# A note on invariant linear transformations in multivariate public key cryptography 

Andreas Wiemers *

## 1 Introduction

Imai and Matsumoto [1] introduced a public key cryptosystem based on multivariate quadratic polynomials. In a simplified way, the essence of their cryptosystem can be described in the following way: Start with a central monomial of the form

$$
F(x)=x^{q^{t}+1}
$$

The secret key comprises two invertible linear transformations $T$ and $L$ such that

$$
T \circ F \circ L
$$

is the public key. In order to study equivalent public keys it is natural to ask for the "invariant" secret keys ( $T, L$ ), i.e.

$$
T \circ F \circ L=F
$$

Lin, Faugere, Perret and Wang [2, Theorem 8] give a partial answer to this question by considering such $L$ which fulfill

$$
F \circ L=F
$$

In this paper we will determine all invariant invertible linear transformations $(T, L)$.

## 2 Preliminaries

Let $K$ be a finite field with $q$ elements. $R$ is an extension field over $K$ of degree $n$. We write explicitely

$$
R=K[S] /<g(S)>
$$

where $g(S)$ is an irreducible polynomial of degree $n$. We denote by $s$ the image of $S$ in R. $R$ is a $n$-dimensional vector space over $K$. We set concretely

$$
\phi: K^{n} \longrightarrow R \quad\left(a_{0}, \ldots, a_{n-1}\right) \mapsto a_{0}+a_{1} s+\cdots+a_{n-1} s^{n-1}
$$

[^0]As in [2] we denote by $\mathcal{F}$ the set of all mappings from $R$ to $R$ of the form

$$
x \mapsto \sum_{0 \leq i \leq j \leq n-1} \alpha_{i, j} x^{q^{i}+q^{j}} \quad \text { where } \alpha_{i, j} \in R
$$

$\mathcal{L}$ denotes the set of all invertible linear mappings from $R$ to $R$ of the form

$$
x \mapsto \sum_{0 \leq i \leq n-1} \beta_{i} x^{q^{i}} \quad \text { where } \beta_{i} \in R
$$

## 3 The Main Result

We will prove a result which extends Theorem 8 in [2].
Theorem: Let $F(x)=a x^{q^{i}+1}$ with $a \in R^{*}$ and $1 \leq i \leq n-1$. Assume we have mappings $L$ and $T$ in $\mathcal{L}$ with

$$
T \circ F \circ L=F
$$

Then only one of the following cases can occur:

1. Case: $4 i \equiv 0 \bmod n$ and $2 i \neq n$ :

$$
\begin{aligned}
L(x) & =c x^{q^{r}}+d x^{q^{r+2 i}} \quad \text { where } c, d \in R^{*}, 0 \leq r \leq n-1 \\
T^{-1}(x) & =c^{q^{i}+1} x^{q^{r}}+c d^{q^{i}} x^{q^{r+3 i}}+c^{q^{i}} d x^{q^{r+i}}+d^{q^{i}+1} x^{q^{r+2 i}}
\end{aligned}
$$

2. Case: $2 i=n$ :

$$
L(x)=c x^{q^{r}}, T^{-1}(x)=\left(c^{q^{i}+1}-d\right) x^{q^{r+n / 2}}+d x^{q^{r}} \quad \text { where } c \in R^{*}, d \in R, 0 \leq r \leq n-1
$$

3. Case:

$$
L(x)=c x^{q^{r}}, T^{-1}(x)=c^{q^{i}+1} x^{q^{r}} \quad \text { where } c \in R^{*}, 0 \leq r \leq n-1
$$

## Notes:

1. The result in [2, Theorem 8] is covered by assuming in addition $T^{-1}(x)=x$. This implies in case 2

$$
r=0, d=0, c^{q^{i}+1}=1
$$

whereas in case 3 we have

$$
r=0, c^{q^{i}+1}=1
$$

2. As an example for new cases compared to [2] that can occur, consider

$$
F(x)=x^{q+1}, L(x)=c x+d x^{q^{2}}, n=4
$$

Then we have

$$
F(L(x))=c^{q+1} F(x)+c d^{q} F(x)^{q^{3}}+c^{q} d F(x)^{q}+d^{q+1} F(x)^{q^{2}}
$$

3. Not every combination of $c$ and $d$ is possible. For instance, the condition " $L$ is invertible" in case 1 is equivalent to the validity of the inequation

$$
(-c / d)^{q^{n / 2}+1} \neq 1
$$

4. In case $1, T$ must be invertible. This is equivalent to the condition that the linear transformation

$$
a_{0} Y+a_{1} Y^{q^{i}}+a_{2} Y^{q^{2 i}}+a_{3} Y^{q^{3 i}} \in R[Y]
$$

in invertible where

$$
a_{0}=c^{q^{i}+1}, a_{1}=c^{q^{i}} d, a_{2}=d^{q^{i}+1}, a_{3}=d^{q^{i}} c
$$

We set $p=q^{n / 4} . p$ is the order of the subfield $R_{4}$ of index 4 in $R$.
If $i=n / 4$, we can directly apply [3, p. 362] to the linear transformation

$$
\begin{aligned}
& a_{0} Y+a_{1} Y^{q^{i}}+a_{2} Y^{q^{2 i}}+a_{3} Y^{q^{3 i}} \\
= & a_{0} Y+a_{1} Y^{p}+a_{2} Y^{p^{2}}+a_{3} Y^{p^{3}}
\end{aligned}
$$

Therefore, $T$ is invertible if and only if the determinant of the matrix

$$
A=\left(\begin{array}{cccc}
a_{0} & a_{3}^{p} & a_{2}^{p^{2}} & a_{1}^{p^{3}} \\
a_{1} & a_{0}^{p} & a_{3}^{p^{2}} & a_{2}^{p^{3}} \\
a_{2} & a_{1}^{p} & a_{0}^{p^{2}} & a_{3}^{p^{3}} \\
a_{3} & a_{2}^{p} & a_{1}^{p^{2}} & a_{0}^{p^{3}}
\end{array}\right)
$$

does not vanish. In case that $c, d \in R_{4}$, this determinant is in a simple form, since then $A$ is circular. We compute

$$
\text { case } i=n / 4 ; c, d \in R_{4}: \operatorname{det}(A) \neq 0 \Longleftrightarrow c \neq \pm d
$$

If $i=3 n / 4$, we apply [3, p. 362] to the linear transformation

$$
\begin{aligned}
& a_{0} Y+a_{1} Y^{q^{i}}+a_{2} Y^{q^{2 i}}+a_{3} Y^{q^{3 i}} \\
= & a_{0} Y+a_{3} Y^{p}+a_{2} Y^{p^{2}}+a_{1} Y^{p^{3}}
\end{aligned}
$$

so that we have a similar condition for the matrix $A^{\prime}$, where we exchange $a_{1}$ and $a_{3}$ in $A$. In case that $c, d \in R_{4}$, we compute the same result

$$
\text { case } i=3 n / 4 ; c, d \in R_{4}: \operatorname{det}\left(A^{\prime}\right) \neq 0 \Longleftrightarrow c \neq \pm d
$$

Proof of the main theorem: It suffices to prove the result for $a=1$. We extend the Frobenius mapping

$$
\tau: R \longrightarrow R \quad x \mapsto x^{q}
$$

trivially to the polynomial ring $R\left[X_{0}, \ldots, X_{n-1}\right]$

$$
\tau: R\left[X_{0}, \ldots, X_{n-1}\right] \longrightarrow R\left[X_{0}, \ldots, X_{n-1}\right]
$$

$\tau$ is an isomorphism of rings which acts only on the coefficients. We set

$$
Z=X_{0}+X_{1} s+\cdots+X_{n-1} s^{n-1}
$$

$F=x^{q^{i}+1}$ induces via $\phi$ a mapping from $K^{n}$ to $R$. As this mapping, $F$ can be written in the form of the polynomial

$$
\tau^{i}(Z) Z \in R\left[X_{0}, \ldots, X_{n-1}\right]
$$

In the same way, the mapping

$$
L(x)=\sum_{0 \leq j \leq n-1} \beta_{j} x^{q^{j}}
$$

can be written as mapping from $K^{n}$ to $R$ in the form of the polynomial

$$
\sum_{0 \leq j \leq n-1} \beta_{j} \tau^{j}(Z) \in R\left[X_{0}, \ldots, X_{n-1}\right]
$$

Similarly, we can write the mapping

$$
T^{-1}(x)=\sum_{0 \leq j \leq n-1} \gamma_{j} x^{q^{j}}
$$

as polynomial

$$
\sum_{0 \leq j \leq n-1} \gamma_{j} \tau^{j}(Z) \in R\left[X_{0}, \ldots, X_{n-1}\right]
$$

The equation

$$
F \circ L=T^{-1} \circ F
$$

implies that the polynomial

$$
\delta=\tau^{i}\left(\sum_{0 \leq j \leq n-1} \beta_{j} \tau^{j}(Z)\right) \cdot \sum_{0 \leq j \leq n-1} \beta_{j} \tau^{j}(Z)-\sum_{0 \leq j \leq n-1} \gamma_{j} \tau^{j}\left(\tau^{i}(Z) Z\right)
$$

is - as mapping from $K^{n}$ to $R$ - identical to 0 . It is well known that every $h \in$ $K\left[X_{0}, \ldots, X_{n-1}\right]$ that is identical to 0 as a mapping from $K^{n}$ to $K$ lies in the ideal

$$
<X_{0}^{q}-X_{0}, \ldots X_{n-1}^{q}-X_{n-1}>
$$

over $K\left[X_{0}, \ldots, X_{n-1}\right]$. See for example [3, Lemma 7.40]. This immediately implies that also

$$
\delta \in<X_{0}^{q}-X_{0}, \ldots X_{n-1}^{q}-X_{n-1}>
$$

where the right hand side is meant as an ideal over $R\left[X_{0}, \ldots, X_{n-1}\right]$. But $\delta$ is homogenous of degree 2. Therefore, $\delta=0$ as polynomial in $R\left[X_{0}, \ldots, X_{n-1}\right]$ and we have the equation over $R\left[X_{0}, \ldots, X_{n-1}\right]$

$$
\tau^{i}\left(\sum_{0 \leq j \leq n-1} \beta_{j} \tau^{j}(Z)\right) \cdot \sum_{0 \leq j \leq n-1} \beta_{j} \tau^{j}(Z)=\sum_{0 \leq j \leq n-1} \gamma_{j} \tau^{i+j}(Z) \tau^{j}(Z)
$$

$\tau^{j}(Z)$ is the image of $\left(X_{0}, \ldots, X_{n-1}\right)$ under the Vandermonde matrix with entries

$$
\tau^{j}\left(s^{i}\right)
$$

This matrix is invertible since the elements $\tau^{j}(s)$ are pairwise different. We define a transformation of variables by this matrix, i.e. we set

$$
Y_{j}=\tau^{j}(Z)
$$

in $R\left[Y_{0}, \ldots, Y_{n-1}\right]$. We write the equation above in the new variables

$$
\left(\sum_{0 \leq j \leq n-1} \tau^{i}\left(\beta_{j}\right) Y_{i+j}\right) \cdot \sum_{0 \leq j \leq n-1} \beta_{j} Y_{j}=\sum_{0 \leq j \leq n-1} \gamma_{j} Y_{i+j} Y_{j}
$$

(Indices are modulo $n$.) The rest of the proof follows now from the validity of this equation in an elementary, but rather tedious way: We set

$$
\epsilon_{t}=\tau^{i}\left(\beta_{t-i}\right)
$$

so that

$$
\sum_{0 \leq j \leq n-1} \epsilon_{j} Y_{j}=\sum_{0 \leq j \leq n-1} \tau^{i}\left(\beta_{j}\right) Y_{i+j}
$$

We fix an index $r$ with coefficient $\beta_{r} \neq 0$. This implies

$$
\epsilon_{r}=0
$$

since the monomial $Y_{r}^{2}$ does not appear on the right side of the equation. We write the left side of the equation as sum of monomials with certain cofficients. The monomials of the form $Y_{r} Y_{j}$ with $j \neq r, 0 \leq j \leq n-1$, in this sum have the coefficient

$$
\epsilon_{j} \beta_{r}
$$

Because of the structure of the right side of the equation, we get $\epsilon_{j}=0$ unless $j=r+i$ or $j=r-i$. This implies that in the sum

$$
\sum_{0 \leq j \leq n-1} \beta_{j} Y_{j}
$$

at most two coefficients do not vanish. Therefore, we assume that we have

$$
\beta_{r} \neq 0 \text { and } \beta_{s} \neq 0
$$

for $r \neq s$. The left side of the equation above now reads

$$
\begin{aligned}
& \left(\tau^{i}\left(\beta_{r}\right) Y_{r+i}+\tau^{i}\left(\beta_{s}\right) Y_{s+i}\right)\left(\beta_{r} Y_{r}+\beta_{s} Y_{s}\right) \\
= & \tau^{i}\left(\beta_{r}\right) Y_{r+i} \beta_{r} Y_{r}+\tau^{i}\left(\beta_{r}\right) Y_{r+i} \beta_{s} Y_{s}+\tau^{i}\left(\beta_{s}\right) Y_{s+i} \beta_{r} Y_{r}+\tau^{i}\left(\beta_{s}\right) Y_{s+i} \beta_{s} Y_{s}
\end{aligned}
$$

Considering the structure of the right side of the equation, this immediately implies

$$
r+i-s \equiv-i \bmod n \text { and } s+i-r \equiv-i \bmod n
$$

This gives the condition

$$
4 i \equiv 0 \bmod n \text { and } s \equiv r+2 i \bmod n
$$

and in addition $2 i \neq n$. The left side of the equation above now reads

$$
\tau^{i}\left(\beta_{r}\right) \beta_{r} Y_{r+i} Y_{r}+\tau^{i}\left(\beta_{r}\right) \beta_{s} Y_{r+i} Y_{r+2 i}+\tau^{i}\left(\beta_{s}\right) \beta_{r} Y_{r+3 i} Y_{r}+\tau^{i}\left(\beta_{s}\right) \beta_{s} Y_{r+3 i} Y_{r+2 i}
$$

Therefore, the $\gamma_{j}$ are uniquely defined and the claim of case 1 follows. If in the sum

$$
\sum_{0 \leq j \leq n-1} \beta_{j} Y_{j}
$$

exactly one coefficient does not vanish, then the equation above reads

$$
\tau^{i}\left(\beta_{r}\right) \beta_{r} Y_{r+i} Y_{r}=\sum_{0 \leq j \leq n-1} \gamma_{j} Y_{i+j} Y_{j}
$$

Let us assume that $2 i \neq n$. Then, all the monomials in the sum on the right side of this equation are different. This implies directly the claim of case 3 .
If $i=n / 2$, we get the equation

$$
\tau^{i}\left(\beta_{r}\right) \beta_{r} Y_{r+n / 2} Y_{r}=\sum_{0 \leq j \leq n-1} \gamma_{j} Y_{n / 2+j} Y_{j}=\gamma_{r} Y_{r+n / 2} Y_{r}+\gamma_{r+n / 2} Y_{r+n / 2} Y_{r}
$$

which gives the claim of case 2 .

## 4 References

[1] Matsumoto, Imai: Public quadratic polnomial-tuples for efficient signature-verification and message-encryption, EUROCRYPT 1988, Lecture Notes in Comput. Science, Vol. 330, 1988, pp. 419-453.
[2] Lin, Faugere, Perret, Wang: On enumeration of polynomial equivalence classes and their application to MPKC, Finite Fields and Their Applications 18, 2012, pp. 283-302. [3] Lidl, Niederreiter: Finite Fields, Vol. 20, Encyclopdia of Math. and its appl., Cambridge University Press, Cambridge 1997


[^0]:    *Federal Office for Information Security, Germany

