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Abstract. In CHES 2009, Coron, Joux, Kizhvatov, Naccache and Pail-
lier (CJKNP) introduced a fault attack on RSA signatures with partially
unknown messages. They factored RSA modulus N using a single faulty
signature and increased the bound of unknown messages by multiple
fault attack, however, the complexity multiple fault attack is exponen-
tial in the number of faulty signatures. At RSA 2010, it was improved
which run in polynomial time in number of faults.

Both previous multiple fault attacks deal with the general case that the
unknown part of message is in the middle. This paper handles a spe-
cial situation that some least significant bits of messages are unknown.
First, we describe a sample attack by utilizing the technique of solving
simultaneous diophantine approximation problem, and the bound of un-
known message is N 327 where £ is the number of faulty signatures.
Our attacks are heuristic but very efficient in practice. Furthermore, the

1+ 1
new bound can be extended up to Nz ¢ by the Cohn-Heninger tech-
nique. Comparison between previous attacks and new attacks with LSBs
of message unknown will be given by simulation test.

Key words: Fault Attacks,RSA Signatures, Least Significant Bits (LSBs),
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1 Introduction

RSA signature [13] invented by Rivest, Shamir and Adleman is the most
popular digital signature scheme. To sign a message m, the signer first
encodes m as p(m) using the encoding function p(-), then computes
p = u(m)? mod N, which is the signature of the message m. To ver-
ify the signature, the receiver checks that the following equation holds:
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p¢ = u(m) mod N holds. A sophisticated way to speed up the signature
generation is to exploit the Chinese Remainder Theorem (CRT). This is
done by computing:

dg

pp = p(m)® mod p and p, = pu(m)% mod g,

where d, = d (mod p—1) and d; = d (mod g — 1). We obtain the signa-
ture

-1

p=pp+p-(p~° modq)-(pg—pp) mod N

using CRT. Such an approach, called RSA-CRT, achieves the signing time
that is approximately four times faster than signature using the standard
RSA definition.

The first fault attack against RSA-CRT signature implementation was
introduced by Boneh, DeMillo and Lipton [1] in 1997. In the fault attack,
we assume the attacker has the ability to induce a fault when computing
the signature by CRT and only one of the above computations is fault,

e.g.,

p¢ = p(m) mod p and p® # pu(m) mod q.
Hence, if the encoding function is public, RSA modulus N can be factored
by computing

ged(p® — p(m) mod N, N) = p. (1)

In ISO/IEC 9796-2 the encoding function is the form:
p(m) = 6Asg|[m[1][|H (m)[|BC1e

where m = m/[1]||m]2] is split into two parts. In [4], Coron, Joux, Kizh-
vatov, Naccache and Paillier (CJKNP) proposed fault attack against RSA
signature with unknown message part (UMP). CJKNP’s attack can factor
the RSA modulus N using a single faulty signature and they extended
the attack to multiple faulty signatures, however the time complexity is
exponential in the number of faulty signatures. At RSA 2010, Coron, Nac-
cache and Tibouchi (CNT) in [6] exhibited a simpler multiple fault attack,
whose complexity is polynomial in number of faulty signatures.

Both previous attacks can be applied to any signed messages with
unknown part in the middle. In conclusion of [4], CJKNP point out the
single fault attack can be used to the PKCS#1 v1.5 encoding where the
unknown part locates on some least significant bits. However, multiple
fault attacks in [4,6] don’t analyze the scenario when the unknown part
of message occurs the least significant bits.



Title Suppressed Due to Excessive Length 3

In this paper, we will reconsider the fault attacks against the random-
ized version of ISO/IEC 9796-2, and the partially unknown part of mes-
sage m[1] is located in the least significant bits (LSBs). For example, the
"stereotyped” message m[1] is ”On April 16, 2012, the secret key for this
day is ... 7. If the unknown part is relatively long, both previous attacks
may be invalid. Our main goal is to extend the bound of the unknown
part of the message using the multiple faulty signature. Based on solving
simultaneous Diophantine approximation problem, the multiple faultly alt—
tack can heuristically factor N if the unknown part is at most N2~ 2¢,
where ¢ is the number of faulty signatures, while the previous bound in
[6] is N2 ¢.

In addition, when the number of faulty signatures is large, the bound

of unknown part can be improved up to N 3e based on the technique
presented by Cohn and Heninger. Although our new attack is heuristic,
it works well in practice and paradoxically becomes more efficient as the
modulus bit-length increases. It is noted that the new attack is not suit
for EMV signatures. We hope that the new attack can be helpful to other
signature schemes.

The rest of this paper is organized as follows. Section 2 gives a simple
description of ISO/IEC 9796-2, and recall the CJKNP’s attack. In section
3, for completeness, we first describes a single fault attack in detail when
some LSBs of m[1] are unknown, and then present the multiple fault attack
in a simple way and improve the bound of the unknown part of messages.
In last subsection, we indicate that the bound can be extended directly
by Cohn-Heninger results. Finally, we give some simulation results and
compare the new attacks with the previous attacks in section 4.

2 CJKNP’s Attack on ISO/IEC 9796-2

2.1 ISO/OEC 9796-2 Standard

ISO/IEC 9796-2 is an encoding standard allowing partial or total message
recovery [10,11]. In the following, we introduce ISO/IEC 9796-2 as in [7,
6]. The encoding function can be used as a hash function H(m) of digest
size kp. For the sake of simplicity we assume that kj, the size of m and
the size of N (denoted by k) are all multiples of 8. The ISO/IEC 9796-2
encoding of a message m = m/[1]||m|[2] is

p(m) = 6Asg||m[1]]|H (m)||BCis

where m[1] consists of the k — k;, — 16 most significant bits of m and
m[2] represents the remaining bits of m. Recently, some attacks against
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ISO/IEC 9796-2 are proposed in [5, 7] by Coron et al, especially [7] gave a
practical forgery attack (without faults).

2.2 CJKNP’s Single Fault Attack

In 2009, CJKNP described a fault attack on a randomized version of
ISO/IEC 9796-2 standard. More precisely, the authors in [4] analyzed a
message m = m[1]||m[2] of the form

m[1] = af|r||e/, m[2] = DATA

where r is an unknown part, o, o’ are known and DATA is some known
or unknown string. The size of r is denoted by k, and the size of m[1] is
k — kp — 16 as required in ISO/IEC 9796-2. The encoded message can be
written as

p(m) = 6Asg||al|r||a’||H (al|r]|o'|[DATA)|| BCs6. (2)

The total number of unknown bits in p(m) is k, + kp. Assume that the
attacker can obtain a faulty signature satisfying (1), then from (1) and
(2) one can get

pf=s+r-2" 4+ H(m)-2° mod p,

where s is a known value, and n, = kp, + ko + 4 (the size of o’ is denoted
by kq). This shows that (r, H(m)) must be a solution of the equation

a+bxr+cy=0 modp

where a := s — p¢ mod N,b:= 2" and c := 2® are known. This problem
can be solved using the result of Herrmann and May in [8] based on
Coppersmith’s method [3] for finding small roots of polynomial equations.
Assuming that 7 < N7, H(m) < N?, one can find  and H(m) under the

condition:
\/§ _
2

1
v+ < ~ 0.207

for a balanced RSA modulus.

3 Attacks against ISO/IEC 9796-2 with MSBs of message
known

The single fault attack against the signature scheme with some LSBs of
message unknown such as the PKCS#1 v1.5 encoding was mentioned in
[4]. However, multiple fault attack for such case has not been discussed.
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In the following, we will give an analysis of multiple fault attack with
some LSBs of message unknown. For completeness of this paper, we will
first describe the single fault attack against a probabilistic variant of
the ISO/IEC 9796-2 in detail in subsection 3.1. And two faults modulo
different factors will be discussed in subsection 3.2. The last two subsec-
tions present the multiple fault attack against the randomized version of
ISO/IEC 9796-2.

3.1 Single Fault Attack

Assume that some least significant bits of message m[l] are unknown.
That is
m[l] = al|r, m[2] = DATA

The size of unknown part r is denoted as k, and the size of m[1] is k—kp—6
as required in ISO/IEC 9796-2. The encoded message is then

p(m) = 6Ass||af[r||H (a||r[[DATA)[| BC1s. (3)

The total number of unknown bits in u(m) is k, + ky,.
We suppose that after injecting a fault the opponent is in possession
of a faulty signature p such that

p® = p(m) modp, p°7# p(m) mod q. (4)
From (3) we can write

pim) = s+ 28
where s = (6A1g]|x) - 2¥TFn+8 1 BCy4 is a known value and r’ = r - 2kr 4+
H(m) is unknown. From (4) we obtain

pf=s+r-2> mod p.
This shows that 2o = r - 28» + H(m) must be a solution of the equation
a+bxr=0 mod p, (5)

where a := s — p® mod N,b := 2% are known. Note that we can assume
b =1 by multiplying the equation by b~! mod N.

Therefore, if the root xq of the above equation can be found, one can
obtain the factor p of N by computing GCD of N and a + xg from (5).
This is a partially approximate common divisor problem, which can be
solved using lattice technique by Howgrave-Graham [9].
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Let X be the upper bound of the root xo. From the result of [9], if
X < N'# one can factor the RSA modulus N. It means that for 1024-bit
RSA modulus N, the total size of unknown x can be at most 256 bits. In
our new attack, for ISO/IEC 9796-2 with k; = 160, the size of the unknown
lower bits of m[1] can be as large as 96 bits. In our simulation tests in
section 4, the new attack can work using the LLL algorithm [12] on 22
dimensional lattice in one second if r is a 83-bit number.

3.2 Two Faults Modulo Different Factors

In this subsection, we discuss the case that two faulty signatures modulo
different factors are given. Assume that we have two faulty signatures p
and p/, such that p¢ = pu(m) mod p and p® = pu(m’) mod ¢. From the
analysis in the previous section, this gives two equations:

z1+a; =0 modp
To+a3=0 mod q

where small unknowns z1,zs are bounded by x; < Xp,22 < X3 and
a1,a9 < N. Multiplying the above two equations, we get a bivariate
equation modulo N,

129 + asx1 + a1x2 +ajas =0 mod N.

Then z1, 22 can be solved by using the technique in [?] under the asymp-
totical C(indition X1Xs < N3. When X; = X9 = X, the condition equals
X < N5. That is to say, if the total unknown part x containing the
unknown part of message and hash function part is smaller than N3,
one can factor N efficiently given two faulty signatures modulo different
factors.

3.3 Multiple Faults Modulo the Same Factor

CJKNP gave a multiple fault attack [4], whose complexity increases ex-
ponentially with the number of faulty signatures. In [6], the authors de-
scribed a simpler multiple fault attack, in which the lattice dimension is
the number of faults plus one, and gave a bound § < % — %. For more
details we refer the reader to [6].

In order to improve the bound of the unknown part of random nonce,

we will show how to extend to multiple faults. More precisely, given ¢
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faulty signatures, similar to analysis described in above, one has a collec-
tion of equations:

z;+a; =0 modp, forl<i</ (6)

where a;’s are known and z;’s are unknown and small. Our goal is to
recover the factor p.

In the following, we will adopt the technique of solving simultaneous
Diophantine approximation problem. Let X be a suitable bound such
that ; < X for all ¢ < ¢. We construct the lattice £ spanned by the rows
of the following matrix

Xajas...ap
N

M= N
N
The dimension of the lattice £ is £ 4+ 1 and the determinant of £ is
N®X. From the Gaussian heuristic, the length of the smallest vector of
1
the lattice £ is roughly v/ + 1 - (N*X)%T. From (6), there exist integers
k; for all ¢ < ¢ satisfying a; + x; = k; - p. Therefore, in the lattice £, we
have the vector (¢X, qz1,qxe, - ,qrs) = (q, —k1, —ko, -, —ke) - M. Its
Euclidean norm is approximately bounded by £+ 1 - ¢X. If the bound
1
is less than the heuristic shortest vector length, i.e., ¢X < (N‘X)%1, it

is very probable that the vector (¢X, gx1,qxa, - ,qx,) in lattice L is the
shortest vector. Assuming X = N?, the condition is equal to

1
<= — —.
o< 20 (M)

N |

It means that, if all z;’s in equation (6) satisfy x; < N %7i, the short-
est vector v heuristically is unique by Minkowski theorem. Applying the
lattice basis reduction algorithm to lattice of fixed dimension we obtain
the shortest vector v. This leads to factor N by computing GCD of the
two first components of v.

From the inequality (7), it is easy to see that the new bound is better
than the former one in [6]. We will give some simulation and comparison
in the next section.
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3.4 Extended Multiple Fault Attack by Cohn-Heninger
Technique

This subsection analyzes the multiple fault attack in order to improve
the bound of unknown message part. Instead of using the above simple
method of solving simultaneous Diophantine approximation problem, we
now utilize the new technique by Cohn and Heninger[2].

In detail, assume we have a set of equations each of which is in form of
z;+a; =0 mod p and r; is the solution of each equation. Our goal is to
find polynomials in forms of h(ry, 72, ...,7¢) = 0. From Howgrave-Graham
theorem, h satisfying two conditions is sufficient. Such two constrictions
are:

1. h(ri,re,...,r¢) =0 mod p¥
2. ||h(r1,72, ..y re)|| < P*//w, where w = deg(h)

For the first one, we will compute such modulo polynomial as an integer
linear combination of products

(214 a1)™ -+ (¢ + ap) “N*®

with i1 + --- + i + & > k. To ensure ||h(r1,72,....,70)|| < p¥/vw, we
require h has small coefficients. It can be achieved to reduce a lattice
with entries of polynomial coefficients. Let X be the upper bound of r;.
Use the polynomials

(Xiz1 +a1)™ - (Xoze + ag)*N”

to construct the lattice L, with i; + -+ iy + xk < t and £ = max(k —
> ot 0). The basis of the lattice consists of the ordering monomials and
is an upper triangular matrix.

The dimension of L is

dimL = (t+€>

14

and the determinant is

t+ £ k+¢ k

det L — x (7 ()
Applying a lattice reduction algorithm, we can get a reduced basis
V1, V2, ..., Uy, Such that

imL(dimL—1)

d
o] < -+ < |Joe]| < 2 @D (det L) Tmrei=e
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If we require the left-hand side of above inequality is smaller than
PP /v dimL, then the polynomials corresponding to vy, va, ..., vg are equal

to zero.
dimL(dimL—1)

QW(detL)m < p*/v/dimL

Neglecting all small terms, we have a asymptotical bound
(det L)m < N3k

Substituting the value of det L and optimizing the value of ¢, k, we get
the Cohn-Heninger’s result.

Theorem 1 (Cohn-Heninger [2].) Given { signatures p1, pa, ..., p¢ which
are faulty signatures modulo p, and a bound X such that |r;| < X for alli,

1+
then RSA modulus N can be factored, provided that X < N3 © and the
algebraic independence hypothesis holds. The complezity of the algorithm
s polynomial in the number £ of faulty signatures.

For £ =1, i.e., the attacker get only one faulty signature, the bound
X < N92 is same as the single faulty attack in subsection 3.1. If £ = 2,
the dimension of lattice is 36 with selecting t = 7,k = 5 as in [2], and the
bound is about N%3!. For all £ > 1, the new bound is better than one in
subsection 3.4. Although the dimension of lattice is large, the algorithm
runs in polynomial time for fixed number /.

4 Simulation Results

In this section we will only compare the known attacks and new attack
by simulation. We have simulated the fault attacks described above as
follows. Firstly, we generate a correct p, = p(m)? mod p and a random
pq € Zg, then using CRT compute a faulty signature p with 160-bit Hash
function. Secondly, we compute (p¢ — r)27% mod N which is denoted as
a, where s is a known value as in section 3.1. We use the NTL library [14]
LLL algorithm on a 2Ghz Intel notebook.

Notice that, in our simulation tests, we only compare the new results
with the previous attacks in [4, 6] under the assumption that UMP locates
in the lower-order bits, although the attacks in [4,6] can deal with the
unknown bits in the middle.
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4.1 Single-Fault Attack Simulations

In the following table, the simulation in Table 1 describes a single fault
attack in [4]. The second table 1 simulates the new single fault attack in
subsection 3.1. k is bit-size of RSA modulus N. k, means the bit number
of unknown message part. m, ¢ is some parameters in lattice construction
of subsection 3.1. w is the dimension of lattice.

Table 1. Single fault attack in [4]

modulus size k[UMP size krlm[t[ w [ time ‘
1024 6 10|3| 66 | 4min
1024 13 13(4/105(51min
1536 70 812145 | 39s
1536 90 10|3| 66 | 9min
2048 158 81245 | 55s

Table 2. New single fault attack

modulus size k|UMP size kr‘m‘ t ‘w‘ time‘

1024 45 2136 0.02s
1024 68 415 110]0.06s
1024 83 10{11{22(0.97s
1536 147 236 0.03s
1536 181 415 1(10(0.08s
1536 205 10{11|22| 1.4s
2048 240 236 0.05s
2048 295 415|10(1.32s
2048 326 10{11|22(2.13s

For 1024-bit RSA modulus, in Table 1, when the UMP size k, is 13,
it requires more than 50 minutes to execute LLL algorithm on 105 di-
mensional lattice as in [4]. In fact, exhausting a 13-bit randomizer takes
0.13 seconds. For the same bit-size modulus in Table 2, k. can be 83
by reducing only 22 dimensional lattice in one second, that can not be
exhaustively searched in available time. For 2048-bit RSA modulus, the
attack in Table 1 can deal with 158-bit UMP in more than one minute,
while new attack can tackle 326-bit UMP in about two seconds.

Therefore, by comparing with the results in two tables, the new at-
tacks can deal with more bits and are more efficient for larger moduli
under our attacking scenario.
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4.2 Multiple-Fault Attack Simulations

Table 3. Comparison of new multiple-fault attacks and previous attacks in [6]

’ l "Y + 6theory,new v+ 6true,new

‘7 + 5theory,[6] "Y + 5true,[6] ‘

2 0.250 0.247 - -
3 0.333 0.329 - -
4 0.375 0.372 - -
8 0.437 0.434 0.250 0.214
10 0.450 0.447 0.300 0.280
14 0.464 0.461 0.357 0.330
25 0.480 0.478 0.420 0.400
70 0.492 0.488 0.471 0.450

From Table 3, for small ¢ < 4, in our simulation results, the new
attacks can work well while the previous attacks in [6] are invalid since the
bound § < % — % is negative. Moreover, the asymptotic bound ¢ < % — 2—16
in new attacks seems more natural.

For large ¢, the new attack has the asymptotic bound closer to % than
former attacks, i.e., when ¢ = 70, k, + kj, in [6] is 0.450 while one of new
attack is 0.488. For a 1024-bit RSA modulus and 160-bit hash value, the
new attack can deal with the 340-bit UMP better than 300-bit UMP in the
previous attack. Therefore, the new attacks require less faulty signatures
to deal with the same bound. And the value 49 in new results approaches
to % more fast.

From Table 3, another observation is that the difference between the-
oretical bound and test bound in new attack is much less than one in the
previous attack, e.g, the distance in new attack is almost 0.03, however
the distance provided by [6] is about 0.2.

Table 4. Extended Multiple-fault Attacks

|£[7+5[tlk[ w [ time ‘
2(0.310|7|5| 36 | 15s
2(0.312(6|4]| 28 4s
3(0.325|4|3| 33| 10s
3(0.343|5|4| 56 | 5imn
310.360|8|6]165| 3h
410.372(7(5(126|59 min
410.385(6(4|210| 10.3h
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In simulation of extended multiple fault attack in Table 4, the bound
of unknown part is closely related to the parameters t, k. Therefore, on
the same number of faulty signatures, we use different parameters to
compute the bound. For example, For the faulty signature number ¢ = 3,
the bound is 0.343 when selecting ¢ = 5,k = 4, while it become 0.360
when choosing t = 8,k = 6. Both results are better than one in Table
3. But when ¢t = 4,k = 3, the bound 0.325 is less than one in Table 3.
The dimension of lattice increase very fast with the parameters ¢, k, so
the extended attack is efficient in practice when £ is small.

5 Conclusion

The paper discusses an extended multiple fault attack against a proba-
bilistic version of ISO/TEC 9796-2 with some particular parts of the un-
known message. Instead of the general case, we only argue a case that
some lower order bits of message are unknown which makes our attacks
simpler. In the beginning, we use the method of solving simultaneous
diophantine approximation problem to give a multiple fault attack. The
dimension of lattice to be computed is the number of faulty signatures
plus one. And then we apply the Cohn-Heninger technique to improve
the bound, while the dimension of lattice is increased very fast with the
signature number.
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