Scalable Deniable Group Key Establishment

(full version)

t2* 2%k

Kashi Neupane!, Rainer Steinwandt?*, and Adriana Sudrez Corona

1 Atlanta Metropolitan State College, Atlanta, GA 30310
kneupane@atlm.edu
2 Florida Atlantic University, Boca Raton, FL 33431
{rsteinwa,asuarezc}@fau.edu

Abstract. The popular Katz-Yung compiler from CRYPTO 2003 can
be used to transform unauthenticated group key establishment proto-
cols into authenticated ones. In this paper we present a modification
of Katz and Yung’s construction which maintains the round complexity
of their compiler, but for ‘typical’ unauthenticated group key establish-
ments adds authentication in such a way that deniability is achieved as
well. As an application, a deniable authenticated group key establish-
ment with three rounds of communication can be constructed.
Keywords: Group key establishment, Deniability

1 Introduction

To simplify the design process for a group key establishment protocol, it can
be convenient to restrict first to a scenario with a passive adversary, where the
problem of authenticating protocol participants does not need to be addressed.
Once the protocol has been proven secure in such a setting, a generic construc-
tion by Katz and Yung from CRYPTO 2003 allows to achieve security against
an active adversary at the cost of one additional round [9]. Basically, this com-
piler appends nonces, along with sender and receiver identifiers, to all protocol
messages and signs all messages with a strongly unforgeable signature scheme.
This intuitive construction is round-efficient, but problematic when deniability
is added as a design goal: unforgeable signatures in a protocol transcript would
have to be explained in a way which does not involve the signing party.

In the two-party setting, deniability has been studied by Di Raimondo et al.
[7] and Yao and Zhao [11], for instance. The problem of formalizing deniable key
establishment in the group setting has been addressed in [4], where a four-round
solution in the random oracle model is presented. In [12], Zhang et al. suggest
an alternative formalization of deniability along with a three-round protocol in
the standard model. Deniable group key establishment in a setting where the
computational power of protocol participants differs is addressed by Chen et al.
[6] with a proposal in the random oracle model. Compared to [4] and [12], our
definition of deniability limits the adaptivity of the adversary in corrupting users,

* RS was supported by the Spanish Ministerio de Economia y Competitividad through
the project grant MTM-2012-15167.
** ASC was supported by project MTM2010 - 18370 - C04- 01 and FPU grant AP2007-
03141, cofinanced by the European Social Fund.

but unlike [12] we give the adversary access to oracles that reveal session keys
and send individual messages, and we do not include secret keys of corrupted
users in the simulator’s input. From a practical point of view this formalization
of deniability seems acceptable, and we present the first general compiler to
construct authenticated and deniable group key establishment protocols from
‘typical’ passively secure constructions.

The compiler we suggest builds on the Katz-Yung construction, but replaces
the signature scheme with a suitable use of a ring signature, a message authen-
tication code, and a multiparty key encapsulation. Like the original Katz-Yung
construction, our compiler is capable of augmenting every passively secure group
key establishment to an actively secure one by adding one more round. Moreover,
if the unauthenticated protocol does not make use of long-term secrets—which
one would typically expect—the protocol output by our compiler is deniable. In
particular, applying our compiler to an unauthenticted two-round protocol as
the one described in [9], which builds on work of Burmester and Desmedt [5],
results in a deniable and authenticated three-round protocol.

2 Preliminaries

As main technical tools, we will make use of a multiparty key encapsulation along
with a suitable data encapsulation mechanism to send an identical message to
multiple protocol participants in a confidential manner. For implementing the
authentication we also make use of a message authentication code and a ring
signature. Here and in the subsequent sections, the security parameter will be
denoted by k, and notions like polynomial time or negligible refer to k.

2.1 Multi key encapsulation and symmetric encryption

In [10], Smart introduced the notion of a multi key encapsulation mechanism
(mKEM), generalizing key encapsulation to a setting with multiple recipients. A
group key establishment by Gorantla et al. [8] makes use of this primitive, and
the subsequent definitions follow Gorantla et al.

Definition 1 (multi key encapsulation mechanism).
A multi key encapsulation mechanism (mKEM) is a triple of polynomial time
algorithms (mKeyGen, mEncaps, mDecaps) as follows:

— mKeyGen is probabilistic. Given the domain parameters D, it generates a pair
of public and secret keys (pk,dk).

— mEncaps is probabilistic. Given a (polynomial size) set {pk, ..., pkn} of pub-
lic keys it generates a pair (K,C) where K € {0,1}* is a session key and C
is an encapsulation of this session key under the public keys {pki,...,pkn}.

— mDecaps is deterministic. Given a secret key dk and an encapsulation C,
this algorithm outputs the session key K or a special error symbol L.

We require that for all key pairs (pk;, dk;) generated by mKeyGen the implication
(K,C) = mEncaps({pki, . ..,pkn}) = mDecaps, (C) = K holds (i =1,...,n).

To characterize security of an mKEM, we use a similar approach as in the case
of a single recipient.

Definition 2 (IND-CCA security). An mKEM scheme is IND-CCA secure
if the advantage of any probabilistic polynomial time adversary A in the game
described in Figure 1 is negligible. Here the advantage of an adversary A is
defined as the function AdviyP-CCA (k) = |2 Prb =] —1|.

— Setup: The challenger C runs the key generation mKeyGen to obtain n key pairs
(pk1,dki), ..., (pkn,dky) and hands the public keys pki,...,pk, to A.

— Phase 1: The adversary can submit queries to a decapsulation oracle with sub-
sets P’ C {pki,...,pkn} and encapsulations C: given a query mDecaps(P’,C),
the challenger computes mDecapsy;,. (C) for each pk; € P’. If the same output K
is produced for every pk; € P’, then K is returned to A. Otherwise, L is returned.

— Challenge: The adversary chooses a set P* C {pki,...,pkn} and gives it to the
challenger C. Then C selects a bit b € {0,1} uniformly at random and computes
(Ky,C™) < mEncaps(P”*). Finally, C selects a key K;_; uniformly at random
from the session key space and hands ({Ko, K1},C") to A.

— Phase 2: The adversary can submit decapsulation queries as in Phase 1, subject
to the condition that no mDecaps-query is made that returns K.

— Guess: The adversary outputs b’ € {0, 1} and wins if and only b =1b'.

Fig. 1. IND-CCA security of a multi key encapsulation mechanism

To be able to actually encrypt messages in our compiler, we combine an
mKEM with a suitable data encapsulation mechanism, which we realize as a
symmetric encryption scheme offering security in the real-or-random sense (cf.
Bellare et al. [1]):

Definition 3 (symmetric encryption scheme). A symmetric encryption
scheme is a triple of polynomial time algorithms (KeyGen, Enc,Dec) as follows:
— KeyGen is probabilistic. Given the security parameter 1%, it generates a secret
key K.
— Enc is probabilistic. Given a secret key K and a message m € {0,1}*, this
algorithm generates a ciphertext C.
— Dec is deterministic. Given a ciphertext C and a secret key K, this algorithm
outputs either a message m or a dedicated error symbol L.

We require that m = Deck (Encg(m)) for all keys K and for all m € {0,1}*.

To characterize security, let RR(m, b) be a real-or-random oracle, i. e., on in-
put m € {0,1}* a query RR(m, 1) simply returns m, whereas a query RR(m,0)
returns a uniformly at random chosen bitstring of the same length as m. For a
probabilistic polynomial time algorithm 4, now consider the experiment in Fig-
ure 2 where Ex(+) respectively Dk (+) is an oracle which applies the encryption
algorithm Enc (+) resp. the decryption algorithm Deck (+) to its input.

Building on this experiment, security in the real-or-random sense is defined
by measuring A’s success in correctly identifying the secret b used by the real-
or-random oracle:

Definition 4 (ROR-CCA security). Subsequently, we say that a symmetric
encryption scheme (KeyGen,Enc,Dec) is secure in the sense of real-or-random

— Setup: A secret bit b < {0, 1} is chosen uniformly at random and a secret key
K < KeyGen(1*) is created

— Challenge: The adversary A has unrestricted access to the ‘composed oracle’
Ex(RR(:,b)). Further, A has access to Dk (+) subject to the restriction that no
ciphertexts must be queried to Dk (-) that have been output by Ex (RR(:,b)).

— Guess: The adversary outputs a bit b’ € {0, 1}.

Fig. 2. ROR-CCA security of a symmetric encryption scheme
(ROR-CCA), if the advantage Adv'y"™“* = Adv "~ ““*(k) :=

Pr[1 + Afx(RRCIDPr()(1F) 1 K «+ KeyGen(1F)]
—Pr [1 + A= (RRC0).Pr() (1K) 1 K < KeyGen(1%)]

18 negligible for all probabilistic polynomial time algorithms A.

2.2 Message authentication codes and ring signatures
To solve the problem of authentication without jeopardizing deniability, our
compiler uses a message authentication code as well as a suitable ring signature.

Definition 5 (message authentication code).
A message authentication code (MAC) is a tuple (MKeyGen, Tag, Verify) of
polynomial time algorithms as follows:

— MKeyGen is probabilistic. Given the domain parameters D, it generates a se-
cret key K.

— Tag is probabilistic. Given a message m € {0,1}* and a secret key K it
generates a message tag 0 := Tagy(m) € {0,1}* on m.

— Verify is deterministic. Given a message m, a secret key K and a candidate
tag 0, Verify returns 1 if 6 is a valid tag for the message m and 0 otherwise.

The compiler described below assumes that the message authentication code we
employ is strongly unforgeable under adaptive chosen message attacks (cf. [2]).
Figure 3 describes the corresponding experiment, where 7Tk (-) respectively Vi ()
describes an oracle which applies Tag, (-) respectively Verify, (-) to its inputs.

Definition 6 (SUF-CMA security).

A message authentication code (MKeyGen, Tag, Verify) is strongly unforge-
able under adaptive chosen message attacks/secure in the sense of SUF-CMA if
for all probabilistic polynomial time adversaries A the advantage Advi‘ff'cma =
AdvEEm (k) = Pr[Succy™™?] is negligible. Here SuccSy'™ "™ denotes the event

that A wins the experiment in Figure 3.

— Setup: A secret key K < MKeyGen(D) is created

— Challenge: The adversary A has unrestricted access to the tagging oracle Tk (-)
and the verification oracle Vi (-).

— Guess: A outputs a (message, tag)-pair (m,0) and wins if and only if
MVerk(m,6) = 1 and either m has never beeen queried to Tk () or no query
of the form Tk (m) returned the tag 6.

Fig. 3. SUF-CMA security of a message authentication code
Finally, our compiler uses a ring signature which enables a signer to produce
signatures which can be verified successfully under several verification keys.

Definition 7 (ring signature scheme). A ring signature scheme is a tuple of
polynomial time algorithms (RKeyGen,RSign, RVerify) as follows:

— RKeyGen is probabilistic. Given the security parameter k, it generates a pair
of keys (vk,sk), where vk is a public verification key and sk is its corre-
sponding secret signing key.

— RSign. Given a message m, a polynomial size set (a ring) of public verifica-
tion keys R = {vky,...,vk,} and a secret key sks such that vks € R, this
algorithm produces a signature o.

— RVerify is deterministic. Given a message m, a signature o and a Ting
of public keys R, this algorithm returns 1 if o is a valid signature for the
message m with respect to the ring R, and 0 otherwise.

We require that for any ring R comprised of public verification keys produced by
RKeyGen and for any message m the relation RVerify(m,RSign . (m,R),R) =1
holds, where sk is the secret key for a verification key vk € R.

For a ring signature, it is usually expected that the adversary cannot know which
user in the ring was the actual signer of a message. A strong form of this design
goal is known as anonymity against full key exposure [3]:

— Setup: The challenger C runs the key generation RKeyGen n times to obtain key
pairs (vki, sk1),..., (vkn, skn) and hands the public keys vk, ..., vk, to A.

— Find: The adversary can (adaptively) query for signatures on a message m under
a ring R from users with a public key vks € R N{vki,...,vk,}.® The challenger
responds with RSign , (m,R). At the end of this phase, .A hands a message m”,
a ring R* and two indices g, 41 to C, such that vk;,, vk, € R* N{vki,...,vkn}.

— Challenge: The challenger C chooses a bit b € {0,1} uniformly at random,
computes a signature RSignSkib (m*,R*), and hands this signature to A along

with the random coins used to generate the key pairs (vki, sk1), ..., (vkn, skn).?
— Guess: The adversary outputs a guess b’ for b and wins if and only if b = b'.

“ Note that only vks must be chosen from vk, ..., vkn,.
¥ In particular, A can recover the secret keys ski, ..., skn.

Fig. 4. RSIG-ANO: anonymity against full key exposure

Definition 8 (anonymity). A ring signature scheme is anonymous against
full key exposure if the advantage of any probabilistic polynomial time adversary
A in the game described in Figure 4 is negligible. Here the advantage of an
adversary A is defined as Adv'y® ™ (k) = [Pr[b=0b"] — §|.

Of course, as for other kinds of digital signatures, for a ring signature scheme we
also expect an appropriate form of existential unforgeability. More specifically,
we impose the following.

Definition 9 (RSIG-UF security). A ring signature scheme is called un-
forgeable with respect to insider corruption if for any probabilistic polynomial

time adversary A the advantage Advfjig‘“f(k) = Pr[Succjig‘uf] in the game de-
scribed in Figure 5 is negligible. Here Succleg'uf denotes the event that A wins

the experiment in Figure 5.

— Setup: The challenger C runs the algorithm KeyGen n times to obtain key pairs
(vki,ski), ..., (vkn, skn) and hands the public keys vky, ..., vk, to A.
— Challenge: The adversary is allowed to ask (adaptively) queries for:
e private keys for a public key vk; (i € {1,...,n}). The challenger returns sk;.
e signatures for a message m and a ring R under a secret key sks such that
vks € RN {vk1,...,vkn}. The challenger responds with RSign , (m,R).”
— Guess: The adversary outputs a tuple (R*, m",c™) and wins if and only if all of
the following hold:
e RVerify(m®,o*,R*) = 1;
e in the challenge phase, no secret key sk; for a vk; € R™ has been queried;
e in the challenge phase, the pair (m*, R*) was not part of a signature query.

“ Note that only vks must be chosen from vk, ..., vky,.

Fig. 5. RSIG-UF security of a ring signature
3 Security model

To formalize secure group key establishment, we follow Katz and Yung [9].

3.1 Security goals: semantic security and authentication

Protocol participants. We model the protocol participants as a finite (polynomial
size) set of users U = {Uy,...,U,—1}. Each user is modeled as a probabilistic
polynomial time algorithm, and can execute a polynomial number of protocol
instances IT concurrently (s € N). To describe a protocol instance ITf;, seven
variables are associated with it:

acci;: a boolean variable, which is set to TRUE if and omly if the session key
stored in skj; has been accepted;

pid{;: stores the identities of those users in ¢ with which a key is to be established
(including U);

sidj;: stores a non-secret session identifier that can be used as public reference
to the session key stored in ski;

skir: stores the session key and is initialized with a distinguished NULL value;

statef;: stores state information;

term{;: a boolean variable, which is set to TRUE if and only if the protocol
execution has terminated;

usedy;: indicates if this instance is involved in a protocol run.

Initialization. Before the actual protocol execution, an initialization phase with-
out adversarial interference takes place. In this phase, for each user U € U
a long-term secret key can be established and public keys can be distributed
among users.

Remark 1. When considering passive adversaries only, typically no long-term
secrets are required and this initialization phase becomes trivial.

Communication network and adversarial capabilities. The network is non-private
and fully asynchronous. Arbitrary point-to-point connections among the users
are possible (no dedicated broadcast functionality is assumed to be available).
The adversary A is modeled as probabilistic polynomial time algorithm with
complete control over the communication network. Its capabilities are captured
by these oracles:

Send(Uj, si, M) : sends the message M to instance IIj; of user U; and returns
the protocol message output by that instance after receiving M. The Send or-
acle also enables A to initialize a protocol execution: sending the special mes-
sage M = {Uj,,...,U;, } to an unused instance [[;; initializes a protocol run
among Uj,, ..., U;, € U. After such a query, [[j; sets pidjj := {Us,,...,Us, },
used‘;ji := TRUE, and processes the first step of the protocol.

Execute(Ut, s1, . ..,U,, s) : returns a complete protocol transcript among the
specified unused instances.

Reveal(U, s) : returns the session key skf; if accf; = TRUE and a NULL value
otherwise.

Corrupt(U) : for a user U € U this query returns U’s long term secret-key.

An adversary with access to all of the above oracles is considered to be active.
A passive adversary is not granted access to the Send oracle. In addition to the
mentioned oracles, A has access to a Test oracle, which can be queried only
once: the query Test(U, s) can be made with an instance ITj; that has accepted
a session key. Then a bit b + {0,1} is chosen uniformly at random; for b = 0,
the session key stored in ski; is returned, and for b = 1 a uniformly at random
chosen element from the space of session keys is returned. We consider only
correct group key establishments, and our correctness definition follows [9].

Definition 10 (correctness). A group key establishment is correct if for all
instances II7*, 1177 which have accepted with sidj* = sid}’ and pid;* = pid}’, the
condition ski’ = skjj # NULL holds.

To define what we mean by a secure group key establishment, we rely on the
following notion of partnering:

Definition 11 (partnering). Two terminated instances []y;, and HfjJ with
Ui # U; are partnered if both sidj; = sid?jj and pidjj = pid?j?.

Remark 2. According to Definition 11, different instances of the same user can-
not be partnered. This implies that no deterministic protocol can be secure (cf.
[9] for a discussion).

Having fixed what we mean by partnered instances, we can now specify which
instances can be queried to the Test oracle:

Definition 12 (freshness with forward secrecy). An instance [[j; is said
to be fresh if none of the following events has occured:

— the adversary queried Corrupt(U;) for some U; € pid;* before a query of the
form Send(Uy, s1, %) has taken place where U € pid;’;

— the adversary queried Reveal(U;, s;);

— the adversary queried Reveal(Uj,s;) for an instance HE}J that is partnered

If forward secrecy is not a concern, the following weaker definition of freshness
can be considered, and the subsequent results hold with either definition of
freshness:

Definition 13 (freshness without forward secrecy). An instance Hf] 15
said to be fresh if none of the following events has occurred:

— the adversary queried Corrupt(U;) for some U; € pid;’ before a query of the
form Send(Uy, s, %) has taken place where U; € pid;*;

— the adversary queried Corrupt after a query to Execute, Reveal, Send, or Test;

— the adversary queried Reveal(U;, s;);

— the adversary queried Reveal(Uj,s;) for an instance Hfjj that is partnered

with T} -

We write Succ 4 for the event that the adversary A queries Test with a fresh
instance and correctly guesses the random bit b used by the Test oracle and refer
to Adv = Adv(k) = |Pr[Succ] — 1| as advantage of A. The starting point
for the compiler below is an unauthenticated, secure group key establishment
protocol, i.e., a protocol where the adversary is assumed to be passive:

Definition 14 (semantic security). A group key establishment protocol is (se-
mantically) secure, if AdvSy = Adv (k) is negligible for all passive probabilistic
polynomial time adversaries A.

A first goal of the compiler is to add authentication, i.e., to establish security
guarantees against an active adversary:

Definition 15 (semantic security & authentication). A key establishment
protocol is authenticated and (semantically) secure, if Advs = AdvS(k) is
negligible for all active probabilistic polynomial time adversaries A.

3.2 A privacy goal: deniability

In addition to authentication and semantic security, the compiler discussed in
the next section aims at the resulting protocol to be deniable.

Deniability according to [4] Let A, denote a probabilistic polynomial time
algorithm with the security parameter 1% as input. In addition, A4 obtains the
public information pk made available in the initialization phase as input (after
application of the compiler below this includes in particular the public verifica-
tion keys of the underlying ring signature scheme). Finally A, obtains as input
an upper bound g. on the number of protocol participants that can be corrupted.

After having obtained this input, Ay interacts with protocol instances via the
Corrupt, Reveal, and Send oracle as usual®. However, A; must not query Test,
and at most g. queries to Corrupt can be submitted. Eventually, Ay outputs
a bitstring Ta, = Ta,(k,q., pk)—which represents a protocol transcript that
serves as evidence for the involvement of a particular user in the group key
establishment. We denote by T4, = Ta(k, g.) the random variable that describes
Ta,(k,qc,pk) with the randomness for Ay, for protocol instances, and in the
initialization phase, being chosen uniformly at random.

To capture deniability a second algorithm S4, to which we refer as simulator,
is used: this simulator accepts the same input as Ay and can impose the same
maximum number g, of corrupted users as the latter. However, S; is not allowed
to invoke any uncorrupted user. More specifically, S; can submit up to g, queries
to Corrupt, but can neither query Reveal nor Send (nor Execute nor Test). The
output of Sy is a bitstring T, (k, ¢., pk), and analogously as for A4, we define a
random variable Ts, (k, g.), based on uniformly at random chosen randomness.

Definition 16 (deniability). A group key establishment protocol is deniable if
for every probabilistic polynomial time adversary Aq as specified above and every
qe € Ny there is a probabilistic polynomial time simulator Sq such that T a,(k, q.)
and Ts,(k,q.) are computationally indistinguishable. In other words, no proba-
bilistic polynomial time algorithm can distinguish Ta,(k,q.) and Ts,(k,q.) with
non-negligible probability.

A more relaxed notion of deniability The definition of deniability just
discussed allows the adversary Ay to fix the corrupted parties in a fully adaptive
manner. In the definition used subsequently we restrict this freedom and require
Ag to complete all corruptions before querying Send. On the intuitive side, this
materializes the idea that the parties who are willing to conspire (and reveal
their secret keys to this aim) already enter protocol executions with this intent.
As we still allow an arbitrary subset of the users to be corrupted, the resulting
notion of deniability seems still natural and useful.

Remark 3. Unlike [12], we do not integrate authentication into the definition
of deniability. Further, differing from [12], we give the adversary used in the
definition of deniability full access to Send and Reveal and do not include secret
keys of corrupted users in the simulator’s input.

As Dbefore, let Ay denote a probabilistic polynomial time algorithm with the
security parameter 1* and public information pk from the initialization phase
as input. No upper bound on the number of corruptions is imposed. In a first
phase A, has access to the Corrupt-oracle only, and can (adaptively) corrupt
an arbitrary subset of the users (including the case of no user or all users be-
ing corrupted). Hereafter, in a second phase, A, interacts with the protocol
participants via the Reveal- and Send-oracle. Neither Corrupt nor Test may be

3 In particular, queries to Send can be used to simulate the Execute oracle, so Execute
can be omitted.

queried in this phase. Analogously as in the definition of [4], A4 outputs a bit-
string T'a, = Ta,(k,pk) to evidence the involvement of a particular user in the
group key establishement. Let T4, = T4,(k) be the random variable describing
Ta,(k,pk) with the randomness for A4, for all protocol instances, and in the
initialization phase being chosen uniformly at random.

The simulator Sy obtains the same input as Ay, but can only access the
Corrupt oracle—no access to Reveal, Send, or Test is available. The output of Sy
is a bitstring T's, (k, pk), and analogously as for A4 we define a random variable
Ts, (k) based on uniformly at random chosen randomness. Consider the following
experiment for a probabilistic polynomial time distinguisher X outputting 0 or 1:
the challenger flips a random coin b € {0, 1} uniformly at random. If b = 1, the
transcript T4, (k) is handed to X', whereas for b = 0 the transcript Ts, (k) is
handed to X'. The distinguisher X wins whenever the guess b’ it outputs for b is
correct; the advantage of X is denoted by Advy™ := |Pr(b =] — 1.

In this paper we will use the following definition of deniability:

Definition 17 ((relaxed) deniability). A group key establishment protocol is
deniable if for every polynomial time adversary Aq as specified above there exists
a probabilistic polynomial time simulator Sy such that the following holds:

— With overwhelming probability, the number of Corrupt-queries of Sy is less
than or equal to the number of Corrupt-queries of Ayq.

— For each probabilistic polynomial time distinguisher X, the advantage Advf\?"
in the above experiment is negligible.

4 From unauthenticated to authenticated and deniable

Subsequently we denote by (mKeyGen,mEncaps,mDecaps) an IND-CCA secure
multi key encapsulation (see Definition 2) and by (KeyGen,Enc,Dec) a ROR-
CCA secure symmetric encryption scheme (see Definition 4). To simplify the
description, we assume that KeyGen(1*) simply returns a uniformly at ran-
dom chosen bitsting in {0, 1}* (alternatively one could use keys obtained from
mDecaps to fix the randomness of KeyGen). By (MKeyGen, Tag, Verify) we de-
note an SUF-CMA secure message authentication code (see Definition 6) and
by (RKeyGen,RSign,RVerify) an RSIG-UF secure ring signature scheme (see
Definition 9) which is anonymous in the sense of Definition 8.

4.1 Description of the proposed compiler

The proposed compiler modifies a given (semantically secure) unauthenticated
group key establishment protocol P to obtain a protocol P’ which is authen-
ticated. Moreover, if the original protocol P does not make use of long-term
secrets, then the resulting protocol P’ is deniable. Further, if the original pro-
tocol is forward secure the compiled protocol preserves this property. For the
ease of notation, assume that Uy, ...,U,_1 are the users who want to establish
a secret key. One of the protocol participants has a special role in the compiled
protocol—it is the only user that will sign a message in the newly added Round 0.
We refer to this user as initiator and without loss of generality assume that Uy

10

plays this role. Moreover, for the ease of notation, in our description, we do not
explicitly refer to individual instances.

Finally, for the messages in protocol P, let mgjl) be the message sent by user

U; in the j-th round to user U;. We can without loss of genereality assume

that instead of sending these messages, in Round j the user U; broadcasts the

(9) (3)

combined message m; ; = U;||7]| (mi Ve, my nfl) . In particular, m; ; includes

an (unprotected) identifier of the sender U; of the message and of the round
number. Each recipient U; can recover mz(-’jl) in the obvious way, and this change
does neither affect the security nor the round complexity of P.

Initialization phase. In addition to the initialization for protocol P, each user
U,; generates a (public key, secret key)-pair (pk;, dk;) for the above-mentioned
multi key encapsulation scheme, and the public keys are made available to all
users (and the adversary). Similarly, each user U; generates a (verification key,
signing key)-pair (vk;, sk;) for the before-mentioned ring signature scheme.

Next, our compiler adds a new round to protocol P as follows:

Introduction of Round 0. In this new initial round, each user U; (i # 0):

— chooses a random nonce 7; € {0, 1}*.
— broadcasts U;]||0||r;.

The initiator Uy performs the following steps:

— run MKeyGen to generate a key K for the message authentication code;
— produces a ring signature o := RSig (Ko||pidy||Uo||0]|ro, pidy);
— computes (K, C) < mEncaps(pid,);
— produces a ciphertext E := Encg (Ko||pidy||Uo||0||7o]|o) using the symmetric
key K;
— computes a tag tag, = Tagy, (C, E), and
— broadcasts Up]|0]|(C, E)||tag,.
After receiving the Round 0 message of all parties, each user U; executes the
following steps:
— set noncesy, = ((U1,71), -+, (Un, 7)) and store this value;
— run mDecapsy;, (C) to obtain K;
— decrypt the ciphertext E using K;
verify the ring signature for the ring pid; and the tag tag; if the verification
fails or if pid, # pid;, the protocol is aborted.

Now, in each original round of P we use K| for authentication as follows:

Modification of Round j, j # 0. If the protocol is not aborted, if user U; is
supposed to broadcast m; ; in protocol P, then U; will instead do the following:

— use K to compute a tag tag; ; = Tagg, (m; ;|[noncesy,).
— broadcasts m; j||tag; ;.

When receiving a message ml’j||tagl’j, user U; checks the following:

— U € pidg
— 7 is the expected round number

11

— Verify the tag tag; ;.
If any of these checks fails, the protocol is aborted without accepting a session
key. Otherwise, the session identifier is the concatenation of all messages sent
and received by the protocol instance during its execution and the session key
is as in P.

Remark 4. With a slight abuse of notation, here we identify a partner identifier
pid; with the set of public keys of the users contained in this partner identifier.

4.2 Security analysis

Making no further assumptions about the protocol P, we have the following
result, which says that the above compiler adds authentication as desired:

Proposition 1. With the above notation, the group key establishment obtained
from the compiler in Section 4.1 is authenticated and secure in the sense of
Definition 15 (in particular, forward security is preserved).

Proof. We prove the security of the protocol by ‘game hopping’, letting the
probabilistic polynomial time adversary A of the compiled protocol P’ interact
with a simulator S. The success probability respectively the advantage of A in
Game 7 will be denoted by Plr[Succff’m"e ‘] respectively Advff"me ! By Gsend We
denote a polynomial upper bound for the number of queries by A to the Send-
query, and analogously we write gexecute for a polynomial upper bound on the

number of queries to Execute made by A.

Game 0: This game is identical to the original attack game, with all oracles of
the adversary being simulated faithfully by S. Hence, Advljf = Advf‘ame 0,

Game 1: Let Repeat be the event that some user U; uses a nonce r; in Round 0
which this user has used previously already. This game is identical to Game 0
with the only exception that we abort the simulation and consider A as

successful whenever the event Repeat occurs. We have Pr[Repeat] < (gsena +

N - Goxeeute) /2%, and hence |Adv§{ame 0_ AdVS{ame 1< W%"“)Q is
negligible.

Game 2: In this game the simulator makes a uniform at random guess which
instance will be queried to Test by A and also guesses which instance will
initiate the corresponding protocol execution. Whenever such a guess turns
out to be incorrect, we abort and consider the adversary A as successful.
Otherwise this game is identical to the previous one. As A can involve at
MO8t Gsend 17 - Gexecute iNstances, we have Adv3™® 2 < (guend + 7 Gexecute) -
Adv§™™e ! and it will suffice to recognize AdvG™™° ? as negligible.

Game 3: Let ForgeRS be the event that, for the Test-instance, A succeeds in
forging a new ring signature for the initiator Uy in Round 0 before querying
Corrupt(U;) for some U; € pid,. Game 3 is identical to Game 2 with the
only exception that we abort the simulation and consider A as successful
whenever the event ForgeRS occurs. Occurence of this event yields immedi-
ately an adversary Ay, against the ring signature scheme, and |[AdvG*™® ® —
AdVS"ame 2| < Advjig'uf.

rsig

12

Game 4: This game is identical to Game 3 except that S produces the cipher-
text £ under an encryption of a freshly generated key K’ < KeyGen(1¥)
instead of using the real key K. To bound |Adv§™®* — AdvG*™® ?| we de-
rive from S an algorithm A em to attack the IND-CCA security of the
underlying mKEM: A kem runs a simulation of S as in Game 3 and uses as
P* the public keys of the users in the Test-instance’s partner identifier. The
only modification in the simulation of S is for the initator Up: denoting by
(Ko, K 1, C") the triple obtained from the mKEM challenger, A, kem replaces
(K, C) with (Ko, C") in Round 0 and uses K to compute the ciphertext E.
Whenever A correctly identifies the session key after receiving the challenge
of the (simulated) Test-oracle, Apykem outputs the guess ¥’ = 0, whenever A
guesses incorrectly, Apnkem outputs b’ = 1.

Writing 5™ and bt for the values of the random bit used by the mKEM
challenger and the random bit of the (simulated) Test-oracle, respectively,

we get (with a slight abuse of notation) Pr[SuccEt\IDkeiCA]

1/2- (Pr[l e AT g = 0]/2 + (1 — Pl « AP0 i =]) /2)

bTest

+1/2. ((1 — Prl « AP b = 1)) /2 4 Pr[l - A0 | 5 = 1]/2)

=1/4- (Pr[SuccGamc 3] — Pr[SuccG™™® 4]) +1/2

INDkeS]CA ‘2 PT[SUCCIND CCA] 1| _

Consequently, 2 - Adv
!Pr[Succf{"m‘3 3 — Pr[Succff”ne 4H > ‘Adviame — Advf‘ame 3|

Game 5: This game is identical to Game 4 except that in Round 0 of the

protocol, S replaces the ciphertext E, sent by the initiator Uy of the Test-
instance, with an encryption of a uniformly at random chosen bitstring of the
appropriate length. To bound [AdvG™®® — AdvG™® | we can derive from
A an algorithm A, to attack the ROR-CCA security of the underlying
symmetric encryption scheme: Ao, runs a simulation of Game 4 with the
following exception: to create the ciphertext E for the initiator Uy of the Test-
instance, the ‘composed oracle’ Ex(RR(-, b)) is invoked, and for decrypting
messages other than E under K, the decryption oracle Dk (-) is invoked.
The Corrupt, Execute, Reveal, Send and Test oracle for A can be simulated
by Ao in the obvious way.
Whenever A correctly identifies the session key after receiving the challenge
of the (simulated) Test-oracle, Ao, outputs 1, i.e., claims that its encryp-
tion oracle operates in ‘real mode’, whenever A guesses incorrectly, Ao
outputs 0. We obtain [Advy"**| = |Pr| [SuccG?™e 4] — Pr[SuccG™® 5]‘ >
|Ad EiameS Adv iameﬂ.

Game 6: Let ForgeMAC denote the event that A succeeds in forging a new
valid (message, tag)-pair for a user U; before quering Corrupt(U;) for user
some U; € pid;. This game is identical to Game 5 with the only excep-
tion that we abort the simulation and consider A as successful whenever

13

the event ForgeMAC occurs. Occurence of this event yields immediately an

adversary Amac against the message authentication code, and |Adv§tar’“e 6_
Gamé 5 £

Adv 70| < Advi e

mac

To conclude the proof, we show Adv§*™® ¢ is negligible by showing that the

simulator S can, running a simulation of A, be turned into a (passive) ad-
versary against P. To attack P, first of all S corrupts each user in protocol P
to obtain all long-term secrets. Moreover, S generates all (public key, secret
key)-pairs for the ring signature scheme and for the mKEM and therewith
has the long-term secrets of all parties in protocol P’. Making use of this in-
formation and maintaining a ‘nonces and transcripts list’” NT', the simulator
S can run a simulation of Game 6 for A with oracle queries being answered
as follows:

— Execute queries. When A makes a query Execute which does not in-

volve the Test-instance, then S executes the protocol itself, and stores
the resulting nonces noncesy, along with a special symbol L to indicate
an empty transcript in the list NT. Knowing all long-term secrets, this
simulation of Execute is perfect.
If the Test-instance is involved, A queries its own Execute-oracle, and
completes the resulting transcript 7' of protocol P in the obvious way to
obtain a perfect simulation of Game 6, making use of the known long-
term secrets of all parties. The respective nonces along with the ‘padded’
transcript 7" are stored in the list NT.

— Send queries. We denote a query which initiates a new execution for

an instance of a user U; by Sendy. The second Send query to the same
instance which includes the message of the form (U;,r;) for each user in
the pid; is denoted by Send;. On a query Sendg(U;, %), the simulator S
chooses a random nonce 7; € {0, 1}* itself and replies with the respective
Round 0 message. On a Send; query that is not directed to the Test-
instance, S computes noncesy,, stores (noncesy,, L) in the List N7, and
answers by computing the next step of P’.
If S receives a Send;-query for the Test-instance, then S first looks in its
list NT for an entry of the form (noncesy,,T”). If such an entry exists,
then S takes the appropriate message from T’ and answers to A. If such
an entry does not exist, then S queries its Execute-oracle, produces the
transcript of P’, stores 7" in the list NT as it was done previously and
answers A with the appropriate message.

— Reveal queries. From Game 2, S knows the Test-instance, and hence
can answer all queries to Reveal by computing the session key by itself.

— Corrupt queries. Since § knows all long-term secrets of users in the
protocol P’ S replies in the obvious way.

— Test query. From Game 2, S knows the Test-instance, and can simply
forward A’s query to its own Test-oracle.

In summary, the simulator S answers all queries of A exactly as in Game 6,
and whenever A violates the semantic security of P’, then S violates the
semantic security of P: Adv3™™® ¢ < Advis. O

14

In principle we can apply the compiler in Section 4.1 to some fully authenticated
protocol, which signs all messages sent by parties. In such a case we cannot ex-
pect that the compiled protocol is deniable. The more typical passively secure
protocol does not involve any long-term secrets, and in such a setting the pro-
posed compiler does ensure deniability:

Proposition 2. If the group key establishment P does not involve long-term
secrets, then the group key establishment P’ obtained by applying the compiler in
Section 4.1 to P is deniable in the sense of Definition 17.

Proof. We prove the deniability of the protocol by ‘game hopping’, letting the
probabilistic polynomial time adversary Ay of the compiled protocol P’ and the
simulator S, interact with the challenger C. The advantage of the distinguisher
X in Game 7 will be denoted by Adv$™™ "

Game 0: This game is identical to the original deniability game, with all oracles
of the adversary and simulator being simulated faithfully by C. Consequently,
Advg™ = Adv§™™ 0,

Game 1: This game is identical to Game 0 except that in the simulation
of the Send-oracle, C changes Round 0 messages for the initiator Up if no
participant U; € pid, has been corrupted (i.e., the adversary does not have
any private key (sk;,dk;)). In this case, to compute the ciphertext E, the
simulator encrypts just a random bitstring of the appropriate length.

To argue that the advantage of the distinguisher & in Game 0 and Game 1
differs only negligibly, consider the following adversary D against the real-
or-random indistinguishability of the symmetric encryption scheme: the al-
gorithm D will take the role of C and act as challenger for A; and Sy. In
addition, D runs X as a subroutine. To initiate Ay and Sy, the adversary D
uses parameters he creates (honestly) on his own. Further, D simulates all
of Ay’s and Sy’s protocol instances faithfully, except when answering queries
of the form Send(Uy, sg, pidg) from A4 to initiate the protocol with a partner
identifier that involves no corrupted users. To answer the latter, he uses the
real-or-random oracle instead of the encryption algorithm for determining
E = Enck (Kol|pidy||Uo||0]|ro||o). He will use the output of this oracle to
answer the query. Finally, D chooses b € {0, 1} uniformly at random.

If X outputs a correct guess b’ = b, then D outputs 1, otherwise D outputs 0.
Therefore, |[Adv$™™°? — Adv§me 1’ < |Advy T ““*(k)|, which is negligible.

Game 2: This game is identical to Game 1 except that C changes the simu-
lation of the Send-oracle for Round 0 messages for the initiator Uy if some
participant U; € pid, has been corrupted. In this case, the adversary has a
secret key pair (sk;,dk;) (if he has more than one secret key pair, he selects
one at random). The challenger faithfully simulates all computations of Uy
using sk; to compute the required ring signature. If the distinguisher X" no-
tices the difference between this simulation and the one in Game 2, he could
be used as blackbox to attack the anonymity of the ring signature:

Let F be the following adversary against the anonymity of the ring signature:
the algorithm F will act as challenger for A; and Sy, and also run a simula-
tion of X. Further, F is given the public keys vky, ..., vk,, and initiates Ay

15

and S; with these keys—he creates the other parameters on his own. The
algorithm F chooses an instance II; and an initiator U;, € pid{; at random
and simulates all of A;’s and S;’s instances faithfully, except when answering
the query Send(pid{;, U;,) to initiate the protocol in the selected instance. In
order to answer this query, F runs MKeyGen to get a key K. He will hand its
challenger the message m* = Ko||pidf;||Ui,||0]|70, the ring R* = pid;; and
two indices iy (the initiator) and i1 such that vk;,, vk;, € RN{vky,...,vk,}.
Hereafter, F will receive a challenge ¢*, and F will simulate all instances
faithfully, except when the answer includes RSign; (Kol|pidg;||Us,|[0]|ro)-
In this case, he will substitute this value by o*. Notice F can query Corrupt
and RSign for different messages, so he can simulate all other messages and
Corrupt queries faithfully. Finally, 7 chooses b € {0, 1} uniformly at random.
If X outputs a correct guess b’ = b, then F outputs 0, otherwise F outputs 1.
Therefore, }Adv%‘"‘me 1 Adv§me ?| <2-Adv'2®7*"(k), which is negligible.
Notice that the simulation provided now to 44 by the challenger C is the
same Sg would provide, thus the distinguisher’s advantage in this case is 0.
Collecting all advantages, we get: Advy™ < [AdViS"“*(k)|+2-AdvEE*"(k),
which is negligible. ad

5 Conclusion

Given an unauthenticated group key establishment, the protocol compiler we
described outputs an authenticated group key establishment. In terms of round
complexity one additional round is needed, just as in the Katz-Yung compiler.
As a privacy feature, however, our compiler ensures deniability, provided that
the given unauthenticated protocol does not involve long-term secrets (which can
normally be expected). Applying our compiler to an unauthenticated two-round
protocol such as the one described in [9], which builds on work of Burmester
and Desmedt [5], yields a deniable group key establishment with three rounds.
In summary, our compiler seems a quite interesting alternative to the popular
Katz-Yung construction, if privacy guarantees are a concern.

References

1. M. Bellare, A. Desai E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation, August 1997.
Full paper of an extended abstract that appeared in the Proceedings of the 38th
Symposium on Foundations of Computer Science, IEEE, 1997.

2. M. Bellare and C. Namprempre. Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In T. Okamoto, editor,
Advances in Cryptology — ASIACRYPT 2000, volume 1976 of LNCS, pages 531—
545. Springer, 2000.

3. A. Bender, J. Katz, and R. Morselli. Ring Signatures: Stronger Definitions, and
Constructions Without Random Oracles. In S. Halevi and T. Rabin, editors, The-
ory of Cryptography — TCC 2006, volume 3876 of LNCS, pages 60—79. Springer,
2006.

16

10.

11.

12.

. J.-M. Bohli and R. Steinwandt. Deniable Group Key Agreement. In P. Q. Nguyen,

editor, Progress in Cryptology — VIETCRYPT 2006, volume 4341 of LNCS, pages
298-311. Springer, 2006.

. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution

System. In A. De Santis, editor, Advances in Cryptology — EUROCRYPT ’94,
volume 950 of LNCS, pages 275—-286. Springer, 1995.

. S. Chen, Q. Cheng, and C. Ma. A Deniable Group Key Exchange Protocol for

Imbalanced Wireless Networks. In B. Hu, X. Li, and J. Yan, editors, 5th Interna-
tional Conference on Pervasive Computing and Applications (ICPCA) 2010, pages
1-5. IEEE, 2010.

. M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable Authentication and

Key Exchange. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’06, pages 400-409. ACM, 2006.

. M. Choudary Gorantla, C. Boyd, J. M. Gonzélez Nieto, and M. Manulis. Generic

One Round Group Key Exchange in the Standard Model. In D. Lee and S. Hong,
editors, Information Security and Cryptology — ICISC 2009, volume 5984 of LNCS,
pages 1-15. Springer, 2010.

. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.

In D. Boneh, editor, Advances in Cryptology — CRYPTO’03, volume 2729 of LNCS,
pages 110-125. Springer, 2003.

N. P. Smart. Efficient Key Encapsulation to Multiple Parties. In C. Blundo and
S. Cimato, editors, Security in Communication Networks SCN 2004, volume 3352
of LNCS, pages 208-219. Springer, 2005.

A. C. Yao and Y. Zhao. Deniable Internet Key Exchange. In J. Zhou and M. Yung,
editors, Applied Cryptography and Network Security — ACNS 2010, volume 6123
of LNCS, pages 329-348. Springer, 2010.

Y. Zhang, K. Wang, and B. Li. A Deniable Group Key Establishment Protocol in
the Standard Model. In J. Kwak, R. H. Deng, Y. Won, and G. Wang, editors, In-
formation Security, Practice and Ezperience — ISPEC 2010, volume 6047 of LNCS,
pages 308-323. Springer, 2010.

17

