
A Method for Generating Full Cycles by a Composition
of NLFSRs

Elena Dubrova

Royal Institute of Technology (KTH), Forum 120, 164 40 Kista, Sweden
{dubrova}@kth.se

Abstract. Non-Linear Feedback Shift Registers (NLFSR) are a generalization
of Linear Feedback Shift Registers (LFSRs) in which a current state is a non-
linear function of the previous state. The interest in NLFSRs is motivated by their
ability to generate pseudo-random sequences which are usually hard to break with
existing cryptanalytic methods. However, it is still not known how to construct
large n-stage NLFSRs which generate full cycles of 2n possible states. This paper
presents a method for generating full cycles by a composition of NLFSRs. First,
we show that an n ∗ k-stage register with period O(22n) can be constructed from
k n-stage NLFSRs by adding to their feedback functions a logic block of size
O(n ∗ k). This logic block implements Boolean functions representing the set of
pairs of states whose successors have to be exchanged in order to join cycles.
Then, we show how to join all cycles into one by using one more logic block
of size O(n ∗ k2) and an extra time step. The presented method is feasible for
generating very large full cycles.

1 Introduction

Non-Linear Feedback Shift Registers (NLFSR) are a generalization of Linear Feedback
Shift Registers (LFSRs) in which a current state is a non-linear function of the previ-
ous state [1]. The interest in NLFSRs is motivated to a large extent by their ability to
generate pseudo-random sequences which are usually hard to break with existing crypt-
analytic methods [2]. While LFSRs are widely used in testing and simulation [3], for
cryptographic applications their pseudo-random sequences are not secure. The structure
of an n-bit LFSR can be easily deduced from 2n consecutive bit of its sequence by using
the Berlekamp-Massey algorithm [4]. Contrary, an adversary might need up to O(2n)
bits of a sequence to determine the structure of the n-bit NLFSR which generates it [5].

However, while the theory behind LFSRs is well-understood, many fundamental
problems related to NLFSRs remain open. One of the most important ones is construct-
ing an NLFSR with the maximum period. It is known that an n-stage LFSR has the
maximum period of 2n − 1 if and only if its characteristic polynomial is primitive [1].
For NLFSRs, no similar property has been found so far. Small NLFSRs with the maxi-
mum period can be computed by simulation. However, with today’s processing power,
we can simulate NLFSRs of size n < 35 only [6]. This is not enough for cryptographic
applications, which require periods larger that 2128 [7].

Sequences generated by maximum-period NLFSRs are also known as de Bruijn
sequences. In a de Bruijn sequence or order n all 2n different binary n-tuples appear

2

exactly once. It is known that the number of different de Bruijn sequences of order n is
22n−1−n [8]. An excellent survey of algorithms for generating de Bruijn sequences using
shift registers is given in [9]. These algorithms can be classified into two groups.

Algorithms in the first group start from a shift register producing several shorter
cycles and then join them into one cycle. Fredricksen [10] have shown how to generate
full cycles from a circulating register of length n using 6n bits of storage and n time steps
to produce the next state from a current state. The algorithm of Etzion and Lempel [11]
generates full cycles from a pure summing register using n2/4 bits of storage and n
time steps to produce the next state. Jansen [12] presented an algorithm for joining state
cycles of an arbitrary shift register. This algorithm generates full cycles using 3n bits of
storage and at most 4n time steps for producing the next state from a current state.

A recursive algorithm for generating de Bruijn sequences based on Lempels D-
homomorphism was presented by Annexstein [13]. A non-recursive version of this al-
gorithm was proposed by Chang et al in [14]. In both algorithms, n-variable Boolean
functions generating de Bruijn sequence of order n are constructed from Boolean func-
tions with a smaller number of variables.

Algorithms in the second group start from a shift register with a known period and
obtain another shift register with the same period by using cross-join pairs. Different
approaches to selecting cross-join pairs have been explored. Fredriksen [15] proposed
an algorithm for a class of NLFSRs generating ”prefer one” de Bruijn sequences. In
a ”prefer one” de Bruijn sequence, the n-tuple (1,a1,a2, . . . ,an−1) precedes the n-tuple
(0,a1,a2, . . . ,an−1) for all n−1-tuples (a1,a2, . . . ,an−1) except all-0. Dubrova [16] pre-
sented a method for constructing NLFSRs with period 2n − 1 from maximum-period
LFSRs in which the cross-join pairs are determined by a non-linear function added to
the LFSR. The number of possible cross-join pairs in maximum-period LFSRs has been
derived by Helleseth and Kløve [17].

This paper presents a method for generating full cycles by a composition of NLF-
SRs. First, we show how to construct n ∗ k-stage register with period O(22n) from k
n-stage NLFSRs. We derive Boolean functions representing the set of pairs of states
whose successors have to be exchanged in order to join cycles. These functions are
added to the feedback functions of n-stage NLFSRs. We prove that the additional logic
can be implemented using O(n∗ k) 2-input gates. Then, we show how to join all cycles
into one by using one more logic block of size O(n∗ k2) and an extra time step.

In a full cycle generated by a traditional NLFSR, each current and next state overlap
in all but one positions. In n∗ k-stage registers constructed using the presented method,
each current and next state overlap in all but k positions. Therefore, their full cycles
differ from the full cycles generated by NLFSRs and their output sequences are not of
de Bruijn type.

The paper is organized as follows. Section 2 gives a background on NLFSRs. Sec-
tion 3 introduces (n,k)-composed registers. Section 4 analyses properties of (n,k)-
composed registers. Section 5 presents an algorithm for constructing registers with pe-
riod O(22∗n) from (n,k)-composed registers. Section 6 presents an algorithm which
joins all cycles into one. Section 7 concludes the paper.

3

2 Preliminaries

Throughout the paper, we use ”⊕” and ”·” to denote addition and multiplication in
GF(2), respectively, and ”+” and ”∗” to denote arithmetic addition and multiplication,
respectively. We use x to denote the complement of x, defined by x = 1⊕ x.

An n-stage Non-Linear Feedback Shift Register (NLFSR) consists of n binary stor-
age elements, called stages [1]. Each stage i ∈ {1,2, . . . ,n} has an associated state vari-
able xi ∈ {0,1} which represents the current value of the stage. At each clock cycle,
the value of xi+1 is transferred to xi, for all i ∈ {1,2, . . . ,n−1}. The feedback function
f (x1,x2, . . . ,xn), computed from the content of the n stages, determines the next value
of xn. The output of an NLFSR is the sequence of bits appearing in its stage 1.

The feedback function f induces the mapping F : {0,1}n →{0,1}n of type

(x1,x2, . . . ,xn)→ (x2,x3, . . . ,xn, f (x1,x2, . . . ,xn)).

The state of an n-stage register is a vector of values S = (s1,s2, . . . ,sn) ∈ {0,1}n of
its state variables x1,x2, . . . ,xn.

A cycle of length m of an n-stage register is a vector of states (S0,S1, . . . ,Sm−1) such
that F(Si) = Si+1, for i ∈ {0,1, . . . ,m−2}, and F(Sm−1) = S0. The period of a register
is the length of its longest cycle1.

A necessary and sufficient condition for an NLFSR to be branchless [1] is that its
feedback function f can be written in the form

f (x1,x2, . . . ,xn) = x1⊕gi(x2, . . . ,xn),

where g is a Boolean function which does not depend on the variable x1.
A product-term of an n-variable Boolean function is an expression of type

.
x1 ·

.
x2

· . . . · .
xk where

.
xi is either a variable xi or its complement xi, for 1 ≤ k ≤ n [18]. A

minterm of an n-variable Boolean function is a product-term with k = n. A product-term
represents a subspace of an n-dimensional Boolean space, while a minterm represents
a point of an n-dimensional Boolean space.

3 Composition of NLFSRs

Consider an n∗k-stage register composed of k n-stage NLFSRs N1,N2, . . . ,Nk as shown
in Figure 1. The combining function f is a Boolean function of type {0,1}k → {0,1}.
A lot of research has been done on characterizing Boolean functions which are crypto-
graphically strong [19].

1 Note that the period of a shift register is traditionally defined as the length of the longest cyclic
output sequence it produces [1]. For shift registers, both definitions are equivalent. However,
for general registers, in which each stage can be updated by its own function, the length of the
longest state cycle can be a multiple of the length of the longest cyclic output sequence. For
example, the 2-stage register with the state cycle ((00),(11),(01),(10)) of length 4 generates
the cyclic output sequence (0,1) of length 2.

4

...

output

+ + +f2(x2,1,x2,2, . . . ,x2,n)

k,2k,1

fk(xk,1,xk,2, . . . ,xk,n)

k,n2,22,1 2,n1,21,1

f1(x1,1,x1,2, . . . ,x1,n)

1,n

f

Fig. 1. An n∗ k-stage register composed of k n-stage NLFSRs.

It is known [20] that the composition of two cycles A = (SA,0,SA,1, . . . ,SA,|A|−1) of
length |A| and B = (SB,0,SB,1, . . . , SB,|B|−1) of length |B| whose states depend on disjoint
sets of variables result in a set of cycles

A◦B =
d−1[
i=0

Di

where d is the greatest common divisor of |A| and |B|, each cycle Di is of length m,
where m is the least common multiple of |A| and |B|, and the jth state of Di is a con-
catenation of (j mod |A|)th state of A and ((i+ j) mod |B|)th state of B:

SDi, j = (SA, j mod |A| SB,(j+p)mod |B|)

for i ∈ {0,1, . . . ,d − 1}, j ∈ {0,1, . . . ,m− 1}, where ”mod” is the operation division
modulo.

For example, if we compose several NLFSRs whose periods as pairwise co-prime,
then the resulting register has the period equal to the product of periods of the NLFSRs.
Such a technique has been used to construct registers with a guaranteed long period for
stream ciphers Achterbahn [21], VEST [22], and the cipher [23].

In this paper, we are focusing on the case when the NLFSRs N1,N2, . . . ,Nk have the
same size and period which, to our best knowledge, has not been considered.

Definition 1. An n∗ k-composed register is constructed from k n-stage NLFSRs Ni, i ∈
{1,2, . . . ,k}, such that each Ni has two cycles of the following type:

1. a cycle of length 2n −1 which consists of all non-zero states of Ni, called non-zero
cycle, and

2. a cycle of length one which consists of the all-zero state of Ni, called zero cycle.

The output of an n ∗ k-composed register is computed from the outputs of NLFSRs
N1,N2, . . . ,Nk using a Boolean function f : {0,1}k →{0,1}.

Note that, in a traditional NLFSR, each current and next state overlap in all but one
positions. The n ∗ k-composed registers do not match this classical definition. There-
fore, their full cycles differ from the full cycles generated by NLFSRs and their output
sequences are not of de Bruijn type.

5

In the next section, we derive a number of important properties of (n,k)-composed
registers.

4 Properties of (n,k)-Composed Registers

Let xi, j ∈ {0,1} denote the state variable of the stage j of n-stage NLFSR Ni, for i ∈
{1,2, . . . ,k}, j ∈ {1,2, . . . ,n}. Then a state of an n ∗ k-composed register N is an n ∗ k-
tuple of type

S = (s1,1,s1,2, . . . ,s1,n,s2,1,s2,2, . . . ,s2,n, . . . ,sk,1,sk,2, . . . ,sk,n).

The right complement of a state S of an (n,k)-composed register is defined by

SR = (s1,1,s1,2, . . . ,s1,n,s2,1,s2,2, . . . ,s2,n, . . . ,sk,1,sk,2, . . . ,sk,n)

and the left complement of a state S of an (n,k)-composed register is defined by

SL = (s1,1,s1,2, . . . ,s1,n,s2,1,s2,2, . . . ,s2,n, . . . ,sk,1,sk,2, . . . ,sk,n).

For the case of k = 1, the right complement of S is equivalent to the companion of
S and the the left complement of S is equivalent to the conjugate of S [15].

Let S+ denote the next state of S. Then, the following property holds.

Lemma 1. For every state S of an (n,k)-composed register, (SL)+ = (S+)R.

Proof. For clarity, let us introduce an abbreviation si = (si,2,si,3, . . . ,si,n). Then, S is of
type:

S = (s1,1,s1,s2,1,s2, . . . ,sk,1,sk)

and the next state of S is of type:

S+ = (s1,a1,s2,a2, . . . ,sk,ak),

for some constants a1,a2, . . . ,ak ∈ {0,1}.
On the other hand, the left complement of S is of type:

SL = (s1,1,s1,s2,1,s2, . . . ,sk,1,sk)

and the next state of SL is of type:

(SL)+ = (s1,b1,s2,b2, . . . ,sk,bk),

for some constants b1,b2, . . . ,bk ∈ {0,1}.
Since all NLFSRs Ni are branchless, for all i∈ {1,2, . . . ,k}, their feedback functions

fi have the form
fi(xi,1,xi,2, . . . ,xi,n) = xi,1⊕gi(xi,2, . . . ,xi,n).

Therefore, fi(si,1,si,2, . . . ,si,n) 6= fi(si,1,si,2, . . . ,si,n), for all i ∈ {1,2, . . . ,k}. So, we can
conclude that bi = ai for all i ∈ {1,2, . . . ,k}. This implies that (SL)+ = (S+)R.

6

2

The decimal representation of a state S = (s1,s2, . . . ,sp) is defined as

D(S) =
p

∑
i=1

2i−1 ∗ si.

A state of a cycle with the minimal decimal representation is called the minimal
state of the cycle, denoted by Smin.

For the case of k = 1, minimal state of the cycle is equivalent to the state represen-
tative of a cycle [12].

Next, we show that, in an (n,k)-composed register, Smin and (Smin)L always belong
to different cycles.

Theorem 1. For every cycle of an (n,k)-composed register, Smin and (Smin)L belong to
different cycles.

Proof. Consider (n,k +1)-composed register N′ constructed from the NLFSRs N1,N2,
. . . ,Nk,Nk+1. Since N1,N2, . . . ,Nk induce an (n,k)-composed register N, we can parti-
tion the cycles of N′ into two groups:

1. Cycles obtained by composing the zero cycle of Nk+1 with all cycles of N.
2. Cycles obtained by composing the non-zero cycle of Nk+1 with all cycles of N.

For the first group, the states of all cycles of N′ are a concatenation of a state S of
a cycle of N and the all-zero state of Nk+1. Therefore, for each cycle in this group, its
minimal state S′min is a concatenation of the minimal state Smin of the corresponding
cycle of N and the all-zero n-tuple:

S′min = (Smin,0,0, . . . ,0).

The left complement of S′min is of type:

(S′min)L = ((Smin)L,1,0, . . . ,0).

Thus (S′min)L belongs to the second group of cycles of N′.
For the second group, the minimal state S′min of every cycle of N′ is a concatenation

of some state S of the corresponding cycle of N and the state of Nk+1 with the decimal
representation 1:

S′min = (S,1,0, . . . ,0).

Therefore, the left complement of S′min is a concatenation of SL and the all-zero n-tuple:

(S′min)L = (SL,0,0, . . . ,0).

Thus (S′min)L belongs to the first group of cycles of N′.

2

7

SL

S+ (S) L
+

S+

(S) L
+ SL

S

S

(b)(a)

Fig. 2. Possible outcomes of exchanging S+ and (SL)+: (a) Two cycles join into one; (b) One
cycle split into two.

If S and its left complement SL belong to different cycles then, as shown in Fig-
ure 2a, by exchanging S+ and (SL)+, we join these two cycles into one. Contrary, if S
and SL belong to the same cycle then, as shown in Figure 2b, by exchanging S+ and
(SL)+, we split this cycle into two.

Theorem 2. An (n,k)-composed register has

Ck =
k−1

∑
i=0

2i∗n +1

cycles, in which one cycle is a zero cycle and other cycles are of length 2n−1.

Proof. By induction of k.
Basic case: Obviously, for the k = 1, C1 = 2. We have one zero cycle and one non-zero
cycle consisting of 2n−1 non-zero states.
Induction step: Suppose that the theorem holds for k. Consider (n,k + 1)-composed
register N′ constructed from k + 1 n-stage NLFSRs N1,N2, . . . ,Nk,Nk+1. The NLFSRs
N1,N2, . . . ,Nk induce an (n,k)-composed register N. By inductive hypothesis, N has
one zero cycle and Ck − 1 other cycles of length 2n − 1. In the proof, we refer to the
latter cycles as non-zero cycles on N.

We can partition the cycles of N′ into four types:

1. A cycle obtained by composing the zero cycle of N with the zero cycle of Nk+1. We
get a single cycle of length one.

2. A cycle obtained by composing the zero cycle of N with the non-zero cycle of Nk+1.
We get a single cycle of length 2n−1.

3. Cycles obtained by composing the Ck −1 non-zero cycles of N with the zero cycle
of Nk+1. We get Ck −1 cycles of length 2n−1 each.

4. Cycles obtained by composing the Ck − 1 non-zero cycles of N with the non-zero
cycle of Nk+1. We get (Ck −1)∗ (2n−1) cycles of length 2n−1 each.

Thus, the total number of non-zero cycles in N′ is 1 +(Ck − 1) ∗ 2n = ∑
k
i=0 2i∗n =

Ck+1−1.

2

As we can see from Theorem 2, the period of an (n,k)-composed register is 2n−1.
In the next section, we show how to increase this period by cycle joining.

8

5 Constructing Registers with Period O(22n)

In this section, we show how to obtain cycles with period O(22n) by adding to an (n,k)-
composed register using a logic of size O(n∗ k).

5.1 Cycle joining transformations

First, we analyze cycles obtained by exchanging the states Smin and (Smin)L of all cycles
of an (n,k)-composed register.

Theorem 3. If, for every cycle of an (n,k)-composed register, the successors of Smin
and (Smin)L are exchanged, then the resulting register has Ck−1 − 1 cycles of length
(2n−1)∗2n and one cycle of length 2n.

Proof. Consider (n,k +1)-composed register N′ constructed from the NLFSRs N1,N2,
. . . ,Nk,Nk+1. NLFSRs N1,N2, . . . ,Nk induce an (n,k)-composed register N which, by
Theorem 2, has one zero cycle and Ck −1 other cycles of length 2n−1.

We partition the cycles of N′ into the same four types of cycles as in the proof of
Theorem 2:

1. For the cycle of type 1, its minimal state is all-zero. The left complement of the
minimal state consists of k concatenated n-tuples (100 . . .0).

2. For the cycle of type 2, its minimal state consists of k−1 concatenated all-zero n-
tuples followed by the n-tuple (100 . . .0). The left complement of the minimal state
consists of k−1 concatenated n-tuples (100 . . .0) followed by the all-zero n-tuple.

3. For each of the cycles of type 3, its minimal state is a concatenation of the minimal
state of the corresponding cycle in N with the all-zero n-tuple. The left complement
of the minimal state is a concatenation of the of the left complement of the minimal
state of the corresponding cycle in N and the n-tuple (100 . . .0).

4. For each of the cycles of type 4, its minimal state is a concatenation of some state
of the corresponding cycle in N with the n-tuple (100 . . .0). The left complement
of the minimal state is a concatenation of the of the left complement of some state
of the corresponding cycle in N and the all-zero n-tuple.

From the description above we can see that, for each cycle of type 4, the left com-
plement of the minimal state of the cycle is either of type 3 or of type 1. It is of type 1
for the cycle whose minimal state consists of k concatenated n-tuples (100 . . .0). Since
there are (Ck−1)∗(2n−1) cycles of type 4, we can conclude that (Ck−1)∗(2n−1)−1
states in the cycles of type 3 are left complement of some minimal state of some cycle
of type 4. The remaining one state in the cycles of type 3 consists of k− 1 concate-
nated n-tuples (100 . . .0) followed by the all-zero state. It is the left complement of the
minimal state of the cycle of type 2.

It follows from the above that if, for every cycle of N′, by exchanging the next
states of its Smin and (Smin)L, we get Ck−1 cycles of length (2n−1)∗2n which have the
”flower” structure shown in Figure 3. The middle part of each ”flower” corresponds to
a cycle of N′ of type 3. The ”petal” parts are cycles of N′ of type 4 or 2 (one case). We

9

...
...

Fig. 3. The ”flower” cycle structure.

also get one cycle of length 2n which joins the all-zero state of N′ with the cycle of N′

whose minimal state consists of k concatenated n-tuples (100 . . .0).
Finally, we show that the cycles we described contain all states of N′. On one hand,

from Figure 3 we can conclude that the overall number of states contained in Ck − 1
”flower” cycles and the other cycles are A = (Ck −1)∗ (2n −1)∗2n +2n. On the other
hand, if we sum up the number of states in the cycles of types 1, 2, 3 and 4, we get
1+(2n−1)+(Ck −1)∗ (2n−1)+(Ck −1)∗ (2n−1)∗ (2n−1) = A.

2

The functions f (x1,x2, . . . ,xn) and f (x1,x2, . . . ,xn)⊕
s1x1

s2x2 . . .
snxn, where

sixi is defined
as:

sixi=
{

xi, if si = 0
xi, if si = 1

evaluate to the same values for all assignments of their variables except (s1,s2, . . . ,sn).
This implies that we can change the next state of a state (s1,s2, . . . ,sn) of an n-stage
NLFSR with the feedback function f (x1,x2, . . . ,xn) from (s2, . . . ,sn, f (s1,s2, . . . ,sn))
to (s2, . . . ,sn, f (s1,s2, . . . ,sn)) by adding to f the minterm

s1x1
s2x2 . . .

snxn. Consequently, an
(n,k)-composed register in which the states S+

min and ((Smin)L)+ are exchanged can be
obtained by adding to the feedback function of every NLFSR Ni the minterms corre-
sponding to the states Smin and (Smin)L.

5.2 Extra logic block

Next, we derive sum-of-product expressions representing the Smin and (Smin)L of all
cycles of an (n,k)-composed register.

10

Theorem 4. The set of minimal states of all cycles of an (n,k)-composed register is
represented by the following Boolean function:

fmin(x1,x2, . . . ,xn∗k) =
k−1_
i=0

(xi∗n+1 ·
n∗k

∏
j=i∗n+2

x j)∨
n∗k

∏
j=1

x j (1)

and the set of left complements of its minimal states is represented by:

fminL(x1,x2, . . . ,xn∗k) =
Wk−1

i=0 (∏n
j=i∗n+1 x j ·∏k−i−1

p=1 (xn∗(i+p)+1 ·∏n−1
m=n∗(i+p)+2 xm))∨

∨∏
k−1
p=0(xn∗p+1 ·∏n−1

m=n∗p+2 xm).
(2)

where ”∨” stands for the Boolean OR.

Proof. By induction of k.
Basic case: k = 1, i.e. N = N1. Then the equation (1) reduces to

fmin(x1,x2, . . . ,xn) = (x1 ·
n

∏
j=2

x j)∨
n

∏
j=1

x j

which correspond to the minimal state (1,0, . . . ,0) of the cycle of length 2n − 1 of N1
and to the minimal state (0,0, . . . ,0) of the zero cycle of N1.

The equation(2) reduces to

fminL(x1,x2, . . . ,xn) =
n

∏
j=1

x j ∨ (x1 ·
n−1

∏
m=2

xm)

which correspond to the left complements of the minimal states of the cycle of length
2n−1 of N1 and zero cycle of N1, respectively.
Induction step: Suppose that the theorem holds for k. Consider (n,k + 1)-composed
register N′ constructed from k + 1 n-stage NLFSRs N1,N2, . . . ,Nk,Nk+1. The NLFSRs
N1,N2, . . . , Nk induce an (n,k)-composed register N. By inductive hypothesis, their set
of minimal states is represented by the equation (1). The product-terms of the equa-
tion (1) are listed in the following table with k +1 rows:

Smin Corresponding
1 2 3 . . . k product-term
0 0 0 . . . 0 x1x2 . . .xn∗k
1 0 0 . . . 0 x1x2 . . .xn∗k
x 1 0 . . . 0 xn+1xn+2 . . .xn∗k
x x 1 . . . 0 x2∗n+1x2∗n+2 . . .xn∗k

.
x x x . . . 1 x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k

In this table, 0 denotes an n-tuple consisting of all zeros: 0 = (0,0, . . . ,0), 1 denotes
an n-tuple consisting of 1 followed by n− 1 zeros: 1 = (1,0, . . . ,0), and x denotes an
n-tuple consisting of all x: x = (x,x,. . .,x), where the symbol ”x” means either 0 or 1.

As in the proof of Theorem 1, we partition the cycles of (n,k+1)-composed register
N′ into two groups:

11

1. Cycles obtained by composing the zero cycle of Nk+1 with all cycles of N.
2. Cycles obtained by composing the non-zero cycle of Nk+1 with all cycles of N.

For each cycle in the first group, its minimal state S′min is a concatenation of the
minimal state Smin of the corresponding cycle of N and the all-zero n-tuple, i.e. it is
of type S′min = (Smin,0). Therefore, the Boolean function f 1

min representing the set of
minimal states of all cycles in the first group is of type

f 1
min =

k+1_
i=1

pi · xk∗n+1xk∗n+2 . . .xn∗(k+1)

where pi is the product-term from the ith row of the table above.
For each cycle in the second group, its minimal state S′min is a concatenation of

some state S of the corresponding cycle of N and the state of Nk+1 with the decimal
representation 1, i.e. it is of type S′min = (S,1). Since cycles an (n + 1,k)-composed
register N′ represent all possible combinations which can be obtained from the cycles
of N1,N2, . . . ,Nn, the set of minimal states in the second group is composed of all
possible states of (n,k)-composed register N and 1. Therefore, the Boolean function
f 2
min representing the set of minimal states of all cycles in the second group is of type

f 2
min = xk∗n+1xk∗n+2 . . .xn∗(k+1).

By taking the Boolean OR of f 1
min and 2

min, we get equation (1) for k = k +1.
Since the left complement of an n-tuple 0 is 1 and vice-verse, for the left comple-

ments of the minimal states of (n,k)-composed register N we get the following table:

(Smin)L Corresponding
1 2 3 . . . k product-term
1 1 1 . . . 1 x1x2 . . .xnxn+1xn+2 . . .x2∗n . . .x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k
0 1 1 . . . 1 x1x2 . . .xnxn+1xn+2 . . .x2∗n . . .x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k
x 0 1 . . . 1 xn+1xn+2 . . .x2∗nx2∗n+1x2∗n+2 . . .x3∗n . . .x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k
x x 0 . . . 1 x2∗n+1x2∗n+2 . . .x3∗nx3∗n+1x3∗n+2 . . .x4∗n . . .x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k

.
x x x . . . 0 x(k−1)∗n+1x(k−1)∗n+2 . . .xn∗k

For the cycles in the first group, the set of left complements of the minimal states
(n+1,k)-composed register N′ consists of states (S′min)L = ((Smin)L,1), for all left com-
plements of the minimal states (Smin)L of N. Therefore, the Boolean function f 1

minL rep-
resenting the set of left complements of the minimal states of all cycles in the first group
is of type

f 1
minL =

k+1_
i=1

pi · xk∗n+1xk∗n+2 . . .xn∗(k+1)

where pi is the product-term from the ith row of the table above.
For the cycles in the second group, the set of left complements consists of states

(S′min)L = (SL,0), where SL a left complement of a state S of N, for all possible states S

12

...

output

+ + +f2(x2,1,x2,2, . . . ,x2,n)

k,2k,1

fk(xk,1,xk,2, . . . ,xk,n)

k,n2,22,1 2,n1,21,1

f1(x1,1,x1,2, . . . ,x1,n)

1,n

fmin(x1,1, . . . ,xk,n)∨ fminL(x1,1, . . . ,xk,n)

f

Fig. 4. General structure of a register with period (2n − 1) ∗ 2n constructed from an (n,k)-
composed register by exchanging the successors of Smin and (Smin)L of all cycles. The block
implementing fmin ∨ fminL is of size O(n∗ k). To avoid overloading the picture, the arrows from
all stages (i, j), for i ∈ {1,2, . . . ,n}, j ∈ {1,2, . . . ,k}, to this block are omitted.

of N. Therefore, the Boolean function f 2
minL representing the set of left complements of

the minimal states of all cycles in the second group is of type

f 2
min = xk∗n+1xk∗n+2 . . .xn∗(k+1).

By taking the Boolean OR of f 1
minL and f 2

minL, we get equation (2) for k = k +1.

2

Some optimizations can be done to reduce the size of the expression fmin ∨ fminL.
First, the product-terms in the first two rows of both tables in the proof of Theorem 3
can be joined into product-terms x2 . . .xn∗k and x2 . . .xnxn+1xn+2 . . .x2∗n . . .x(k−1)∗n+1
x(k−1)∗n+2 . . .xn∗k. In the proof, we kept them separately in order to give a better view
on the structure of fmin and fminL. Also, the product-terms in the last rows of both tables
can be joined into the product-term x(k−1)∗n+2 . . .xn∗k. In this way, the overall number
of product-terms in fmin∨ fminL can be reduced to 2∗ k−1.

Furthermore, note that the product-terms of fmin ∨ fminL have common sub-terms
x2 . . .xn, xn+2 . . .x2∗n, . . ., x(k−1)∗n+2 . . .xn∗k. Each of these common sub-terms can to
be represented only once and shared by all product-terms. In this way, the number of
literals

.
xi in the representation of fmin ∨ fminL can be reduced to O(n∗ k). So, the block

fmin∨ fminL can be implemented with O(n∗ k) 2-input gates2.
The general structure of a register with period (2n −1)∗2n constructed using The-

orem 3 is shown in Figure 4.

2 A 2-input gate implements a binary Boolean operation of type {0,1}2 →{0,1}.

13

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

.

...

...

SminSmin Smin
Smin

Fig. 5. Connecting all cycles into one.

6 Constructing Registers with the Maximum Period

In this section, we show how to join cycles of a register constructed using Theorem 3
into one cycle.

6.1 Cycle joining transformations

The approach described in the previous section allows as to construct n∗ k-stage regis-
ters which have ∑

k−2
i=0 2i∗n cycles of length (2n−1)∗2n and one cycle of length 2n. The

following Theorem shows how to join these cycles into one.

Theorem 5. Let N be an n ∗ k-stage register constructed using Theorem 3. If the fol-
lowing transformations are applied to each current state S of N before computing the
next state:

T1: If D(S) ∈ {2i∗n,2i∗n + 1, . . . ,2i∗n+1 − 2}, for i = {1,2, . . . ,k− 2}, then S is trans-
formed to the state S′ such that D(S′) = D(S)+1,

T2: If D(S) = 2i∗n+1 − 1 for i = {0,1, . . . ,k− 3}, then S is transformed to the state S′

such that D(S′) = 2(i+1)∗n,
T3: If D(S) = 2(k−2)∗n+1−1, then S to is transformed to the state S′ such that D(S′) = 0,
T4: If D(S) = 0, then S is transformed to the state S′ such that D(S′) = D(S)+1,

then the resulting register has period 2n∗k.

Proof. Consider an n∗k-stage register N constructed using Theorem 3. N has ∑
k−2
i=0 2i∗n

cycles of length (2n−1)∗2n and one cycle of length 2n. The cycles of length (2n−1)∗
2n have the ”flower” structure shown in Figure 3.

We can connect all cycles of N together by transforming the minimal state of the
middle cycle of each ”flower” into the minimal state of the middle cycle of the next
”flower” before computing the next state of N, and finally appending to the resulting
chain of ”flowers” the cycle of length 2n, as shown in Figure 5.

From the proofs of Theorems 3 and 4, it follows that the set of minimal states of the
middle cycles of ”flowers” is given by

14

Smin
1 2 3 . . . k−1 k
1 0 0 . . . 0 0
x 1 0 . . . 0 0
x x 1 . . . 0 0

. . .
x x x . . . 1 0

The table above contains k−1 rows. For each i ∈ {0,1, . . . ,k−2}, the row i repre-
sents a block of 2i∗n minimal states of the middle cycle of a ”flower” with the decimal
representations {2i∗n,2i∗n + 1, . . . ,2i∗n+1 − 2}. We order the states in each block ac-
cording to their D(S). Then, for i = {1,2, . . . ,k− 2}, we can visit all states in a block
by incrementing by 1 D(S) of each state S in the block but the last. This is done by the
transformation T1. To visit all blocks, for i ∈ {0,1, . . . ,k−3}, we go from the last state
of the block i, which has D(S) = 2i∗n+1 − 1, to the first state of the block i + 1, which
has D(S′) = 2(i+1)∗n. This is done by the transformation T2.

In order to append the cycle of length 2n to the resulting chain of ”flowers”, we go
from the last state of the last block, which has D(S) = 2(k−2)∗n+1 − 1, to the minimal
state of the cycle of length 2n, which is the all-0 state. This is done by the transformation
T3. Finally, we close the cycle by the going from the all-zero state to first state of the first
block. This is done by incrementing D(S) of all-0 state by 1, i.e. by the transformation
T4.

Thus, by applying the transformation’s T1, T2, T3 and T4, we join all cycles of N
into one.

2

As an example, consider the simple case of k = 2 for which we only need to trans-
form the state (1,0) into (0,0) and vice verse. This can be done using an n∗k−1 input
NOR gate with inputs from all the stages but (1,1) and a 2-input XOR gate with inputs
from the stage (1,1) and the NOR gate and the output to the stage (1,1). In this way, we
complement the value of the stage (1,1) only if all the remaining stages have the value
0. Since x2 + x3 + . . .+ xn∗k = x2x3 . . .xn∗k and the product-term x2x3 . . .xn∗k is used for
implementing the function fmin, it brings no extra cost.

In the next section, we show that, in the general case, the transformations T1, T2,
T3 and T4 require O(n∗ k2) 2-input gates to be implemented.

The registers constructed using Theorem 5 require two time steps to compute the
next step from a current step. At the first step, we update the current state by applying
the transformations T1, T2, T3 and T4. At the second step, we compute the next state
from the resulting updated state.

6.2 Extra logic block

In the general case of k > 2, we can implement the transformations T1 and T4 using an
(k− 2) ∗ n-bit adder in which one of the operands is 0 or 1, supplied by a controlling
OR described below, and another operand is the content of the stages of the first k−
2 n-bit NLFSRs. The result of addition is fed back into the stages of the first k− 2

15

n-bit NLFSRs. The adder is controlled by an OR-gate with inputs from the product-
terms implementing the set states with D(S) ∈ {2i∗n,2i∗n + 1, . . . ,2i∗n+1 − 2}, for i =
{1,2, . . . ,k−2}, and the all-zero state. The addition of 1 is performed only if one of the
product-terms evaluates to 1. A (k−2)∗n-bit adder can be implemented with O(n∗ k)
2-input gates. The controlling logic can also be implemented with O(n∗k) 2-input gates.

The transformations T2 and T3 can be implemented by assigning to each stage (i, j),
for every i∈ {1,2, . . . ,n} and j ∈ {1,2, . . . ,k−2}, and for i = 1 and j = k−1, a 2-input
XOR gate, with inputs from the stage (i, j) and a controlling OR gate described below
and the output to the stage (i, j). The OR-gates take inputs from the product-terms
implementing the set of states with D(S) = 2i∗n+1 −1 for i = {0,1, . . . ,k−2}. Only if
one of the product-terms evaluates to 1, the outputs of ORs fed by this product-term
become 1. That results in complementing values of all stages controlled by these ORs.
We need O(n∗ k) controlling ORs and each OR can have up to k−1 inputs. Therefore,
the controlling logic for the transformations T2 and T3 requires O(n∗k2) 2-input gates.

So, the overall complexity of implementing the transformations T1, T2, T3 and T4
is O(n∗ k2) 2-input gates. Note that many of the product-terms used for implementing
T1, T2, T3 and T4 are also used for implementing fmin and fminL, so they can be shared.

7 Conclusion

In this paper, we presented a method for constructing n ∗ k-stage registers with period
2n∗k by a composition of k n-stage NLFSRs. First, we show that an n∗ k-stage register
with period O(22n) can be constructed from k n-stage NLFSRs by adding to their feed-
back functions a logic block of size O(n ∗ k). Second, we show how to join all cycles
into one by using one more logic block of size O(n∗ k2) and an extra time step.

The presented method is feasible for generating very large full cycles. However,
these cycles have a well-defined structure implied by the composition. This structure
might be exploited by cryptanalysts for breaking sequences generated by n ∗ k-stage
registers.

References

1. S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.
2. K. Zeng, C. Yang, D. Wei, and T. R. N. Rao, “Pseudo-random bit generators in stream-cipher

cryptography,” Computer, 1991.
3. R. David, Random Testing of Digital Circuits. New York: Marcel Dekker, 1998.
4. J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Informa-

tion Theory, vol. 15, pp. 122–127, 1969.
5. E. Dubrova, M. Teslenko, and H. Tenhunen, “On analysis and synthesis of (n,k)-non-linear

feedback shift registers,” in Design and Test in Europe, pp. 133–137, 2008.
6. E. Dubrova, “A list of maximum-period NLFSRs.” Cryptology ePrint Archive, Report

2012/166, 2012. http://eprint.iacr.org/2012/166.
7. B. Schneier, Applied cryptography (2nd ed.): protocols, algorithms, and source code in C.

New York, NY, USA: John Wiley & Sons, Inc., 1995.
8. N. G. de Bruijn, “A combinatorial problem,” Nederl. Akad. Wetensch, vol. 49, pp. 758–746,

1946.

16

9. H. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms,” SIAM
Review, vol. 24, no. 2, pp. 195–221, 1982.

10. H. Fredricksen, “A class of nonlinear deBruijn cycles,” J. Comb. Theory, vol. 19, pp. 192–
199, Sept. 1975.

11. T. Etzion and A. Lempel, “Algorithms for the generation of full-length shift register se-
quences,” IEEE Transactions on Information Theory, vol. 3, pp. 480–484, May 1984.

12. C. J. A. Jansen, Investigations On Nonlinear Streamcipher Systems: Construction and Eval-
uation Methods. Ph.D. Thesis, Technical University of Delft, 1989.

13. F. S. Annexstein, “Generating de Bruijn sequences: An efficient implementation,” IEEE
Transactions on Computers, vol. 46, pp. 198 – 200, 1997.

14. T. Chang, B. Park, Y. H. Kim, and I. Song, “An efficient implementation of the D-
homomorphism for generation of de Bruijn sequences,” IEEE Transactions on Information
Theory, vol. 45, pp. 1280–1283, 1999.

15. H. M. Fredricksen, “Disjoint cycles from de Bruijn graph,” Tech. Rep. 225, USCEE, 1968.
16. E. Dubrova, “A scalable method for constructing Galois NLFSRs with period

2n − 1 using cross-join pairs.” Cryptology ePrint Archive, Report 2011/632, 2011.
http://eprint.iacr.org/2011/632.

17. T. Helleseth and T. Kløve, “The number of cross-join pairs in maximum length linear se-
quences,” IEEE Transactions on Information Theory, vol. 31, pp. 1731–1733, 1991.

18. R. K. Brayton, C. McMullen, G. Hatchel, and A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms For VLSI Synthesis. Kluwer Academic Publishers, 1984.

19. T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean functions and applications. San Diego,
CA, USA: Academic Press, 2009.

20. E. Dubrova and M. Teslenko, “Compositional properties of random Boolean networks,”
Physical Review E, vol. 71, p. 056116, May 2005.

21. B. Gammel, R. Göttfert, and O. Kniffler, “Achterbahn-128/80: Design and analysis,” in
SASC’2007: Workshop Record of The State of the Art of Stream Ciphers, pp. 152–165, 2007.

22. B. Gittins, H. A. Landman, S. O’Neil, and R. Kelson, “A presentation on VEST hardware
performance, chip area measurements, power consumption estimates and benchmarking in
relation to the aes, sha-256 and sha-512.” Cryptology ePrint Archive, Report 2005/415, 2005.
http://eprint.iacr.org/.

23. B. M. Gammel, R. Göttfert, and O. Kniffler, “An NLFSR-based stream cipher,” in ISCAS,
2006.

