−1)T, and set
(

d9

d10

)
:= UT ·

(
b9

b10

)
and

D := (b1, . . . , b8,d9,d10, b11, . . . , b14) (and its dual D
∗). (D,D∗) are consistent with (B̂, B̂∗).

Since
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

for (t, i) < (p, j), et,i = ( σt,i(1, t), ω�ei, τ�ei, 02, τ�zt,i, 02, �ϕt,i )B,
= ( σt,i(1, t), ω�ei, τ�ei, 02, τ�z ′

t,i, 02, �ϕt,i )D,

for (t, i) = (p, j), et,i = ( σp,j(1, p), ω�ej , τ�ej , 02, σ̃p,j(1, p), 02, �ϕp,j )B,
= ( σp,j(1, p), ω�ej , τ�ej , 02, τ�zp,j , 02, �ϕp,j )D,

for (t, i) > (p, j), et,i = ( σt,i(1, t), ω�ei, τ�ei, 02, 02, 02, �ϕt,i )B,
= ( σt,i(1, t), ω�ei, τ�ei, 02, 02, 02, �ϕt,i )D,

where �zp,j := τ−1σ̃p,j(1, p) ·Z and �zt,i := (zt,i,1, zt,i,2), �z ′
t,i := �zt,i ·Z for (t, i) < (p, j). Therefore,

�zp,j and �z ′
t,i for (t, i) < (p, j) are uniformly and independently distributed, and the joint distri-

bution for Experiment 2-p-j-1 and that for Experiment 2-p-j-2 are equivalent. ��

A.4.4 Proof of Lemma 24

Lemma 24. Problem 2-ABE is computationally intractable under the DLIN assumption.
For any adversary B, there exist probabilistic machines F1,F2-1, . . . ,F2-5, whose running

times are essentially the same as that of B, such that for any security parameter λ, AdvP2-ABE
B (λ) ≤

AdvDLIN
F1

(λ) +
∑d

p=1

∑2
j=1

(
AdvDLIN

F2-p-1-j
(λ) + AdvDLIN

F2-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F2-p-3-j-l
(λ)+

AdvDLIN
F2-p-4-j-l

(λ)
)

+ AdvDLIN
F2-p-5-j

(λ)
)

+ ε, where F2-p-1-j(·) := F2-1(p, j, ·),F2-p-2-j(·) := F2-2(p, j, ·),
F2-p-3-j-l(·) := F2-3(p, j, l, ·),F2-p-4-j-l(·) := F2-4(p, j, l, ·),F2-p-5-j(·) := F2-5(p, j, ·) and ε :=
(20d2 + 10d+ 5)/q.

Proof. To prove Lemma 24, we consider the following experiments. Problem 2-ABE is the
hybrid of the following Experiment 0, 1, . . . , 2-d-8, i.e., AdvP2-ABE

B (λ) =
∣∣Pr

[
Exp0

B(λ)→ 1
]−

Pr
[
Exp2-d-8

B (λ)→ 1
]∣∣ (Figure 4). Therefore, from Lemmas 48–56, and Lemmas in Appendix

A.4.2, AdvP2-ABE
B (λ) =

∣∣Pr
[
Exp0

B(λ)→ 1
]− Pr

[
Exp2-d-8

B (λ)→ 1
]∣∣

≤ AdvBP2
C1

(λ) +
∑d

p=1

(
AdvBP3-p

C2-p-1
(λ) + AdvBP3-p

C2-p-2
(λ) + AdvBP5-p

C2-p-3
(λ) + AdvBP5-p

C2-p-4
(λ) + AdvBP4-p

D2-p-5
(λ)

)
≤ AdvDLIN

F1
(λ) +

∑d
p=1

∑2
j=1

(
AdvDLIN

F2-p-1-j
(λ) + AdvDLIN

F2-p-2-j
(λ) +

∑
l=1,...,d; l �=p

(
AdvDLIN

F2-p-3-j-l
(λ)+

AdvDLIN
F2-p-4-j-l

(λ)
)

+ AdvDLIN
F2-p-5-j

(λ)
)

+ (20d2 + 10d+ 5)/q, we obtain Lemma 24. ��

Experiments In Experiment 0, a part framed by a box indicates positions of coefficients to
be changed in a subsequent game. In the other experiments, a part framed by a box indicates
coefficients which were changed in an experiment from the previous experiment. Experiments
proceed as follows:
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Figure 4: Structure of Reductions for the Proof of Lemma 24

Experiment 0 ⇒ Experiment 1 ⇒
for p = 1, . . . , d; Experiment 2-p-1 ⇒ · · · ⇒ Experiment 2-p-8

For a probabilistic adversary B, we define an experiment Exp0
B using Problem 2-ABE gen-

erator GP2-ABE
β (1λ, d) in Definition 19 as follows:

1. B is given � R← GP2-ABE
0 (1λ, d).

2. Output β′ R← B(1λ, �).

Experiment 0 (Exp0
B) : β = 0 case of Problem 2-ABE. That is,

h∗
0 := (δ, 0 , 0, η0, 0)B∗

0
,

for t = 1, . . . , d; i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
t,i := ( μt,i(t,−1), δ�ei, 06 , �ηt,i, 02 )B∗

e0 := (ω, τ, 0, 0, ϕ0)B0 ,

for t = 1, . . . , d; i = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

et,i := ( σt,i(1, t), ω�ei, τ�ei, 02 , τ�eiZt, 02, �ϕt,i )B,
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where all variables are generated as in Problem 2-ABE.
Below, we describe coefficients of the hidden part, i.e., span〈b5, . . . , b10〉 (resp. span〈b∗5, . . . ,

b∗10〉) of et,i (resp. h∗
t,i) w.r.t. these bases vectors for t = 1, . . . , d. Non-zero coefficients are

colored by light gray, and those which were changed from the previous experiment are colored
by dark gray.

Coefficients of the hidden part of et,i
in Experiment 0

Coefficients of the hidden part of h∗
t,i

in Experiment 0
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1
...
p
...
d

Experiment 1 (Exp1
B) : Same as Experiment 0 except that

h∗
0 := (δ, ρ , 0, η0, 0)B∗

0
,

for t = 1, . . . , d; i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
t,i := ( μt,i(t,−1), δ�ei, ρ�ei , 04, �ηt,i, 02 )B∗

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(32)

where ρ U← Fq, and all the other variables are generated as in Experiment 0.

Coefficients of the hidden part of et,i
in Experiment 1

Coefficients of the hidden part of h∗
t,i

in Experiment 1
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�ei

...
...

p
...
d ρ�ei

Coefficients of the hidden part of et,i
in Experiment 2-(p− 1)-8

Coefficients of the hidden part of h∗
t,i

in Experiment 2-(p− 1)-8
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Experiment 2-p-1 (Exp2-p-1
B , for p = 1, . . . , d) : Experiment 2-0-8 is Experiment 1. Same as

Experiment 2-(p− 1)-8 except that

for t = 1, . . . , d; i = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

et,i := ( σt,i(1, t), ω�ei, τ�ei, τ�ei , τ�eiZt, 02, �ϕt,i )B,

⎫⎪⎪⎬
⎪⎪⎭ (33)
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where all the variables are generated as in Experiment 2-(p− 1)-8.

Coefficients of the hidden part of et,i
in Experiment 2-p-1

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-1
t = 1 τ�ei τ�ei τ�eiZ1

...
...

...
...

p
...
d τ�ei τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Experiment 2-p-2 (Exp2-p-2
B , for p = 1, . . . , d) : Same as Experiment 2-p-1 except that

for i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
p,i := ( μp,i(p,−1), δ�ei, (ρ− θp,i)�ei, θp,i�ei , 02, �ηp,i, 02 )B∗

where θp,i
U← Fq, and all the other variables are generated as in Experiment 2-p-1.

Experiment 2-p-3 (Exp2-p-3
B , for p = 1, . . . , d) : Same as Experiment 2-p-2 except that

for i = 1, 2;
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
p,i := ( μp,i(p,−1), δ�ei, θp,i�ei, (ρ− θp,i)�ei , 02, �ηp,i, 02 )B∗

where all the variables are generated as in Experiment 2-p-2.

Experiment 2-p-4 (Exp2-p-4
B , for p = 1, . . . , d) : Same as Experiment 2-p-3 except that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
for i = 1, 2, h∗

p,i := ( μp,i(p,−1), δ�ei, 02, ρ�ei , 02, �ηp,i, 02 )B∗ ,

where all the variables are generated as in Experiment 2-p-3.

Coefficients of the hidden part of et,i
in Experiment 2-p-4

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-4
t = 1 τ�ei τ�ei τ�eiZ1

...
...

...
...

p
...
d τ�ei τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Experiment 2-p-5 (Exp2-p-5
B , for p = 1, . . . , d) : Same as Experiment 2-p-4 except that

for l = 1, . . . , p− 1, p+ 1, . . . , d; i = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷︸︸︷

el,i := ( σl,i(1, l), ω�ei, τ�ei, �χl,i , τ�eiZl, 02, �ϕl,i )B,
(34)
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where �χl,i
U← F

2
q , and all the other variables are generated as in Experiment 2-p-4.

Coefficients of the hidden part of et,i
in Experiment 2-p-5

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-5
t = 1 τ�ei �χ1,i τ�eiZ1

...
...

...
...

p τ�ei

...
...

d τ�ei �χd,i τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�ei

...
...

d ρ�ei

Experiment 2-p-6 (Exp2-p-6
B , for p = 1, . . . , d) : Same as Experiment 2-p-5 except that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
for i = 1, 2, h∗

p,i := ( μp,i(p,−1), δ�ei, 02, ξ�ei, ρ�eiUp , �ηp,i, 02 )B∗

ep,i := ( σp,i(1, p), ω�ei, τ�ei, 02 , τ�eiZp, 02, �ϕp,i )B,

where ξ U← Fq, Zp
U← GL(2,Fq), Up := (Z−1

p )T, and all the other variables are generated as in
Experiment 2-p-5.

Coefficients of the hidden part of et,i
in Experiment 2-p-6

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-6
t = 1 τ�ei �χ1,i τ�eiZ1

...
...

...
...

p
...

...
d τ�ei �χd,i τ�eiZd

t = 1 ρ�eiU1

...
...

p ξ�ei ρ�eiUp

...
...

d ρ�ei

Experiment 2-p-7 (Exp2-p-7
B , for p = 1, . . . , d) : Same as Experiment 2-p-6 except that

for l = 1, . . . , p− 1, p+ 1, . . . , d, i = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

el,i := ( σl,i(1, l), ω�ei, τ�ei, 02 , τ�eiZl, 02, �ϕl,i )B,

where all the variables are generated as in Experiment 2-p-6.

Coefficients of the hidden part of et,i
in Experiment 2-p-7

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-7
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ξ�ei ρ�eiUp

...
...

d ρ�ei

Experiment 2-p-8 (Exp2-p-8
B , for p = 1, . . . , d) : Same as Experiment 2-p-7 except that

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷
for i = 1, 2, h∗

p,i := ( μp,i(p,−1), δ�ei, 02, 02 , ρ�eiUp, �ηp,i, 02 )B∗ ,
(35)
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where all the variables are generated as in Experiment 2-p-7.
Experiment 2-8-d is the β = 1 case of Problem 2-ABE.

Coefficients of the hidden part of et,i
in Experiment 2-p-8

Coefficients of the hidden part of h∗
t,i

in Experiment 2-p-8
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p ρ�eiUp

...
...

d ρ�ei

Coefficients of the hidden part of et,i
in Experiment 2-d-8

Coefficients of the hidden part of h∗
t,i

in Experiment 2-d-8
t = 1 τ�ei τ�eiZ1

...
...

...
p
...
d τ�ei τ�eiZd

t = 1 ρ�eiU1

...
...

p
...
d ρ�eiUd

Lemmas

Lemma 48 For any adversary B, there exists a probabilistic machine C1, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(0)
B (λ) →

1]− Pr[Exp
(1)
B (λ)→ 1]| ≤ AdvBP2

C1
(λ).

Proof. Given a BP2 instance (param, B̂0,B
∗
0, B̂,B

∗,h∗
β,0, e0, {h∗

β,i, ei}i=1,2), C1 calculates

p∗
t,i := μt,i(tb∗1 − b∗2) + h∗

β,i +
∑2

j=1 ηt,i,jb
∗
10+j ,

g0 := e0 + ϕ0b0,5, gt,i := et,i + τ
∑2

j=1 zt,i,jb8+j +
∑2

j=1 ϕt,i,jb12+j ,

for t = 1, . . . , d, i = 1, 2,

where μt,i, ηt,i,1, ηt,i,2, ϕ0, ϕt,i,1, ϕt,i,2
U← Fq and (zt,i,j)i,j=1,2 := Zt

U← GL(2,Fq). C1 then sets
B̂
′
0 := (b0,1, b0,3, b0,5), B̂∗

0 := (b∗0,1, . . . , b∗0,4), B̂′ := (b1, . . . , b4, b13, b14), B̂∗ := (b∗1, . . . , b∗4, b∗11, b∗12).
C1 then gives � := (param, B̂′

0, B̂
∗
0, B̂

′, B̂∗,h∗
β,0, g0, {p∗

t,i, gt,i}t=1,...,d;i=1,2) to B, and outputs
β′ ∈ {0, 1} if B outputs β′. If β = 0 (resp.β = 1), the distribution of � is exactly same as that
of instances in Experiment 0 (resp. Experiment 1). ��
Lemma 49 For any adversary B, for any security parameter λ, Pr[Exp

(2-(p−1)-8)
B (λ) → 1] =

Pr[Exp
(2-p-1)
B (λ)→ 1].

Proof. If we set d7 := b7 − b9, d8 := b8 − b10, d∗
9 := b∗9 + b∗7, d∗

10 := b∗10 + b∗8, then D :=
(b1, . . . , b6,d7,d8, b9, . . . , b14) and D

∗ := (b∗1, . . . , b∗8,d∗
9,d

∗
10, b

∗
11, . . . , b

∗
14) are dual orthonormal

bases. Moreover, (D,D∗) are consistent with (B̂, B̂∗). Since

for t = 1, . . . , d; i = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
t,i = ( μt,i(t,−1), δ�ei, ρ�ei, 02, 02, �ηt,i, 02 )B∗

= ( μt,i(t,−1), δ�ei, ρ�ei, 02, 02, �ηt,i, 02 )D∗

et,i = ( σt,i(1, t), ω�ei, τ�ei, 02, τ�eiZt, 02, �ϕt,i )B,
= ( σt,i(1, t), ω�ei, τ�ei, τ�ei, τ�eiZt, 02, �ϕt,i )D,
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the distribution of the adversary’s view for Experiment 2-(p − 1)-9 and that for Experiment
2-p-1 are equivalent. ��
Lemma 50 For any adversary B, there exists a probabilistic machine C2-1, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-p-1)
B (λ)→

1]− Pr[Exp
(2-p-2)
B (λ)→ 1]| ≤ AdvBP3-p

C2-p-1
(λ), where C2-p-1(·) := C2-1(p, ·).

Proof. Given an integer p and a BP3-p instance (param,B0,B
∗
0, B̂,B

∗, e0, {h∗
β,p,i, ei, gi}i=1,2),

C2-1 generates (zt,i,j)i,j=1,2 := Zt
U← GL(2,Fq), Ut := (Z−1

t )T for t = 1, . . . , d and calculates

h∗
0,h

∗
t,i (t < p) as in Eq. (35) h∗

t,i (t > p) as in Eq. (32) using B
∗
0,B

∗ and ρ, δ, μt,i, ηt,i,1, ηt,i,2
U← Fq

and (Zt, Ut) for t 
= p. C2-1 then calculates

g0 := e0 + ωb0,1 + ϕ0b0,5,

gt,i := σt,i(b1 + tb2) + ωb2+i + ei +
∑2

j=1 zt,i,jgj +
∑2

j=1 ϕt,i,jb12+j for t = 1, . . . , d; i = 1, 2,
p∗
p,i := h∗

β,p,i + δb∗2+i + ρb∗6+i for i = 1, 2,

where ω, ϕ0, σt,i, ϕt,i,j
U← Fq. C2-1 then sets B̂0 := (b0,1, b0,3, b0,5), B̂∗

0 := (b∗0,1, . . . , b∗0,4), B̂′ :=
(b1, . . . , b4, b13, b14), B̂∗ := (b∗1, . . . , b∗4, b∗11, b∗12).
C2-1 then gives � := (param, B̂0, B̂

∗
0, B̂

′, B̂∗,h∗
0, g0, {h∗

t,i,p
∗
p,i}t=1,...,p−1,p+1,...,d;i=1,2,

{gt,i}t=1,...,d;i=1,2) to B, and outputs β′ ∈ {0, 1} if B outputs β′. If β = 0 (resp.β = 1), the
distribution of � is exactly same as that of instances in Experiment 2-p-1 (resp. Experiment
2-p-2). ��
Lemma 51 For any adversary B, for any security parameter λ,
Pr[Exp

(2-p-2)
B (λ)→ 1] = Pr[Exp

(2-p-3)
B (λ)→ 1].

Proof. Because the distribution (ρ − θp,i, θp,i), where ρ, θp,i
U← Fq, is equivalent to the distri-

bution (θp,i, ρ− θp,i), where ρ, θp,i
U← Fq. ��

Lemma 52 For any adversary B, there exists a probabilistic machine C2-2, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-p-3)
B (λ)→

1]− |Pr[Exp
(2-p-4)
B (λ)→ 1]| ≤ AdvBP3-p

C2-p-2
(λ), where C2-p-2(·) := C2-2(p, ·).

Lemma 52 is proven in a similar manner to Lemma 50.

Lemma 53 For any adversary B, there exists a probabilistic machine C2-3, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-p-4)
B (λ)→

1]− Pr[Exp
(2-p-5)
B (λ)→ 1]| ≤ AdvBP5-p

C2-p-3
(λ), where C2-p-3(·) := C2-3(p, ·).

Proof. Given an integer p and a BP5-p instance

(param,B0,B
∗
0, B̂, B̃

∗,h∗
0, {h∗

p,i, eβ,l,i}l=1,...,p−1,p+1,...,d; i=1,2, {h̃j}j=5,6,9,10),

C2-3 calculates e0 := (ω, τ, 0, 0, ϕ0)B0 using B0 and ω, τ, ϕ0
U← Fq. C2-3 then calculates

for t = 1, . . . , d; i = 1, 2; δ, τ, η0, μt,i, σp,i
U← Fq, �ηt,i, �ϕp,i

U← F
2
q ,

Ut := (ut,i,j)i,j=1,2
U← GL(2,Fq), Zt := (zt,i,j)i,j=1,2 := (U−1

t )T,
p∗

0 := h∗
0 + ( δ, 0, 0, η0, 0 )B∗

0
,

if t < p, p∗
t,i :=

∑
j=1,2 ut,i,jh̃

∗
4+j + ( μt,i(t, −1), δ�ei, 06, �ηt,i, 02 )B∗ ,

if t = p, p∗
p,i :=

∑
j=1,2 up,i,jh

∗
p,j + ( 02, δ�ei, 010 )B∗ ,

if t > p, p∗
t,i :=

∑
j=1,2 ut,i,jh̃

∗
8+j + ( μt,i(t, −1), δ�ei, 06, �ηt,i, 02 )B∗ ,
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if t 
= p, gt,i := eβ,t,i + ( 02, δ�ei, τ�ei, τ�ei, τ�eiZt, 04 )B,

if t = p, gp,i := ( σp,i(1, p), δ�ei, τ�ei, τ�ei, τ�eiZp, 02, �ϕp,i )B.

C2-3 then sets B̂0 := (b0,1, b0,3, b0,5), B̂∗
0 := (b∗0,1, . . . , b∗0,4), B̂′ := (b1, . . . , b4, b13, b14), B̂∗ :=

(b∗1, . . . , b∗4, b∗11, b∗12).
C2-3 then gives � := (param, B̂0, B̂

∗
0, B̂

′, B̂∗,p∗
0, e0, {p∗

t,i, et,i}t=1,...,d;i=1,2) to B, and outputs
β′ ∈ {0, 1} if B outputs β′. If β = 0 (resp.β = 1), the distribution of � is exactly same as that
of instances in Experiment 2-p-4 (resp. Experiment 2-p-5). ��
Lemma 54 For any adversary B, for any security parameter λ, Pr[Exp

(2-p-5)
B (λ) → 1] =

Pr[Exp
(2-p-6)
B (λ)→ 1].

Proof. To prove Lemma 54, we will show distribution (paramV, B̂, {et,j ,h∗
t,j}t=1,...,d;j=1,2) in

Experiment 2-p-5 and that in Experiment 2-p-6 are equivalent. For that purpose, we define new
dual orthonormal bases (D,D∗) of V as follows: We generate ξ̃ U← F

×
q , Zp

U← GL(2,Fq), Up :=
(Z−1

p )T and set

⎛
⎜⎜⎝

d∗
7

d∗
8

d∗
9

d∗
10

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎝

ξ̃I2 −Up

02 I2

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

b∗7
b∗8
b∗9
b∗10

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

d7

d8

d9

d10

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

ξ̃−1I2 02

ξ̃−1Z−1
p I2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

b7

b8

b9

b10

⎞
⎟⎟⎠ ,

D := (b1, . . . , b6,d7, . . . ,d10, b11, . . . , b14),
D
∗ := (b∗1, . . . , b

∗
6,d

∗
7, . . . ,d

∗
10, b

∗
11, . . . , b

∗
14),

where I2 is the 2 × 2 identity matrix. We then easily verify that D and D
∗ are dual orthonor-

mal, and are distributed the same as the original bases, B and B
∗. Keys and ciphertexts

({et,j ,h∗
t,j}t=1,...,d;j=1,2) in Experiment 2-p-5 are expressed over bases (B,B∗) and (D,D∗) as

for t = 1, . . . , p− 1; j = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
t,j = ( μt,j(t,−1), δ�ej , 04, ρ�ejUt, �ηt,j , 02 )B∗

= ( μt,j(t,−1), δ�ej , 04, ρ�ejUt, �ηt,j , 02 )D∗

for t = p; j = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

h∗
p,j = ( μp,j(p,−1), δ�ej , 02, ρ�ej , 02, �ηp,j , 02 )B∗

= ( μp,j(p,−1), δ�ej , 02, ξ�ej , ρ�ejUp, �ηp,j , 02 )D∗

where ξ := ξ̃ρ,

for t = p+ 1, . . . , d; j = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

h∗
t,j = ( μt,j(t,−1), δ�ej , ρ�ej , 04, �ηt,j , 02 )B∗

= ( μt,j(t,−1), δ�ej , ρ�ej , 04, �ηt,j , 02 )D∗

for t = 1, . . . , p− 1, p+ 1, . . . , d; j = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

et,j = ( σt,j(1, t), ω�ej , τ�ej , �χt,j , τ�ejZt, 02, �ϕt,j )B,
= ( σt,j(1, t), ω�ej , τ�ej , �χ

′
t,j , τ�ejZt, 02, �ϕt,j )D,

where �χ′
t,j := ξ̃−1

(
�χt,j − τ�ej · ZtZ−1

p

)
,
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for t = p; j = 1, 2,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷

ep,j = ( σp,j(1, p), ω�ej , τ�ej , τ�ej , τ�ejZp, 02, �ϕp,j )B,
= ( σp,j(1, p), ω�ej , τ�ej , 02, τ�ejUp, 02, �ϕp,j )D,

where �χ′
t,j are uniformly, independently distributed since �χt,j

U← F
2
q (t 
= p).

In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public key
pk := (paramV, B̂). Therefore, {et,j ,h∗

t,j}t=1,...,d; j=1,2 can be expressed as keys and ciphertext
in two ways, in Experiment 2-p-5 over bases (B,B∗) and in Experiment 2-p-6 over bases (D,D∗).
Thus, Experiment 2-p-5 can be conceptually changed to Experiment 2-p-6. ��

Lemma 55 For any adversary B, there exists a probabilistic machine C2-4, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-p-6)
B (λ)→

1]− Pr[Exp
(2-p-7)
B (λ)→ 1]| ≤ AdvBP5-p

C2-p-4
(λ), where C2-p-4(·) := C2-4(p, ·).

Lemma 55 is proven in a similar manner to Lemma 53.

Lemma 56 For any adversary B, there exists a probabilistic machine C2-5, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

(2-p-7)
B (λ)→

1]− Pr[Exp
(2-p-8)
B (λ)→ 1]| ≤ AdvBP4-p

C2-p-5
(λ), where C2-p-5(·) := C2-5(p, ·).

Lemma 56 is proven in a similar manner to Lemma 53.

A.5 Proofs of Lemmas 25–29 in Section 6.1.4

Lemma 25 For any adversary A, there exists a probabilistic machine B1, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ)−

Adv
(1)
A (λ)| ≤ AdvP1-ABE

B1
(λ).

Proof. In order to prove Lemma 25, we construct a probabilistic machine B1 against Problem
1-ABE using an adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B1 is given a Problem 1-ABE instance, (param, B̂0, B̂
∗
0, B̂, B̂

∗, eβ,0, {eβ,t,j}t=1,...,d;j=1,2).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 provides A a public key pk := (1λ, param, B̂0, B̂) of Game
0 (and 1), where B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b13, b14) for t = 1, .., d.

4. When a key query is issued for access structure S := (M,ρ), B1 answers normal key
(k∗

0, . . . ,k
∗
� ) with Eq. (18), that is computed using B̂

∗
0, B̂

∗ of the Problem 1-ABE instance.

5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and Γ :=
{(t, xt) | 1 ≤ t ≤ d} from A, B1 computes the challenge ciphertext (c0, {ct}(t,xt)∈Γ, cd+1)
such that

c0 := eβ,0 + ζb0,3, ct := eβ,t,1 + xteβ,t,2, cd+1 := gζTm
(b),

where ζ U← Fq, b
U← {0, 1}, and (b0,3, eβ,0, {eβ,t,j}t=1,...,d;j=1,2) is a part of the Problem

1-ABE instance.
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6. When a key query is issued by A after the encryption query, B1 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

It is straightforward that the distribution by B1’s simulation given a Problem 1-ABE instance
with β is equivalent to that in Game 0 (resp. Game 1), when β = 0 (resp.β = 1). ��

Lemma 26 For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2-ABE

B2-h-1
(λ) + 2/q, where B2-h-1(·) := B2-1(h, ·).

Proof. In order to prove Lemma 26, we construct a probabilistic machine B2-1 against Problem
2-ABE using an adversary A in a security game (Game 2-(h− 1)-3 or 2-h-1) as a black box as
follows:

1. B2-1 is given an integer h and a Problem 2-ABE instance, (param, B̂0, B̂
∗
0, B̂, B̂

∗,h∗
β,0, e0,

{h∗
β,t,j , et,j}t=1,...,d;j=1,2).

2. B2-1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-1 provides A a public key pk := (1λ, param, B̂0, B̂) of
Game 2-(h − 1)-3 (and 2-h-1), where B̂0 and B̂ are obtained from the Problem 2-ABE
instance.

4. When the ι-th key query is issued for access structure S := (M,ρ), B2-1 answers as follows:

(a) When 1 ≤ ι ≤ h − 1, B2-1 answers semi-functional key (k∗
0, . . . ,k

∗
� ) with Eq. (23),

that is computed using B̂
∗
0, B̂

∗ of the Problem 2-ABE instance.

(b) When ι = h, B2-1 calculates (k∗
0, . . . ,k

∗
� ) using (b0,1, b0,3,h

∗
β,0, {b∗j ,h∗

β,t,j}t=1,...,d;j=1,2)
of the Problem 2-ABE instance as follows:

π̃t, ξt, g̃k, ξ̃k
U← Fq for t = 1, . . . , d; k = 1, . . . , r,

for k = 1, . . . , r, p̃∗
β,0,k := g̃kh

∗
β,0 + ξ̃kb

∗
0,1,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, 2;
p∗
β,t,j := π̃th

∗
β,t,j + ξtb

∗
2+j , p̃∗

β,t,k,j := g̃kh
∗
β,t,j + ξ̃kb

∗
2+j ,

k∗
0 := −∑r

k=1 p̃∗
β,0,k + b∗0,3,

for i = 1, . . . , �,
if ρ(i) = (t, vi), k∗

i := vip
∗
β,t,1 − p∗

β,t,2 +
∑r

k=1Mi,kp̃
∗
β,t,k,1,

if ρ(i) = ¬(t, vi), k∗
i :=

∑r
k=1Mi,k(vip̃∗

β,t,k,1 − p̃∗
β,t,k,2),

where (Mi,k)i=1,...,�;k=1,...,r := M .

(c) When ι ≥ h+1, B2-1 answers normal key (k∗
0, . . . ,k

∗
� ) with Eq. (18), that is computed

using B̂
∗
0, B̂

∗ of the Problem 2-ABE instance.

5. When B2-1 receives an encryption query with challenge plaintexts (m(0),m(1)) and Γ :=
{(t, xt) | 1 ≤ t ≤ d} from A, B2-1 computes the challenge ciphertext (c0, {ct}(t,xt)∈Γ, cd+1)
such that for (t, xt) ∈ Γ,

c0 := e0 + ζb0,3 + q0, ct := et,1 + xtet,2 + qt, cd+1 := gζTm
(b),
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where ζ U← Fq, b
U← {0, 1}, q0

U← span〈b0,5〉, qt
U← span〈b13, b14〉, and (b0,3, e0, {et,j}t=1,..,d;j=1,2)

is a part of the Problem 2-ABE instance.

6. When a key query is issued by A after the encryption query, B2-1 executes the same
procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B2-1 outputs β′ := 1. Otherwise, B2-1 outputs β′ := 0.

Claim 7 The distribution of the view of adversary A in the above-mentioned game simulated
by B2-1 given a Problem 2-ABE instance with β ∈ {0, 1} is the same as that in Game 2-(h−1)-3
(resp. Game 2-h-1) if β = 0 (resp. β = 1) except with probability 1/q (resp. 1/q).

Proof. It is straightforward that the distribution by B2-1’s simulation given a Problem 2-ABE
instance with β = 0 is equivalent to that in Game 2-(h− 1)-3 except that δ defined in Problem
2-ABE is zero, i.e., except with probability 1/q.

When β = 1, the challenge ciphertext in the above simulation is given as:

c0 := (ω, τ, ζ, 0, ϕ0)B0 ,

for (t, xt) ∈ Γ,
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷

ct := ( σ̃t(1, t), ω(1, xt), τ(1, xt), 02, τ(1, xt) · Zt, 02, ϕ̃t,1, ϕ̃t,2 )B,

where σ̃t := σt,1 + xtσt,2, ϕ̃t,j := ϕt,1,j + xtϕt,2,j for j = 1, 2, ω, τ, {σt,j , ϕt,i,j}(t,xt)∈Γ,i,j=1,2 are
defined in Problem 2-ABE.

p̃∗
β,0,p

∗
β,t,j , p̃

∗
β,t,k,j for t = 1, . . . , d; k = 1, . . . , r; j = 1, 2 calculated in case (b) of steps 4 and

6 in the above simulation are expressed as:

θt := π̃tδ + ξt, fk := g̃kδ + ξ̃k, πt := π̃tρ, gk := g̃kρ,

p̃∗
0,0,k = (fk, 0, 0, g̃kη0, 0)B∗

0
, p̃∗

1,0,k = (fk, gk, 0, g̃kη0, 0)B∗
0
,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
p∗

0,t,j := ( π̃tμt,j(t, −1), θt�ej , 06, π̃t(ηt,j,1, ηt,j,2), 02 )B∗
t
,

p̃∗
0,t,k,j := ( g̃kμt,j(t, −1), fk�ej , 06, g̃k(ηt,j,1, ηt,j,2), 02 )B∗

t
,

p∗
1,t,j := ( π̃tμt,j(t, −1), θt�ej , 04, πt�ejUt π̃t(ηt,j,1, ηt,j,2), 02 )B∗

t
,

p̃∗
1,t,k,j := ( g̃kμt,j(t, −1), fk�ej , 04, gk�ejUt, g̃k(ηt,j,1, ηt,j,2), 02 )B∗

t
,

where δ, ρ, η0, {μt,j , Ut, ηt,j,1, ηt,j,2}t=1,...,d;j=1,2 are defined in Problem 2-ABE and �e1 := (1, 0), �e2 :=
(0, 1). Therefore, {k∗

i }i=0,...,� are expressed as:

�f := (f1, . . . , fr), s0 := �1 · �fT, (s1, . . . , s�)T := M · �fT,

�g := (g1, . . . , gr), a0 := �1 · �gT, (a1, . . . , a�)T := M · �gT,

if β = 0, k̃∗
0 = (−s0, 0, 1,−a0η0, 0)B∗

0
, if β = 1, k̃∗

0 = (−s0,−a0, 1,−a0η0, 0)B∗
0
,

if β = 0,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μ̃i(t, −1), si + θtvi,−θt, 06, κi,1, κi,2, 02 )B∗

t
,

if ρ(i) = ¬(t, vi),

k∗
i := ( μ̃i(t, −1), si(vi,−1), 06, κi,1, κi,2, 02 )B∗

t
,
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if β = 1,
if ρ(i) = (t, vi),
k∗
i := ( μ̃i(t, −1), si + θtvi,−θt, 04, (ai + πtvi,−πt) · Ut, κi,1, κi,2, 02 )B∗

t
,

if ρ(i) = ¬(t, vi),
k∗
i := ( μ̃i(t, −1), si(vi,−1), 04, ai(vi,−1) · Ut, κi,1, κi,2, 02 )B∗

t
,

where μ̃i := (viπ̃t+
∑r

k=1Mi,kg̃k)μt,1− π̃tμt,2, κi,j := (viπ̃t+
∑r

k=1Mi,kg̃k)ηt,1,j − π̃tηt,1,j for j =
1, 2 if ρ(i) = (t, vi), μ̃i := (

∑r
k=1Mi,kg̃k)(viμt,1−μt,2), κi,j := (

∑r
k=1Mi,kg̃k)(viηt,1,j −μt,2,j) for

j = 1, 2 if ρ(i) = ¬(t, vi). Therefore, variables {θt, πt}t=1,...,d, {fk, gk}k=1,...,r, {μ̃i, κi,j}i=1,...,�;j=1,2

are independently and uniformly distributed. Therefore, {k∗
i }i=0,...,� and {ct}(t,xt)∈Γ are dis-

tributed as in Eqs. (20), (21) and (19). Therefore, when β = 1, the distribution by B2-1’s
simulation is equivalent to that in Game 2-h-1 except that δ defined in Problem 2-ABE is zero,
i.e., except with probability 1/q. ��

This completes the proof of Lemma 26. ��

Lemma 27 For any adversary A, for any security parameter λ, Adv
(2-h-1)
A (λ) = Adv

(2-h-2)
A (λ).

Proof. It is clear that the distribution of the public-key and the ι-th key query’s answer for
ι 
= h in Game 2-h-1 and Game 2-h-2 are exactly the same. Therefore, to prove this lemma we
will show that the joint distribution of the h-th key query’s answer and the challenge ciphertext
in Game 2-h-1 and Game 2-h-2 are equivalent.

Therefore, we will show that a0 in Eq. (20) is uniformly and independently distributed from
the other variables in the joint distribution of adversaryA’s view. Since a0 := �1·�gT is only related
to (a1, . . . , a�)T := M · �gT and Ut = (Z−1

t )T holds, a0 is only related to {�wi}i=1,...,�, {�wi}i=1,...,�

and {�rt}t=1,...,d, where �wi := (ai + πivi,−πi) · Ut and �wi := ai(vi,−1) · Ut in Eq. (21) for
i = 1, . . . , �, and �rt := τ(1, xt) · Zt in Eq. (19) for t = 1, . . . , d with t := ρ̃(i). (ρ̃ is defined at
the start of Section 6.1.) With respect to the joint distribution of these variables, there are
five cases for each i ∈ {1, . . . , �}. Note that for any i ∈ {1, . . . , �}, (Zt, Ut) with t := ρ̃(i) is
independent from the other variables, since ρ̃ is injective:

1. γ(i) = 1 and [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt].

Then, from Lemma 8, the joint distribution of (�wi, �rt) is uniformly and independently
distributed on Cτai := {(�w,�r)|�w · �r = τai} (over Zt

U← GL(2,Fq)).

2. γ(i) = 1 and [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi 
= xt].

Then, from Lemma 8, the joint distribution of (�wi, �rt) is uniformly and independently
distributed on C(vi−xt)·τai

(over Zt
U← GL(2,Fq)).

3. γ(i) = 0 and [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ] (i.e., vi 
= xt).

Then, from Lemma 8, the joint distribution of (�wi, �rt) is uniformly and independently
distributed on Cτ((vi−xt)·πt+ai) (over Zt

U← GL(2,Fq)). Since πt is uniformly and indepen-
dently distributed on Fq, the joint distribution of (�wi, �rt) is uniformly and independently
distributed over F

4
q .

4. γ(i) = 0 and [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ] (i.e., vi = xt).

Then, from Lemma 8, the joint distribution of (�wi, �rt) is uniformly and independently
distributed on C0 (over Zt

U← GL(2,Fq)).
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5. [ρ(i) = (t, vi) ∧ (t, xt) 
∈ Γ] or [ρ(i) = ¬(t, vi) ∧ (t, xt) 
∈ Γ].

Then, the distribution of �wi or �wi is uniformly and independently distributed on F
2
q (over

Zt
U← GL(2,Fq)).

We then observe the joint distribution (or relation) of a0, τ , {�wi}i=1,...,�, {�wi}i=1,...,� and
{�rt}t=1,...,d. Those in cases 3-5 are obviously independent from a0. Due to the restriction of
adversary A’s key queries, �1 
∈ span〈(Mi)γ(i)=1〉. Therefore, a0 := �1 ·�gT is independent from the
joint distribution of τ and {τai := τMi · �gT | γ(i) = 1} (over the random selection of �g), which
can be given by (�wi, �rt) in case 1 and (�wi, �rt) in case 2. Thus, a0 is uniformly and independently
distributed from the other variables in the joint distribution. Therefore, the view of adversary
A in the Game 2-h-1 is the same as that in Game 2-h-2.

This completes the proof of Lemma 27. ��

Lemma 28 For any adversary A, there exists a probabilistic machine B2-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2)
A (λ) −

Adv
(2-h-3)
A (λ)| ≤ AdvP2-ABE

B2-h-2
(λ) + 2/q, where B2-h-2(·) := B2-2(h, ·).

Proof. In order to prove Lemma 28, we construct a probabilistic machine B2-2 against Problem
2-ABE using an adversary A in a security game (Game 2-h-2 or 2-h-3) as a black box. B2-2

acts in the same way as B2-1 in the proof of Lemma 26 except the following two points:

1. In case (b) of step 4; k∗
0 is calculated as

k∗
0 := −∑r

k=1 p̃∗
β,0,k + r′0b∗0,2 + b∗0,3,

where r′0
U← Fq, p̃∗

β,0,k is calculated from h∗
β,0 and b∗0,1 as in the proof of Lemma 26, and

b∗0,2 and b∗0,3 are obtained from the Problem 2-ABE instance.

2. In the last step; if b = b′, B2-2 outputs β′ := 0. Otherwise, B2-2 outputs β′ := 1.

When β = 0, it is straightforward that the distribution by B2-2’s simulation is equivalent to
that in Game 2-h-2 except that δ defined in Problem 2-ABE is zero, i.e., except with probability
1/q. When β = 1, the distribution by B2-2’s simulation is equivalent to that in Game 2-h-3
except that δ defined in Problem 2-ABE is zero i.e., except with probability 1/q. ��

Lemma 29 For any adversary A, |Adv
(3)
A (λ)− Adv

(2-ν-3)
A (λ)| ≤ 1/q.

Proof. To prove Lemma 29, we will show distribution (param, B̂0, B̂, {sk(j)∗
S
}j=1,...,ν , c) in Game

2-ν-3 and that in Game 3 are equivalent, where sk
(j)∗
S

is the answer to the j-th key query, and
c is the challenge ciphertext. By definition, we only need to consider elements on V0 or V

∗
0. We

define new bases D0 of V0 and D
∗
0 of V

∗
0 as follows: We generate θ U← Fq, and set

d0,2 := (0, 1,−θ, 0, 0)B = b0,2 − θb0,3, d∗
0,3 := (0, θ, 1, 0, 0)B = b∗0,3 + θb∗0,2.

We set D0 := (b0,1,d0,2, b0,3, b0,4, b0,5), D
∗
0 := (b∗0,1, b∗0,2,d∗

0,3, b
∗
0,4, b

∗
0,5). We then easily verify

that D0 and D
∗
0 are dual orthonormal, and are distributed the same as the original bases, B0

and B
∗
0.

The V0 components ({k(j)∗
0 }j=1,...,ν , c0) in keys and challenge ciphertext ({sk(j)∗

S
}j=1,...,ν , ctΓ)

in Game 2-ν-3 are expressed over bases B0 and B
∗
0 as k

(j)∗
0 = (−s(j)0 , w

(j)
0 , 1, η(j)

0 , 0)B∗
0
, c0 =

(δ, r0, ζ, 0, ϕ0)B0 . Then,

k
(j)∗
0 = (−s(j)0 , w

(j)
0 , 1, η(j)

0 , 0)B∗
0

= (−s(j)0 , w
(j)
0 + θ, 1, η(j)

0 , 0)D∗
0

= (−s(j)0 , ϑ
(j)
0 , 1, η(j)

0 , 0)D∗
0
,
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where ϑ(j)
0 := w

(j)
0 + θ which are uniformly, independently distributed since w(j)

0
U← Fq.

c0 = (δ, τ, ζ, 0, ϕ0)B0 = (δ, τ, ζ + τθ, 0, ϕ0)D0 = (δ, τ, ζ ′, 0, ϕ0)D0

where ζ ′ := ζ + τθ which is uniformly, independently distributed since θ U← Fq.
In the light of the adversary’s view, both (B0,B

∗
0) and (D0,D

∗
0) are consistent with public

key pk := (1λ, param, B̂0, B̂). Therefore, {sk(j)∗
S
}j=1,...,ν and ctΓ can be expressed as keys and

ciphertext in two ways, in Game 2-ν-3 over bases (B0,B
∗
0) and in Game 3 over bases (D0,D

∗
0).

Thus, Game 2-ν-3 can be conceptually changed to Game 3 if τ 
= 0, i.e., except with probability
1/q. ��

B Proposed Fully Secure Unbounded Anonymous HIBE Scheme

Lewko-Waters [11] constructed fully secure unbounded HIBE scheme. The scheme is payload-
hiding, but not attribute-hiding, i.e., non-anonymous. We propose the first fully (adaptively)
secure and attribute-hiding unbounded HIBE scheme based on the techniques given in the
previous sections. The security is proven under the DLIN assumption in the standard model.

Here, we employ standard definitions of anonymous HIBE scheme and its adaptively attribute-
hiding security. For example, those for (anonymous) HPE, i.e., a general version of anonymous
HIBE, are given in Appendix B.5 [8]. Our definitions are specialized to two-dimensional vectors
for the equality relation, i.e., �xt := (1, xt) (in ciphertexts) and �vt := (vt,−1) (in secret-keys),
where �xt · �vt = 0 iff xt = vt.

Our scheme is constructed based on the (weakly) attribute-hiding HIPE scheme given in
Appendix H.4 of [14]. The HIPE scheme employs d + 1 DPVSs V0,V1, . . . ,Vd, where basis
generation matrices are X0

U← GL(5,Fq) and Xt
U← GL(3nt + 1,Fq) for t = 1, . . . , d. By

arranging the matrices X0, X1, . . . Xd diagonally and other off-diagonal parts are zero, in [14],
we consider a special from of basis generation matrix X ∈ F

N×N
q with N := 5+

∑d
t=1(3nt +1),

where

X :=

⎛
⎜⎜⎜⎝

X0

X1

. . .
Xd

⎞
⎟⎟⎟⎠ ,

and the HIPE in [14] is constructed on the one vector space V (∼= G
N ) with special bases

induced by X.
Here, since we use dual orthonormal basis generator Gob(1λ, (Nt)t=0,1) given in Section 2, we

only use two spaces V0,V1 and matrices X0, X1, where X0
U← GL(5,Fq) and X1

U← GL(14,Fq).
Therefore, the corresponding bases generation matrix X ∈ F

N×N
q with N := 5+14d is given as

X :=

⎛
⎜⎜⎜⎝

X0

X1

. . .
X1

⎞
⎟⎟⎟⎠ ,

where off-diagonal parts are zero. In other words, the matrix X gives direct sum decomposition

V ∼= V0 ⊕
d︷ ︸︸ ︷

V1 ⊕ · · · ⊕ V1 (resp. V∗ ∼= V
∗
0 ⊕

d︷ ︸︸ ︷
V
∗
1 ⊕ · · · ⊕ V

∗
1), where Vι := span〈Bι〉 (resp. V∗

ι :=
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span〈B∗
ι 〉) for ι = 0, 1. Based on this isomorphism, i.e., embedding of V0 and d V1 (resp. V∗

0 and
d V

∗
1) in V (resp. V∗), we define the following notations as:

((�x0)B0 , (σ1(1, 1), �x1)B1 , . . . , (σd(1, d), �xd)B1) + ((�y0)B0 , (σ̃1(1, 1), �y1)B1 , . . . , (σ̃d(1, d), �yd)B1)
:= ((�x0 + �y0)B0 , ((σ1 + σ̃1)(1, 1), �x1 + �y1)B1 . . . , ((σd + σ̃d)(1, d), �xd + �yd)B1)
where ((�x0)B0 , (σ1(1, 1), �x1)B1 , . . . , (σd(1, d), �xd)B1),

((�y0)B0 , (σ̃1(1, 1), �y1)B1 , . . . , (σ̃d(1, d), �yd)B1) ∈ V ∼= V0 ⊕
d︷ ︸︸ ︷

V1 ⊕ · · · ⊕ V1,

(�x)B0 := ((�x)B0 ,

d︷ ︸︸ ︷
(�0)B1 , · · · , (�0)B1) ∈ V,

(�x)〈t〉
B1

:= ((�0)B0 ,

t−1︷ ︸︸ ︷
(�0)B1 , · · · , (�0)B1 , (�x)B1 ,

d−t︷ ︸︸ ︷
(�0)B1 , · · · , (�0)B1) ∈ V for t = 1, . . . , d,

((�x0)B0 , (σt(1, t), �xt)B : t = 1, . . . , �) := (�x0)B0 +
∑�

t=1(σt(1, t), �xt)
〈t〉
B1
∈ V for 1 ≤ � ≤ d,

((�x0)B0 , (σt(1, t), �xt)B : t = 1, . . . , �, (σt(1, t), �xτ )B)

:= (�x0)B0 +
∑

t=1,...,�,τ (σt(1, t), �xt)
〈t〉
B1
∈ V for 1 ≤ � < τ ≤ d

e(c,k∗) :=
∏d
t=0 e(ct,k

∗
t ) where c := (c0, . . . , cd) ∈ V0 ⊕

d︷ ︸︸ ︷
V1 ⊕ · · · ⊕ V1,

k∗ := (k∗
0, . . . ,k

∗
d) ∈ V

∗
0 ⊕

d︷ ︸︸ ︷
V
∗
1 ⊕ · · · ⊕ V

∗
1,

where position is indicated by the 2-dimensional σt(1, t) for t = 1, . . . , �, and all the above
notations are applied to the case with {B∗

ι }ι=0,1 instead of {Bι}ι=0,1 with using μt(t,−1) instead
of σt(1, t).

B.1 Construction

Let d := poly(λ), where poly(·) is an arbitrary polynomial. Random dual basis generator
Gob(1λ, (Nt)t=0,1) is defined at the end of Section 2. We refer to Section 1.4 for notations on
DPVS.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗)) R← Gob(1λ, (N0 := 5, N := 14)),
B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, . . . , b4, b13, b14), B̂

∗
0,pk := b∗0,4, B̂

∗
0,sk := (b∗0,1, b

∗
0,3),

B̂
∗
pk := (b∗1, b

∗
2, b

∗
11, b

∗
12), B̂

∗
sk := (b∗3, b

∗
4),

return pk := (1λ, param, B̂0, B̂, B̂
∗
0,pk, B̂

∗
pk), sk := (B̂∗

0,sk, B̂
∗
sk).

KeyGen(pk, sk, (v1, . . . , v�) ∈ F
�
q) :

for j = 1, . . . , 2�; τ = �+ 1, . . . , d; ι = 1, 2;

ψ, μdec,t, μran,1,j,t, sdec,t, sran,1,j,t, θdec,t, θran,1,j,t
U← Fq for t = 1, . . . , �,

μdel,(τ,ι),t, μran,2,τ,t, sdel,(τ,ι),t, sran,2,τ,t, θdel,(τ,ι),t, θran,2,τ,t
U← Fq for t = 1, . . . , �+ 1,

sdec,0 :=
∑�

t=1 sdec,t, sdel,(τ,ι),0 :=
∑�+1

t=1 sdel,(τ,ι),t,

sran,1,j,0 :=
∑�

t=1 sran,1,j,t, sran,2,τ,0 :=
∑�+1

t=1 sran,2,τ,t,

�ηdec,t, �ηran,1,j,t
U← F

2
q for t = 0, . . . , �, �ηdel,(τ,ι),t, �ηran,2,τ,t

U← F
2
q for t = 0, . . . , �+ 1,

k∗
�,dec := ( ( −sdec,0, 0, 1, ηdec,0, 0 )B∗

0
,

( μdec,t(t,−1), sdec,t + θdec,tvt, −θdec,t, 06, �ηdec,t, 02 )B∗ : t = 1, . . . , �),
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k∗
�,del,(τ,ι) := ( ( −sdel,(τ,ι),0, 0, 0, ηdel,(τ,ι),0, 0 )B∗

0
,

( μdel,(τ,ι),t(t,−1), sdel,(τ,ι),t + θdel,(τ,ι),tvt, −θdel,(τ,ι),t, 06, �ηdel,(τ,ι),t, 02 )B∗ :
t = 1, . . . , �,

( μdel,(τ,ι),�+1(τ,−1), πdel,(τ,ι),�+1,1, πdel,(τ,ι),�+1,2 06, �ηdel,(τ,2),�+1, 02 )B∗)

where, ( πdel,(τ,1),�+1,ι, πdel,(τ,ι),�+1,2 ) :=
{

( sdel,(τ,1),�+1 + ψ, 0 ) if ι = 1,
( sdel,(τ,2),�+1, ψ ) if ι = 2,

k∗
�,ran,1,j := ( ( −sran,1,j,0, 0, 0, ηran,1,j,0, 0 )B∗

0
,

( μran,1,j,t(t,−1), sran,1,j,t + θran,1,j,tvt, −θran,1,j,t, 06, �ηran,1,j,t, 02 )B∗ :
t = 1, . . . , �),

k∗
�,ran,2,τ := ( ( −sran,2,τ,0, 0, 0, ηran,2,τ,0, 0 )B∗

0
,

( μran,2,τ,t(t,−1), sran,2,τ,t + θran,2,τ,tvt, −θran,2,τ,t 06, �ηran,2,τ,t, 02 )B∗ :
t = 1, . . . , �,

( μran,2,τ,�+1(τ,−1), sran,2,τ,�+1, 0, 06, �ηran,2,τ,�+1, 02 )B∗),
sk� := (k∗

�,dec, {k∗
�,del,(τ,ι)}τ=�+1,...,d; ι=1,2, {k∗

�,ran,1,j , k∗
�,ran,2,τ}j=1,...,2�; τ=�+1,...,d),

return sk�.

Enc(pk,m ∈ GT , (x1, . . . , x�) ∈ F
�
q) :

ω, ζ, ϕ0, ϕt,1, ϕt,2, σt
U← Fq for t = 1, . . . , �,

c1 := ( (ω, 0, ζ, 0, ϕ0)B0 , ( σt(1, t), ω(1, xt), 06, 02, ϕt,1, ϕt,2 )B : t = 1, . . . , �),

c2 := gζTm, ct := (c1, c2), return ct.

Dec(pk,k∗
�,dec, ct) : m′ := c2/e(c1,k

∗
�,dec), return m′.

Delegate�(pk, sk�, v�+1) :
for j′ = 1, . . . , 2(�+ 1); τ = �+ 2, . . . , d; ι = 1, 2;

μ′del,(τ,ι), μ
′
ran,2,τ , φdel,(τ,ι), φran,2,τ , ψ

′ U← Fq,

p∗
dec,p

∗
del,(τ,ι),p

∗
ran,1,j′ ,p

∗
ran,2,τ

R← CoreDel�(pk, sk�, v�+1),

where CoreDel�(pk, sk�, v�+1) : μ′t, ξ, αj
U← Fq for t = 1, . . . , �+ 1; j = 1, . . . , 2�+ 1,

return p∗ :=
∑�+1

t=1 μ
′
t(tb

∗
1 − b∗2)〈t〉 + ξ

(
v�+1k

∗
�,del,(�+1,1) − k∗

�,del,(�+1,2)

)
+
∑2�

j=1 αjk
∗
�,ran,1,j + α2�+1k

∗
�,ran,2,�+1,

r∗
dec, r

∗
ran,1,j′

U← span〈(b∗0,4)〈0〉 , {(b∗11)〈t〉 , (b∗12)〈t〉}t=1,...,�+1〉,
r∗

del,(τ,ι), r
∗
ran,2,τ

U← span〈(b∗0,4)〈0〉 , {(b∗11)〈t〉 , (b∗12)〈t〉}t=1,...,�+1,τ 〉,
k∗
�+1,dec := k∗

�,dec + p∗
dec + r∗

dec,

k∗
�+1,del,(τ,ι) := p∗

del,(τ,ι) + μ′del,(τ,ι)(τb
∗
1 − b∗2)〈τ〉 + φdel,(τ,ι)k

∗
�,ran,2,τ

+ψ′k∗
�,del,(τ,ι) + r∗

del,(τ,ι),

k∗
�+1,ran,1,j′ := p∗

ran,1,j′ + r∗
ran,1,j′ ,

k∗
�+1,ran,2,τ := p∗

ran,2,τ + μ′ran,2,τ (τb∗1 − b∗2)〈τ〉 + φran,2,τk
∗
�,ran,2,τ + r∗

ran,2,τ ,

sk�+1 := (k∗
�+1,dec, {k∗

�+1,del,(τ,ι)}τ=�+2,...,d; ι=1,2,

{k∗
�,ran,1,j′ , k∗

�,ran,2,τ}j′=1,...,2(�+1); τ=�+2,...,d),
return sk�+1.
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B.2 Security

Theorem 7 The proposed HIBE scheme is adaptively attribute-hiding against chosen plaintext
attacks under the DLIN assumption.

The proof of Theorem 7 is obtained in a similar manner to Theorem 4.
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