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Abstract. In Eurocrypt 2010, Fehr et al. proposed the first sender equivocable encryption scheme
secure against chosen-ciphertext attack (NC-CCA) and proved that NC-CCA security implies secu-
rity against selective opening chosen-ciphertext attack (SO-CCA). The NC-CCA security proof of
the scheme relies on security against substitution attack of a new primitive, “cross-authentication
code”. However, the security of cross-authentication code can not be guaranteed when all the keys
used in the code are exposed. Our key observation is that in the NC-CCA security game, the ran-
domness used in the generation of the challenge ciphertext is exposed to the adversary. This random
information can be used to recover all the keys involved in cross-authentication code, and forge a
ciphertext (like a substitution attack of cross-authentication code) that is different from but relat-
ed to the challenge ciphertext. And the response of decryption oracle, with respect to the forged
ciphertext, leaks information. This leaked information can be employed by an adversary to spoil
the NC-CCA security proof of Fehr et al.’s scheme encrypting multi-bit plaintext.

In this paper, we provide a security analysis of Fehr et al.’s scheme, showing that its NC-CCA
security proof is flawed by presenting an attack. We point out that Fehr et al.’s scheme encrypting
single-bit plaintext can be refined to achieve NC-CCA security, free of cross-authentication code.
We introduce the strong notion of cross-authentication code, apply it to Fehr et al.’s scheme, and
show that the new version of Fehr et al.’s scheme achieves NC-CCA security for multi-bit plaintext.

Keywords: sender equivocable encryption, chosen-ciphertext attack, cross-authentication
code.

1 Introduction

The notion of sender equivocability for a public-key encryption (PKE) scheme is formalized by
Fehr et al.[5] in Eurocrypt 2010. It is an important tool to construct PKE schemes secure against
chosen-plaintext/ciphertext selective opening attacks (SO-CPA/CCA secure). Sender equivoca-
bility focuses on the ability of a PKE scheme to generate some “equivocable” ciphertexts which
can be efficiently opened arbitrarily. More specifically, a PKE scheme is called sender equivoca-
ble, if there is a simulator which can generate non-committing ciphertexts and later open them
to any requested plaintexts by releasing some randomness, such that the simulation and real en-
cryption are indistinguishable. This notion is similar to non-committing encryption[3]. In fact, in
[5], Fehr et al. have pointed out that sender equivocable encryption secure under chosen-plaintext
attack (CPA secure) is a variant of non-committing encryption in [3]. Following the notations
in [5], security of a sender equivocable encryption scheme against chosen-plaintext/ciphertext
attack is denoted by NC-CPA/CCA security.
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mission, and Specialized Research Fund (No. 20110073110016) for the Doctoral Program of Higher Education.
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As proved in [5], NC-CPA/CCA security implies simulation-based selective opening security
against chosen-plaintext/ciphertext attack (SIM-SO-CPA/CCA security). This fact suggests an
alternative way of constructing PKE secure against selective opening attacks, besides the con-
struction from lossy encryption proposed in [2].

Discussion and related work. In Eurocrypt 2009, Bellare et al.[2] formalized the notion of
security against selective opening attack (SOA security) for sender corruptions. This security
notion captures a situation that n senders encrypt their own messages and send the ciphertexts
to a single receiver. Some subset of the senders can be corrupted by an adversary, exposing their
messages and randomness to the adversary. SOA security requires that the unopened ciphertexts
remain secure.

In [2], Bellare et al. proposed two kinds of SOA security: simulation-based selective open-
ing (SIM-SO) security and indistinguishability-based selective opening (IND-SO) security. The
relations between the two notions are figured out by Böhl et al.[1]. Bellare et al.[2] proposed
that IND-SO-CPA security and SIM-SO-CPA security can be achieved through a special class of
encryption named lossy encryption, and lossy encryption can be constructed from lossy trapdoor
functions [9]. Hemenway et al.[8] showed more constructions of lossy encryption. In Eurocrypt
2012, Hofheinz[7] proposed a new primitive called all-but-many lossy trapdoor functions, and
achieved IND-SO-CCA security and SIM-SO-CCA security from the new primitive.

Fehr et al.[5] presented a totally different way of achieving SIM-SO-CCA security. They
formalized the notion of sender equivocability under chosen-plaintext/ciphertext attack (NC-
CPA/CCA security), and proved that NC-CPA (resp. NC-CCA) security implies SIM-SO-CPA
(resp. SIM-SO-CCA) security. In [5], two PKE schemes were proposed. The first one, constructed
from trapdoor one-way permutations, is NC-CPA secure, so it achieves SIM-SO-CPA security.
The second one (denoted by the FHKW scheme) is constructed from an extended hash proof
system [4] and a new building block proposed by themselves, “cross-authentication code”. They
proved that the FHKW scheme is NC-CCA secure.

In 2012, Gao et al.[6] presented a deniable encryption construction (denoted by the GXW
scheme) utilizing an extended hash proof system of [4] and a cross-authentication code of [5] as
ingredients. They utilized similar techniques as those in the FHKW scheme to guarantee the
CCA security of their scheme.

However, as we will show in this paper, there is some problem in the security proof of the
FHKW scheme. We will present a security analysis of the FHKW scheme and show that NC-CCA
security can not be guaranteed. The GXW scheme suffers from the similar security problem.
We will offer a refined version of the FHKW scheme for single bit with NC-CCA security. We
will introduce the strong notion of cross-authentication code, apply it to the FHKW scheme,
and show that the new version of the FHKW scheme achieves NC-CCA security for multi-bit
plaintext.

Our contribution. In this paper, we focus on NC-CCA security.

– We provide a security analysis of the FHKW scheme in [5], and show the proof of NC-CCA
security in [5] is flawed by showing an attack. The key observation is: In the definition of
NC-CCA security, the randomness used in the generation of the challenge ciphertext C∗ is
offered to the adversary. The adversary is able to use the randomness to forge a ciphertext
and obtain useful information by querying the forged ciphertext to the decryption oracle.
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Assume that the plaintext consists of L bits. We present a PPT adversary who can always
distinguish the real experiment and the simulated experiment for L > 1. We also show that
the security requirement of “L-cross-authentication codes” is not enough in the proof of NC-
CCA security in [5] for any positive integer L.

– We refine the FHKW scheme encrypting one bit. Although we showed that “L-cross-authentic-
ation codes” are generally not sufficient to prove NC-CCA security, some specific instances
of “1-cross-authentication codes” are helpful to finish the proof of NC-CCA security of the
FHKW scheme [5], but only encrypting 1 bit. We provide a simpler encryption scheme for
single bit, free of any cross-authentication code.

– We fix the security proof of the FHKW scheme, by introducing the strong notion of L-cross-
authentication code. Informally, strong L-cross-authentication code requires the existence of
a PPT algorithm to generate another key indistinguishable from the original one. With this
property, the randomness in the simulated experiment is different but indistinguishable from
that in the real experiment, which helps the L-cross-authentication code’s security against
substitution attacks work again.

Organization. We start by notations and definitions in Section 2. We recall the FHKW scheme
of [5] in Section 3, and then provide a security analysis of it in Section 4. We present a refined
version of the FHKW scheme for single bit in Section 5 and leave the proof in the Appendix.
We fix the security proof of the FHKW scheme in Section 6. Finally, we give a summary of our
work in Section 7.

2 Preliminaries

2.1 Notations

Let N denote the set of natural numbers. We use k ∈ N as the security parameter throughout
the paper. For n ∈ N, let [n] denote the set {1, 2, · · · , n} and {0, 1}n the set of bitstrings of
length n. For a finite set S, let s ← S denote the process of sampling s uniformly at random
from S. If A is a probabilistic algorithm, we denote by RA the randomness set of A. And let
y ← A(x1, x2, · · · , xt) denote the process of running A on inputs {x1, x2, · · · , xt} and inner
randomness R← RA, and outputting y. If the running time of the probabilistic algorithm A is
polynomial in k, then A is a probabilistic polynomial time (PPT) algorithm.

2.2 Sender-Equivocable Encryption Schemes

The notion of Sender-Equivocability is formalized by Fehr et al.[5] in 2010. For a public-key en-
cryption scheme

∏
= (Gen,Enc,Dec), let A = (A1, A2) denote a stateful adversary, S = (S1, S2)

denote a stateful simulator, and M denote a plaintext. Let state denote some state information
output by A1 and then is passed to A2. Sender-equivocability under adaptive chosen-ciphertext
attack is defined through the following two experiments.
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Experiment ExpNC-CCA-Real∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

R← REnc

C ← Encpk(M ;R)

return A
Decsk(·)
2 (M,C,R, state)

Experiment ExpNC-CCA-Sim∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

C ← S1(pk, 1
|M |)

R← S2(M)

return A
Decsk(·)
2 (M,C,R, state)

In both experiments, A = (A1, A2) is allowed to access to a decryption oracle Decsk(·) with
constraint that A2 is not allowed to query C.

The advantage of adversary A is defined as follows.

AdvNC-CCA∏
,A,S (k) :=

∣∣∣Pr
[
ExpNC-CCA-Real∏

,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim∏

,A (k) = 1
]∣∣∣ .

Definition 1 (NC-CCA security). A public-key encryption scheme
∏

= (Gen,Enc,Dec) is
sender-equivocable under adaptive chosen-ciphertext attack (NC-CCA secure), if there is a s-
tateful PPT algorithm S (the simulator), such that for any PPT algorithm A (the adversary),
the advantage AdvNC-CCA∏

,A,S (k) is negligible.

2.3 Building Blocks of the FHKW Scheme

In [5], Fehr et al. presented a construction of PKE with NC-CCA security. We will call their
scheme the FHKW scheme. The FHKW scheme was built from the following cryptographic
primitives: collision-resistant hash function, subset membership problem, extended version of
hash proof systems[4], and cross-authentication codes[5].

Definition 2 (Collision-resistant hash function). A family of collision-resistant hash func-
tion H, associated a domain D and a range R, consists of two PPT algorithms (HGen,HEval).
HGen(1k) generates a description desH of a uniformly random function H : D → R. HEval(desH, x)
produces the value H(x) for all x ∈ D. Further more, for any PPT algorithm A, the following
function is negligible in k:

AdvcrH,A(k) := Pr
[
x 6= x′

∧
H(x) = H(x′) | desH ← HGen(1k), (x, x′)← A(desH)

]
.

For simplicity, we do not distinguish a function H from its description desH output by HGen. So
in the rest of this paper, we will write H← H instead of desH ← HGen(1k).

Definition 3 (Subset membership problem). A subset membership problem consists of the
following PPT algorithms.

– SmpGen(1k): On input 1k, algorithm SmpGen outputs a parameter Λ, which specifies a set
XΛ and its subset LΛ ⊆ XΛ. Set XΛ is required to be easily recognizable with Λ.

– SampleL(LΛ;W ): Algorithm SampleL samples X ∈ LΛ using randomness W ∈ RSampleL.

A subset membership problem SMP is hard, if for any PPT distinguisher D, D’s advantage

AdvSMP,D(k) := | Pr[Λ← SmpGen(1k), X ← LΛ : D(X) = 1]
− Pr[Λ← SmpGen(1k), X ← XΛ : D(X) = 1] |

is negligible.
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Definition 4 (Subset sparseness). A subset membership problem SMP has the property of
subset sparseness, if the probability Pr[Λ← SmpGen(1k), X ← XΛ : X ∈ LΛ] is negligible.

Definition 5 (Hash Proof System and Extended Hash Proof System). A hash proof
system HPS for a subset membership problem SMP associates each Λ ← SmpGen(1k) with an
efficiently recognizable key space KΛ and the following PPT algorithms:

– HashGen(Λ): It is a PPT algorithm. On input Λ, HashGen outputs a public key hpk and a
secret key hsk, both containing the parameter Λ.

– SecEvl(hsk,X): It is a deterministic algorithm. On input a secret key hsk and an element
X ∈ XΛ, SecEvl outputs a key K ∈ KΛ.

– PubEvl(hpk,X,W ): It is a deterministic algorithm. On input a public key hpk, an element
X ∈ XΛ and a witness W for X ∈ LΛ, PubEvl outputs a key K ∈ KΛ. The correctness
requires that PubEvl(hpk,X,W ) = SecEvl(hsk,X) for all Λ ← SmpGen(1k), (hpk, hsk) ←
HashGen(Λ) and X ← SampleL(LΛ;W ).

An extended hash proof system EHPS is a variation of a hash proof system HPS, extending the
sets XΛ and LΛ by taking the Cartesian product of these sets with an efficiently recognizable
tag space TΛ. Hence, the tuple of the three algorithms (HashGen, SecEvl, PubEvl) of EHPS is
changed to (hpk, hsk) ← HashGen(Λ), K ← SecEvl(hsk,X, t) and K ← PubEvl(hpk,X,W, t),
with t ∈ TΛ.

The public key hpk in a hash proof system HPS uniquely determines the action of algorithm
SecEvl for all X ∈ LΛ. However, the action of SecEvl for X ∈ XΛ\LΛ is still undetermined by
hpk. This is defined by a perfectly 2-universal property.

Definition 6 (perfectly 2-universal). A hash proof system HPS for SMP is perfectly 2-
universal if for any Λ← SmpGen(1k), any hpk from HashGen(Λ), any distinct X1, X2 ∈ XΛ\LΛ,
and any K1,K2 ∈ KΛ,

Pr[SecEvl(hsk,X2) = K2 | SecEvl(hsk,X1) = K1] =
1

|KΛ|
,

where the probability is taken over all possible hsk with (hpk, hsk)← HashGen(Λ).

Definition 7 (Efficiently samplable and explainable domain). A domain D is efficiently
samplable and explainable, if there exists two PPT algorithms:

– Sample(D;R): On input a randomness R← RSample and a domain D, it outputs an element
uniformly distributed over D.

– Explain(D, x): On input D and x ∈ D, this algorithm outputs R that is uniformly distributed
over the set {R ∈ RSample | Sample(D;R) = x}.

Definition 8 (L-Cross-Authentication Code [5]). For any L ∈ N, an L-cross-authentication
code XAC, associated a key space XK and a tag space XT , consists of three PPT algorithm-
s (XGen, XAuth, XVer). Algorithm XGen(1k) generates a uniformly random key K ∈ XK,
XAuth(K1, · · · ,KL) produces a tag T ∈ XT , and XVer(K, i, T ) outputs b ∈ {0, 1}. The following
properties are required:
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Correctness. The function of k

failcorrectXAC (k) := max
i∈[L]

Pr[XVer(Ki, i,XAuth(K1, · · · ,KL)) 6= 1]

is negligible, where the max is over all i ∈ [L] and the probability is taken over all possible
K1, · · · ,KL ← XGen(1k).

Security against impersonation and substitution attacks. The advantages AdvimpXAC(k)
and AdvsubXAC(k), defined as follows, are both negligible.

AdvimpXAC(k) := max
i,T ′

Pr[K ← XGen(1k) : XVer(K, i, T ′) = 1]

where the max is over all i ∈ [L] and T ′ ∈ XT .

AdvsubXAC(k) := max
i,K 6=i,Func

Pr

[
Ki ← XGen(1k), T ← XAuth(K1, · · · ,KL), T ′ ← Func(T ) :

T ′ 6= T ∧ XVer(Ki, i, T
′) = 1

]
where the max is over all i ∈ [L], all K6=i := (Kj)j 6=i ∈ XKL−1 and all possibly randomized
functions Func : XT → XT .

3 Review on the FHKW Scheme in [5]

With the above cryptographic primitives, we now present the FHKW scheme[5].
Let SMP be a hard subset membership problem that has the property of subset sparseness.

Let XΛ, with Λ ← SmpGen(1k), be efficiently samplable and explainable. Let EHPS be a per-
fectly 2-universal extended hash proof system for SMP with tag space TΛ and key space (range)
KΛ, which is efficiently samplable and explainable as well. Let H : (XΛ)L → TΛ be a family of
collision-resistant hash functions, and XAC be an L-cross-authentication code with key space
XK = KΛ and tag space XT .

The FHKW scheme

Gen(1k): On input 1k, algorithm Gen runs Λ ← SmpGen(1k), (hpk, hsk) ← HashGen(Λ),
H← H, and outputs (pk, sk), where pk = (hpk,H) and sk = (hsk,H).

Enc(pk,M ;R): To encrypt a plaintext M = (M1, · · · ,ML) ∈ {0, 1}L under a public key
pk = (hpk,H) with randomness R = (Wi, R

XΛ
i , RKΛi )i∈[L] ∈ (RSampleL ×RSample ×RSample)

L,
algorithm Enc runs as follows:
For i ∈ [L], set

Xi :=

{
Sample(XΛ;RXΛi ) if Mi = 0

SampleL(LΛ;Wi) if Mi = 1

and t := H(X1, · · · , XL). Then for i ∈ [L], set the keys

Ki :=

{
Sample(KΛ;RKΛi ) if Mi = 0

PubEvl(hpk,Xi,Wi, t) if Mi = 1

and the tag T := XAuth(K1, · · · ,KL). Finally, return C = (X1, · · · , XL, T ) as the ciphertext.
Dec(sk, C): To decrypt a ciphertext C = (X1, · · · , XL, T ) ∈ XLΛ ×XT under a secret key sk =

(hsk,H), algorithm Dec computes t = H(X1, · · · , XL), for i ∈ [L] setsKi := SecEvl(hsk,Xi, t)
and Mi = XVer(Ki, i, T ), and returns M = (M1, · · · ,ML) as the plaintext.

The correctness of the FHKW scheme is proved by [5], which we omit here.
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4 Security Analysis of the FHKW Scheme

According to the definition of NC-CCA security, the FHKW scheme is NC-CCA secure, if and
only if there exists a simulator S such that for any PPT algorithm A, the two experiments
ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k), defined in Section 2, are indistinguishable.

In order to prove NC-CCA security of the FHKW scheme, Fehr et al.[5] constructed the
following simulator S = (S1, S2).

Simulator S:

– S1(pk, 1
|M |): Parse pk = (hpk,H). For i ∈ [L], choose W̃i ← RSampleL and set Xi :=

SampleL(LΛ; W̃i). Compute t := H(X1, · · · , XL). For i ∈ [L], setKi := PubEvl(hpk,Xi, W̃i, t).
Set T ← XAuth(K1, · · · ,KL). Return the ciphertext C = (X1, · · · , XL, T ).

– S2(M): Parse M = (M1, · · · ,ML). For i ∈ [L], if Mi = 1, set Wi := W̃i, and choose RXΛi ←
RSample, R

KΛ
i ← RSample; else, choose Wi ← RSampleL, and set RXΛi ← Explain(XΛ, Xi),

RKΛi ← Explain(KΛ,Ki). Return the randomness R = (Wi, R
XΛ
i , RKΛi )i∈[L].

With simulator S, Fehr et al.[5] proved that the FHKW scheme is NC-CCA secure. However,
we will show that this specific simulator S does not guarantee NC-CCA security of the FHKW
scheme for any positive integer L.

4.1 The Problem of Security Proof in [5]

To prove NC-CCA security, it is essential to show that the decryption oracle will not leak any
useful information to any PPT adversary. As to the FHKW scheme, given a challenge ciphertext
C = (X1, · · · , XL, T ), the adversary comes up with a decryption query C ′ = (X1, · · · , XL, T

′)
where T ′ 6= T . NC-CCA security expects the decryption of C ′ by the oracle will not help the
adversary to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k)(see the

proof of [5, Lemma 5]). This strongly relies on the security against substitution attack of cross-
authentication code, which requires that “given T and K6=i, it is difficult to output a T ′ 6= T such
that XVer(Ki, i, T

′) = 1.” However, in the NC-CCA game, the adversary A KNOWs Ki for any
i ∈ [L]! The reason is as follows. Upon returning a plaintext M , the adversary A receives not only
a challenge ciphertext C, but also some related random coins R which are supposed to have been
consumed in the challenge ciphertext generation. With R and M , the adversary A can recover Ki

for any i ∈ [L]. Then, it is possible for A to output a T ′ 6= T such that XVer(Ki, i, T
′) = 1. Hence,

the XAC’s security against substitution attack is not sufficient to guarantee the aforementioned
property. That is why the security proof of [5] fails (more precisely, the proof of [5, Lemma 5]
fails).

In fact, this kind of adversary, which given T and Ki for any i ∈ [L] can output a T ′ 6= T
such that XVer(Ki, i, T

′) = 1, does exist. In Section 4.2, we will present such an adversary A to
destroy the security proof of the FHKW scheme for L > 1.

Gao et al.’s deniable scheme in [6]. In [6], Gao et al. utilized exactly the same technique as
that in the FHKW scheme to construct a deniable encryption scheme and “proved” the CCA
security. The similar problem we pointed out above also exists in their security proof (more
specifically, the proof of [6, Claim 1]). Besides, our following attack in Section 4.2 applies to
their scheme and ruins their proof, too.
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4.2 Security Analysis of the FHKW Scheme - L > 1

Before going into a formal statement and its proof, we briefly give a high-level description of our
security analysis for L > 1.

With the aforementioned simulator S, for any L > 1, our aim is to construct an adversary
A = (A1, A2) to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k). The

construction of adversary A is as follows.
In an experiment environment (either ExpNC-CCA-Real

FHKW,A (k) or ExpNC-CCA-Sim
FHKW,A (k)), upon receiv-

ing pk, A1 returns M = (0, · · · , 0). Then, upon receiving a ciphertext C = (X1, · · · , XL, T )
and randomness R, A2 returns C ′ = (X1, · · · , XL, T

′) as his decryption query, where T ′ ←
XAuth(K ′1,K2, · · · ,KL), K ′1 is uniformly random chosen from KΛ and K2, · · · ,KL are all recov-
ered from R. Finally, if the decryption oracle returns M ′ = (0, · · · , 0), A2 will output b = 1, and
otherwise, A2 will output b = 0.

Now, we consider the probabilities that A outputs 1 in the two experiments, respectively.
In ExpNC-CCA-Real

FHKW,A (k), for i ∈ [L], Xi (resp. Ki) is chosen uniformly random from XΛ (resp.
KΛ), so the subset sparseness of SMP and the perfect 2-universality of HPS guarantee that
for i ∈ [L], K ′i = SecEvl(hsk,Xi, t) is uniformly random in KΛ from A’s point of view. Due
to the security of XAC, the decryption oracle returns M ′ = (0, 0, ..., 0) for the queried cipher-
text C ′ and then A outputs b = 1, with overwhelming probability in ExpNC-CCA-Real

FHKW,A (k). On

the other hand, in ExpNC-CCA-Sim
FHKW,A (k), for i ∈ [L], Xi is chosen uniformly random from LΛ

and Ki = PubEvl(hpk,Xi,Wi, t), so the property of HPS guarantees that for i ∈ [L], K ′i =
SecEvl(hsk,Xi, t) = Ki. Due to the correctness of XAC and the facts that T ′ ← XAuth(K ′1,K2, · · · ,
KL) and M ′i = XVer(K ′i, i, T

′) = 1 for i ∈ {2, 3, · · · , L}, the decryption oracle returns M ′ =
(0, 1, · · · , 1) with overwhelming probability. As a result, A outputs b = 1 with negligible proba-
bility in ExpNC-CCA-Sim

FHKW,A (k). The two experiments ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k) have
been distinguished by A with overwhelming probability.

A formal statement of the result and its related proof are as follows.

Theorem 1. With the aforementioned simulator S, the FHKW scheme is insecure in the sense
of NC-CCA for any L > 1.

Proof. For simplicity, we consider the case of L = 2. We note that this attack is applicable to
any situation where L > 1.

Our destination is to construct a specific adversary A = (A1, A2) to distinguish the two
experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k) with non-negligible probability.

Specifically, given an experiment environment (either ExpNC-CCA-Real
FHKW,A (k) or ExpNC-CCA-Sim

FHKW,A (k)),
the adversary A = (A1, A2) will behave as follows.

– Upon receiving pk = (hpk,H), A1 returns M = (0, 0), i.e. M1 = M2 = 0.
– Upon receiving a ciphertext C = (X1, X2, T ) and randomnessR = ((W1, R

XΛ
1 , RKΛ1 ), (W2, R

XΛ
2 ,

RKΛ2 )), A2 creates a new ciphertext C ′ according to C.
• Set X ′1 := X1, X

′
2 := X2.

• Set K ′1 ← KΛ,K ′2 ← Sample(KΛ;RKΛ2 ).
• Compute T ′ ← XAuth(K ′1,K

′
2).

• Check that T ′ 6= T . If T ′ = T , choose another random value for K ′1 and repeat the above
steps, until T ′ 6= T .
• Set C ′ := (X ′1, X

′
2, T

′).
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Then A2 submits C ′ to the decryption oracle.

– Let M ′ ← Dec(sk, C ′). A2 outputs b, where

b =

{
1 ifM ′ = (0, 0);
0 ifM ′ 6= (0, 0).

Now we analyze the probabilities that A2 outputs b = 1 in the real experiment and the
simulated experiment, respectively.

In both experiments, A2 receives a ciphertext C = (X1, X2, T ) and randomness R = ((W1,
RXΛ1 , RKΛ1 ), (W2, R

XΛ
2 , RKΛ2 )). The ciphertext created and submitted to the decryption oracle by

A2 is C ′ = (X ′1, X
′
2, T

′) = (X1, X2, T
′), where T ′ = XAuth(K ′1,K

′
2) = XAuth(K ′1,K2) (due to

K ′2 = K2) and T ′ 6= T .

The Real Experiment. The ciphertext C = (X1, X2, T ) satisfies X1 ← Sample(XΛ;RXΛ1 ),

X2 ← Sample(XΛ;RXΛ2 ), and T = XAuth(K1,K2), where K1 ← Sample(KΛ;RKΛ1 ) and K2 ←
Sample(KΛ;RKΛ2 ).

The decryption of C ′ by the decryption oracle Dec(sk, ·) involves the computation of t′ =
H(X ′1, X

′
2) = H(X1, X2) = t and K ′i := SecEvl(hsk,X ′i, t

′) = SecEvl(hsk,Xi, t), for i ∈ {1, 2}.
Due to the perfect 2-universality of EHPS, K ′i is uniformly random distributed over KΛ.
Hence, for i ∈ {1, 2},

Pr
[
XVer(K ′i, i, T

′) = 1 | in ExpNC-CCA-Real
FHKW,A (k)

]
≤ AdvimpXAC(k).

Let M ′ = (M ′1,M
′
2) denote the decryption result of C ′ by the decryption oracle Dec(sk, ·).

Then for i ∈ {1, 2},

Pr
[
M ′i = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

= Pr
[
XVer(K ′i, i, T

′) = 1 | in ExpNC-CCA-Real
FHKW,A (k)

]
≤AdvimpXAC(k).

The probability that A2 outputs b = 1 in the real experiment is given by

Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′ 6= (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′1 = 1 ∨M ′2 = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≥ 1− 2AdvimpXAC(k).

The Simulated Experiment. The ciphertext C = (X1, X2, T ) satisfiesX1 ← SampleL(LΛ;W1),
X2 ← SampleL(LΛ;W2), and T = XAuth(K1,K2), where for i ∈ {1, 2}, Wi ← RSampleL and
Ki = PubEvl(hpk,Xi,Wi, t) with t = H(X1, X2).

The decryption of C ′ by the decryption oracle Dec(sk, ·) involves the computation of t′ =
H(X ′1, X

′
2) = H(X1, X2) = t and K ′i = SecEvl(hsk,X ′i, t

′) = SecEvl(hsk,Xi, t), for i ∈ {1, 2}.
On the other hand, we know that K ′2 = K2 and K2 = PubEvl(hpk,X2,W2, t). Since X2 ∈ LΛ,
the property of EHPS guarantees that SecEvl(hsk,X2, t) = PubEvl(hpk,X2,W2, t), which
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means that K ′2 = K2 = K ′2. Note that M ′2 = XVer(K ′2, 2, T
′). Hence, we have

Pr
[
M ′2 = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

= Pr
[
XVer(K ′2, 2, T

′) = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
= Pr

[
XVer(K ′2, 2, T

′) = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
≥ 1− failcorrectXAC (k).

The probability that A2 outputs b = 1 in the simulated experiment is given by

Pr
[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

= 1− Pr
[
M ′ 6= (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ 1− Pr
[
M ′2 = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ failcorrectXAC (k).

The advantage of adversary A is given by

AdvNC-CCA
FHKW,A,S(k) =

∣∣∣Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]∣∣∣

≥ 1− 2AdvimpXAC(k)− failcorrectXAC (k).

Note that both AdvimpXAC(k) and failcorrectXAC (k) are negligible. SoA’s advantage AdvNC-CCA
FHKW,A,S(k)

is non-negligible (in fact, it is overwhelming), i.e., the security proof of the FHKW scheme in
[5] is incorrect. QED.

4.3 Security Analysis of the FHKW Scheme - L = 1

Note that our attack in the previous section does not apply to the case L = 1. In the previous
section, upon receiving the ciphertext C and randomness R, the adversary A recovers K and
switches the first element of K with a random one. If L = 1, A will get a new K ′ = K ′1 and then
T ′ = XAuth(K ′1). Afterwards, A will return C ′ = (X1, T

′) as his decryption query. Then, A will
receive M ′ = 0 with overwhelming probability in both ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k).

Hence, the two experiments are still indistinguishable for A.
As we have pointed out earlier, the security of L-cross-authentication code against substitu-

tion attack is not sufficient for the security proof of the FHKW scheme for any value of L. But
our above attack only works for L > 1. Therefore, the remaining problem is whether it is possible
for the FHKW scheme to achieve NC-CCA security for L = 1, still with the aforementioned
simulator S.

Before solving the problem, we claim that algorithm XAuth of XAC in the FHKW scheme is
deterministic (this is not explicitly expressed in [5]). That’s because R = (Wi, R

XΛ
i , RKΛi )i∈[L] is

the only randomness used in the encryption process. In other words, if XAuth is probabilistic,
the inner random number used by XAuth should be contained in the randomness R (and then
passed to the adversary, in the sense of NC-CCA). On the other hand, if algorithm XAuth of
XAC in the FHKW scheme is probabilistic, with the aforementioned simulator S, the FHKW
scheme is insecure in the sense of NC-CCA for any positive integer L. (See Appendix A for the
proof.)

In fact, the security proof of the FHKW scheme expected such a property from L-cross-
authentication code: “given (K1,K2, · · · ,KL) and T = XAuth(K1, · · · ,KL), it is difficult to
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output a T ′ 6= T such that XVer(Ki, i, T
′) = 1 for some i ∈ [L]”. This property generally

does not hold for L-cross-authentication code. However, it is true for some special 1-cross-
authentication code, for example, the instance of L-cross-authentication code given by Fehr et
al.[5] when constricted to L = 1. For that special instance, when L = 1, given K = K1 and
T = XAuth(K1) (note that XAuth is deterministic), it is impossible to find a T ′ 6= T such that
XVer(K1, 1, T

′) = 1, since only T = XAuth(K1) itself could pass the verification. Therefore, with
the special 1-cross-authentication code instance (or other instance with some similar property)
as ingredient, the FHKW scheme is NC-CCA secure for L = 1.

5 A Sender Equivocable Encryption Scheme for Single-bit Plaintext

In this section, we will refine the FHKW scheme for L = 1. Specifically, we will present a PKE
scheme with NC-CCA security for L = 1 without any L-cross-authentication code.

Our scheme can be seen as a simplified version of the FHKW scheme instantiated with
a special 1-cross-authentication code. As we pointed earlier, the special property of 1-cross-
authentication code requires each K determines a unique tag T satisfying XVer(K,T ) = 1. In
our scheme, the encryption algorithm replaces the tag T by the key K directly. As a result,
whether the paintext is 1 or 0 depending on the equality of K ′ and K in the decryption, while
in the FHKW scheme the plaintext bit is determined by whether XVer(K,T ′) = 1 or not.

Below describes our scheme E = (GenE ,EncE ,DecE). The scheme consists of a hard subset
membership problem SMP, with subset sparseness, and its related perfectly 2-universal hash
proof system HPS. We require that for any Λ ← SmpGen(1k), both XΛ (with respect to SMP)
and KΛ (with respect to HPS) are efficiently explainable. As suggested in [5], the requirement of
efficient samplability and explainability on KΛ imposes no real restriction, and it has shown in
[4] that both the above ingredients can be constructed based on some standard number-theoretic
assumptions, such as DDH assumption, DCR assumption and QR assumption.

Scheme E = (GenE ,EncE ,DecE)

GenE(1
k): On input 1k, algorithm GenE runs Λ← SmpGen(1k), (hpk, hsk)← HashGen(Λ), and

outputs (pk, sk), where pk = hpk and sk = hsk.
EncE(pk,M ;R): To encrypt a plaintext M ∈ {0, 1} under a public key pk = hpk with random-

ness R = (W,RXΛ , RKΛ) ∈ RSampleL ×RSample ×RSample, algorithm EncE sets

X :=

{
Sample(XΛ;RXΛ) if M = 0

SampleL(LΛ;W ) if M = 1

and

K :=

{
Sample(KΛ;RKΛ) if M = 0

PubEvl(hpk,X,W ) if M = 1

then returns ciphertext C = (X,K).
DecE(sk, C): To decrypt a ciphertext C = (X,K) ∈ XΛ × KΛ under a secret key sk = hsk,

algorithm DecE sets K := SecEvl(hsk,X). If K = K, return M = 1; else, return M = 0.

Correctness: On one hand, if C = (X,K) is a ciphertext of M = 1, then K = SecEvl(hsk,X) =
PubEvl(hpk,X,W ) = K due to the property of HPS. So DecE(sk, C) returnsM = 1. On the other
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hand, if C = (X,K) is a ciphertext of M = 0, then X ← XΛ, K ← KΛ and K = SecEvl(hsk,X).
So Pr[K = K] = 1

|KΛ| . Hence, with probability 1− 1
|KΛ| , DecE(sk, C) returns M = 0.

Security: As to the security of scheme E , we have the following Theorem 3. The proof is similar
to that of the FHKW scheme in [5]. But the key observation is: given C = (X,K), it is impossible
to create C ′ = (X,K ′), K 6= K ′, such that K ′ = K ′. Note that the security proof of our scheme
doesn’t involve any cross-authentication code. Details of the proof are in Appendix B.

Theorem 2. Scheme E = (GenE ,EncE ,DecE) is NC-CCA secure.

6 Fixing the Security Proof of the FHKW Scheme

In this section, we will present a strong version of cross-authentication code, and fix the security
proof of the FHKW scheme with it.

6.1 Strong L-Cross-Authentication Codes

The notion of strong L-cross-authentication code is as follows.

Definition 9 (Strong L-Cross-Authentication Code). An L-cross-authentication code X-
AC is strong, if there exists another PPT algorithm ReSamp satisfying the following property:
Given K1, · · · ,KL ← XGen(1k) and T ← XAuth(K1, · · · ,KL) such that XVer(Kl, l, T ) = 1,
l ∈ [L], algorithm ReSamp takes as input i ∈ [L], K6=i := (Kj)j 6=i and T , and outputs K ′i, which
is statistically indistinguishable with Ki, i.e.,

Dist(k) :=
1

2
·
∑

K∈XK
|Pr[K ′i = K|(K6=i, T )]− Pr[Ki = K|(K 6=i, T )]|

is negligible, where K ′i ← ReSamp(i,K6=i, T ) and the probabilities are taken over all possible
Ki ← XGen(1k) and the randomness of ReSamp.

Example of a strong L-cross-authentication code. In [5], Fehr et al. proposed an efficient
construction of L-cross-authentication code, XACFHKW=(XGen,XAuth,XVer), as follows.

Let Fq be a finite field, where q is determined by the security parameter k. Define XK =
F2
q and XT = FLq ∪ {⊥}. XGen(1k) generates a uniformly random key K ∈ XK. For K1 =

(a1, b1), · · · ,KL = (aL, bL) ∈ XK, XAuth(K1, · · · ,KL) computes a tag T = (T0, · · · , TL−1)
satisfying that for i ∈ [L], polyT (ai) = bi, where polyT (x) = T0 + T1x+ · · ·+ TL−1x

L−1 ∈ Fq[x].
Note that T can be computed efficiently by solving a linear equation system AT = B, where
A ∈ FL×Lq is a Vandermonde matrix and its i-th row is (1, ai, a

2
i , · · · , a

L−1
i ) for i ∈ [L], and

B ∈ FLq is a column vector with elements b1, · · · , bL. If there are more than one or no solution
for AT = B, XAuth will output T = ⊥. For any K = (a, b) ∈ XK, i ∈ [L] and T ∈ XT ,
XVer(K, i, T ) outputs 1 if and only if T 6=⊥ and polyT (a) = b.

We will show that XACFHKW is strong as well.

Lemma 1. For any L ∈ N, L-cross-authentication code XACFHKW is strong.
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Proof. A PPT algorithm ReSamp is constructed as follows. The input of ReSamp is (i,K6=i, T ),
where Kj = (aj , bj) for j ∈ [L]\{i}, and T satisfying that XVer(Kl, l, T ) = 1 for l ∈ [L]. This
implies that A is non-singular. On input (i,K6=i, T ), ReSamp chooses a′i ← F\{a 6=i}, computes
b′i = polyT (a′i) and returns K ′i = (a′i, b

′
i) as its output. As a result, Pr [K ′i = (a′i, b

′
i)] = 1

q−L+1 .

On the other hand, Ki = (ai, bi)← XGen(1k) and A is non-singular, so ai is chosen uniformly
random from Fq under the constraint that ai 6= aj for j ∈ [L]\{i}. We know that bi = polyT (ai).
Hence Pr [Ki = (ai, bi)] = 1

q−L+1 , which has identical probability distribution with K ′i.

6.2 Fixing the Security Proof of the FHKW Scheme with Strong XAC

Replacing XAC with a strong one, we get a new version of the FHKW scheme. The strongness of
the cross-authentication code helps its security against substitution attacks work in the security
proof of the FHKW scheme (see the proof of Lemma 3). Roughly speaking, when the randomness
of a ciphertext is disclosed to an adversary, all K1,K2, · · · ,KL are known to the adversary. In
this case, security against substitution attacks does not hold. However, if we replace the output
of ReSamp(i,K6=i, T ) for Ki and open the corresponding randomness, the adversary can not
tell the difference due to the strongness of the cross-authentication code. Consequently, security
against substitution attacks works: given K6=i and T , the adversary can not forge a T ′ such that
T 6= T ′ and XVer(Ki, i, T

′) = 1 with non-negligible probability.

Theorem 3. For any L > 1, assuming that XAC is a strong L-cross-authentication code, the
FHKW scheme is NC-CCA secure.

Proof. The main idea of this proof is similar to that of the proof of [5, Theorem 3]. First, we
construct a simulator S′ = (S′1, S

′
2) for the FHKW scheme.

Simulator S′:

– S′1(pk, 1
|M |): Parse pk = (hpk,H). For i ∈ [L], choose W̃i ← RSampleL and set Xi :=

SampleL(LΛ; W̃i). Compute t := H(X1, · · · , XL). For i ∈ [L], setKi := PubEvl(hpk,Xi, W̃i, t).
Set T ← XAuth(K1, · · · ,KL). Return the ciphertext C = (X1, · · · , XL, T ).

– S′2(M): Parse M = (M1, · · · ,ML). For i ∈ [L], if Mi = 1, set Wi := W̃i, R
XΛ
i ← RSample

and RKΛi ← RSample; if Mi = 0, generate (Wi, R
XΛ
i ) by Wi ← RSampleL and RXΛi ←

Explain(XΛ, Xi), and generate RKΛi with the following method: Run K ′i ← ReSamp(i,K6=i, T ),

where ReSamp is from the strong L-cross-authentication code XAC, setRKΛi ← Explain(KΛ,K ′i)
and update Ki := K ′i. Finally, return the randomness R = (Wi, R

XΛ
i , RKΛi )i∈[L].

With simulator S′, we will show that for any PPT adversary A, the two experiments
ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k) are computationally indistinguishable through a se-

ries of indistinguishable games. Technically, we denote the challenge ciphertext and its related
plaintext by C∗ and M∗, and write C∗ := (X∗1 , · · · , X∗L, T ∗) and M∗ := (M∗1 , · · · ,M∗L). De-

note A’s j-th decryption query by Cj := (Xj
1 , · · · , X

j
L, T

j), the corresponding plaintext by

M j = (M j
1 , · · · ,M

j
L), and define t∗, tj , K∗i and Kj

i similarly. Define K∗i := SecEvl(hsk,X∗i , t
∗),

Ki
j

:= SecEvl(hsk,Xj
i , t

j) and denote the final output of A in Game i by outputA,i. Without
loss of generality, we assume that A always makes q decryption queries, where q = poly(k).
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Game −2: Game −2 is the real experiment ExpNC-CCA-Real
FHKW,A (k). Hence

Pr
[
outputA,−2 = 1

]
= Pr

[
ExpNC-CCA-Real

FHKW,A (k) = 1
]
.

Game −1: Game −1 is the same as Game −2, except that in the challenge ciphertext gener-
ation, we abort the experiment (with A outputting 1) if there exist some distinct i, i′ ∈ [L]
such that X∗i = X∗i′ . By a union bound, we have that

|Pr
[
outputA,−1 = 1

]
− Pr

[
outputA,−2 = 1

]
| ≤ L(L− 1)

2|LΛ|
.

Game 0: Game 0 is the same as Game −1, except for the decryption oracle. In Game 0, if A
makes a decryption query Cj with (Xj

1 , · · · , X
j
L) 6= (X∗1 , · · · , X∗L) and tj = H(Xj

1 , · · · , X
j
L) =

H(X∗1 , · · · , X∗L) = t∗, we abort the experiment (without loss of generality, with A outputting
1). Since H is a collision-resistant hash function, we have that

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,−1 = 1

]
| ≤ AdvcrH,A′(k)

for a suitable PPT algorithm A′.

In the rest, we will use a hybrid argument to finish this proof. From Game 0 to Game L,
we will replace the challenge ciphertext C∗ and its related randomness R∗ with those generated
by simulator S′ step by step. Specifically, for any 0 ≤ m ≤ L, Game m is identical to Game 0,
except that for any i ≤ m, X∗i , K∗i and their related randomness are all generated by simulator
S′. Note that in Game L, the whole challenge ciphertext C∗ and the whole randomness R∗ are
both generated by simulator S′.

Looking ahead, if we can prove that for any 0 ≤ m ≤ L− 1, Game m and Game m+ 1 are
indistinguishable, we will have that Game 0 and Game L are indistinguishable. So Game −2
and Game L are indistinguishable. Note that Game L is identical to ExpNC-CCA-Sim

FHKW,A (k). Hence,
we can finish the whole proof.

Now we prove that for any 0 ≤ m ≤ L− 1, Game m and Game m+ 1 are indistinguishable.
This is through a series of indistinguishable games as well.

Game m.1: Game m.1 is identical with Game m.
Game m.2: Game m.2 is the same as Game m.1, except for the decryption oracle. In Game

m.2, for any decryption query Cj = (Xj
1 , · · · , X

j
L, T

j) and for any i ∈ [L], the challenger will

return M j
i = 0 directly if Xj

i /∈ LΛ, and behave just as in Game m.1 otherwise: compute

Ki
j

= SecEvl(hsk,Xj
i , t

j), and return M j
i = XVer(Ki

j
, i, T j). Note that the decryption oracle

in Game m.2 is inefficient and it doesn’t leak any information on hsk beyond hpk.
Let badm.2 (resp. badm.1) denote the event that in Game m.2 (resp. Game m.1), A makes

some decryption query Cj such that there is an Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1. Note that

Pr[badm.2] = Pr[badm.1] and that Game m.2 and Game m.1 are identical unless badm.2 or
badm.1 occurs. We present the following lemma with a postponed proof.

Lemma 2. Pr[badm.2] ≤ qL ·AdvimpXAC(k).

With the lemma, we have that

|Pr
[
outputA,m.2 = 1

]
− Pr

[
outputA,m.1 = 1

]
| ≤ Pr [badm.2] ≤ qL ·AdvimpXAC(k).
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Game m.3: Game m.3 is the same as Game m.2, except for the generation of K∗m+1 in the
challenge ciphertext. In this game, set K∗m+1 := SecEvl(hsk,X∗m+1, t

∗) if M∗m+1 = 0, and the
randomness of K∗m+1 is opened as Explain(KΛ,K∗m+1). When M∗m+1 = 0, X∗m+1 is chosen from
XΛ. If X∗m+1 /∈ LΛ, the perfect 2-universality of HPS implies K∗m+1 is uniformly distributed
over KΛ, which is exactly like Game m.2. Let subm.3 (resp. subm.2) denote the event that
X∗m+1 ∈ LΛ given M∗m+1 = 0 in Game m.3 (resp. Game m.2). Note that Pr[subm.3] =
Pr[subm.2] and that Game m.3 and Game m.2 are the same unless events subm.3 or subm.2
occurs. So we have that

|Pr
[
outputA,m.3 = 1

]
− Pr

[
outputA,m.2 = 1

]
| ≤ Pr [subm.2] =

|LΛ|
|XΛ|

.

Game m.4: Game m.4 is the same as Game m.3, except for the generation of K∗m+1 in the
challenge ciphertext. In this game, the way of computing K∗m+1 is modified again. If M∗m+1 =
0, compute K∗m+1 ← ReSamp(m+1,K∗6=m+1, T

∗). The randomness of K∗m+1 is still opened as
Explain(KΛ,K∗m+1). The strongness of XAC guarantees that K∗m+1 in Game m.4 and K∗m+1

in Game m.3 are statistically indistinguishable. Hence,

|Pr
[
outputA,m.4 = 1

]
− Pr

[
outputA,m.3 = 1

]
| ≤ Dist(k),

where Dist(k) is the statistical distance between K∗m+1 in Game m.4 and K∗m+1 in Game
m.3.

Game m.5: Game m.5 is the same as Game m.4, except that the decryption oracle works with
the original decryption rule. In Game m.5, for any decryption query Cj = (Xj

1 , · · · , X
j
L, T

j),

the challenger computes Ki
j

= SecEvl(hsk,Xj
i , t

j), and returns M j
i = XVer(Ki

j
, i, T j). Note

that the decryption oracle in Game m.5 is efficient again. Similarly, let badm.5 (resp. badm.4)
denote the event that in Game m.5 (resp. Game m.4), A makes some decryption query Cj

such that there is an Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1. Note that Pr[badm.5] = Pr[badm.4]

and that Game m.5 and Game m.4 are identical unless badm.5 or badm.4 occurs. We present
the following lemma with a postponed proof.

Lemma 3. Pr[badm.4] ≤ qL ·max{AdvimpXAC(k),AdvsubXAC(k)}.

With the lemma, we have that

|Pr
[
outputA,m.5 = 1

]
−Pr

[
outputA,m.4 = 1

]
| ≤ Pr [badm.4] ≤ qL·max{AdvimpXAC(k),AdvsubXAC(k)}.

Game m.6: Game m.6 is the same as Game m.5, except that in the challenge ciphertext gen-
eration, the challenger chooses X∗m+1 ← LΛ no matter whether M∗m+1 is 0 or 1, and X∗m+1 is
opened as Explain(XΛ, X∗m+1), if M∗m+1 = 0. Now the subset membership problem SMP can
be reduced to the problem of efficiently distinguishing Game m.6 from Game m.5. We have
that

|Pr
[
outputA,m.6 = 1

]
− Pr

[
outputA,m.5 = 1

]
| ≤ AdvSMP,A′′(k)

for a suitable PPT algorithm A′′. (Ifm+1 is not known to A′′, A′′ can guess it with probability
1
L .)

Combining the above results, we have that Game m.1 and Game m.6 are indistinguishable.
Now that Game m.6 is identical to Game m + 1, we have that Game m and Game m + 1 are
indistinguishable. What remains is to prove Lemma 2 and Lemma 3.
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Proof (of Lemma 2). Let badjm.2.i denote the event that A’s j-th decryption query Cj =

(Xj
1 , · · · , X

j
L, T

j) satisfies that Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1 in Game m.2. In Game m.2, A

has no information on hsk beyond hpk. For arbitrary (j, i) ∈ [q]×[L] and Xj
i /∈ LΛ, the perfect 2-

universality of EHPS implies that Ki
j

= SecEvl(hsk,Xj
i , t

j) is uniformly random in KΛ from A’s

point of view. Therefore, Pr
[
badjm.2.i

]
≤ AdvimpXAC(k). Note that badm.2 =

∨
(j,i)∈[q]×[L] bad

j
m.2.i.

By a union bound, we have that

Pr [badm.2] ≤
∑

(j,i)∈[q]×[L]

Pr
[
badjm.2.i

]
≤ qL ·AdvimpXAC(k).

Proof (of Lemma 3). Let badjm.4.i denote the event that A’s j-th decryption query Cj =

(Xj
1 , · · · , X

j
L, T

j) satisfies that Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1 in Game m.4. Let Khsk

m+1

denote the random variable SecEvl(hsk,X∗m+1, t
∗).

For arbitrary fixed (j, i) ∈ [q] × [L], we only consider Xj
i /∈ LΛ (otherwise there is nothing

to prove). If (Xj
i , t

j) 6= (X∗m+1, t
∗), the perfect 2-universality of EHPS implies that Ki

j
=

SecEvl(hsk,Xj
i , t

j) is uniformly random in KΛ from A’s point of view, since the only possible
information A has on hsk beyond hpk is K∗m+1, and K∗m+1 is not equal but related to Khsk

m+1 =

SecEvl(hsk,X∗m+1, t
∗) in Game m.4. Hence, Pr

[
badjm.4.i | (Xj

i , t
j) 6= (X∗m+1, t

∗)
]
≤ AdvimpXAC(k).

If (Xj
i , t

j) = (X∗m+1, t
∗) then (Xj

1 , · · · , X
j
L) = (X∗1 , · · · , X∗L), since Game 0 excludes hash

collisions. The decryption query Cj has to be valid, so T j 6= T ∗. Note that in this case, Ki
j

=
Khsk
m+1.

What the adversary knows is given by (K∗1 , · · · ,K∗m,K∗m+1,K
∗
m+2, · · · ,K∗L) and T ∗. Howev-

er, K∗m+1 = ReSamp(m + 1,K∗6=m+1, T
∗), which means that A’s information can be character-

ized by K∗6=m+1 and T ∗. The security against substitution attack of XAC guarantees that given

K∗6=m+1 and T ∗, A produces a T j 6= T ∗ such that XVer(Khsk
m+1, i, T

j) = XVer(Ki
j
, i, T j) = 1 with

probability at most AdvsubXAC(k), i.e., Pr
[
badjm.4.i | (Xj

i , t
j) = (X∗m+1, t

∗)
]
≤ AdvsubXAC(k).

Therefore, Pr
[
badjm.4.i

]
≤ max{AdvimpXAC(k),AdvsubXAC(k)}.

Lemma 3 follows from a union bound.

So the whole proof of Theorem 3 is finished. QED.

7 Conclusion

We provided a security analysis of the FHKW scheme of [5] and showed that the original
simulator of [5] is not sufficient to prove the NC-CCA security. We provided a refined version
of the FHKW scheme for single bit and proved its NC-CCA security. Our scheme does not
involve any cross-authentication code, avoiding the security problem that annoys the FHKW
scheme. To fix the security proof of the FHKW scheme, we introduced the notion of strong
cross-authentication code, applied it to the FHKW scheme, and proved that the new version of
the FHKW scheme is NC-CCA secure.
Open questions. There are two questions to be solved: 1. Whether every cross-authentication
code is also a strong one; 2. How to construct an NC-CCA secure PKE encrypting multi bits
from an NC-CCA secure PKE encrypting single bit.
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1. F. Böhl, D. Hofheinz and D. Kraschewski. On definitions of selective opening security. In: Cryptology ePrint
Archive, Report 2011/678 (2011)

2. M. Bellare, D. Hofheinz and S. Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In: Eurocrypt 2009. LNCS, vol. 5479, pp. 1-35. Springer, Heidelberg (2009)

3. R. Canetti, U. Friege, O. Goldreich and M. Naor. Adaptively secure multi-party computation. In: 28th ACM
STOC, pp. 639-648. ACM Press, New York (1996)

4. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In: Eurocrypt 2002. LNCS, vol. 2332, pp. 45-64. Springer, Heidelberg (2002)

5. S. Fehr, D. Hofheinz, E. Kiltz and H. Wee. Encryption schemes secure against chosen-ciphertext selective
opening attacks. In: Eurocrypt 2010. LNCS, vol. 6110, pp. 381-402. Springer, Heidelberg (2010)

6. C. Gao, D. Xie and B. Wei. Deniable encryptions secure against adaptive chosen ciphertext attack. In: ISPEC
2012. LNCS, vol. 7232, pp. 46-62. Springer, Heidelberg (2012)

7. D. Hofheinz. All-but-many lossy trapdoor functions. In: Eurocrypt 2012. LNCS, vol. 7237, pp. 209-227.
Springer, Heidelberg (2012)

8. B. Hemenway, B. Libert, R. Ostrovsky and D. Vergnaud. Lossy encryption: Constructions from general
assumptions and efficient selective opening chosen ciphertext security. In: Asiacrypt 2011. LNCS. Springer
(2011)

9. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In: STOC 2008. pp. 187-196.
ACM, New York (2008)

A In case algorithm XAuth is probabilistic.

In Section 4.3, we have claimed that if algorithm XAuth of XAC in the FHKW scheme is prob-
abilistic, with the aforementioned simulator S in Section 4, the FHKW scheme will be insecure
in the sense of NC-CCA for any positive integer L.

Now we show how to reach this conclusion.

Firstly, a slight modification to XAuth is needed. Because XAuth is probabilistic, there
exists an inner random number RXAuth used by XAuth during the encryption process (i.e.,
T ← XAuth(K1, · · · ,KL;RXAuth)). Note that the aforementioned simulator S should output
randomness R = ((Wi, R

XΛ
i , RKΛi )i∈[L], R

XAuth) according to the ciphertext C and its related

plaintext M , and that (Wi, R
XΛ
i , RKΛi )i∈[L] have been able to be recovered by the original S,

i.e., S should generate RXAuth according to T and (K1, · · · ,KL), which can be recovered from
R = (Wi, R

XΛ
i , RKΛi )i∈[L]. Therefore, we make a modification to XAuth: we require that XAuth

is efficiently “explainable”, which means that there is an efficient algorithm ExplainXAuth such
that RXAuth ← ExplainXAuth((K1, · · · ,KL), T ). For simplicity, we still use the original notations
S and XAuth after this modification.

Secondly, with the above modification, consider our main conclusion of this Appendix. As
the proof of Theorem 2, our aim is to construct an adversary A = (A1, A2) to distinguish the
two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k). The adversary A is the same as the

one in the proof of Theorem 2, except that in the decryption query stage, instead of choosing a
random K ′1, the adversary A uses the original K1, which can be recovered from randomness R =
((Wi, R

XΛ
i , RKΛi )i∈[L], R

XAuth). More specifically, in the first stage, A1 returns M = (0, · · · , 0) to
the challenger, and in the second stage, upon receiving the ciphertext C = (X1, · · · , XL, T ) and
randomness R, A2 recovers (K1, · · · ,KL) from R, computes T ′ ← XAuth(K1, · · · ,KL; R̃XAuth),
where R̃XAuth is uniformly random chosen from RXAuth, and returns C ′ = (X1, · · · , XL, T

′) as
his decryption query. Because XAuth is probabilistic, it is very easy for A to get a T ′ 6= T with
the above method. As a result, with overwhelming probability, if in ExpNC-CCA-Real

FHKW,A (k), A2 will
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receive M ′ = (0, · · · , 0) as the decryption result of C ′, and if in ExpNC-CCA-Sim
FHKW,A (k), A will receive

M ′ = (1, · · · , 1). Hence, A can distinguish ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).

B Proof of Theorem 2.

Proof. First, we construct a simulator SE for scheme E = (GenE ,EncE ,DecE).

Simulator SE :

– SE1(pk, 1): With pk = hpk, choose W̃ ← RSampleL and set X := SampleL(LΛ; W̃ ). Then set

K := PubEvl(hpk,X, W̃ ). Return the ciphertext C = (X,K).

– SE2(M): If M = 1, set W := W̃ and choose RXΛ ← RSample, R
KΛ ← RSample; otherwise

choose W ← RSampleL, and set RXΛ ← Explain(XΛ, X), RKΛ ← Explain(KΛ,K). Return the
randomness R = (W,RXΛ , RKΛ).

With simulator SE , we will show that for any PPT adversary A, the two experiments
ExpNC-CCA-Real

E,A (k) and ExpNC-CCA-Sim
E,A (k) are computationally indistinguishable through a series

of indistinguishable games. Technically, we denote the challenge ciphertext and its related plain-
text by C∗ and M∗, and write C∗ := (X∗,K∗). Denote A’s decryption query by C ′ := (X ′,K ′)
and let its corresponding plaintext be M ′. At the same time, we define K∗ := SecEvl(hsk,X∗),
K ′ := SecEvl(hsk,X ′) and the final output of A in Game i by outputA,i.

Game 0: Game 0 is the real experiment ExpNC-CCA-Real
E,A (k). By our above notations,

Pr
[
outputA,0 = 1

]
= Pr

[
ExpNC-CCA-Real

E,A (k) = 1
]
.

Game 1: Game 1 is the same as Game 0, except for the decryption oracle. In Game 1, if A
makes a decryption query C ′ = (X ′,K ′) such that X ′ /∈ LΛ, the challenger will return
M ′ = 0 directly, and if X ′ ∈ LΛ, the challenger will answer the query as in Game 0: compute
K ′ = SecEvl(hsk,X ′), and if K ′ = K ′, return M ′ = 1, else return M ′ = 0. Note that the
decryption oracle in Game 1 is inefficient and it doesn’t leak any information of hsk beyond
hpk. Let badi denote the event that in Game i, A makes a decryption query C ′ = (X ′,K ′)
such that X ′ /∈ LΛ and K ′ = K ′. Note that Pr[bad1] = Pr[bad0] and that Game 1 and Game
0 are identical unless the respective bad1 and bad0 occur. The perfect 2-universality of HPS
implies Pr[bad1] = Pr[bad0] = 1

|KΛ| . So we have

|Pr
[
outputA,1 = 1

]
− Pr

[
outputA,0 = 1

]
| ≤ Pr [bad1] =

1

|KΛ|
.

Game 2: Game 2 is the same as Game 1, except that in the challenge ciphertext genera-
tion, set K∗ = SecEvl(hsk,X∗) for M∗ = 0 and then the randomness of K∗ is opened as
Explain(KΛ,K∗). In Game 1 if M∗ = 0, K∗ also can be seen as being opened by the way
Explain(KΛ,K∗). In Game 2, since the only information of hsk beyond hpk is released in
the computation of K∗, the perfect 2-universality of HPS implies that if X∗ /∈ LΛ, K∗ is
uniformly distributed over KΛ. Let subi denote the event that in Game i when M∗ = 0,
X∗ ∈ LΛ. Note that Pr[sub2] = Pr[sub1] and that Game 2 and Game 1 are the same unless
the respective events sub2 and sub1 occur. So we have

|Pr
[
outputA,2 = 1

]
− Pr

[
outputA,1 = 1

]
| ≤ Pr [sub2] =

|LΛ|
|XΛ|

.
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Game 3: Game 3 is the same as Game 2, except that the decryption oracle works with the orig-
inal decryption rule. In Game 3, receiving a decryption query C ′ = (X ′,K ′), the challenger
sets K ′ = SecEvl(hsk,X ′), then returns M ′ = 1 if K ′ = K ′, or returns M ′ = 0 if K ′ 6= K ′.
Note that the decryption oracle in Game 3 is efficient. Similarly, badi denotes the event that
in Game i, A makes a decryption query C ′ = (X ′,K ′) such that X ′ /∈ LΛ and K ′ = K ′. Note
that Pr[bad3] = Pr[bad2] and that Game 3 and Game 2 are identical unless the respective
bad3 and bad2 occur. Since the only information of hsk beyond hpk is released in the com-
putation of K∗, the perfect 2-universality of HPS implies that Pr[bad3] = Pr[bad2] = 1

|KΛ| .
So

|Pr
[
outputA,3 = 1

]
− Pr

[
outputA,2 = 1

]
| ≤ Pr [bad3] =

1

|KΛ|
.

Game 4: Game 4 is the same as Game 3, except that in the challenge ciphertext generation,
the challenger chooses X∗ ← LΛ if M∗ = 0. (I.e., in Game 4, choose X∗ ← LΛ whatever M∗

is.) Then X∗ is opened as Explain(XΛ, X∗) in this case. Note that in Game 3, if M∗ = 0, X∗

also can be seen as being opened by the way Explain(XΛ, X∗). Since SMP is hard,

|Pr
[
outputA,4 = 1

]
− Pr

[
outputA,3 = 1

]
| ≤ AdvSMP,A(k).

Combining all the above results, we have

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,4 = 1

]
| ≤ 2

|KΛ|
+
|LΛ|
|XΛ|

+ AdvSMP,A(k).

Note that Game 4 is just the experiment ExpNC-CCA-Sim
E,A (k). So we have

AdvNC-CCA
E,A,S (k) = | Pr

[
ExpNC-CCA-Real

E,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim

E,A (k) = 1
]
|

≤ 2
|KΛ| + |LΛ|

|XΛ| + AdvSMP,A(k).

QED.


