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Abstract

We consider the problem of constructing protocols for secure computation that achieve strong
concurrent and composable notions of security in the plain model. Unfortunately UC-secure
secure computation protocols are impossible in this setting, but the Angel-Based Composable
Security notion offers a promising alternative. Until now, however, under standard (polynomial-
time) assumptions, only protocols with polynomially many rounds were known to exist.

In this work, we give the first Õ(log n)-round secure computation protocol in the plain model
that achieves angel-based composable security in the concurrent setting, under standard as-
sumptions. We do so by constructing the first Õ(log n)-round CCA-secure commitment protocol.
Our CCA-secure commitment protocol is secure based on the minimal assumption that one-way
functions exist.

A central tool in obtaining our result is a new robust concurrent extraction lemma that we
introduce and prove, based on the minimal assumptions that one-way functions exist. This robust
concurrent extraction lemma shows how to build concurrent extraction procedures that work even
in the context of an “external” protocol that cannot be rewound by the extractor. We believe this
lemma can be used to simplify many existing works on concurrent security, and is of independent
interest. In fact, our lemma when used in conjunction with the concurrent-simulation schedule
of Pass and Venkitasubramaniam (TCC’08), also yields a constant round construction based
additionally on the existence of quasi-polynomial time (PQT ) secure one-way functions.

1 Introduction

The notion of secure multi-party computation protocols is central to cryptography. Introduced in
the seminal works of [Yao86, GMW87], secure multi-party computation allows a group of (mutually)
distrustful parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly compute any functionality
f in such a manner that the honest parties obtain correct outputs yet no group of malicious par-
ties learn anything beyond their inputs and the prescribed outputs. These early results on secure
computation [Yao86, GMW87], along with a rich body of followup works that further refined and
developed the concept [GL90, GMW91, Bea91, MR91, Can00, PW01, Can01, Gol04], demonstrated
that the delicate task of designing secure protocols can be captured by general secure computation.

Much of the early literature on secure computation only considered the stand-alone setting
where security holds only if a single execution of the protocol takes place, in isolation with no other
cryptographic activity in the system. We call this security stand-alone security. While stand-alone
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security may be sufficient for basic purposes, it does not suffice in today’s more complex networked
environments where other cryptographic protocols might be running in the system simultaneously.

Concurrent Security. To deal with more complex systems, the last decade has seen a push
towards obtaining protocols that have strong concurrent composability properties. For example,
we could require concurrent self-composability: the protocol should remain secure even when there
are multiple copies executing concurrently. The framework of universal composability (UC) was
introduced by Canetti [Can01] to capture a more general security requirement for a protocol that
may be executed concurrently with not only several copies of itself but also with other protocols in
an arbitrary manner.

Unfortunately, strong impossibility results have been shown ruling out the existence of secure
protocols in the concurrent setting. UC secure protocols for most functionalities of interest have
been ruled out in [CF01, CKL03]. Protocols in even less demanding settings of concurrent security
were ruled on in [Lin04, BPS06, AGJ+12, Goy12]. We stress that, in fact, the latest sequence of these
impossibility results provide an explicit attack in the concurrent setting using which the adversary
may even fully recover the input of an honest party (see, e.g., the chosen protocol attack in [BPS06]).
Hence, designing secure protocols in the concurrent setting is a question of great theoretical interest
as well as practical motivation.

To overcome these impossibility results, UC secure protocols were proposed based on various
“trusted setup assumptions” such as a common random string that is published by a trusted
party [CF01, CLOS02, BCNP04, CPS07, Kat07, CGS08]. Nevertheless, a driving goal in crypto-
graphic research is to eliminate the need to trust other parties. The main focus of this paper is to
obtain concurrently-secure protocols in the plain model.

Relaxing the Security Notion. To address the problem of concurrent security for secure com-
putation in the plain model, a few candidate definitions have been proposed, the most well studied
one being that of super-polynomial simulation [Pas03, PS04, BS05]. The notion of security with
super-polynomial simulators (SPS) [Pas03, PS04, BS05] is one where the adversary in the ideal
world is allowed to run in (fixed) super-polynomial time. Very informally, SPS security guarantees
that any polynomial-time attack in the real execution can also be mounted in the ideal world execu-
tion, albeit in super-polynomial time. This is directly applicable and meaningful in settings where
ideal world security is guaranteed statistically or information-theoretically (which would be the case
in most “end-user” functionalities that have been considered, from privacy-preserving data mining
to electronic voting).

Angel-based UC security. To formalize the notion of SPS security in a way that allows modular
analysis and provides composability, Prabhakaran and Sahai [PS04] put forward the notion of angel-
based composable security. Very roughly, in the angel based security notion, the parties (including
the simulator and the adversary) are all polynomial time but have access to an angel which will
perform certain specific super-polynomial time computations. This angel-based definition is in
contrast to the case where the simulator is given direct access to super-polynomial computation
power: in this case, the resulting security notion is not closed under composition and thus does not
permit a modular protocol design in the concurrent setting1. A construction for concurrently secure
computation in the angel based composable security model were given in [PS04, BS05], but only
based on non-standard super-polynomial hardness assumptions.

1However we note that according to this weaker SPS security notion, concurrently secure protocols in constant
rounds are now known [GGJS12].
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Very recently, Canetti, Lin, and Pass [CLP10] obtained the first secure computation proto-
col that achieves angel-based composable security based on standard polynomial-time assumptions.
Unfortunately, however, the improvement in terms of assumptions comes at the cost of the round
complexity of the protocol. Specifically, the protocol of [CLP10] incurs polynomial-round complexity.
A follow up work of Lin and Pass [LP12] considers the problem of designing black-box constructions
for secure computation in the concurrent setting. They propose a protocol making only a black-box
use of oblivious transfer satisfying the angel-based composable security notion. However the round
complexity of their protocol continues to remain polynomial.

We note that the latency of sending messages back and forth has been shown to often be the
dominating factor in the running time of cryptographic protocols [MNPS04, BNP08]. Indeed, round
complexity has been the subject of a good deal of research in cryptography. For example, in
the context of concurrent zero knowledge (ZK) proofs, round complexity was improved in a se-
quence of works [RK99, KP01, PRS02] from polynomial to slightly super-logarithmic (that nearly
matches the lower bound w.r.t. black-box simulation [CKPR01]). The round complexity of non-
malleable commitments in the stand-alone and concurrent settings has also been studied in several
works[DDN91, Bar02, PR05b, PR05a, LP09, Wee10, Goy11, LP11], improving the round complex-
ity from logarithmic rounds to constant rounds under minimal assumptions. We observe that for
the setting of concurrently secure computation protocols with angel-based composable security, the
situation is worse since the only known protocols that achieves angel-based composable security
based on standard assumptions incurs polynomial-round complexity [CLP10, LP12]. This raises the
following natural question:

“Do there exists round-efficient protocols in the concurrent setting satisfying the angel-based
composable notion of security based on standard assumptions?”

Our Results. We answer the above question in the affirmative and provide a Õ(log n) round
construction of concurrently secure computation in the plain model. Our construction satisfies
the angel-based composable notion of security [PS04, CLP10]. To obtain our result, we construct
a “CCA-secure commitment” protocol in Õ(log n) rounds, based only the assumption that one-
way functions exist. CCA secure commitments were introduced in [CLP10]; roughly speaking,
a commitment protocol is CCA-secure if it remains hiding even when the adversary is given an
oracle that can open all commitment values (except the commitment given as a challenge to the
adversary). In [CLP10], Canetti et al. show how to construct a protocol that securely realizes
any functionality—under the angel-based composable notion of security—given an (appropriate)
protocol for CCA secure commitments (see full version of [CLP10]). Prior to our work, the best
known construction for CCA secure commitments based on standard (polynomial time) assumptions,
required nε rounds [CLP10, LP12]. In contrast, the round complexity of our protocol matches that
of the best known constructions for concurrent extractable commitment schemes [PRS02, MOSV06].

A robust concurrent extraction lemma. A key technical tool that we introduce is a lemma that
allows robust extraction of secrets from an adversarial committer A∗ in the concurrent setting. We
call this lemma, the robust concurrent extraction lemma, which is of independent interest. Roughly
speaking, the lemma is a strengthening of the concurrent extraction mechanism for the PRS preamble
[PRS02] (we shall call this the PRS commitment), and states that concurrent extraction can be
performed even in the presence of an external protocol which cannot be rewound by the “simulator.”

More precisely, consider an adversarial committer A∗ who commits to multiple values in con-
current sessions of the PRS commitment to honest receivers; let us label these sessions as the right
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sessions. Simultaneously, A∗ participates in a left execution of an arbitrary k-round protocol, de-
noted Π := 〈B,A〉. Then, the robust concurrent-extraction lemma states that for every A∗ there
exists a simulator S which, without rewinding the external party B in its execution of Π, extracts
the values committed to by A∗ in every session of the PRS commitment. Furthermore, if ` is the
round complexity of the PRS preamble, and T is the running time of A∗, then S only fails with
probability that is exponentially small in `−O(k · log T ).

In order to capture correctness of extraction, we formulate our lemma by considering a “real-
world” experiment in which A∗ receives the values committed to in every valid PRS commitment
from an exponentially powerful party E , called the “online extractor.” The extraction of values are
provided by E as soon as a PRS session ends. Our lemma states, intuitively speaking, that both
the adversary A∗ and the exponentially powerful party E can be replaced with a polynomial-time
simulator, that still interacts with the external party B in the external protocol Π. We remark
that formulating the lemma in a generic way, so that it can handle as general usage of the PRS
commitment as we have seen in the literature, is a delicate task. Nevertheless, we show that it is
possible to precisely capture the concurrent-extraction property of the PRS commitment in a generic
way without referring to any specific protocol that uses it.

An immediate benefit of our formulation is that when the PRS commitment is used inside a
larger protocol, the task of “concurrent extraction” can be formally isolated from other parts of
the protocol. This allows one to design hybrid experiments without having to worry about the
extraction. We provide two procedures for this purpose—a simulator S and an online extraction
E—and demonstrate their use in the security proof of our protocol.

We also wish to remark that the ability to extract without rewinding B turns out to be a very
useful tool during concurrent security proofs, and we expect this will have significant applications
elsewhere. This flexibility simplifies security proofs (of even previous works) to a great extent. For
example, a situation similar to our lemma arises in previous works on concurrent non-malleable
zero-knowledge [BPS06, LPTV10], In these works, the problem is solved in an arguably ad-hoc
fashion, which stops rewindings after a certain point in the simulation during certain hybrids. This,
overall, leads to a rather delicate analysis, and the order of hybrid experiments becomes important.

By using our robust-extraction lemma, this problem can be avoided almost directly. We note
however, that in our case, it is crucial that the rewindings not be stopped. This is because, in our
situation, one needs to implement the super-polynomial angel from the beginning in each hybrid
experiment. Hence, every session in every hybrid requires online extraction—which is possible either
by using (all) rewindings or by using super-polynomial simulation.

Technical Overview. As mentioned before, the starting point of our construction is the robust
extraction lemma. The basic problem encountered in proving the lemma is that given the entire
transcript of interaction between A∗ and the honest right parties, there are various “breakpoints”
in the transcript (representing messages of the left protocol) which cannot be rewound. In addition,
during rewindings (or look-ahead threads), the breakpoints can change their location and can even
come earlier than expected (at which point the current thread must be discontinued and another
one started). At a high level, we start by considering the necessary modification of the KP/PRS
simulator so that when a breakpoint is encountered during the execution of a look-ahead thread,
the look-ahead thread is stopped and abandoned.

Our proof shows that even with this modification, the simulation still succeeds. The key obser-
vation is that each breakpoint can “spoil” at most a d = log T number of “recursive blocks” used
in the swapping argument of [PRS02]. Since there are k breakpoints, this incurs an additional loss
of k · log T blocks. However, to execute this proof strategy, it becomes crucial to use the informa-
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tion learned during a “look-ahead block” in certain special sibling blocks. This new feature of our
analysis must be done carefully to maintain the correctness of our swapping argument.

We note that we strive to obtain the best possible bounds for the round complexity ` of PRS
that is necessary to extract for a given value of k (rounds of the left protocol). For this reason, we
choose to re-analyze the proof presented in [PRS02] (see also [PTV08])2.

For the goal of constructing CCA secure commitments, a direct application of the robust ex-
traction lemma will not be sufficient. This is because the number of rounds in the left and the right
interaction will be the same, and the robust extraction lemma cannot work with respect to protocols
with the same round complexity as the PRScommitment! To construct CCA secure commitments
(which is our main technical goal), we instead build upon techniques from prior work on concurrent
non-malleable zero-knowledge (CNMZK) [BPS06, GJO10, LPTV10]. At a high level, our protocol is
simple: commit to the value using a regular commitment scheme, and then, prove the validity of the
commitment using a concurrent zero-knowledge protocol that is also simulation sound [Sah99]. We
note that we design our own protocol for this task since we strive to achieve a construction based on
one-way functions only (for CCA secure commitments). Using techniques from [BPS06, LPTV10]
is either not possible or results in stronger assumptions such as the existence of collision-resistant
hash functions. Our protocol is presented in section 3.

A Constant Round Protocol from PQT One-way Functions. Our techniques can be seen
as a general method which reduce the task of concurrent-extraction to that of concurrent-simulation.
The method requires only a constant-factor blow up in the round-complexity (of a given concurrent-
simulation method) and a polynomial-factor blow up in the running time of the (given) simulator.
By applying our method to the concurrent-simulator of [PV08], we obtain a constant round proto-
col for CCA-secure commitments based only on the existence of one-way functions secure against
adversaries running in time super quasi-polynomial time (PQT ) (see [PV08]).

Assuming more complex, and somewhat non-standard assumptions—namely the existence of
adaptive one-way functions [PPV08]—a constant round protocol for CCA secure commitments is
already known [PPV08]. In addition, our techniques can also be combined with the recent constant
round concurrent zero-knowledge protocols of [CLP12, GS12]3, to obtain constant round CCA secure
commitments from similar (non-standard) assumptions.

Related Works. The work of Garg, Goyal, Jain, and Sahai [GGJS12] is closely related to our
work, who provide a constant round protocol under the non-composable SPS notion (instead of angel-
based composable security). Their work requires the existence of statistically hiding commitment.
Independently of [GGJS12], a recent work of Lin, Pass, and Venkitasubramaniam [LPV11] also
provides a constant round protocol achieving non-composable SPS security, using very different
techniques.

Other security notions that deal with concurrent security were presented in [MPR06, GGJS12]
who propose the notion of input indistinguishable computation, and in [GS09, GJO10] who consid-

2For example, one can consider the approach of applying a pigeonhole principle argument to argue that ω(logn)
slots must occur between some two breakpoints, and then trying to apply the PRS analysis simply to these slots.
However, note that even if no breakpoints occur during these slots, look-ahead threads that are started during these
slots can still encounter breakpoints, since the adversary can choose the scheduling adaptively. Dealing with this
analytically would require further loss, and result in a worse asymptotic bound than ours for super-constant values
of k. Our more direct approach shows how to amortize the gains made over all slots, even if only a few slots occur
between some breakpoints.

3Chung, Lin, and Pass [CLP12] construct a constant-round concurrent zero-knowledge protocol under a new (falsi-
fiable) assumption, namely the existence of strong P-certificate system. Gupta and Sahai [GS12] also obtain the same
result, albeit under a (new) knowledge-type assumption.
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ered a modified ideal world that allows the adversary to make more output queries to the ideal
functionality (than just one) per session.

2 Robust Concurrent Extraction

In this section, we will prove the robust extraction lemma. We use standard notation. In particular,
A(x; r) denotes the process of evaluating (randomized) algorithm A on input x with random coins r,
and A(x) the process of sampling a uniform r and then evaluating A(x; r). We define A(x, y; r) and
A(x, y) analogously. The set of natural numbers is represented by N. Unless specified otherwise,
n ∈ N represents the security parameter available as an implicit input. when necessary. All inputs
are assumed to be of length at most polynomial in n.

For two probability distributions D1 and D2, we write D1
c≡ D2 to mean that D1 and D2 are

computationally indistinguishable. For two interactive Turing machines (itm) A and B, we write
OUTB [A(1n, x)↔ B(1n, y)], the output of B after an interaction with A where their inputs in the
interaction are y and x respectively, and their random tapes are independent and uniform.

We assume familiarity with commitment schemes. Without loss of generality, we will be using
commitment schemes with non-interactive reveal phase—i.e., the committer sends a single message
(v, d) to decommit. For a commitment scheme 〈C,R〉, we denote by open〈C,R〉(c, v, d) the decom-
mitment function. That is, the receiver accepts v as the value committed to in the commitment-
transcript c if open〈C,R〉(c, v, d) outputs 1, and rejects otherwise. For statistically binding commit-
ments, v is uniquely determined given c with high probability.

2.1 The PRS Preamble

The robust extraction lemma deals with the commitment preamble of Prabhakaran, Rosen, and
Sahai [PRS02]. This preamble has been used in many prior works, and is often referred to as the
PRS preamble. The preamble uses an underlying commitment scheme Com. Roughly speaking, the
committer first commits to many shares of the value v to be committed using Com. This is followed
by a several rounds where in each round, the receiver sends a random challenge, and the committer
responds with appropriate decommitments. Each round is called a slot.

Essentially, the PRS preamble is an interactive commitment scheme, which is statistically binding
(resp. hiding) if the underlying scheme Com is statistically binding (resp., hiding). The formal
description of the PRS preamble is given in figure 1. As before, we write openPRS(c, v, ρ) = 1, to
formally mean that there exists randomness ρ such that c is the transcript of the PRS preamble,
executed between the honest committer with input v and randomness ρ and the honest receiver
with randomness (equal to its challenges) appearing in c.

2.2 The Extraction Lemma

In this section, we present the robust extraction lemma. We will consider an adversary A∗ who
interacts in many sessions of the PRS preamble; simultaneously, A∗ also participates in a single exe-
cution of a two party computation protocol Π. The running time of A∗ is not necessarily polynomial
in n. However, the lemma becomes trivial if the hiding/binding of the underlying commitment Com
can be broken in poly(n) · T 2 time, where T = T (n) is the maximum number of PRS preambles A∗

initiates.

Simplifying Assumption. We assume, for the clarity of presentation, that the commitment scheme
Com underlying the PRS preamble is statistically binding. Later, we will present the general form
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The security parameter is n, the value to be committed is v ∈ {0, 1}n, and the round-
parameter is ` := `(n).

Commitment. The committer and the receiver execute the following steps.

1. The committer chooses n` pairs of n-bit random strings (v0i,j , v
1
i,j) for i ∈ [n], j ∈ [`]

such that (for every i, j): v0i,j ⊕ v1i,j = v. It commits to strings v, vbi,j using the
commitment scheme Com, for every b ∈ {0, 1} , i ∈ [n], j ∈ [`].

2. For j = 1 to `:
(a) the receiver sends a n-bit challenge string rj = r1,j , . . . , rn,j
(b) the committer responds by sending a decommitment to strings v

r1,j
1,j , . . . , v

rn,j

n,j

Decommitment. The committer decommits to all remaining strings which were not
opened in the commit phase.

Figure 1: The PRS Preamble based on Com.

which deals with both kinds of Com, as well as varying round complexity of the preamble.

Protocol Π. Let Π := 〈B,A〉 be an arbitrary two-party computation protocol. We assume w.l.o.g.
that both B and A receive a parameter n ∈ N as their first input. In addition, for a fixed n ∈ N,
let domB(n) denote the domain of valid (second) input for algorithm B, and k := k(n) denote the
round complexity of Π.

The robust-concurrent attack. Let A∗ be an interactive Turing machine, called the adversary,
n ∈ N the security parameter, and x ∈ domB(n) an input. In the robust-concurrent attack, A∗

interacts with a special, not necessarily polynomial time, party E called the “online extractor.”
Party E simultaneously participates in one execution of the protocol Π, and several executions of
the PRS preamble with A∗. Party E follows the (honest) algorithm B(1n, x) in the execution of Π
with A∗. Further, it follows the (honest) receiver algorithm in each execution of the PRS preamble.
If A∗ successfully completes a PRS preamble s, E sends a string αs to A∗, together with a special
message ends, to mark the completion of the preamble.

The scheduling of all messages in all sessions—Π as well as PRS preambles—is controlled by A∗

including starting new sessions and finishing or aborting existing sessions. We adopt the following
conventions [Ros04, PRS02]:

1. When A∗ sends a round i message of session s, it immediately receives the next—i.e., (i+1)-st
message of s; this is without loss of generality,4 and holds for messages of Π as well.

2. If a session s has been aborted, A∗ does not schedule any further messages of s.

3. If A∗ starts a PRS preamble s, it also sends a special message, denoted starts, immediately
after the last message of step 1 of this preamble is completed (see figure 1). Message starts
indicates that the challenge-response phase is about to start.

At some point, A∗ halts. We say that A∗ launches the robust-concurrent attack.
For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let REALA

∗
E,Π (n, x, z) denote the output of the following

probabilistic experiment: on input 1n and auxiliary input z, the experiment starts an execution of

4This is because the next message can be stored and delivered whenever needed during the attack.
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A∗. Adversary A∗ launches the robust-concurrent attack by interacting with the special party E
throughout the experiment, as described above. When A∗ halts, the experiment outputs the view
of A∗ which includes: all messages sent/received by A∗ to/from E , the auxiliary input z, and the
randomness of A∗. �

We are now ready to present the robust extraction lemma. Informally speaking, the lemma
states that there exists an interactive Turing machine—a.k.a the robust simulator—whose output is
statistically close to REALA

∗
E,Π (n, x, z) even if the final response of E at the end of a successful PRS

session is actually the value A∗ commits to in that session. Further, the robust simulator does not
“rewind” B, and runs in time polynomial in total sessions opened by A∗.

Lemma 1 (Robust Concurrent Extraction). There exists an interactive Turing machine S (“ro-
bust simulator”), such that for every A∗, for every Π := 〈B,A〉, there exists a party E (“online
extractor”), such that for every n ∈ N, for every x ∈ domB(n), and every z ∈ {0, 1}∗, the following
conditions hold:

1. Validity constraint. For every output ν of REALA
∗
E,Π(n, x, z), for every PRS preamble s (ap-

pearing in ν) with transcript τs, if there exists a unique value v ∈ {0, 1}n and randomness ρ
such that openPRS(τs, v, ρ) = 1, then:

αs = v,

where αs is the value E sends at the completion of preamble s.

2. Statistical simulation. If k = k(n) and ` = `(n) denote the round complexities of Π and the
PRS preamble respectively, then the statistical distance between distributions REALA

∗
E,Π (n, x, z)

and OUTs

[
B(1n, x)↔ SA

∗
(1n, z)

]
is given by:

∆(n) ≤ 2−Ω(`−k·log T (n)),

where T (n) is the maximum number of total PRS preambles between A∗ and E.5 Further, the
running time of S is poly(n) · T (n)2.

We prove this lemma by presenting an explicit simulator S and a corresponding party E . The
explicit constructions appear in subsection 2.3, and the full proof of the lemma appears towards the
end of the paper, in section 5. We now make some important remarks about the lemma.

Remarks.

1. The special party E is not completely defined by the lemma. In particular, when a PRS
preamble s does not commit to a unique and valid value v, the value αs sent by E to A∗

is not defined. This can happen, e.g., when not all shares committed to in step 1 xor to
v. In such situations, E can choose whatever value αs it wants. The only requirements on
E are that it uses honest algorithms during the robust-concurrent attack and that for each
successfully completed PRS preamble it satisfies the validity constraint. Every E satisfying
these requirements is called a valid E .

5The lemma allows for exponential T (n) as well. However, if it is too large—e.g., T (n) = 22n, the PRS preamble
should be modified suitably. For example, the value v as well as the challenges in each slot, must be of length at least
n+ 2 log T (n).
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2. The PRS preamble is used in a variety of complex ways. For example, some protocols require
opening the committed PRS-value (e.g., [PRS02, BPS06, OPV10], whereas some others may
never open this value (e.g., [LPTV10, GJO10]). To be able to capture such uses generically,
we do not enforce any consistency requirements on the PRS preambles. The choice of not
fully defining E when PRS preamble is not valid provides sufficient flexibility to capture such
generic uses of the preamble.

3. When the preamble is used in a larger protocol, a “main” simulator is used to prove the
security of the larger protocol. Typically, the main simulator employs the rewinding strategy
of [KP01, PRS02] to extract the PRS-values and simultaneously deals with other details of
the protocol. Our lemma separates the task of extracting PRS-values from other necessary
actions of the main simulator. This makes the overall proofs simpler. Party E then only acts
as mechanism to transfer the extracted PRS-values back to the main simulator. The main
simulator takes upon the role of A∗ to receive extracted values from E , while only dealing with
other details of the larger protocol.

4. A consequence of the above two remarks is that when a PRS preamble is not consistent, we do
not know what value αs actually gets extracted. Our choice of the order of quantifiers allows
E to depend on A∗ as well as S. This essentially allows E to extract and supply the same value
αs (by running S internally) that a typical “main” simulator would extract for inconsistent
PRS preambles.

5. Requirements 1 and 2 of the lemma imply that if we sample an output of the simulator and
consider a PRS preamble s with transcript τs which contains a unique and valid value v, and
receives αs as E ’s response in the end, then except with probability ∆(n), it holds that αs = v.

2.3 A Robust Simulator and an Online Extractor

In this section, we present an explicit construction of a robust simulator S, and the (online extractor)
party E for which (the robust extraction) lemma 1 holds. The simulator is a slight modification of
[KP01, PRS02], to also deal with messages of Π, without rewinding them. We start by defining a
few terms first.

The states of A∗. Recall that the scheduling of messages in the robust-concurrent attack is
controlled by A∗, and when A∗ sends the i-th message of a session s (either PRS or Π), it immediately
receives the next message of s, namely the (i + 1)-st message. The state of A∗ at any given point
during the attack consists of its view up to that point : it includes all messages sent/received by A∗,
its auxiliary input z and its randomness. The starting (or original) state of A∗—denoted throughout
by st0—is its state before it receives the first message. If st denotes the state of A∗ at some point
during the robust-concurrent attack, the set of all PRS preambles which have not completed yet is
denote by LIVE(st).

The robust simulator S. The simulator receives as input an auxiliary string z ∈ {0, 1}∗, and the
security parameter n. The simulator participates with an external party B of Π. Let x ∈ domB(n)
and γ denote the input and uniformly chosen randomness of B. The simulator incorporates the
adversary A∗ as a black-box; let T = T (n) define the maximum number of PRS preambles that A∗

can open during the robust-concurrent attack.
Simulator S starts by setting (1n, z) on A∗’s input tape, and a sufficiently long uniform string

on its random tape. The simulator then initiates a helper procedure recurse as follows:
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(st, T )← recurse(T, st0, ∅, 1, ∅, 0).

Throughout its execution, messages of recurse are forwarded back and forth to B(1n, x; γ) and
(the black-box) A∗ as appropriate. Finally, the output of S is the first output of recurse, namely st;
the output st is also known as the main thread. Procedure recurse is given in figure 2, each execution
of recurse is called a block, and has a unique name denoted by id. �

The online extractor E. Formally, an execution of E begins during a robust-concurrent attack.
Let (γ, ρ) denote the random tape of E , and (n, x, z) denote its inputs. E incorporates the program
of A∗, and performs the following internal steps before it sends out its first message in the robust-
concurrent attack,

1. E proceeds identically to the robust simulator algorithm S, using ρ as its random tape and
(1n, z) as its inputs. To successfully proceed in this step, E uses (x, γ) to simulate the honest
algorithm B(1n, x; γ), as well as black-box access to A∗.6 However, E differs from S in its
actions only when a PRS preamble s completes, in the manner described below.

2. Let s be a successfully completed PRS preamble; at this point S either extracts a value µs
or reaches an ExtractFail. When this happens, E neither sends µs nor aborts the simulation;
instead it proceeds as follows. First, E attempts to extract the actual value committed to in the
preamble by inverting all instances of the underlying commitment Com. Then, it decides the
value αs, to be sent, as follows. If a valid and unique value vs exists, set αs = vs. Otherwise,
it has following cases:

(a) If there are more than one valid vs, proceed as follows: if µs equals to any of them, set
αs = µs, otherwise, set αs to be one of them chosen at random.

(b) If no valid vs exists, then proceed as follows: if µs = ExtractFail, set αs to be a random
value; otherwise, set αs = µs.

3. After reaching the end of the simulation, E internally stores the randomness ρs and the values
αs for every PRS preamble s appearing on the main thread.

Having completed the steps above,7 E is now ready to interact with the (outside) A∗ launching the
robust-concurrent attack, and proceeds as follows.

• If A∗ sends a message intended for the (only) session of Π, E interacts with A∗ by following
actions of B(1n, x; γ). Likewise, if A∗ sends a messages for a PRS preamble s, A∗ follows the
honest receiver algorithm of PRS preamble with randomness ρs already computed internally.

• If A∗ successfully completes a PRS preamble s, E sends the already stored value αs to A∗. �

3 CCA Secure Commitments in Õ(log n) Rounds

In this section we apply our robust extraction lemma to construct a Õ(log n)-round protocol for
CCA secure commitments. We will need the generalized version of the lemma which allows for
statistically hiding PRS preamble as well; the general version appears in A. We will also use a

6Observe that although E depends on A∗ here, it still uses A∗ only as a black-box, as remarked earlier.
7We insist that all the steps above are internal to E and that as of now it has not sent any external message in the

robust-concurrent attack. Further, it can successfully complete these steps since it has all the required inputs.
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procedure recurse(t, st, T , f, aux, id):

1. If t = 1, repeat:

(a) If the next message is start, start a new session s.
– send r ← {0, 1}n as the challenge of the first slot of s.
– add entry (s : 1, r, ) to T .

(b) If the next message is the slot-i challenge of an existing session s.
– send r ← {0, 1}n as the slot-i challenge of s.
– add entry (s : i, r, ) to T .

(c) If the next message is the slot-i response, say β, of an existing session s.
– If β is a valid message:

– update entry (s : i, ri, ) to (s : i, ri, β).

– if i = `, i.e., it is the last slot, send (end, extract(s, id, T , aux)).
– Otherwise, if β = ⊥, abort session j, and add (s : ⊥,⊥,⊥) to T .
– Update st to be the current state of A∗

– return (st, T ).

(d) If the next message is a response from A∗ for the external protocol Π.
– If f = 0, i.e., it is a look-ahead block, then return (st, T );
– If f = 1, i.e., it is the main thread), do the following:

– send A∗’s message to the external party of Π, return the response to A∗.

– Update st to be the current state of A∗

– For every live session s ∈ LIVE(st), do the following:

– ×s,id = true,

– for every block id′ that contains the block id, set: ×s,id′ = true.

2. If t > 1,

# Rewind the first half twice:

(a) (st1, T1)← recurse(t/2, st, T , 0, aux, id ◦ 1) [look-ahead block C ′]

(b) Let aux2 = (aux, T1 \ T ),
(st2, T2)← recurse(t/2, st, T , f, aux2, id ◦ 2) [main block C]

# Rewind the second half twice:

(c) (st3, T3)← recurse(t/2, st, T ∗, 0, aux, id ◦ 3) [look-ahead block D′]

(d) Let T ∗ = T1 ∪ T2 and aux4 = (aux, T3 \ T ∗),
(st4, T4)← recurse(t/2, st, T ∗, f, aux4, id ◦ 4) [main block D]

(e) return (st4, T3 ∪ T4).

procedure extract(s, id, T , aux):

1. Attempt to extract a value for s from T .

2. If extraction fails, consider every block id1 for which ×s,id1 = true.
– Let id′1 be the sibling of id1, with input/output tables Tin, Tout respectively.
– Attempt to extract from auxid′1 := Tout \ Tin; (included in aux).

3. If all attempts fail, abort the simulation and return ExtractFail.
Otherwise return the extracted value.

Figure 2: Procedures recurse and extract used by the robust simulator S.
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non-malleable commitment scheme, denoted NMCom, that is robust w.r.t. constant round protocols
[LP09]. Constant round constructions for such protocols are now known, see section C for details
and definitions.

The protocol has a very intuitive “commit-and-prove” structure where the committer commits to
the value v using a PRS preamble, and then proves its consistency using what resembles a “concurrent
simulation-sound” protocol. We start by recalling the notion of CCA secure commitments from
[CLP10].

3.1 CCA Secure Commitments

Let 〈C,R〉 denote a statistically binding and computationally hiding commitment scheme. We
assume w.l.o.g. that 〈C,R〉 has a non-interactive reveal phase—i.e., the committer simply sends
(v, d). The decommitment is verified using a function open(c, v, d); that is, the receiver accepts v as
the value committed in the commitment-transcript c if open(c, v, d) outputs 1, and rejects otherwise.
A tag-based commitment scheme with l(n)-bit identities [PR05b, DDN91] is a commitment-scheme
where in addition to 1n, C and R also receive a “tag” (or identity) of length l(n) as common input.
We will consider schemes which are efficiently checkable: meaning that if R accepts in the interaction
(with transcript c) then there exists a decommitment pair (v, d) such that open(c, v, d) = 1.

In CCA-secure commitments, we consider an adversarial receiver A, who has access to an oracle
O, called the “decommitment oracle.” The oracle participates with A in many concurrent sessions
of (the commit phase of) 〈C,R〉, using tags of length l(n), chosen adaptively by A. At the end of
each session, if the session is accepting, the oracle returns the (unique) value committed by A in
that session; otherwise it returns ⊥. (In case there is more than one possible decommitment, O
returns any one of them.)8

Roughly speaking, we say that a tag-based scheme 〈C,R〉 is CCA-secure if there exists a decomit-
ment oracle O for 〈C,R〉, such that the hiding property of the scheme holds even for adversaries A
with access to O. Formally, let INDb(〈C,R〉,O, A, n, z) denote the output of the following proba-
bilistic experiment: on common input 1n and auxiliary input z, the ppt adversary AO (adaptively)

chooses a pair of challenge values (v0, v1) ∈ {0, 1}n and a tag id ∈ {0, 1}l(n), and receives a commit-
ment to vb using the tag id (note that A interacts with O throughout the experiment as described
before); finally, when AO halts, the experiment returns the output y of AO; y is replaced by ⊥ if
during the experiment, A sends O any commitment using the tag id.

Definition 1 (CCA-secure Commitments, [CLP10]). Let 〈C,R〉 be a tag-based commitment scheme
with tag-length l(n), and O be a decommitment oracle for it. We say that 〈C,R〉 is CCA-secure
w.r.t. O, if for every ppt itm A, every z ∈ {0, 1}∗, and every sufficiently large n, it holds that:

IND0(〈C,R〉,O, A, n, z) c≡ IND1(〈C,R〉,O, A, n, z).

We say that 〈C,R〉 is CCA-secure if there exists a decommitment oracle O′ such that 〈C,R〉 is
CCA-secure w.r.t. O′.

An analogous version of the definition which considers many concurrent executions on left (in-
stead of just one), is known to be equivalent to the current definition (via a simple hybrid argument).
Also note that, for this reason, this definition implies concurrent non-malleable security for commit-
ments [PR05a].

8Note that since 〈C,R〉 is efficiently checkable, and the session is accepting, such a valid decommitment always
exists. In addition, note that since we only have statistical binding, this value is unique except with negligible
probability.
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3.2 Our Protocol for CCA Secure Commitments

We are now ready to present our CCA secure commitment protocol, denoted CCA-Com. The protocol
employes the PRS preamble in both directions (similar to [GJO10, LPTV10]). However, our protocol
is much simpler, and admits an easier security proof.

We now provide a quick overview of our protocol. Our protocol will also use a constant-round
non-malleable commitment scheme—NMCom—that is robust w.r.t. 4 rounds. The formal descrip-
tion of our protocol appears in figure 3.

Let v ∈ {0, 1}n be the value to be committed. Our commitment protocol, CCA-Com, consists
of five phases. In the first phase, the committer C commits to v using a statistically-binding PRS
preamble. We denote this instance of the preamble by PRS1. In phase 2, the receiver R uses a
statistically-hiding PRS preamble to commit to a random value σ ∈ {0, 1}n; we denote this instance
of the PRS preamble by PRS2.

In phase 3, C commits to 0n using the robust NMCom scheme. In phase 4, R decommits to the
value σ (of phase PRS2). Finally, in phase 5, C uses a witness-indistinguishable (WI) proof system
to prove that: “either there exists a valid value v in phase 1 or the value committed in NMCom is σ.”
It can use, for example, Blum’s 3-round protocol repeated in parallel n times [Blu87]. We remark
that it is necessary to use a proof system which ensures soundness against unbounded provers.

To decommit, C sends decommitments corresponding to the first phase, namely PRS1. The
round-complexity of both PRS preambles is ` ∈ ω(log n). We have the following theorem, whose
proof appears in section 4.

Theorem 1. Assuming the existence of collision-resistant hash functions, protocol CCA-Com pre-
sented in figure 3 is a Õ(log n)-round CCA secure commitment scheme for identities of length n.

3.3 Construction based on One-way Functions

Protocol CCA-Com of the previous section requires the use of a statistically-hiding phase PRS2.
If we change the protocol so that PRS2 is statistically-binding, we will not be able to prove that
the right sessions of CCA-Com remain statistically binding. This is because of the presence of the
super-polynomial time oracle O. Indeed, without the oracle we can make PRS2 statistically-binding
and have a protocol based on one-way functions; but in the presence of oracle, it may happen that
A∗ is able to ensure that for some right session s, ũs = σ̃s.

To avoid this problem, we must somehow remove PRS2 yet still be able to later modify the
left PRS slot-by-slot. The key observation is that in case of commitments, there is only one left
session. Therefore, we can use a different simulation strategy which guarantees “soundness” w.r.t.
unbounded committers as well.

Based on this observation, our one-way functions based protocol does not use PRS2. Instead it
uses a CoinFlip protocol in which no unbounded prover can succeed in “setting up a trapdoor” but
a rewinding party can. Our new protocol, denoted CCA-Com∗, appears in figure 4.

Theorem 2. Assuming the existence of one way functions, protocol CCA-Com∗ presented in figure
4 is a Õ(log n)-round CCA secure commitment scheme for identities of length n.

For the proof of this theorem see appendix B. Although the proof is very similar to that of
theorem 1, one crucial point is that we need to re-use the idea of robust-simulation, and be careful
about how we apply it.
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Protocol CCA-Com. The committing algorithm is denoted by C. The receiver
algorithm is denoted by R. The common input is the security parameter n and
an identity id of length n. The private input of C is the value v ∈ {0, 1}n to be
committed. The protocol proceeds in following five phases:

• Phase 1: C commits to v using a statistically-binding PRS preamble. This
instance of the preamble is denoted by PRS1, and let τ1 be the commitment-
transcript.

• Phase 2: R commits to random σ ← {0, 1}n using a statistically-hiding PRS
preamble. This instance of the preamble is denoted by PRS2.

• Phase 3: C commits to the all-zero string 0n using NMCom, with common
identity id. Let τ3 be the commitment-transcript.

• Phase 4: R decommits to σ, by sending the appropriate decommitment strings.

• Phase 5: C proves to R, using a public coin, constant round WI proof system
(e.g., n parallel repetitions of Blum’s protocol), that either:

(a) ∃ v ∈ {0, 1}n s.t. τ1 is a valid PRS-commitment to v; OR
(b) τ3 is a valid commitment to σ as per NMCom.

Decommitment oracle O. The oracle extracts the value committed to in tran-
script τ1 of the first phase, and returns it.

Figure 3: Protocol CCA-Com.

4 Proof of Security for CCA-Com

We start by noting that the scheme is statistically-binding even against an unbounded cheating
committer algorithm C∗. This is because of the following. PRS2 is statistically-hiding for σ, and
therefore except with negligible probability, the value committed to in NMCom (which is statistically-
binding) does not equal σ. Then, from the soundness of the WI proof, it follows that C∗ can succeed
only when the PRS1 is consistent. It will be important to have statistical-binding w.r.t. unbounded
C∗ since we will be dealing with the super-polynomial time oracle O in various hybrid experiments.

We now proceed to demonstrate the CCA security of our scheme. To do so, we will directly
construct a ppt simulator SIM, which simulates the view of any CCA adversary A∗O. SIM will not
have access to the decommitment oracle O, and uses A∗ only as a black-box. Recall that O extracts
the value from the transcript of PRS1. SIM only receives 1n and auxiliary-input z for A∗, as its own
inputs.

Lemma 2. There exists a strict polynomial time machine SIM such that for every ppt itm machine
A∗, every z ∈ {0, 1}∗, every sufficiently large n, and every b ∈ {0, 1}, it holds that:

SIMA(1n, z)
c≡ INDb(〈C,R〉,O, A, n, z).

Proof.
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Protocol CCA-Com∗. The committing algorithm is denoted by C. The receiver
algorithm is denoted by R. The common input is the security parameter n and
an identity id of length n. The private input of C is the value v ∈ {0, 1}n to be
committed. Com is a statistically-binding scheme.

Round parameters. Let q := q(n) be a fixed function in ω(1), and let ` := `(n) =
q(n) · log n · ω(1). Let k ∈ O(1) be the round complexity of NMCom.

• Phase 1: C commits to v using the PRS preamble with parameter ` ∈
ω(log n). This instance of the preamble is denoted by PRS1, and let τ1 be
the commitment-transcript.

• Phase 2: C and R execute the following CoinFlip protocol. In round i ∈ [q]:

(a) C commits a “short” string ui ∈ {0, 1}logn using Com,

Let ci be the commitment-transcript, and di a decommitment-string.

(b) R sends a “short” random string σi ∈ {0, 1}logn

Define u = (u1, . . . , uq), σ = (σ1, . . . , σq), and d = (d1, . . . , dq).

• Phase 3: C commits to string (u, d) using NMCom andidentity id. Let τ3 be
the commitment-transcript.

• Phase 4: C proves to R, using a public coin, constant round WI proof —e.g., n
parallel repetitions of Blum’s protocol—that either:

(a) ∃ v ∈ {0, 1}n s.t. τ1 is a valid PRS-commitment to v; OR

(b) τ3 is a valid commitment to (u, d) as per NMCom, such that ∀i ∈ [q]:

– (i) openCom(ci, ui, di) = 1, and

– (ii) ui = σi.

Decommitment oracle O. The oracle extracts the value committed to in tran-
script τ1 of the first phase, and returns it.

Figure 4: Protocol CCA-Com∗ based on one-way functions.
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Recall that during its execution A∗ opens one session of CCA-Com := 〈C,R〉 on left, while
simultaneously interacting in multiple concurrent sessions of CCA-Com with O, called the right
sessions. Let T = T (n) be a polynomial upper-bounding the number of right sessions of A∗.

Algorithm SIM will use the robust simulator S guaranteed by the (general version of) the robust-
extraction lemma (see sections 2 and A), allowing it to extract the values committed to by A∗ in
all PRS preambles. It then uses these values to simulate the answers of O, as well as to succeed in
WI proof (by committing the extracted value in NMCom of the left session).

SIM uses two helper procedures: the robust simulator S and an “interface” algorithm I to be
described shortly. Procedure I essentially “decouples” the PRS preambles from the rest of the
CCA-Com protocol. It incorporates A∗ as a black-box, and handles all messages of all sessions
of CCA-Com internally and honestly, except for all the PRS preambles in which A∗ acts as the
committer. All these preambles are forwarded to outside PRS-receivers. That is, I participates in a
robust-concurrent attack, interacting with the party E . It executes PRS preambles with E , and at
the end of each PRS preamble s, I expects to receive a value αs from E . This value will be used
internally.

SIM is a polynomial time machine without access to any super-polynomial time helper. Therefore,
to run I, it runs the robust-simulator S providing it black-box access to the “adversary” procedure
I. SIM outputs whatever S outputs. Formal descriptions follow.

Algorithm SIM(1n, z). Return the output of SI(1n, z), where procedure I—which has black-box
access to adversary A∗—is described below.

Procedure I(1n, z). Procedure I launches the robust-concurrent attack, by committing in several
PRS sessions to external receivers denoted R1, . . . , RT . At the end of each preamble, it expects to
receive a string αs. I incorporates the CCA adversary A∗ internally, as a black-box. I initiates an
execution of A∗, simulating various sessions of CCA-Com that A∗ opens as follows.

1. If A∗ starts a new session s of CCA-Com on right, I starts by initiating a new session of the
statistically-binding PRS1 with an external receiver Rs. Then, messages of phase-1 of s are
relayed between A∗ and Rs. I simulates all other phases of s internally by following the honest
algorithm for each phase.

2. If A∗ starts a new session s of CCA-Com on left, I initiates a new session of the statistically-
hiding preamble to be used as PRS2 of s with an external receiver R′s. I completes various
phases of s as enumerated below.

(a) Phase 1: I commits to an all zero string to A∗.

(b) Phase 2: I simply relays messages between A∗ and R′s.

(c) Phase 3: I commits to value αs using NMCom (instead of 0n). Value αs was received
from outside at the end of PRS2 of sessions s.

(d) Phase 4: If A∗ correctly opens the value in PRS2 of session s, I checks that the opened
value is equal to the “fake witness” αs. If not, it outputs a special symbol ExtractFail,
and halts. Otherwise it continues the execution.

(e) Phase 5: I uses αs and the randomness used in phase 3 (NMCom) to complete the WI
proof in phase 5.9

9Note that, technically, I can use the valid witness corresponding to the PRS1 phase s. This is since it committed
to a valid value, namely 0n. However, we choose to use αs so that SIM will in fact be a valid simulator even for our
concurrent non-malleable zero-knowledge protocols.
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3. Oracle answers: If A∗ successfully finishes a session s of CCA-Com on right, I sends the
(already extracted) value αs to A∗.

When A∗ halts, I outputs the view of A∗, and halts. �

Proving Indistinguishability. We are now ready to prove our lemma. We will prove this by
using a series of hybrid experiments. Our hybrid experiments will be designed my making step-
by-step changes to how I communicates with A∗ internally in various phases of the protocol. For
i ∈ [7], we denote by νi the output of hybrid Hi.

Hybrid H0: This hybrid is identical the experiment INDb(〈C,R〉,O, A, n, z). Recall that in this
experiment, A∗O receives a commitment to value vb ∈ {0, 1}n from the honest committer C, while
interacting with the oracle O. The output of the experiment consists of the view of A∗, which is
also the output of H0.

Hybrid H1: This hybrid is identical to H0, except for the following differences:

(a) H1 does not forward the right sessions to O. Instead, it executes all right sessions on its own,
by playing the honest receiver strategy R. Denote by Rs the instance of R executed in session
s.

(b) When A∗ successfully completes the session Rs, H1 queries a different oracle O′, which acts
as follows. The query to O′ consists of only part of the commitment-transcript PRS1 that
belongs for the value to be committed. All other messages (e.g., commitments of shares and
slot-messages) are not part of the query. In particular, if Com is non-interactive, the query
will be commitment of the value ṽs. If there is a unique value defined by the query, O′ extracts
that value, and returns it as the answer. In all other cases, it behaves exactly as O.

Hybrid H2: This hybrid is identical to H1; we use it to set up some notation. Define a procedure
I2, which is identical to procedure I (defined above), except that it it executes (all internal phases
of) the left session honestly and that it uses the oracle O′ as in H1. That is, it only forwards the PRS
preambles received from A∗ outside, but executes all other phases internally and honestly. Formally,
I2 is identical is identical to I except:

(a) I2 receives the value vb to be committed in left sessions of CCA-Com, as an input. Furthermore,
I2 commits to value vb in PRS1 of the left session (instead of 0n, step 2(a)).

(b) When a session s of PRS1 ends, I2 expects to receive a value αs from outside. If s is a
statistically-binding sessions, then I2 gives αs to A∗. If s is statistically-hiding, it ignores the
value s—there is only one such session corresponding to the left session.

(c) I2 uses the valid witness, vb and the randomness of PRS1 to complete its WI proof in the left
session (step 2(e)). I2 does not check the validity of the “fake witness” (step 2(d)).

Observe that I2 is essentially launching a robust-concurrent attack. It does not perform any rewind-
ings. Hybrid H2 simply runs the procedure IA

∗
2 , and simulates PRS-receivers for it exactly as H1

does; furthermore, when a statistically-binding session s finishes, H2 forwards its commitment to
O′ and returns the oracles answer, denoted αs, to I. On the other hand, if the statistically-hiding
session of PRS ends, H2 sends a random string αs (which, by construction, is ignored by I2, see
point (b)). The output of H2 is the view of I2 (which in turn is the view of A∗).
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Hybrid H3: For procedure I2, let E be our online extractor as defined in section 2.3 (with adden-
dum from section A to deal with statistically-hiding PRS as well). Recall that E is a super-polynomial
time machine, which facilitates the robust-concurrent attack. In particular, it acts honest receivers
in all PRS preambles, as well as provides extractions for each one of them when they finish.

On input (1n, vb, z), hybrid H3 starts an execution of I2(1n, vb, z), making it interact with party
E . The output of H3 is the output of the robust-concurrent attack, which in turn consists of the
view of I2 (and hence A∗). Therefore, H3 differs significantly from H2: it does not run PRS receivers
and does not have access to O′, since these are automatically done by E for H3.

From hereon, we will only be making changes to the interface procedure I2. All future hybrids,
except for the last one, differ from H2 in only that they use a modified version of I2. Furthermore,
changes are made to the phases of the left session only, of which there is only one.

Hybrid H4: This hybrid is identical to H3 except that instead of using I2, it uses procedure
I4. Let αs be the value that I2 receives from E at the end of statistically-hiding PRS2 of the left
session. Furthermore, let σs be the value opened by A∗ which appears internally, in the left session
of CCA-Com (simulated for A∗ by I2).

Procedure I4 is identical to I2 except that when A∗ sends σs along with valid openings, I4 tests
that αs = σs; it aborts the entire simulation if this test fails, and outputs BindingFail. Recall that
I2 simply ignores αs.

Hybrid H5: This hybrid is identical to H4 except that instead of using I4, it uses a modified
procedure I5. Procedure I5 is identical to I4 except that instead of committing to 0n, it commits to
αs in protocol NMCom of the left session s.

Hybrid H6: Identical to H5 except that instead of using I5, it uses a modified procedure I6.
Procedure I6 is identical to I5 except that it uses the“fake witness” in the WI proof of the left
session s. Recall that the “fake witness” consists of the value αs and the randomness used in
NMCom.

Hybrid H7: Identical to H6 except that instead of using I6, it uses a modified procedure I7.
Procedure I7 is identical to I6 except it does not receive the input vb, and commits to 0n in the first
phase PRS1 of the left session. Observe that I7 is in fact identical to I.

Hybrid H8: This hybrid differs from H7 in two crucial places. First, it does not receive the value
vb as input. Therefore, its only inputs are (1n, z). In addition, it does not use the party E . Instead,
H8 simply runs the robust simulator S with inputs (1n, z) and black-box I7. It outputs whatever S
outputs. Observe that H8 is in fact our original simulator SIM, presented earlier. �

Notation. Let ν0 denote the output of H0. Let u0 be the variable denoting the value committed
by C in NMCom in the left session, and let σ0 be the variable denoting PRS-value opened by A∗

in (phase-4 of) the left session. Since there is only one left session, we will not use any subscripts.
Analogously, define variables ũ0

s and σ̃0
s for the s-th right session in hybrid H0. Finally, we denote

by ṽ0
s the value A∗ commits in PRS1 of the s-th right session in H0. For i ∈ {0, . . . , 8} define values

νi, ũis, σ̃
i
s and ṽis w.r.t. the hybrid Hi analogously. Identity of the left session is referred to by id,

and that of the s-th right sessions by ĩds without mention of the hybrid. Further, unless specified
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otherwise, index s is in [T ], and ĩds is not equal to id, and the probability is taken over the random-
ness of the hybrid in consideration.

We start by noting that ν0 is identical to INDb(〈C,R〉,O, A, n, z). Next, we claim the following.

Claim 1. For every hybrid i ∈ {0, . . . , 4} and for every right session s ∈ [T ],

ν0 s≡ ν1 ≡ ν2 s≡ ν3 s≡ ν4 (1)

Pr
[
ũis = σ̃is

]
≤ negl(n) (2)

Proof. It is seen by way of construction of hybrids H1 and H2, that ν0 s≡ ν1 ≡ ν2.10 In case
of hybrid H3 party E , which also simulates PRS sessions exactly as H2 does (since E is valid).
Furthermore, E extracts the values αs in the (first message) of the PRS preamble exactly as O′ does
in H2. If a unique and valid αs exists, the value αs returned to I2 is the same in both hybrids.
However, when the value is not unique, E uses a different decision procedure to decide the value of αs.
Nevertheless, statistical-binding of PRS ensures that this happens with only negligible probability.

It follows that the distribution of answers αs in both hybrids is statistically close, and hence ν2 s≡ ν3.
Finally, in H4 the only difference is that I4 verifies that αs = σs (i.e., the fake witness is correct).

From the validity constraint 1(b) on E (see lemma 6, section A) this condition fails with only

negligible probability. Therefore, ν3 s≡ ν4.
We first prove the second equation for hybrid H0. Fix any right-session s of H0. Observe that

PRS2 of s is statistically-hiding. Therefore, except with negligible probability, we have that value
σ̃0
s is not defined until after the completion of NMCom of session s. Since NMCom is statistically-

binding, and there are exponentially many possible values for σ̃0
s , the claim follows (for hybrid H0).

Now, observe that the same argument applies for hybrids H1 and H2 as well. In case of H3 and
H4, since E simulates PRS receivers honestly, the same argument applies to these hybrids as well. �

A corollary of the second equation is that in each of these hybrids, for every right session s that
is accepting, there exists a unique and valid11 value ṽis to which A∗ is committed to (except with
negligible probability). This is because if the second equation holds, from the soundness of WI proof
against unbounded adversaries,12 phase PRS1 must be consistent defining a unique and valid value.
Therefore, in all future hybrids, we will continue to maintain the second equation as an invariant.

Claim 2. We have that, ν4 c≡ ν5; and ∀s : Pr
[
ũ5
s = σ̃5

s

]
≤ negl(n).

Proof. Both hybrids H4 and H5 use party E which is super-polynomial time. Therefore, to prove
the claim, we need to first need to eliminate the use of E . Observe that this can be done by employing
the robust simulator S. However, since we aim to reduce the claim to the non-malleability of NMCom,
we would like one left execution and one right execution of NMCom that the robust-simulator S
does not rewind.

Recall that the only difference between H4 and H5 is that they use different procedures: I4

and I5 respectively. The only difference between I4 and I5 is that the first one commits to x = 0n

10First two hybrids are not identical since the oracle changes: O extracts from the full PRS transcript (and therefore
always checks for consistency), whereas O′ simply extracts from the (first) committing message of PRS. Statistical-
binding ensures that this difference happens only in negligible cases.

11Recall that v is valid if all shares xor to v; formally, there exists randomness ρ such that openPRS(τ1, vs, ρ)=1
where τ1 is the commitment-transcript of PRS1 of s.

12We need this since A∗ does have access to super-polynomial computations via O, and we do not know what he
might be learning.
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whereas the second one commits to x = αs in phase NMCom of the left session. Recall that αs is
the value sent by E at the conclusion of PRS2 of the left session.

We design an intermediate procedure I∗, which is identical to I4 except for the following differ-
ences:

1. When the NMCom phase of the left session is about to begin, I∗ sends (0n, αs) to an external
committer.

2. I∗ does not execute the NMCom of the left session internally. Instead, it expects to receive it
from an external honest committer, denoted Cnm, who either commits to 0n or αs.

3. For a randomly chosen right session j, I∗ does not execute the the NMCom of session s
internally. Instead, it forwards the messages of this NMCom to an external honest receiver,
denoted Rjnm.

Therefore, I∗ is executed several PRS preambles, and at the same time acting as a man-in-the-middle
for protocol NMCom by receiving a commitment and making a commitment at the same time. Let
B denote the party who runs algorithm Cnm as well as Rjnm for I∗, both honestly. Observe that
the number of rounds of interaction between B and I∗ are 2k where k is the round-complexity of
NMCom. The input x to B consists of the value to be committed by Cnm.

Viewed this way, I∗ is an adversary who launches the robust-concurrent attack with respect to
party B, and the party E . Furthermore, if B commits to x = 0n then the execution is identical
to that of H4 with I4; on the other hand, if x = αs, the execution is identical to that of H5 with
procedure I5. That is,

ν4 ≡ REALI∗E,Π(n, 0n, z),

ν5 ≡ REALI∗E,Π(n, αs, z).

where protocol Π = (B,P2), and P2 is “converse of B—that is P2 acts as a receiver in one NMCom
in which B is acting as a committer and vice-versa in the other.

Now, we can remove E and instead use the robust-simulator S to sample statistically close views.
That is, suppose that we run S with I∗ and consider the output OUTs(x) := OUTs

[
B(1n, 0n)↔ SI∗(1n, z)

]
.

By applying the robust concurrent extraction lemma, we have that statistical distance between
OUTs(x) and REALI∗E,Π(n, x, z) is at most:

∆(n) ≤ 2−Ω(`−2k·log T ) ≤ negl(n),

for every x ∈ {0n, αs} since ` ∈ ω(log n), k is a constant, and T is at most a polynomial. Using this
with the equations above, we get:

ν4 s≡ OUTs(0
n) (3)

ν5 s≡ OUTs(αs) (4)

By construction, OUTs(x) is the output of SI∗ in an interaction with B on input x. Algorithm
SI∗ is a ppt man-in-the-middle adversary for NMCom who receives a commitment to x from Cnm,
and commits a value, say ũj(x), to Rjnm. From non-malleability of NMCom w.r.t. to itself, we have
that:

(ũj(0
n),OUTs(0

n))
c≡ (ũj(αs),OUTs(αs)) (5)
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It immediately follows from (3), (4), and (5), that ν4 c≡ ν5. Furthermore, suppose that the other
part of the claim is false, so that for some session s ∈ [T ] value ũ5

s = σ̃5
s with noticeable probability

p. Define this to be event bad5 for hybrid H5, and analogously define bad4 for H4.
Now observe that since j was chosen uniformly from T sessions, j = s with probability 1/T .

Therefore, value ũ5
s appears as the variable ũj(αs) with probability 1/T . In addition, value σ̃j(αs) is

a part of OUTs(αs), and therefore, event bad5 is efficiently observable given both (ũj(αs),OUTs(αs));
and it occurs with probability p/T which is noticeable. By an analogous argument, event bad4 is
also efficiently observable; furthermore bad4 must occur with noticeable probability as well due to
equation (5). This contradicts equation (2). Hence the claim. �

Claim 3. We have that, ν5 c≡ ν6; and ∀s : Pr
[
ũ6
s = σ̃6

s

]
≤ negl(n).

Proof. The proof of this claim is almost identical to the proof of claim 2. The only difference is
that instead of using non-malleability w.r.t. itself property of NMCom, we use the fact that NMCom
is robust w.r.t. every interesting 3-round protocol (i.e., one that “hides” its input, see section C).
Since the only difference between H5 and H6 is in the WI part, the proof follows; we omit the details.
�

Claim 4. We have that, ν6 c≡ ν7; and ∀s : Pr
[
ũ7
s = σ̃7

s

]
≤ negl(n).

Proof. Observe that in H6, since the “fake witness” is being used in the WI part, the PRS1 phase
of the left session (which commits to input value vb) does not have to be consistent. Therefore, we
proceed as follows:

1. Design `+ 1 intermediate hybrids H6:i for i = {0, . . . , `− 1} where H6:0 = H6, H6:` = H7.

2. Hybrid H6:i is the same as H6:i+1 except that in slot-i of PRS1 phase of the left session, H6:i+1

commits to shares of an all-zero string.

3. Now, following the proof of claim 4 and by using the robustness of NMCom w.r.t. the 3-round

protocols, we conclude that ν6:i c≡ ν6:i+1 and that ∀s : Pr
[
ũ6:i
s = σ̃6:i+1

s

]
≤ negl(n), where

variables are analogously defined. The details of this part are repetitive, and omitted.

The claim now follows. �

Completing the proof. Note that the output of H8, is statistically-close to ν7 due to the robust-

concurrent-extraction lemma. Therefore, combining all the equations we have that ν0 c≡ ν8. Since
H8 is identical tot he simulator, the lemma follows.

5 Proof of the Robust Extraction Lemma

We organize this section in two parts. The first part introduces important terminology used through-
out the proof. The terminology is mostly consistent with previous literature [KP01, PRS02, Ros04,
PTV08], and can be skipped by experts at first reading—except, for the notion of breakpoints (para-
graph 2) and unmarked view of a block. In the second part, we present the actual proof of the
lemma.
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5.1 Terminology

We now introduce some terminology about the recursive structure of recurse. An execution of recurse
is called a block. The six inputs of a block B, namely (t, st, T , f, aux, id) are referred to as follows.
Input t is called the length, st the starting state, and T the starting solutions. Input f is used as an
identifier whose only purpose is to formally identify if B “lies on the main thread” (defined later);
it does if f = 1. Input aux is called the auxiliary table (or auxiliary solutions), used only in special
cases. Finally, id is the identity of the block B, used to uniquely specify B in the full recursive
structure of recurse.

Blocks of length t = 1 are called the atomic blocks. The output (st′, T ′) of a block consists
of the final (or output) state and the final (or output) solutions. Each message of protocol Π is
called a breakpoint, often dented by a cross mark ×. If B is an atomic block, and a message of Π is
scheduled during its execution, we say that B contains a breakpoint; B may contain one or several
breakpoints.

Let B be a block that is not atomic. B executes four blocks during its own execution, in the
following order: C ′, C, D′ and D. Blocks C ′, D′ are called the look-ahead blocks; and C,D the main
blocks (see steps 2(a) to 2(d) of procedure recurse). Furthermore, blocks C and C ′ (resp., D and
D′) are called siblings; they are the children of the same parent block B. We say that B contains
its children blocks.

We say that blocks B1 and B2 are consecutive, denoted B1 → B2, if the final state of B1 is
the starting state of B2. We say that B1 and B2 are connected if B1 → B2 or B2 → B1. A
thread h is represented by a sequence of consecutive blocks (B1, . . . , Bm), i.e., Bi → Bi+1 for every
i ∈ {1, . . . ,m− 1}. Further, if it holds that for every i ∈ [m], block Bi in the sequence is an atomic
block, then we say that the sequence is the primitive sequence of h. Note that a primitive sequence
uniquely identifies a thread. That is, a thread h can be uniquely referred to by specifying the
identity of each atomic block Bi in the sequence. Note that identities, by construction, are indeed
unique for every block, including blocks that are not atomic. We say that threads h1 and h2 are
the same if their primitive sequences are equal. We say that a thread h is an internal thread of a
block B if every block Bi in the primitive sequence of h is contained in B. If B is not an atomic
block, it contains many internal threads. The base thread h of a block B is an internal thread of B
whose primitive sequence consists of only main blocks. That is every atomic block appearing in the
primitive sequence of the base-thread is actually a main block of its parent block. By construction,
the base thread of a block B is unique. Finally, we say that a block B lies on a thread h if there
exists a sequence h′ of blocks containing B such that the primitive sequence of both h and h is
identical.

We note that the terminology so far is exclusively about the recursive structure of recurse.
In particular, it allows us to refer to various blocks and threads without considering any specific
execution with any given random tape or inputs. Fixing the length t of a block, completely fixes
the flow chart of all recursive calls inside that block and hence its internal structure.

Main Thread: A thread h is called the main thread, if every sequence of blocks {Bi}i specifying
h, is a main block. Equivalently, h is a main thread if every (atomic) block in the primitive sequence
of h has receives the flag f = 1. Observe that, by construction, there exists a unique main thread.
All other threads are called look-ahead threads.

Recall that the original state of A∗ is denoted by st0, and consists of its auxiliary input z and
its randomness. Also recall that the execution of A∗ proceeds in rounds, where in round i of the
interaction, advertsary A∗—who is participating in many PRS preambles as well as one session of
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Π—sends its next message and immediately receives a response. The state of A∗ at the beginning
of the round i, consists of its original state st0, and all messages that it sends or receives. This
terminology allows us to refer to the state of A∗ even within an atomic block B.

We say that a state st of A∗ lies on a thread h if there exists an atomic block Bi in the primitive
sequence of h such that the state of A∗ is st at some point during the execution of Bi. Let st1 and
st2 be two states of A∗ that lie on h such that st2 appears before st1; then we denote by st1 → st2,
all messages that lie on h between st1 and st2, and call it a segment of a part of the thread h. We
say that a block B contains a message v if v appears on an internal thread of B. A session s is said
to lie on a thread h if all messages of s appear on h. Finally, we say that a block B contains the
j-th slot of session s if B contains both (rj , βj), where rj is the receiver-challenge in round j of s,
and βj the corresponding openings sent by A∗. Recall that (rj , βj) is a convincing slot if βj consists
of valid openings of commitments chosen by rj .

Unmarked view/execution of a block. Consider all internal threads of a block B, which
contain a breakpoint × (i.e., a message of Π). By construction, if a × appears on a look-ahead
thread, the execution of the look-ahead thread stops as soon as × occurs—that is, there are no
further messages scheduled after ×. However, if × occurs on the base-thread of B, and the base-
thread is a part of the main-thread, the execution does not stop after ×, and continues. The
unmarked view (or execution) of B consists of executing the part of each internal-thread h of B
executed only up to the point where a × occurs on h. Therefore, if base-thread of B contains a ×
then the unmarked-execution will continue the base thread after the ×. We note that all threads
and breakpoints × considered are internal to B, and that any breakpoint not contained in B does
not affect unmarked view of B.

Now, we say that a message v is contained in the unmarked view of B if v appears on an internal
thread of B in the unmarked execution of B. This means that v appears on internal thread of B
before an breakpoint × appears on that thread. We define the term “slot-j of a session appears in
the unmarked view of B” analogously.

5.2 Proof of Successful Simulation

Let us fix a target thread h and a target session s that lies on h. Formally, define a random tape ρ
of the simulator to be bad if all slots of session s that lie on h are convincing, whereas all slots of
s that lie on look-ahead threads are not convincing. We now define notion of robust blocks, and an
ordering relation (adapted from [PRS02, Ros04, PTV08]).

Definition 2 (Robust Block). Let ρ be a fixed random tape. Let h be an arbitrary thread, and B
an arbitrary block, all defined by the execution of recurse with random tape ρ. Further, let s be an
arbitrary session of the PRS preamble that lies on h. We say that B is a robust block with respect
to h and s if it satisfies the following conditions:

(a) (Main block:) B lies on h and does not contain the start message of session s.

(b) (Full slot:) B contains a convincing slot of s (not necessarily on h) in the unmarked execution.
That is, a convincing slot appears on an internal thread of B, prior to any breakpoint × on
that thread.

(c) (Good sibling:) B′ does not contain an end of session s.

(d) (Blocked end:) B does not contain any end of s in the unmarked view.
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(e) (Locatable:) Every slot of s that lies on h and appears before B is convincing, and all other
threads (that complete) before B, do not contain any convincing slot of s.

Let us first establish the following claim:

Claim 5. If B is a robust block, then it is a main block (of its parent).

Proof. Suppose that B is not a main block. Then it is a look-ahead block, and therefore, there
does not exist any block C for which B → C. Since s completes on h, h contains the end of s,
denoted ends. Since ends occurs after all slots of s, and B contains a full slot of s, we have that
ends cannot occur before B. Further, since there is no C such that B → C, ends cannot occur
after B either. Therefore, ends must occur in B. Consider the internal thread of B on which ends
occurs, say h′. By requirement (d), ends cannot occur in the unmarked view of B. However, since
B is a look-ahead block, by construction, the unmarked view is the entire view of B, and hence B
cannot contain ends. This is a contradiction. �

Recall that a block B contains all its children blocks, as well as all blocks that are contained by
its children. If a block B1 contains another block B2, then B2 does not contain B1. We say that
B1, B2 are disjoint, if B1 does not contain B2 and vice versa.

The following order relation will provide a correct order to swap blocks (unchanged from [PTV08]).

Definition 3. Let C and B be two blocks on a common thread. We write C > B iff

• C and B are disjoint, and C occurs before B, or

• C and B are not disjoint, and C is a larger block that contains B.

Since these are the only two possible cases, relation > defines a total order on any set of blocks
that lie on the same thread. Now, let us formally define the swap operation. The swap operation
takes as input a random tape ρ, and the identity of a block B. Let B′ be the sibling of B. The, the
swap operation exchanges part of ρ used to executed B with that used to execute B′, and outputs
the resulting tape.

Finally we define the undo function on any given random tape ρ′. The undo function is defined
with respect to the target thread h and the target session s. Since we are dealing with an external
party of protocol Π as well, we define undo also with respect to a fixed input x and randomness γ
of the external party. The output of undo(ρ′) := undox,γ,h,s(ρ

′) is defined as follows:

1. Execute the simulation using recurse, with random tape ρ′ and (x, γ) as (input, randomness)
of the external party of Π. Call a block special if it does not lie on the target thread and
contains a convincing slot of the target session. That is the block lies on a look ahead thread
with a convincing slot of s.

2. Locate the first special block, D, after the start; that is, any other special block E after
start satisfies D > E.

3. Swap the parts of ρ′ used by D and its sibling, say D′; output the new random tape.

Lemma 3. Let ρ be a random tape (not necessarily bad). Let B be a robust block with sibling B′,
with respect to h and s, when recurse is executed with random tape ρ. Further, let ρ′ be the random
tape obtained after swapping the parts of ρ used by blocks B and B′. Then,

1. (Goodness): ρ′ is a good random tape with respect to h and s.
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2. (Robustness): If C is a robust block on ρ and C > B, then C is also robust on ρ′.

3. (Reversibility): undo(ρ′) = ρ.

Proof.

Note that B and B′ are not necessarily symmetric: inputs f, aux differ for them. Therefore, the
swap may change the internal execution of these blocks. The key point is that the unmarked view
of B after the swap “does not shrink.”

Goodness. Let us first establish the goodness property. Let st be the common starting-state and
T be the common solutions table of blocks B and B′. Let aux and T1 be the auxiliary- and the
output-tables of B′, respectively. By construction, the auxiliary table of B is aux2 = (aux, auxB′)
where auxB′ = T1 \ T . The following claim says that auxB′ is never used to solve a session that lies
in the unmarked view of B′:

Claim 6. Let u be a session, and id an atomic block. If extract(u, id) reads table auxB′, then B
contains endu; but it contains no endu in the unmarked view of B. That is , a breakpoint × occurs
between startu and endu.

Proof. Consider an arbitrary main block id1 with sibling id′1. By construction, extract(u, id) reads
auxid′1 if and only if all of the following conditions hold: (a) id reaches endu, (b) id1 contains id
(and therefore endu), and (c) ×u,id1 = true (meaning that a × occurs in block id1 on the thread
containing endu). Conditions (a) and (b) prove the first part of the claim.

Consider the requirement (c). By construction, ×u,id1 = true if and only if execution in block id1

reaches a × (i.e., a message of protocol Π is scheduled) while the session u is still “live”–i.e., startu
has occurred, but endu has not yet occurred on the current thread. Therefore, if extract(u, id) reads
auxid′1 then block id1 contains a × between startu and endu.

By this argument, if extract(u, id) reads auxB′ , we have that block B contains a × between
startu and endu. This proves the second part of the claim. �

Claim 7. The unmarked views of B and B′ do not change after the swap.

Proof. Let us first consider the block B. Before the swap, B receives auxB′ as (part of) its
auxiliary input table, whereas after the swap, it does not. The key observation is that the execution
of the unmarked view of B does not read the table auxB′ . Indeed, suppose on the contrary, that
it does. Then, there must exist a session u and an atomic block id such that extract(u, id) reads
the table auxB′ . From claim 6, there must occur a × before endu occurs. Therefore, the call
to extract(u, id) occurs only after the × mark. By definition, this call will not occur during the
unmarked view/execution of B. Therefore, we have that the unmarked view of B never reads the
table auxB′ . Since auxB′ is the only missing part in B’s input, it follows that the claim holds for
B.13

Now consider the block B′. After the swap, B′ becomes a main block. If B′ does not lie on
the main thread, all threads will still stop as soon as the first × mark occurs; therefore, by claim 6,
the table auxB (defined analogously to auxB′ in the swapped tape ρ′) will not be accessed. On the
other hand, if B lies on the main thread, some of its internal threads may continue the execution
past their first (or even later) × marks. However, even in this case, by claim 6, executions of these
threads prior to the first × do not use table auxB, and therefore remain unchanged. The claim
follows for B′ as well. �

13Although input f = 0 after the swap, this in fact only enforces that only the unmarked view of B executes.
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Claim 8. ρ′ is a good tape.

Proof. Since B is a robust block, by definition, it contains a convincing slot of s and does not
contain ends in the unmarked view with tape ρ′. From claim 7, it follows that even after the swap,
B will continue to have a convincing slot of s and no ends.

Further, before the swap, B′ does not contain ends. Observe that since B′ is a look-ahead block
(see claim 5), this view is also it’s unmarked view. Therefore, the unmarked view of B′ does not
contain ends. After the swap, B′ lies on the target thread h. We have two cases:

1. If B′ does not lie on the main thread, the execution of B′ does not change (since f = 0). Since
B′ does not contain ends, if ends ever occurs on the target thread h, it will occur after both
B and B′, and therefore contain a slot of s that is opened twice. Hence ρ′ is a good tape.

2. If B′ lies on the main thread, some of the internal threads of B′ may continue the execution
past a × mark. First note that by claim 7, ends still does not occur in the unmarked view of
B′. Therefore, if a ends occurs in the full view of B′ on a thread h′ which contains a × before
ends. When this happens, extract will access the table auxB and find a convincing slot of s
(since B contains a convincing slot and stores it in auxB). Further, since ends was reached in
the full view B′, this slot must have been opened again. Hence ρ′ is a good tape. �

Robustness. Let C be a robust block on tape ρ such that C > B. Let C ′ be the sibling of C.

Case 1: (C occurs before B). In this case, swapping of B and B′ does not change the execution of
either C or C ′. It also does not change the execution between start and C, leaving all requirements
of a robust block intact on ρ′.

Case 2: (C contains B). In this case, swapping of B and B′ does not affect the execution of C ′,
and the execution between start of s and before C. Therefore the main block, good sibling, and
locatable requirements still hold for C in ρ′. We have two cases.

The first case is when the the unmarked view of B is not a part of the unmarked view of C.
Note that this happens when C contains a × on h before B. In this case, swapping of B and B′ does
not change the unmarked view of C, and therefore keeps the remaining requirements of a robust
block–namely, full slot, good marking, and blocked end–intact on ρ′.

The other case is when the unmarked view of B is a part of the unmarked view of C. This
happens when C does not contain any × mark on h before B. After the swap, B does not line on
h, but instead becomes the look-ahead thread. However, even after the swap, B continues to be
contained in C; further, the unmarked view of B also continues to be the part of unmarked view of
C.14 Since the unmarked view of B satisfies the remaining requirements of a robust block–namely,
full slot, good marking, and blocked end, it follows that they hold for C as well on the tape ρ′.

Reversibility. Consider the execution of undo(ρ′). undo starts by locating the first special block
D. That is, D contains a convincing slot of s, does not lie on h, and for every other special block
E, D either occurs before E or D contains E. After locating D, undo swaps the randomness used
by D and its sibling D′.

14Note that the overall unmarked view of C in this case may have changed; in particular, this happens when before
the swap: (a) B connects to some block D, (b) B contains a × on its base thread, but (c) B′ does not contain a × on
its base thread. Thus, D is not a part of the unmarked view of C on tape ρ. However, after the swap, D will be a
part of the unmarked view of C.
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We start by noting that on tape ρ′, B does not lie on h; further as argued before, B contains
a convincing slot of s. Therefore B is special on ρ′. Further observe that every block that occurs
before cannot have a convincing slot of s due to the locatable requirement. Also, any block E that
contains B must also contains B′; since B′ which lies on h in tape ρ′, so does E. Therefore E cannot
be special. It follows that B is always the first special block on ρ′, and undo swaps B with B′. This
proves that undo(ρ′) = ρ.

The following claim shows that robust blocks can be swapped arbitrarily to generate many good
tapes for each bad tape.

Lemma 4. Let ρ be a bad random tape, and R = {B1, . . . , Bm} a set of robust blocks for ρ. Then,
there exists a set of good tapes, denoted G(ρ,R) such that:

1. |G(ρ,R)| ≥ 2m − 1.

2. For every bad random tape ρ′ 6= ρ, and every set of robust blocks R′ for ρ′:
G(ρ,R) ∩ G(ρ′,R′) = ∅.

Proof. By definition, all blocks lie on the same thread, and therefore have a total ordering. Without
loss of generality, let B1, . . . , Bm. Choose any non-empty subset R of blocks in R and apply the
swap operation on each one of them in the reverse order of their actual ordering (defined by relation
>). Denote by ρR the resulting tape. From lemma 3, each swap leaves the first block in R still
robust, and swapping the last block gives a good tape. Therefore, ρR is a good random tape. Since
there are 2m − 1 non-empty subsets of R, the first part of the claim follows.

To prove the second claim, assume that γ ∈ G(ρ,R)∪G(ρ′,R′). Since γ ∈ G(ρ,R) by reversibil-
ity of swap, applying undo repeatedly on γ until a bad tape is obtained returns ρ. Likewise, since
γ ∈ G(ρ′,R′), the same process returns ρ′. But since undo is a deterministic function, this is a
contradiction. �

We say that the simulator S gets stuck if it outputs ExtractFail. Further, we say that S gets
stuck on h in session s if it outputs ExtractFail when sessions s ends on h—i.e., ends is scheduled
by A∗. We now bound the probability of getting stuck.

Lemma 5. Simulator S gets stuck with probability at most 2−Ω(`−k·log T ).

Proof.

We first prove the following claim.

Claim 9. For every bad random tape ρ, the number of robust blocks is at least `− (k + 2) · log T .

Proof. Let us define the notion of a minimal block. We say that a block B is minimal for
slot-j of session s, if and only if: B contains (the convincing) slot-j, but none of its children blocks
contain slot-j. It is easy to see that for every session s there are ` minimal blocks. This is because
each slot has at least one minimal block; furthermore, a block can be minimal for exactly one slot,
since otherwise, it would have to contain two slots of s and at least one of them will be contained
in one of its children blocks (by construction).

Next, each of these minimal blocks lies on h. Further, they all have a good sibling (requirement
(c) in definition 2). This is because ρ is a bad tape and therefore it does not contain a convincing slot
on any other look-ahead threads. Now, for every start, end, and × there are at most log T blocks
that contain it. Such blocks cannot be robust, by definition, and there is a total of (k + 2) · log T
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of them. All the other remaining minimal blocks, satisfy the remaining requirements of definition
2, which is a total of `− (k + 2) · log T . �

By construction, the simulator can output ExtractFail if there exists a session s and thread h
such that its random tape ρ is bad w.r.t. (h, s). It cal also output ExtractFail if in fact the tape is
not bad, but the convincing slots were opened for the same PRS-challenge. However, the later only
happens with probability 2−n ·T 2 ·poly(n) throughout the simulation. Further, the former happens
with probability 2−Ω(`−k·log T ), and since there are only T 2 · poly(n) threads and sessions total, the
claim follows form the union bound.

Completing the proof of the robust concurrent-extraction. It is easily seen that if a par-
ticular PRS preamble is contains a valid value, it must be consistent. However, whenever it is
consistent, the simulator indeed extracts the correct value unless either it gets stuck or the com-
mitment is not binding. Since both of these events occur with negligible probability, the validity
constraint follows. The second part of the lemma follows from the fact that the simulator behaves
exactly like E , and that when PRS-sessions are consistent, the provided values are the same except
with negligible probability; further, where they are not consistent, both S and E provides identically
distributed values, to A∗. This completes the proof.
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A Generalized Version of the Robust Extraction Lemma

In the generalized version of the lemma, we allow A∗ to open sessions of the PRS preambles that are
statistically hiding. At the start of the preamble, it is already understood whether it is statistically-
binding or statistically-hiding. Since statistically-hiding preambles are only computationally-binding,
we require that A∗ is a ppt machine. Furthermore, we make following new adjustments to the
robust-concurrent attack:
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At the successful completion of a statistically-hiding PRS preamble s, when A∗ receives the
string αs from E , it can choose to respond with an opening of the committed value vs. It does
so by sending appropriate decommitment strings (vs, ds). Furthermore, the scheduling of this
message is decided by A∗.

Other than this, the attack remains unchanged. We now present the generalized version of the
lemma. The essence of the lemma is still the same as before. We only need to add conditions to deal
with the statistically-hiding preambles. For such preambles, the validity constraint requires that αs
be equal to the opened value vs (if any), except with negligible probability.

Lemma 6 (Robust Extraction: General Version). There exists an interactive Turing machine S
(“robust simulator”), such that for every ppt A∗, for every Π := 〈B,A〉, there exists a party E
(“online extractor”), such that for every n ∈ N, for every x ∈ domB(n), and every z ∈ {0, 1}∗, the
following conditions hold:

1. Validity constraint. For every output ν of REALA
∗
E,Π(n, x, z), we have:

(a) for every statistically-binding preamble s (appearing in ν) with transcript τs, if there exists
a unique value v ∈ {0, 1}n in the commitment-transcript τs, then αs = v,

(b) for every statistically-hiding preamble s (appearing in ν) with transcript τs, if there exists
a valid opening (vs, ds) in the view ν, then αs = vs,

where αs is the value E sends at the completion of s.

2. Statistical simulation. If k = k(n) and ` = `(n) denote the round complexities of Π and the
PRS preamble respectively, then the statistical distance between distributions REALA

∗
E,Π (n, x, z)

and OUTs

[
B(1n, x)↔ SA

∗
(1n, z)

]
is given by:

∆(n) ≤ 2−Ω(`−k·log T (n)),

where T (n) is the maximum number of total PRS preambles between A∗ and E.15 Further, the
running time of S is poly(n) · T (n)2.

The proof of this general version of the lemma is identical to the proof of the original lemma,
presented in appendix 5. We only need to show that condition 1(b) also holds. We show that if it
does not then we can violate the computational binding of the statistically-hiding PRS. Suppose
that Comsh is the underlying commitment scheme of the statistically hiding PRS. Then, if αs is
not equal to vs, look at the two opened challenges in the execution of recurse whose xor results in
αs; let they belong to slot i of this session. Both of these strings must have been decommitted to
correctly (for the scheme Comsh). Further, since opening vs requires opening of all slots of PRS such
that pairs in each slot xor to the same vs, we have that all pairs of slot i must have been correctly
opened to strings that are different from what recurse learned. Therefore, we must have an instance
of Comsh with correct openings to two different values. The details are standard and omitted. We
note that the value of ∆(n) in the second condition does not change since both E and S extract
value αs identically for the statistically-hiding PRS.

15The lemma allows for exponential T (n) as well. However, if it is too large—e.g., T (n) = 22n, the PRS preamble
should be modified suitably. For example, the value v as well as the challenges in each slot, must be of length at least
n+ 2 log T (n).
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B Proof of Security for CCA-Com∗

We do not present a full proof of security for this protocol here, since it follows closely the structure
of proof for CCA-Com (based on collision-resistant hash functions). Instead, we present here the
main changes to the proof, and how we proceed, during simulation.

We first start with the protocol CoinFlip and show that it actually has a robust simulator as well
(i.e., the one that does not rewind the external party B of protocol Π), so long as the number of
rounds are appropriately high.

A robust simulator for protocol CoinFlip. We now show that protocol CoinFlip admits a robust
“simulator” w.r.t. k-round protocols, so long as q−k ∈ ω(1). Let us denote the protocol CoinFlip :=
〈P1, P2〉 where P1 follows the step 2(a) whereas P2 follows the step 2(b) defined in figure 4. Recall that
protocol has q ∈ ω(1) rounds, where in round i P1 commits to log n size string ui, and P2responds
with a log n size string σi.

1. We say that P2 wins if it can set ui = σi for every i ∈ [q] with noticeable probability. Note
that since q ∈ ω(1) no cheating prover P ∗1 , even with unbounded running time, can win this
game. The probability of winning the game for any P ∗1 is at most n−q.

2. We say that a machine SCF is a simulator for protocol CoinFlip if for every P ∗2 , if its output is
computationally indistinguishable from the view of P ∗2 in a real execution with P1; furthermore,
if P ∗2 completes the protocol successfully, then SCF outputs a trapdoor (u, d) such that except
with negligible probability: ui = σi and di is a correct decommitment-string for round i
commitment ci to the value ui. We require that SCF be a strict polynomial time machine.

3. First observe that for the protocol CoinFlip such a simulator SCF indeed does exist: trivial
and standard. Simulator SCF simply rewinds P ∗2 in each slot-i until it succeeds in setting
up ui = σi, up to a maximum of n times. The simulator fails in output a view only with
probability n−q.

4. We now explain a robust version of this simulator. Suppose that P ∗2 , in addition to interacting
with P1, also interacts with a party B of some protocol Π (which has k rounds). We would like
a simulator which satisfies the same conditions as our simulator above SCF above, but without
“rewinding” party B. Therefore the new SCF will interact with B as participant of Π, yet be
able to output a view for P ∗2 such that the “trapdoor” and the indistinguishability conditions
are satisfied as above. Call such an SCF robust.

5. It is easy to obtain a robust SCF for CoinFlip. Modify SCF during n rewinds of any given slot,
if it encounters a message of Π—a breakpoint—as before, it simply gives up that rewind, and
goes on to the next. It is easy to see that with this modification, SCF is indeed robust. It fails
only with probability nq−k which is negligible since q − k ∈ ω(1).

Composing the two robust simulators. Having defined the robust SCF for CoinFlip we now
show how to modify our proof by composing SCF with our robust-concurrent simulator S. The
modifications follow:

1. As a first step, we view CoinFlip as a “replacement” for the statistically hiding phase PRS2.
Therefore, the simulator will always to look for αs = (u, d) coming from outside (just like
before where the PRS-secret was being provided from outside). Party E simply returns a
random value, whereas simulator S, will expect it to come from outside, and be included in
the transcript when CoinFlip ends.
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2. In order to do this, without rewinding B, simulator S will run with respect to a modified
protocol B′ which runs both B as well as CoinFlip. This will have a total of q + k messages,
and by choice of ` this will still keep the statistical distance negligible.

3. Now the simulator S is an adversary for the protocol CoinFlip and SCF will simulate its view
without rewinding B. Messages of B will be forwarded to S by SCF unaltered. It is not hard
to see that although the probabilities of aborting add up, they still remain negligible with our
choice of parameters.

4. Therefore, the composed simulator SCF ◦ S is now a robust simulator which provides the
trapdoor for CoinFlip as well.

The rest of the proof is now goes through trivial changes: instead of using S used the composed
simulator SCF ◦ S and modify internal syntax to deal with this change. Details are repetitive and
easy to fill in.

C Robust Non-malleable Commitments

We recall the notion of a robust non-malleable commitment scheme [LP09]. We only need a non-
malleable commitment scheme that is robust with respect to constant round protocols. The notion of
k-robust non-malleability, roughly speaking, requires non-malleability w.r.t. every k-round protocol,
in addition to itself.

Formally, let n be the security parameter, 〈C,R〉 be a tag-based statistically-binding commit-
ment scheme for identities of length l(n). Consider a man-in-the-middle adversary A∗ that, on
inputs n and (advice) z, participates in one left and one right interaction simultaneously. In the left
interaction, A∗ interacts with C, receiving a commitment to value v ∈ {0, 1}n using identity id of
its choice. In the right interaction A∗ interacts with R attempting to commit to a related value ṽ,
again using identity ĩd of its choice. If the right commitment is invalid, or undefined, its value is set
to ⊥. In addition, if id = ĩd, the value ṽ is again set to ⊥. That is, if A∗ copies the left identity id,
it is not a valid adversary. Let nmcA

∗

〈C,R〉(n, v, z) denote a random variable that describes the value

ṽ and the view of A∗ in this experiment. Then, following [DDN91, LPV08]: We say that 〈C,R〉 is
non-malleable w.r.t. itself, if for every ppt A∗, and every pair of n-bit strings (v1, v2), and every
z ∈ {0, 1}∗, variables nmcA

∗

〈C,R〉(n, v, z) and nmcA
∗

〈C,R〉(n, v
′, z) are computationally indistinguishable.

Let 〈C,R〉 be commitment scheme as above that is non-malleable w.r.t. itself. Further, let
Π := 〈B,A〉 be a protocol of k(n) rounds, and domB(n) denote the set of valid inputs for B. We say
that Π is an interesting protocol if for every ppt Ã, every n ∈ N, every pair of inputs x1 ∈ domB(n)
and x2 ∈ domB(n), and every z ∈ {0, 1}∗, we have that the following two random variables are
computationally indistinguishable: OUT

Ã
[B(1n, x1)↔ Ã(1n, z)] and OUT

Ã
[B(1n, x2)↔ Ã(1n, z)].

We consider a man-in-the-middle A∗ who participates in a left interaction–with the honest party
B(1n, x) for x ∈ domB(n)–as well as in a right interaction with R (as before) committing to ṽ

using identity ĩd (defined and adaptively chosen as before). Denote by nmcB,A
∗

〈C,R〉(n, x, z) the random

variable that describes the value ṽ along with the view of A∗ in this experiment. Then, following
[LP09]: We say that 〈C,R〉 is k()n-robust, if for every ppt A∗, every interesting protocol Π of
round-complexity k(n), every n ∈ N, every pair of inputs (x1, x2) chosen from domB(n), and every

z ∈ {0, 1}∗, variables nmcB,A
∗

〈C,R〉(n, x1, z) and nmcB,A
∗

〈C,R〉(n, x2, z) are computationally indistinguishable.

Constant round protocols that are non-malleable and 4-robust are now known [GOLV12, LP11,
Goy11, Wee10, LP09].
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