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Abstract

To have “full” entropy has been defined in a draft NIST standard to

be to have min-entropy very close, proportionally, to the min-entropy

of a uniform distribution. A function is uniform if all its preimages

have the same size. This report proves that the output of any uniform

compression function can fail to have full entropy, even when the input

has full entropy.

1 Introduction

This report involves the notion of full entropy from draft standards ANSI X9.82-
4 and NIST Special Publication 800-90C. These draft standards specify meth-
ods for random bit generation.

A random variable with full entropy has a probability distribution that is
very close to be uniform on its domain. Specifically, its min-entropy is within
a factor of the min-entropy of the uniform distribution. See Definition 1 of
this report for a formal definition of full entropy.

If the output of the random bit generation has full entropy, then it may
be quite secure for use as a cryptographic key.

The draft standards include some constructions, non-deterministic ran-

dom bit generators (NRBG), that aim to produce full entropy outputs. The
NRBG takes an input seed value, and compresses it with deterministic func-
tions. If the input seed has a uniform distribution, then it plausible that the
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resulting output has full entropy. If the input seed has a non-uniform but
high-entropy distribution, then it is still plausible that the output has full
entropy, because the constructions use considerable compression. Indeed, the
draft standards go a little further and state the following presumption: If the
input has full entropy, then so does the output. This is used as a possible
justification for why the NRBG construction is secure, provided it is supplied
with a full entropy seed.

The main observation of this report is that this presumption is likely false,
and thus too strong. Specifically, if a compression function f is uniform in
the sense of having preimages of constant size (see also Definition 2), then
there exists a pathological distribution X (depending on f) with full entropy
such that f(X) does not have full entropy. (Exceptions to the result occur
if the range is trivial.)

The compression functions used in the NRBG construction of the draft
standards are not uniform, so the result of the report does not apply in a
strict sense. Intuitively, however, it would seem that non-uniform compres-
sion compression would fare worse at preserving a measure of closeness to
uniformity such as full entropy. Indeed, it ought to be straightforward to
adapt the proof used in this report to the case of non-uniform compression
functions.

1.1 Previous Work

It seems quite likely that the main result of this report is just a special case
of a more general result that was previously published.

2 Definitions

Consider a random variable X taking values in a set S of size N = 2n. For
example, the values of X could be bit strings of length n. Let P (X = x)
denote the probability that variable X takes value of x ∈ S.

The min-entropy H∞(X) of random variable X is defined to be

H∞(X) = min
x∈S

(− log2(P (X = x))) . (1)

Equivalently, H∞(X) = − log2 maxx∈S P (X = x).
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Definition 1 (Full Entropy). The random variable X taking values in a set

S of size N = 2n is said to have full entropy for S, of fullness level g, if

H∞(X) ≥ n(1 − 2−g). (2)

If the fullness level is not stated, then full entropy is deemed to be full entropy

with fullness level of 64 bits.

In the draft standards the fullness level in full entropy is always assumed
to be 64 bits.

Definition 2 (Uniform). Let A be a set of size 2m, and B a set of size 2n.

A function f : A → B is uniform if all its preimages have the same size.

3 Main Result

The following lemma shows that a uniform compression function f : A → B
generally does not always preserve full entropy, by finding a pathological
input full entropy distribution upon application of f yields a distribution
with a strictly smaller level of fullness.

Lemma 1. Let f : A → B be a uniform function, as in Definition 2 and its

notation. Suppose n > 0, so f has a non-trivial range. A variable X taking

values in A exists such that

• X has full entropy for A, of fullness level g ≥ log2(m/n), and

• Y = f(X) does not have full entropy for B of fullness level G, for any

G > g − log2(m/n).

In particular, if m > n, so f is a compression function, then Y does not have

full entropy of fullness level g.

Proof. Let y0 ∈ B. Let random variable X with domain A have distribution
given by

P (X = x) =

{

2−m(1−2−g) if f(x) = y0, and

(2−m)
(

1−2(−n+m2−g)

1−2−n

)

otherwise.
(3)

3



First, it must be verified that such a random variable X exists. To show this,
it must be shown that the probabilities above are all non-negative, and that
they also sum to 1 when x is summed over A.

If f(x) = y0, then P (X = x) > 0 because the P (X = x) = 2r for a real
number r, and 2r > 0. Otherwise P (X = x) is given by the second case
above. Multiplying by positive values 2m and then by value 1 − 2−n, which
is positive because n > 0, it suffices to show that 1 − 2(−n+m2−g) ≥ 0. The
latter is equivalent to 1 ≥ 2(−n+m2−g), which is equivalent to 0 ≥ −n+m2−g,
which is equivalent to n ≥ m2−g, which is equivalent to 2g/m ≥ 1/n, which
is equivalent to 2g ≥ m/n, which is equivalent to g ≥ log2(m/n), which is a
hypothesized condition of the lemma.

To sum the probabilities, note that the number of x ∈ A with f(x) = y0

is 2m−n because f is uniform. So, the number of remaining x is 2m − 2m−n.
Therefore,

∑

x∈A

P (X = x) =
(

2m−n2−m(1−2−g)
)

+

(

(

2m − 2m−n
)

(2−m)

(

1 − 2(−n+m2−g)

1 − 2−n

))

=
(

2(−n+m2−g)
)

+
(

1 − 2(−n+m2−g)
)

= 1

(4)

It remains to show that the distribution X has full entropy for A, with fullness
level g, and that f(X) lacks the full entropy of the requisite fullness levels.

To show that X has full entropy, of fullness level g, it suffices to show
that P (X = x) ≤ 2−m(1−2−g) for all X. This holds by definition of X for x
such that f(x) = y0, where the upper bound is met with equality. Therefore,
it suffices to show that the second probability from (3) falls under the same
upper bound: which is to say that it must be shown that:

(2−m)

(

1 − 2(−n+m2−g)

1 − 2−n

)

≤ 2−m(1−2−g)

Multiply both sides by the positive number 2m(1−2−n), to get the equivalent
inequality:

1 − 2(−n+m2−g) ≤ 2m2−g

(1 − 2−n).
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Add 2−n+m2−g
to both sides, take base-two logarithms, to get the equivalent

inequality 0 ≤ m2−g, which is true because m > 0.
Lastly, it must be shown that f(X) does not have full entropy of fullness

level G. To see this, P (f(X) = y0) = 2m−n2−m(1−2−g) = 2−n(1−(m/n)2−g) =

2−n(1−2−(g−log2(m/n))) > 2−n(1−2−G). Hence H∞(f(X)) < n(1 − 2−G).

4 Discussion

This section elaborates further.

4.1 Exceptional Cases: Falsity for Trivial Ranges

Lemma 1 requires n > 0, so that |B| ≥ 2. This is not merely for the
convenience of the proof, because when |B| = 1, the random variable f(X)
is constant in the range, and thus uniform, regardless of the distribution of
X.

4.2 Exceptional Cases: Extension to Larger Domain

Lemma 1 requires fullness level g ≥ log2(m/n) for distribution X. This
condition is used in the proof to ensure the constructed distribution X exists.
A natural question is what happens in the exceptional case of g < log2(m/n).

Taking the default fullness level g = 64, this implies that m > 264n. Let
n take smallest value allowed in the lemma: n = 1. Then |B| = 2n, so we
can assume that B = {0, 1}. In the exceptional case at hand, we would have
m > 264. For concreteness, suppose that m = 265, and that the set A be
could consist of all bit strings of length at most 264, together with a null
value.

In context of the NRBG construction from the draft standards, this size of
m is too large to be relevant. So the discussion here is only for completeness,
not for relevance to the draft standards.

Because log2(m/n) exceeds 64, the construction of X in the proof of
Lemma 1 cannot be used. The following alternative construction of a distri-
bution X on A with full entropy of fullness level 64 bits can be used instead.
Every element x ∈ A has probability at most 2−m(1−2−64) = 2−(265

−2). Choose
the distribution X such that 2265

−2 elements, in a set A′, have this maximal
probability under X, and the rest have probability 0. In other words, X has
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a uniform distribution on a subset A′ of A, which is a quarter of the size of
A.

Since f : A → B is uniform, the preimage of any y ∈ B, has 2m−1 = 2265
−1

elements: half the elements of A. Arrange X so that the A′ lies entirely in
one preimage, say f−1(1). In this case, f(X) = 1 with probability 1, and
f(X) has min-entropy zero. Therefore f(X) does not have full entropy for
any level of fullness.

More generally, if m is sufficiently large, then there exists an full entropy
distribution which maps under a given compression function to a zero entropy
output. If n > 1, this output distribution cannot have full entropy.

4.3 Pathological Distributions

This report does not prove that the NRBG constructions in the draft stan-
dards always produce outputs with less than the claimed full entropy. In-
deed, the NRBG constructions may possibly produce full entropy outputs
given non-pathological full entropy inputs.

All that this report proves is that pathological full entropy distributions
always exist for each deterministic compression function, such that if the
pathological input is fed into the function, then the output has less than full
entropy.

This result only implies that an actual proof of security for the NRBG
construction from the draft standards cannot be based solely on the uniform
NRBG constructions always preserving full entropy.

4.4 Construction of the Pathological Distribution

A computationally limited adversary can feasibly construct the pathological
distribution X from Lemma 1. In other words, the pathological distribution
X is constructable, not just existential. To construct the distribution, the
adversary first chooses x uniformly at random from A. Then the adversary
computes f(x). If f(x) 6= y0, then the adversary, with a small probability p
will go back and re-generate a new x uniformly at random from A instead.
(Just to clarify: the adversary need not iterate the test and re-generation:
only one test and re-generate suffices.) The value of p can be chosen such that
the final result has the probability distribution from the proof of Lemma 1.

Although the random variable X is constructable, it is not clear how an
adversary could supply such a variable to its victim. But if it could, then
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the adversary could cause the output to have less than full entropy.

4.5 The Aim for Information-Theoretic Security

The draft standards use the presumption of full entropy preservation (by cer-
tain specific compression functions) to justify further security claims about
the NRBG constructions: the NRBG construction provide information-theoretic

security. Although the draft standards do not define this exactly, other than
in terms of full-entropy, a reasonable interpretation is that the term implies
that the NRBG security does not rely on the hardness of a computational
problem.

For example, an NRBG constructed from SHA-1 ought to be able to
produce a 256-bit key in such a way that an adversary cannot exploit the
size of SHA-1 to launch a 2160 step attack to determine this key. To do
this, of course, requires the NRBG to fed an input seed of full entropy with
considerably more than 256 bits.

But, at least intuitively to the author, the NRBG constructions may
possibly provide the some security objective similar in spirit to this. For the
NRBG to have this property, the underlying components would necessarily
need to have some at least mild security properties, such as some kind of
pseudorandomness. For example, if the underlying components were the
constant zero function, then the NRBG constructions would be insecure.

4.6 Extension to Non-Uniform Compression Functions

Lemma 1 only addresses the simple case of uniform compression functions.
The compression functions used in the draft standards are almost certainly
non-uniform. The author’s intuition is that such non-uniform compression
functions drastically worsen the preservation of full entropy. The informal
reasoning for this intuition has two parts. Firstly, full entropy is a measure
of closeness to uniformity, and uniform compressions would seem to have an
advantage over non-uniform in producing nearly uniform output. Secondly,
non-uniform compression function by definition introduce non-uniformity
even when supplied with uniform inputs.

It seems that some careful adjustments of the proof of the lemma could
extend the result to the case of non-uniform function. The critical aspect to
make this extension that the y0 in the pre-image would have to have a pre-
image of size at least 2m−n. (Since f is no longer uniform now, one cannot
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presume that 2m−n is an integer.) Then one could use almost the distribution
X as described in the proof except that the instead of the first case covering
all x in the preimage it instead covers a set of size very close to 2m−n, which
is a subset of the preimage. One might have to adjust the probabilities in
the second case to accommodate this slight deviation.

This would also entail finding y with the requisite larger than average
pre-image. Such a y certainly exists. Taking x uniformly distributed gives
a y = f(x) with preimage probably larger than average. To find such a y
provably may involve a hard computational problem related to the function
f . In the information-theoretic setting, one refuses to rely on the hardness
of such problems, and one assumes that such a y can be found easily from
the description of f .

4.7 Independence of the Compression Function

It can be argued intuitively that, because the compression function is in-
dependent of any naturally occurring bias in the full entropy input seed,
the main result of this report in non-applicable. This is yet another strong
heuristic argument for the security of the NRBG.

The underlying intuition to this argument involves independence. If one
is to raise the argument from heuristic to rigorous, one must formalize a
notion of independence. The two main formal notions of independence (that
the author is aware of) are probabilistic and algebraic (including linear). It
is unclear how algebraic independence could be applied here, but perhaps it
could be.

Applying probabilistic independence would seem to entail assigning the
probabilities to the compression function. A potential formal problem with
this approach is that the NRBG compression function is public, so the prob-
abilities would no longer represent the adversary’s lack of information. One
may view the compression function parameters as random variable that were
subsequently leaked to the adversary. One could invoke a computational as-
sumption to say that the parameters of NRBG construction reveal nothing
useful to the adversary (much like a public key does not reveal the private
key). In this case, one really can use a notion of independence, but one
would be relying on some kind of computational problem, and would lose
some degree of information-theoretic security.
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4.8 Comparison to Key Derivation Functions

One interpretation of the results of this report is that if the output of a
deterministic compression function is to claim some of kind information-
theoretic security, then its input has to be even closer to uniform.

In the context of the NRBG construction, it may take input of m bits
(perhaps streamed from some raw entropy source), and output n bits. If the
initial m input bits are already closer to uniform than the output n bits, then
why bother at all with the NRBG construction.

Indeed, it seems that the purpose of the NRBG is similar to one of the
purposes of a the key derivation function. Loosely speaking, this purpose
is to take a distribution that has some significant bias, perhaps with only
half the maximal amount of entropy, and then product output with the full
entropy.

It should take input with full entropy of low fullness, say of 1 as in the
example above, and produce output of higher full entropy. In theory, this
report shows that to be impossible. But it may be in practice possible to do
this. And some heuristic arguments may support this.

Nevertheless, the role served by the NRBG in this instance is the pretty
much the same as the key derivation function. The only distinction would
be that the NRBG can taking input as a stream, and output a stream, with
a lower rate. The NRBG can also maintain a state. The state helps the
NRBG revert to a DRBG if the state has entropy but the input stream stops
providing entropy.

So, it would seem best to consider the NRBG not as a construction for pro-
viding information-theoretic security, rather as a construction for streamed
key derivation with a safe fallback to DRBG when the input stream falls into
a low entropy condition.
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