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Abstract. In this paper we analyze practical aspects of the differential fault attack 
on RSA published by Boneh, Demillo and Lipton from Bellcore. We focus on the 
CRT variant,  which  requires  only  one  faulty  signature  to  be  entirely  broken 
provided that no DFA countermeasures are in use. Usually the easiest approach 
for  the  attacker  is  to  introduce  a  fault  in  one  of  the  two  RSA-CRT 
exponentiations. These are time-consuming and often clearly visible in the power 
profiles.  However,  protection  of  the  exponentiations  against  faults  does  not 
always  circumvent  the Bellcore attack.  Our  goal  is  to investigate and classify 
other possible targets of the attack.

1. Introduction

RSA algorithm [RSA78] has been introduced more than thirty years ago. Since that moment the algorithm has  
become very popular and as a result a lot of attacks on RSA have been published. Among the most powerful are  
differential fault attacks based on the assumption that it is possible to inject hardware faults when the victim device  
performs RSA. The pioneer differential fault attack on RSA is the one published by Boneh, Demillo and Lipton  
from Bellcore [BDL01]. It is often referred to as the Bellcore attack. 

This paper is devoted to the analysis of practical aspects of the Bellcore attack. We investigate steps of the RSA  
implementation that can serve as a target for the attack.

2. Bellcore attack

The attack is applicable both for classical RSA that involves one modular exponentiation and for RSA-CRT. In the 
first  case the attack requires several faulty signatures while in the second case only one faulty signature may  
suffice. We consider only the CRT variant.
 
RSA-CRT transforms message m into signature s using private key p, q, dp, dq as follows:

sp = ( mp )dp mod p,
sq = ( mq )dq mod q,

s = ( ( (sq – sp) · pinv) mod q) · p + sp,

where mp = m mod p, mq = m mod q, pinv = p–1 mod q. For a detailed overview of RSA-CRT the reader is referred 
e.g. to [BDL01]. 

Suppose either  sp or  sq is computed with a fault. Assume that the resulting faulty signature  s' together with the 
correct signature s are known to the attacker. Then he can retrieve the private key by computing 

gcd(s – s', N)

for the publicly known RSA modulus N. Alternatively, the attacker can recover the private key from s'  and m by 
computing  

gcd(m – ( ( s' )e mod N ), N),

where e is the public exponent. Boneh et al. [BDL01] point out that the latter variant is suggested by A. K. Lenstra.



3. Possible targets of the attack

3.1 CRT exponentiations

A natural way to put the Bellcore attack in practice is to perturb one of the RSA-CRT exponentiations. These  
operations usually take relatively long time giving the attacker a wide window of opportunity. In the case of smart  
cards an RSA exponentiation typically takes several milliseconds. Furthermore, normally the exponentiations are 
clearly distinguishable in the power traces, which helps the attacker to choose the right moment  e.g.  for  light  
manipulation or voltage manipulation. 

However in order to avoid the Bellcore attack it is not always sufficient to protect only the exponentiations. Nearly 
all the other steps of RSA-CRT should be protected as well. These steps can be divided into two classes: those that  
are performed before the CRT-exponentiations and afterwards. Some important examples of each of these two 
classes are discussed below.

3.2 Steps performed before the exponentiations

Key loading

Even though key loading usually takes significantly less time than an exponentiation, this action is often visible in 
the power profiles. If a fault is injected while loading (p,  dp) or (q,  dq) but not in both of the pairs the attacker is 
likely to get a faulty signature s' suitable for retrieving the private key. 

Note that replacing p by a faulty p' ≠ p during key loading leads to the signature s' such that 

s' ≠ s mod p and
s' ≠ s mod q,

which is not beneficial for the attacker, with overwhelming probability. On the other hand, inducing a fault in  q 
will mean that s' = A · p + sp, where A ≠ ( ( (sq – sp) · pinv) mod q), and thus

s' = s mod p and
s' ≠ s mod q

so computing the greatest common divisor gcd(s – s', N) will reveal the private key. The reason for this behaviour 
is that p and q are used in the CRT recombination in an asymmetric way, see Section 2.

Reformatting

The implementation may require changing the format of the key after loading. For instance, the format may be  
changed from big to little endian. The reformatting should be secure against perturbation attacks. Similarly to the  
case of key loading described above, here the perturbation of p and perturbation of q have different effects.

Modular reduction

As a preparation step for the exponentiations message m is reduced modulo p and modulo q to compute mp and mq, 
respectively. Both of the modular reductions should be protected since any perturbation of one of them may result 
in a successful attack.

Transition to Montgomery representation

If Montgomery multiplication (see e.g. [MOV97] for a thorough overview) is used care should be taken when  
transforming the data from one representation to the other. In the beginning of the Montgomery exponentiation mp 

and mq are multiplied by the Montgomery constant R modulo p and modulo q. Both of the modular multiplications 
are potential targets of the Bellcore attack. 



On the other hand, if R is perturbed before transforming mp and mq into Montgomery representation the Bellcore 
attack will not work since we will end up in the situation when

s' ≠ s mod p and
s' ≠ s mod q.

Data loading

Sometimes it  is  required to load  mp and  mq into the memory of an arithmetic coprocessor.  The memory copy 
function should be implemented in a secure way.

Blinding

As a countermeasure against side channel attacks (SCA) the developer may decide to blind mp, mq, p, q, dp, dq. A 
well-known example is multiplicative message blinding: 

mp → μp = mp · rp mod p,
mq → μq = mq · rq mod q,

where numbers  rp  and  rq are chosen at random for every signature. This is an efficient countermeasure against 
differential power analysis aimed at modular exponentiation. 

Remarkably,  in  this  situation SCA-countermeasures  may ease  the fault  attack.  A fault  induced in  any of  the 
blinding operations may imply the retrieval of the private key.

It is worth noticing that this is not the only situation of this sort. SCA-countermeasures require extra effort; the  
additional steps immediately become potential targets of the perturbation attacks. To give another example, Yen en  
Joye [YJ00] observed that the square-and-always-multiply method provides an opportunity to distinguish dummy 
multiplications from real ones by inducing faults at the moments when these exponentiations are performed.

3.3 Steps performed after the exponentiations

Steps similar to those performed before the exponentiations

These  are  the  following.  Whenever  Montgomery  exponentiation  is  used  the  final  result  sp and  sq,  will  be 
transformed back from Montgomery  representation into the  regular  one.  If  a coprocessor  is  used it  might  be 
necessary to transfer sp and sq from its memory to the other location. A developer may decide to unblind sp and sq as 
soon as they are computed. All these operations should be carefully protected against perturbation attacks.

CRT recombination

The last step of the RSA-CRT algorithm, namely, the CRT recombination is also a potential target of the Bellcore 
attack. As opposed to some other targets this one is quite difficult since the fault has to be induced very precisely 
such that, for instance, ( ( (sq – sp) · qinv) mod q) is manipulated while sp  remains unchanged.

4. Conclusion

The Bellcore attack on RSA-CRT is one of the most prominent attacks on RSA known so far. Whenever RSA-CRT 
is implemented in secure embedded software, this attack has to be circumvented by appropriate countermeasures.  
Most of the steps of RSA-CRT have a property that their perturbation may result in a signature s' such that 

s' = s mod p
while s' ≠ s mod q

or vice versa. It means that the protection mechanisms should cover not only the CRT exponentiations but nearly 
all the other steps of the algorithm that influence the computation of sp, sq or the CRT recombination.



A powerful countermeasure against the Bellcore attack is to raise the signature to the power e and to compare the 
result with the input message m. If the signature is faulty the comparison will detect it. A possible obstacle is that in 
practice e is not always available to the signer function. 

Another well-known countermeasure against the Bellcore attack is to perform the signature computation twice and  
to compare the two results. Remarkably, this countermeasure does not necessarily help to prevent the attack. For  
instance, it might happen that both computations will be performed using the same erroneous private key and thus 
the two results will match.

References

[BDL01] D. Boneh, R. A. DeMillo, R. Lipton. On the Importance of Eliminating Errors in Cryptographic 
Computations. In Journal of Cryptology 14(2), pages 101–120, 2001.

[RSA78]  R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key 
cryptosystems.   Communications of the ACM, volume 21(2): pages 120–126, 1978.

[MOV97] A. Menezes, P. van Oorschot and S. Vanstone. Handbook of applied cryptography. CRC Press, 
1997.

[YJ00] S.-M. Yen, M. Joye. Checking Before Output May Not Be Enough Against Fault-Based Cryptanalysis.  
IEEE Trans. Computers 49(9): 967–970 (2000).


	1. Introduction
	2. Bellcore attack
	3. Possible targets of the attack
	3.1 CRT exponentiations
	3.2 Steps performed before the exponentiations
	3.3 Steps performed after the exponentiations

	4. Conclusion
	References

