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Abstract

We investigate how information leakage reduces computational entropy of a random variable
X. Recall that HILL and metric computational entropy are parameterized by quality (how
distinguishable is X from a variable Z that has true entropy) and quantity (how much true
entropy is there in 7).

We prove an intuitively natural result: conditioning on an event of probability p reduces the
quality of metric entropy by a factor of p and the quantity of metric entropy by log, 1/p (note
that this means that the reduction in quantity and quality is the same, because the quantity of
entropy is measured on logarithmic scale). Our result improves previous bounds of Dziembowski
and Pietrzak (FOCS 2008), where the loss in the quantity of entropy was related to its original
quality. The use of metric entropy simplifies the analogous the result of Reingold et. al. (FOCS
2008) for HILL entropy.

Further, we simplify dealing with information leakage by investigating conditional metric
entropy. We show that, conditioned on leakage of A bits, metric entropy gets reduced by a
factor 2* in quality and \ in quantity.

*Most of the results of this paper have been incorporated into [FOR12al (conference version in [FOR12b]), where
they are applied to the problem of building deterministic encryption. This paper contains a more focused exposition
of the results on computational entropy, including some results that do not appear in [FORI12al]: namely, Theorem

@, Theorem proof of Theorem @, and results in Appendix @



1 Introduction

Suppose you have a pseudorandom generator that, during the computation, leaks some function of
the seed to an adversary. How pseudorandom are the resulting outputs?

More generally, suppose you have a distribution that has computational entropy. Suppose some
correlated information leaks to an adversary. How much computational entropy is left?

These questions come up naturally in the context of leakage-resilient cryptography. The question
of pseudoentropy with a leaked “seed” has been addressed before primarily in two works. Dziem-
bowski and Pietrzak posed the question —about pseudorandom generators— in their construction
of a leakage-resilient stream cipher [DP08]. Reingold et. al. [RT'TVO0S8| consider the general case
of pseudoentropy of a random variable after a particular leakage in the context of computational
versions of the dense model theorem [GTO0S].

We consider both the leakage of a particular value and of a random variable. We provide simple
answers in both situations (Lemma Theorem . Essentially,

If X bits of information are leaked, then the amount of computational entropy decreases
by at most A.

Naturally, the answer becomes so simple only once the correct notion of entropy is in place. Our
result holds for average-case Metric* entropy (defined in [BSW03, [DP0S]). In case this notion of
entropy seems esoteric, we point out that it is convertible (with a small loss) to average-case HILL
entropy [HLROT] using the techniques of [BSW03], which can be used with randomness extractors
to get pseudorandom bits [DORS08, [HLROT7].

When speaking about HILL entropy and its variants, one has to keep in mind that what matters
is not only the number of bits of entropy, but also its quality. Namely, HILL entropy of a variable X
is defined as the amount of entropy in a distribution Z that is indistinguishable from X (Metric*
entropy is defined similarly; the differences are discussed in Section . Indistiguishability is pa-
rameterized by the maximum size of the distinguishing circuit D and the maximum quality of its
distinguishing—i.e., e = | E[D(X)] — E[D(Z)]|. In our results, both the amount of entropy and its
quality decrease: that is, € increases by a factor of 2*. We note that because entropy is measured
on a logarithmic scale (min-entropy is simply the negative logarithm of maximum probability), this
loss in the quality and the quantity is actually the same.

Average-case entropy works well in situations in which not all leakage is equally informative. For
instance, in case the leakage is equal to the Hamming weight of a uniformly distributed string, some-
times the entropy of the string gets reduced to nothing (if the value of the leakage is 0 or the length
of the string), but most of the time it stays high. For the information-theoretic case, it is known
that deterministic leakage of A\ bits reduces the average entropy by at most A [DORS08, Lemma
2.2(b)] (the reduction is less for randomized leakage). Thus, our result matches the information-
theoretic case for deterministic leakage. For randomized leakage, our statement can be somewhat
improved (Theorem [3.4.3).

If a worst-case, rather than an average-case, guarantee is needed, we also provide a statement
of the type “with probability at least 1 — § over all possible leakage, entropy loss due to leakage is
at most A —log1/0” (Lemma . Statements of this type are used for computational entropy in
[DPO08, [FKPR10]. If one is interested in the entropy lost due to a specific leakage value, rather than



over a distribution of leakage values, we provide an answer, as well (Lemma : if the leakage
has probability p, then the amount of entropy decreases by log 1/p and the quality decreases by a
factor of p (i.e., € becomes €¢/p). Reingold et. al. [RI'TV0S] provide a similar formulation for HILL
entropy. The use of metric entropy allows for a tighter reduction than [RTTVO0S8] and allows us to
eliminate the loss in circuit size that occurs in the reduction of [RTTV0S].

We also provide a chain rule: namely, our result for average-case Metric* entropy holds even if
the original distribution has only average-case Metric* entropy. Thus, in case of multiple leakages,
our result can be applied multiple times. The price for the conversion from Metric* to HILL entropy
needs to be paid only once. The chain rule highlights one of the advantages of average-case entropy:
if one tried to use the worst-case statement “with probability at least 1 — 9, entropy is reduced
by at most A + log1/6” over several instances of leakage, then total entropy loss bound would be
greater and the probability that it is satisfied would be lower, because the ds would add up.

Our result can be used to improve the parameters of the leakage-resilient stream cipher of [DP0S]
and leakage-resilient signature scheme of [FKPR10].

2 Entropy and Extraction

We begin by clarifying previous definitions of entropy and introducing a few natural definitions for
conditional entropy.

2.1 Preliminary Notation

Let z € X denote an element x in the support of X. Let z «— X be the process of a sampling
x from the distribution X. Let U, represent the random variable with the uniform distribution
over {0,1}". Let 0(X,Y) be the statistical distance between random variables X,Y drawn from
a set x, defined as §(X,Y) = %Z$€X|Pr(X = z) — Pr(Y = x)|. We define several classes of
distinguishers, let ng’{o’l} be the set of all deterministic circuits of size s with binary output
{0,1}, let ng’[o’l] be the set of all deterministic circuits of size s with output in [0,1], and let

Dza"d’{o’l},pza"d’[o’” as the set of probabilistic circuits without {0,1} and [0, 1] respectively. We

say s ~ s’ if the two sizes s, s’ differ by a small additive constant. Given a circuit D, define the
computational distance §” between X and Y as 67 (X,Y) = |E[D(X)] — E[D(Y)]|. We denote the
size of a circuit D as |D|. For a probability distribution X, let |X| denote the size of the support
of X, that is | X| = [{z| Pr[X = z] > 0}|. All logarithms without a base are considered base 2, that
is, log z = log, x.

2.2 Unconditional Entropy
We begin with the standard notion of min-entropy and proceed to computational notions.
Definition 1. A distribution X has min-entropy at least k, denoted Hoo(X) > k if

Vo e X, Pr[X =z] <27F,

Computational min-entropy has two additional parameters: distinguisher size s and quality e.
Larger s and smaller ¢ mean “better” entropy.



Definition 2. ([HILL99]) A distribution X has HILL entropy at least k, denoted H{™(X) > k
if there exists a distribution Y where H(Y) > k, such that VD € D;and’{o’l}, SP(X,Y) <e.

For HILL entropy drawing D from Dget’{o’l}, D?et’“””,pg“"d’{o’l}, Dgand’[o’l] is essentially equiv-

alent, as shown in the following lemma (discovered jointly with the authors of [DP08]), whose proof
in Appendix [A]

Lemma 2.1. M (X) > k & HIY(X) > ko HPYY(X) > ko HUL (X) > k, for s ~ sy =
S3 =X S4.

Thus we simply adopt the notation H¥t and use the distinguisher that meets our needs.

Switching the quantifiers of Y and D gives us the following, weaker notion.

Definition 3. ([BSW03]) A distribution X has Metric entropy at least k, denoted H!$**¢(X) >
k if VD € D01 there exists a distribution Y with Heo(Y) > k and 62(X,Y) < e.

Similarly to HILL entropy drawing D from ng’{o’l}, ng’[o’l] or Df;“”d’[o’” instead of DZ“"d’{O’l}

in the above definition gives us different notions. Of particular interest is drawing from the set

Dget’[o’”, which we call “metric-star” entropy and denote Hg{itric* (this notation was introduced in

[DP08]). For our conditional lemma we will also consider drawing from the class Dget’{o’l}, which

we call “metric-prime” entropy and denote Hg;tric,.
Unfortunately, not all of the equivalencies hold for metric entropy for metric entropy (the proof
is also in Appendix [A]).

Lemma 2.2. H"/¢(X) > k = H'*™(X) > k, for s’ ~ s.

It is immediate that HFTM(X) > k = H'™¢(X) > k and HEM (X) > k= HI™C(X) > k.
For the opposite direction, the implication is known to hold only with a loss in quality and circuit
size, as proven by Barak, Shaltiel, and Wigderson [BSW03, Theorem 5.2]|H

Theorem 2.3. ([BSW03]) Let X be a discrete distribution over a finite set x. For everye€, egrrr >

0,€ > etemrrr, k, and s, if HYS™ (X) > k then HETY (X) > k where sprrr = Q(efrr s/ log|x|)-

Combining the previous results we get the following result:

Corollary 2.4. Let X be a discrete distribution over a finite set x. For every €, egrrr, > 0, >
e+enrnn, k and s ingfitric*(X) >k then HEIL (X)) > k where sprrr = Q%7 .8/ log|x|).-

€,SHILL

Proof. The corollary is a straightforward application of Theorem Lemma [2.2, and Lemma
2.1 O

!The theorem statement in [BSWO3] does not match what is being proven. The proof seems correct with respect
to Metric® and HILL entropies. We generalize the theorem slightly to allow for distributions over a generic set x
rather than just {0,1}". Reingold et. al. [RT'TV08, Theorem 1.3] contains a similar conversion but it is tightly
coupled with their proof.
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Figure 1: Known state of equivalence for HILL and Metric Entropy.

2.3 Randomness Extractors

Originally defined for information-theoretic, rather than computational entropy, an extractor takes
a distribution X of min-entropy k, and with the help of a uniform string called the seed, “extracts”
the randomness contained in X and outputs a string of length m that is almost uniform even given
the seed.

Definition 4 ([NZ93]). Let x be a finite set. A polynomial-time computable deterministic function
ext : x x {0,1}¢ — {0,1}™ x {0,1}% is a strong (k, €)-extractor if the last d outputs of bits of ext
are equal to the last d input bits (these bits are called seed), and §(ext(X,Uy), Uy, x Uy) < € for
every distribution X on x with Hy(X) > k. The number of extracted bits is m, and the entropy
loss is k — m.

It turns out that extractors can be applied to distributions with computational entropy to
obtain pseudorandom, rather than random, outputs: that is, outputs that are computationally
indistinguishable from, rather than statistically close to, uniformly random strings. This fact is
well-known for HILL entropy. However, we have not seen it proven for Metric entropy and, although
the proof is quite straightforward, we provide it here for completeness. (Since HILL entropy implies
Metric entropy, this proof also works for HILL entropy.)

Theorem 2.5. Let ext : x x {0,1}% — {0,1} x {0,1}? be a (k, €cut)-extractor, computable by
circuits of size Sext. Let X be a distribution over x with [ metric (X)>k. ThenVD € D;,and’{o’l},

€metric,S

!~ ,
where ' = Smetric — Sext,

5D(ext(X, Ud), Um X Ud) < €oxt + Emetric -

rand,{0,1}
S/

Proof. We proceed by contradiction. Suppose not, that is, 3D € D such that

5D(eXt(X, Ud), Un % Ud)) > €ext T Emetric-

We use D to construct a distinguisher D’ to distinguish X from all distributions Y where Hoo(Y) >
k, violating the metric-entropy of X. We define D’ as follows: upon receiving input o € x, D’
samples seed «— Uy, runs 3 < ext(q, seed) and then runs D(f3, seed) on the result. Note that

D e D?;“”d’{o’l} where s &~ 8’ + Sext = Smetric- Thus we have the following VY, where Hoo(Y) > k:
§P'(X,Y) = 6P (ext (X, Uy), ext (Y, Uy))
> 6P (ext (X, Uy), Uy, x Uy) — 6P ((ext(Y,Uy), Up x Uyg)

> €ext T Emetric — €ext = Emetric



Thus D’ is able to distinguish X from all Y with sufficient min-entropy. This is a contradiction. [

Unfortunately, the theorem does not extend to Metric* entropy, because the distinguisher D’
we construct in this proof is randomized. The only way to extract from Metric* entropy that we
know of is to convert Metric* entropy to HILL* entropy using Theorem (which incurs some
loss) and then use Theorem [2.5

2.4 Conditional Entropy and Extraction

Conditional entropy measures the entropy that remains in a distribution after some information
about the distribution is leaked. There are many different possible definitions. We follow the
definition of “average min-entropy” [DORS08|, Section 2.4]; the reasons for that particular choice
of definition are detailed there. Because min-entropy is the negative logarithm of the highest
probability, average min-entropy is defined the negative logarithm of the average, over the condition,
of highest probabilities.

Definition 5 ([DORS0§]). Let (X,Y’) be a pair of random variables. The average min-entropy
of X conditioned on Y is defined as

Hoo(X|Y) def _ 1og[1)}§/;(2—Hoo(X|Y))] = —log Z Pr[Y = y|2~Hoe(XIY=0)
yeyY

Distributions of average min-entropy compose in the natural way. That is, combining multiple
distributions of average min-entropy cannot decrease the average min-entropy. This is formalized
in the following lemma.

Lemma 2.6. Let 71, ..., Z, be discrete distributions. Define the distribution Z as a convexr combi-
nation of Z1, ..., Z,. That is

Pr[Z = 7] et a1 Pr[Z) = 2] + ...a, Pr[Z,, = 7]

where ", o = 1. Then Hoo(Z|Y) > minj—1 ., Hoo(Zi]Y).

Proof. Tt suffices to show the case where Z is a convex combination of Z;, Zs. Let
v =min{Hy(Z1,Y), Hoo(Z,Y)}.

Recall our definition of Z,

Pr[Z =z] =aPr[Z; = 2] + (1 — a) Pr[Zy = 7]



We compute the average min-entropy of Z conditioned on Y:

Hyo(ZY) = —log ¥ Pr[y = yj2~He(ZV=y)

yey
:—logZPr maxPr[ =z|Y =]
yey
= —log Z Pr[Y = ymax (aPr[Z) = z|Y = y| + (1 — o) Pr[Z2 = 2|Y = y))
yey z€Z
> —logy%;/Pr[Y yla gé%xPr[Zl =zlY =y|+ (1 —«a) Izléaé)ZCPl"[Zg = z|Y =]
= —log Z Pr[Y = y]a2_H°°(Zl|Y:y) +(1- a)2_H°°(22|Y:y)
yeyY
= — 10ga Z Pr[Y = y]Q_HOO(Zl‘Y:y) 1 _ OZ Z PI’ Hoo(ZZ‘Y:y)
yey yey

— —loga2 H=(1Y) 4 (1 — )2~ H(22]Y)
> —loga2™ + (1 —a)27”
=—log2™" =v

O]

The definition of average min-entropy has been extended to the computational case by Hsiao,
Lu, Reyzin [HLRO7].

Definition 6. ([HLROT]) Let (X,Y") be a pair of random variables. X has conditional HILL entropy
at least k conditioned on Y, denoted HIT™(X|Y') > k if there exists a collection of distributions

Z, for each y € Y, giving rise to a joint distribution (Z,Y’), such that Hoo(Z|Y) > k and VD €
DI S (X,Y), (2,7)) < e

Again, we can switch the quantifiers of Z and D to obtain the definition of conditional metric
entropy.

Definition 7. Let (X,Y) be a pair of random variables. X has conditional metric entropy at least
k conditioned on Y, denoted by HYS*"*¢(X|Y) > k, if VD € DL 01 there exists a collection of
distributions Z, for each y € Y, giving rise to a joint distribution (Z,Y’), such that Hw(Z|Y) > k
and 6P ((X,Y),(Z,Y)) <e

Conditional Metric* can be defined similarly, replacing D"*¢10:1} with D4t We also define
a restricted version of conditional metric entropy which we call decomposable metric entropy. The
intuition is that a random variable has decomposable metric entropy or Metric*—d, if it not only
has conditional metric entropy but each outcome Y = y has metric entropy.

Definition 8. Let (X,Y’) be a pair of random variables. X has decomposable metric entropy at
least k conditioned on Y, denoted by H gitric**d(X |Y)) > k, if the following conditions hold:

1. H'= (X |Y) > k



2. There exist two functions k(-) : Y — RT U {0} representing the metric entropy for each y and
€(-) : Y — RT U {0} representing the quality of distinguishing for each y such that:

HYEW 2 (XY = y) > k(y)

Zer PrlY = yle(y) < €
HYwwie" (X|Y) = —log (Eyey [27*W)]) > k

This distinction is important for systems where conditional entropy is shown using technique
outside of “information leakage”. For example, consider a semantically secure public key encryp-
tion system. Then by semantic security: ngstric* (M|X = Encpg(m),PK) > |m| for some ¢, s.
However, HI'***i" (M|X = X(M,PK = pk), PK = pk) = 0 for all pk because the distinguisher
can encode the secret key.

The same relations among the notions of conditional entropy hold as in the unconditional case

For example, similar to [BSW03|, Theorem 5.2] we can show a conditional equivalence of Metric
and HILL entropy:

Theorem 2.7. Let X be a discrete discrete distribution over a finite set x1 and let Y be a discrete
random variable over xo. For every e,egrrr, > 0,€ > e+ eyrpr,k and s, if Hgitric*(X\Y) >k
then HEM™L  (X|Y) > k where sppp = Q(E%{ILLS/IOg Ix1]]x2])-

€ SHILL

Proof. The proof proceeds similarly to [BSW03, Theorem 5.2]. We will assume that HZ'XE - (X]Y) <

€,SHILL

k and seek to show that HM™¢(X|Y) < k. Assume that HF™: (X|Y) < k. That is,

€,SHILL
VZ, Heo(Z|Y) > k there exists D € DO guch that 6P((X,Y),(Z,Y) > €. We begin by
showing a change of quantifiers similar to [BSW03, Lemma 5.3]:

Claim 2.8. Let X be a distribution over x1 and let Y be a discrete random variable over xo. Let
C be a class that is closed under complement. If for every Z with ﬁ(Z|Y) > k there exists a D € C
such that 6P ((X,Y),(Z,Y) > € then there is a distribution D over C such that for every Z with
Ho(Z|Y) > k

E [D(X,Y)—=D(Z,Y)] >

Proof. We use the minimax theorem of [VN2§]:

Theorem 2.9. ([VN28]) For every game g there is a value v such that

max min §(a, b) = v = min max j(a, b)
&GA beB BEB acA

We will use the minimax theorem to change quantifiers. We define our game as follows: let
A% ¢ 1ot B (21.0(ZY) > k) and let ¢(D, 2) Y D(X,Y) — D(Z,Y). By Lemma 2.6 we
know that Vb € B, ﬁw(élY) > k. Thus, both B and B are the sets of all distributions with average
min-entropy at least k. Then by assumption VZ € B,3D € A such that [D(X,Y) — D(Z,Y)| > €.
It should also be clear that there must 3D € A such that D(X,Y) — D(Z,Y) > €. Now we know
that v = min;_ maxaea §(a, b) = mingep maxpec(D(X,Y) — D(Z,Y)) > €. Then by Theorem
max,  ; Milpe g g(a,b) > €. That is there is a distribution D over the class of distinguishers C
such that E,,_ 5 D(X,Y) — D(Z,Y) > €. This completes the proof of the claim. O

7



Our remaining task is to approximate a distribution of distinguisher D by several distinguishers
in its support where the resulting distinguisher still has advantage at least €. Define n = log |x1||x2]
Choose t = 8n/e%HLL samples D1, ..., Dy from D and define

t
1
DlDl,...,Dt(q"a y) = E ZDZ($73/)

i=1
Then by Chernoff’s inequality Vz,y € xi1 X X27PrDl,....,Dt<—ﬁHD/Dl,...,Dt(:C’y) —E,_plz,y)| >
enrrs/2) < 272" Thus there exists Dy, ..., Dy such that Vz,y, |Dp, .. p,(xy) —Ep_pD(x,y) <
enrrL/2. Thus VZ,67P0e(X,Y),(Z,Y) > € — eyyrr > €. Lastly, D)y p is of size
Qlog [xllxalsarre/etnL) = s.
This completes the proof. ]

Average-case extractors, defined in [DORSO08, Section 2.5], are extractors extended to work with
average-case, rather than unconditional, min-entropy. It is also shown there that every extractor
can be converted to an average-case extractor with some loss, and that some extractors are already
average-case extractors without any loss.

Definition 9. Let x1, x2 be finite sets. An extractor ext is a (k, €)-average-case extractor if for all
pairs of random variables X, Y over x1, x2 such that Ho(X|Y) > k, we have 6((ext(X,Uy),Y), Up X
Ud X Y) <e.

Similar to extractors in the case of unconditional entropy, average-case extractors can be used
on distributions that have Metric (and therefore also on distributions that have HILL or HILL*)

conditional entropy to produce psuedorandom, rather than random outputs. The proof is similar
to [HLRO7, Lemma 5].

3 Main Results: Computational Entropy after Leakage

We first present our main results. Proofs are presented in Section[3.4] As a starting point, consider
Lemma 3 of [DP0§], modified slightly to separate the quality of entropy parameter e; from the
confidence parameter e (both are called € in [DP0S]):

Lemma 3.1 ([DP08, Lemma 3]). Let prg : {0,1}* — {0,1}* and f : {0,1}" :— {0,1}* (where
1 <A <n<v) be any functions. If prg is a (€prq, s)-secure pseudorandom-generator, then for any
€1,€2, A > 0 satisfying €prg < 6162/2’\ — Q_A, we have with X ~ U,,

P I (rg(X)|f(X) =9) 2 v - A 21— oy (1)

where s’ ~ s.

Our results improve the parameters and simplify the exposition. Our main theorem, proven in
Section [3.4.2] is as follows:



Theorem 3.2. Let X,Y be discrete random variables. Then

HISE4(X[Y) > HIS™ (X) — log Y|

where s’ ~ s.

Intuitively, this theorem says that the quality and quantity of entropy reduce by the number of
leakage values. It seems unlikely that the bounds can be much improved. The loss in the amount
of entropy is necessary when, for example, X is the output of a pseudorandom generator and the
leakage consists of log |Y| bits of X. The loss in the quality of entropy seems necessary when the
leakage consists of log |Y'| bits of the seed used to generate X. (However, we do not know how to
show that both losses are necessary simultaneously.)

The theorem holds even if the metric entropy in X is also conditionalﬂ (see Theorem for the
formal statement), and thus can be used in cases of repeated leakage as a chain rule.

This theorem is more general than Lemma because it applies to any discrete random
variables with sufficient entropy, rather than just the output of a pseudorandom generatorﬂ

Because of the average-case formulation, it is also simpler. In addition, the average-case formu-
lation allows one to apply average-case extractors (such as universal hash functions) without the
additional loss of ez (after the conversion to HILL entropy, see Corollary and handles cases of
repeated leakage better (because one does not have to account for e; multiple times).

Simplicity and generality aside, this result is quantitatively better. To make the quantitative
comparison, we present the following alternative formulation of our result, in the style of [DP0S§|,
Lemma 3

Lemma 3.3. Let X,Y be discrete random variables with |Y| < 2* and H!***}"(X) > v, then for
any €1, €2, A > 0 satisfying eent < €1€2/2> and 272 < e9/27,

Pr [H'F (XY =¢) > v —A)| > 1
yey ?

where s’ ~ s.

To compare the bounds, observe that we have removed ¢; from 272, because the constraint
€prg < €162/2) — 272 implies that €prg < €162/2* and €€y /2 > 274,

3.1 Structure of the Proof

We begin by presenting Theorem 1.3 of [RT'TV0S], restated in our language, which provides a
similar result for HILL entropy.

Lemma 3.4 ([RTTVO0S8, Theorem 1.3]). Let X,Y be discrete random variables. Then
Hg g (XY =y) > HIFH(X) —log 1/ P, (2)

where Py, = Pr[Y =y],e = Q(¢/P,), and s’ = s/poly(P,/¢,log1/P,)

2More precisely, it must also be decomposable, see Definition
3The output of a pseudorandom generator has full HILL entropy and thus full Metric* entropy.



The works of [DPOS|[RTTVO0S| both utilize the proof technique presented in Figure (quality,
quantity parameters are removed for clarity). In our lemma, we focus on the second conversion
showing that

HMetric<X) 2 V= HMetriC(X|Y — y) Z v — A

HHILL(X) Z v

HMetric(X‘y — y) Z v—A

Lossless

[PAON

Loss in
circult size

HHILL(X’Y — y) Z v—A HMetric(X) Z v

Figure 2: Structure of proof in [DP0§], [RTTVO0S]

The use of Metric*—d entropy still captures the interesting aspects of [DP08] and [RTTV0S|
and allows us to provide an tight reduction and will allow the proof of a “chain rule” (Theorem
. This is because the chain rule only uses the second step multiple times, converting back to
HILL entropy only once.

We now state the main technical lemma, a given leakage value decreases the Metric* entropy
quality and quantity proportionally to its probability:

Lemma 3.5. Let X,Y be discrete random variables. Then
HIPEES (X[Y = y) > HIS™(X) —log 1/P, (3)
where P, = Pr[Y =vy] and s’ =~ s.

The lemma is quite intuitive: the more surprising a leakage value is, the more it decreases the
entropy. Its proof proceeds by contradiction: assuming that a distinguisher D exists for X|Y =y,
we build a distinguisher D’ for X. The structure of the proof is similar to the structure of the
proof of [DP08]. Here is the outline of the proof (see Section for the details). Let v =
HYie" (X)), € =€/ P,.

1. Suppose D distinguishes X|Y = y from any distribution Z of min-entropy v—log 1/ Pr[Y = y]
with advantage €¢.. Show that either for all such Z, E[D(Z)] is lower than E[D(X|Y = y)]
by at least €, or for all such Z, E[D(Z)] — € is higher than E[D(X|Y = y)] by at least €.
Assume the former without loss of generality. This initial step allows us to remove absolute
values and to find a high-entropy distribution Z* on which E[D(Z7)] is the highest.

2. Show that there exists a distinguisher D’ that also has advantage € but, unlike D, outputs
only 0 or 1. This is done by finding a cutoff a: if D’s output is above «, it D’ will output 1,
and otherwise it will output 0.

10



3. Show that for every every z outside of ZT D’ outputs 0, and that ZT is essentially flat. Use
these two facts to show an upper bound on E[D'(W)] for any W of min-entropy v.

4. Show a lower bound on E[D'(X)].

Theorem [3.2] follows in a straightforward way from Lemma [3.5]. In fact, the lemma allows us to
prove a stronger version—a chain rule. However, our current proof must use the stronger notion of
decomposable metric entropy.

Theorem 3.6. Let X,Y1,Ys be discrete random variables. Then

HYS (X Yy, Ya) > HIS™ (X |Y)) — log | V2

€|Ya|,s’
where s’ ~ s.

The proof of the theorem, presented in Section first translates the conditional Metric*—d
entropy of X|Y] to the Metric* entropy for each outcome Y7 = y;. We then apply Lemma and
obtain conditional Metric* entropy by averaging over all points in Y7, Y5. Note that Y7, Y5 do not
need to be independent. (Indeed, this makes sense: if two leakage functions are correlated, then
they are providing the adversary with less information.)

This combined with Theorem allows us to state a HILL-entropy version, as well.

Corollary 3.7. Let X,Y1,Ys be discrete random variables and let ey, > 0. Then

HV (X11,Y2) > HI™< ~9(X Y1) — log Y2

€|Y2|+e€ntL, SurrL
h _ Q( GI%ILLS )
WHere SHILL = 2\ iog [X |V [[Va])*

3.2 HILL = HILL version
To facilitate comparison with [RTTV08] we present a “HILL-to-HILL” version of Lemma

Corollary 3.8. Let X be a discrete random variable over x and letY be a discrete random variable.
Then,

HE (XY =y) > HITH(X) —log1/P, (4)
where Py = Pr[Y =yl e =€¢/P,+ enrrr, and s = Q(se%;;1/log|x|).-

The Corollary follows by combining Lemma [3.5) and Corollary 2.4l By setting egrrr, = Q(e/P,)
one obtains the following result:

Corollary 3.9. Let X be a discrete random variable over x and letY be a discrete random variable.
Then,

HE (XY =y) > HIH(X) —log1/P, ()
where P, = Pr[Y =y|,¢ = Q(¢/P,), and s = Q(s(e/Py)?/log |x]).

Recall the result from [RTTVO0S]:

11



Lemma Let X, Y be discrete random variables. Then
Hg g (XY =y) > HiZM(X) — log 1/ P, (6)
where Py = Pr[Y =y|,e = Q(e/P,), and s = s/poly(P,/e,log1/P,)

Note all the parameters are the same, except the losses in circuit size. The exact comparison is
difficult because the polynomial in [RTTV0S| is not specified, and log |x| may be bigger or smaller
than log 1/P,. However, the current work has the added benefit of the chain rule (Theorem [3.6])
before the conversion back to HILL entropy. In the case of repeated leakage, the gain of only paying
the Metric to HILL conversion once should dominate the difference between the two results.

3.3 Improvement for randomized leakage

There are many meaningful situations where there is randomness inherent in Y that has nothing
to do with X. In this case we can prove a stronger result than in Theorem |3.2] The result is:

9—Hoo (X|Y)
ming e x Pr[X=xz|"

Theorem 3.10. Let X, Y be discrete random variables and let L =
HYSr1¢" (X)) — log L where s’ ~ s.

Then H®5H (X[|Y) >

Notice that this result is the same as Theorem except |Y| is replaced with L. For a uniform
X, this theorem provides an optimal bound:

r] Metric* Metric*
HOO(X) - HOO(X|Y) > He,st (X) - HE(;IOO(X)—JEIOO(XIY)),S’(X|Y)

where s’ =~ s. However, because of the min,cx Pr[X = z] the result breaks down for repeated
leakage, as the leakage Y can make a particular event arbitrarily unlikely. The intuition behind the
theorem is the E[D’(X)] can be measured more carefully; the proof is in Section Lemma [3.5]
can also be improved for the case of randomized leakage: the improved version replaces P, with
P,/ max, Pr[Y = y|X = z].

3.4 Proofs

3.4.1 Proof of Lemma [3.5]

Recall the main technical lemma.

Lemma Let X, Y be discrete random variables. Then
HEES (X|Y = y) > HIS™(X) —log 1/P, (7)
where Py = Pr[Y =y] and s’ = s.

Proof. Assume HM*¢"(X) > v. We denote ¢ = €¢/P,. Let x be the outcome space of X. We
assume for contradiction that

HEF (XY =y) > v —log1/P,

12



det,[0,1]

does not hold. By definition of metric entropy there exists a distinguisher D, € D, such that
VZ with Hy(Z) > v —log 1/ P, we have
[E[Dy(X)[Y = y] —E[Dy(Z)]] > €. (8)

Let Z~ and Z* be distributions of min-entropy v —log 1/ P, minimizing E[D,(Z )] and maximizing
E[D,(Z*)] respectively. Let 5~ 2 E[D,(27)], 5+ & E[D,(2%)] and 8 < E[D,(X)|Y = y.
Claim 3.11. Either 3~ <t +d <pBorpf <3 —€ <™.

From Equation |§ and the fact that Z*, Z~ have min-entropy at least v —log 1/ P, it suffices to
show that either 5~ < 87 < B or B < 3~ < T. Suppose it does not hold. Then 3~ < 3 < B™.
Then we can define a distribution Z as a convex combination of Z*, Z~ with Hoo(Z) > v—log1/P,
and E[D,(Z)] = 8. This is a contradiction of Equation

For the rest of the proof we will assume that the first case 3~ < T +€ < 3 holdsﬂ
Claim 3.12. There exists a point p € [0, 1] such that

Pr[Dy(X) > plY = y] - Pr[Dy(2%) > p] > €. (9)
Proof. One has that
¢ < E[D,(X)Y = y] — E[D,(2")]

1 1
= | Papy@IY =y > sldp= [ PeiD,) > slds

= [ (ma@y =u> - 20,2 = ) o

Suppose no p € [0,1] satisfies equation [0} This means Vp € [0,1],Pr[D,(X) > plY = y] —
Pr[Dy(Z*%) > p] <€ and thus

1
| (pyply == - Py, > ) do <.

This is a contradiction. O

Since D is a fixed size circuit, it outputs values of some bounded precision. Call the ordered
set of possible output values II = {p1,...,p;}. Then, let o = max{p;|p; < p}. Thus, « is a fixed
precision number where Vp; € I, p; > o implies p; > p. This means that

Pr[Dy(X) > a|Y =y] —Pr[Dy(Z1) > a] > €.

We define a distinguisher Dg/ as follows:

1oy )0 Dy(z) <a
Dy(2) = {1 Dy(z) > a. (19)

4 The other case is similar; the main difference is that we work with Z~.
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We define the quantities

Bu “ PrD,(X) > alY =y = E[D,(X)]Y = y]

5+ PrD,(Z%) > o] = E[D,(Z7)].

Let v = min ¢ 7+ Dy(z). Since 8, — 85 > €, we know that 3 < 1. This implies that v < a.
Claim 3.13. For all z if Pr[ZF = z] # 278V Py then D, (2) <y < a and therefore Dy(z) = 0.

Proof. Recall that because Ho(Z1) = v — log1/P,, for all z we have Pr[Z+ = 2] < 27vHlosl/Fy,
Thus, suppose, for contradiction that there exists a z such that Pr[Z+ = 2] < 27¥Flogl/Py and
Dy(z) > . Choose a w with Pr[Z% = w] > 0 such that D,(w) = 5. Create a distribution Z’ by
starting with Z ", increasing the probability of z and decreasing the probability of w by the same
amount, while keeping the min-entropy guarantee. Then we have E[D,(Z’)] > E[D,(Z*)] which is
a contradiction to how Z* was chosen. O

Claim [3.13] implies that

1
5 =3"Pi[zt = 2Dl)(z) = Y 27 VPi Dl (o) = o > Dy(z).

ZEX ZEX zEX
Claim 3.14. For all W over x where Hoo(W) > v, E[Dy(W)] < B4 P,.

Proof. Indeed,

E[D)(W)] =Y Pr[W =z]Dj(z) <Y 27D} (2) =277 Y _D)(z) = P,E[D)(Z")].

ZEX zEX zeX
O]
Claim 3.15. E[D,(X)] > 8,P,
Proof. One computes
E[D,(X)] = E[D,(X)|Y =y Pr[Y' = y] + E[D(X)[Y" # y] Pr[Y" # y]
> E[Dy(X)|Y = y] Pr[Y =y
= ﬁapy
O]

By combining Claim Claim and Equation [9] we have that for all W over x with
Hoo (W) > v we have that

E[D,(X)] = E[Dy(W)] > BaPy = o Py =€Py=e¢ (11)

Thus, we have successfully distinguished the distribution X from all distributions W of sufficient
min-entropy. This is a contradiction. O
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3.4.2 Proof of Theorem [3.2]
Theorem Let XY be discrete random random variables. Then

HYSHE (X [Y) > HYSP5 (X) — log |V

where s’ ~ s.

Proof. Assume H!*¢"~4(X) > v. We seek to show that VD € Dg,et’[o’l], 3Z,H(Z|Y) > v—log|Y]|
such that

E[D(X,Y)] - E[D(Z,Y)] <¢

ePr[Y=yl,s
Denote by Z, a distribution with Hy(Zy,) > v —logPr[Y = y] and |E[D(X|Y = y)| —E[D(Z,)]| <
¢/ Pr[Y = y]. These Z, give rise to a distribution Z. We calculate the performance of D on all of
X, Z. These Zy, 4, give rise to a distribution Z. We calculate the performance of D on all of X, Z

Fix D € Dy. Fixy €Y. By Lemma we know that HYTi¢"  (X|Y =y) > v — log Pr[Y = y)].

|E[D(X,Y)] —E[D(Z,Y)]| = ) Pr[Y = y]|E[D((X|Y = y),y)] - E[D(Zy, )]

yey
€
PrlY = y|——
<2 Py =y Pr[Y =y
yeyY
= Z e=¢€|Y|
yey

It now suffices to show that Z has sufficient average min-entropy, we calculate:

Ij"OO(ZD/) = —log Z PI"[Y = y]Z_HOO(Zy)
yey

> log Z PF[Y _ y]2—(u+logPr[Y:y})
yey

> —log Z 277

yey
=—log|Y|27" =v —log|Y|

Note that this entropy is by construction decomposable. This completes the proof. ]
Theorem Let X, Y1,Ys be discrete random variables. Then HS%T;* XY, Y) > Hgitric*_d(XDﬁ)—
log |Ya| where s’ ~ s.

Proof. Assume HY™¢"~4(X|Y]) > v. We seck to show that Hg‘;;i;*_d(XDﬁ,Yg) > v — log |Ys|

where s’ ~ s. That is, we seek to show that VD € Dy, 37, lEI(Z|Y1,Y2) > v —1log|Ys|. Fix D € Dy.

By the definition of the decomposable metric entropy of X |Y7 we know that for D there exists

Z such that H(Z|Y1) > v. Further, recall there exist two functions v(-) representing the metric
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entropy for each y; and () representing the quality of distinguishing for each y; subject to the
following constraints where s’ & s:

HE (XY = 1) = v(y)
Z Pr[Y1 = yile(yr) < e
Y1EYT

HZ™ (X)) = —log (Eylen [27”@“)]) zv

Fix D € D}. Now, fix y; € Y1,y2 € Ya. Let e(y1,12) = % and let A = —logPr[Ys =

yg\Yl = y1] then by Lemma ﬁ we know that HM@T;) (X1 =y1 ANYa =) > v(y1) — A where

s’ ~ s. Denote by Z,, ,, a distribution with Hoo(Zy, 4,) > v(y1) — A and note that

|]E[D(X|Y1 — y17Y2 = yQayl)yQ)] - ]E[D(Zyl,yg)ylva)” < 6(?/1,y2)-

These Z,, 4, give rise to a distribution Z. We calculate the performance of D on all of X, Z
|E[D(X,Y1,Y3)] — E[D(Z,Y1,Y2)]]

=Y > Prvi =y AYy =] | E[D((X|Y1 = 41, Y2 = y2), 41, 2)] — E[D(Zy, o 1, 12)|
Yy1€Y1 y2€Y2

< Z Z Pr[Y1 = y1] Pr[Ya = 32|Y1 = y1]e(y1, y2)
Yy1€Y1 y2€Y2

=Y Prvi=u] Y e(m)

Yy1E€Y1 Y2€Y2

=[¥2| Y Pri = yile(yn) < €Y
e

It now suffices to show that Z has sufficient average min-entropy, we calculate:

Hoo(Z]Y1,Ys) = —log Z Z PrY; = y1 A Y = yo]2 o (Zu10)
Y1€Y1 y2€Y2

—log | > Py, Y Pr[Ys =gp|Vy = gyJ27 V=4
y1€Y] Yy2€Y2

9—(w(y1))

o[ 3 By S P — v =g 2
Y1EY] y2€Ys Pr[Y2 = y2!Y1 = y1]

gl —log | 37 P20
Yy1€EYY

> v —log|Ya|

Note that this entropy is by construction decomposable. This completes the proof. O
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3.4.3 Proof of Theorem [3.10]
The largest change is to the Claim which gets replaced with the following.

Claim 3.16. E[D/,(X)] > 8, ™heex BIX=r]
Proof. One computes
E[D,(X)] =Y Pr[X = z|Dj(x)
x

maXg/e x PI‘[X = [L‘/|Y = y]

= Pr[X = z|D)
ZE: 1l ] y(x)maxx/ex Pr[X =2'|Y =y

= Sy 2 PrIX = 2l Dy () max Pr{X = o] Pr[Y = ]
1

> ; _ . _ _
= 9 Ha(XIV=y) 2 min PrX = 2/] Dj(v) max Pr[X = o[y = y]

1

> 1 = / / = f

Z S HL (XY =y) min Pr[X = 2'| Dy (z) Pr[X = z[Y =y
x

ming e x Pr[X = 2]
2 T (XY )

E[D,(X)[Y =y

_ mingex Pr[X = 2]
T 9—Ho(X[Y=y) Bo

O
This allows us to state a modified version of Lemma [3.5
Lemma 3.17. Let X,Y be discrete random variables. Then
HEEF (XY = y) > H{S (X)) — (Ho(X) — Hoo(X[Y =) (12)

| g—Hoo(X|Y=)

/ !~
where € = PEr e omd and s’ ~ s.

This allows us to state our modified theorem:

Theorem [3.10, Let X,Y be discrete random variables and let L = —21=X)__qpep HYetric™ (YY) >

. ming e x Pr[X=z]"
HY$ ¢ (X)) — log L where s' = s.

Proof. Assume H!$**1¢"(X) > v. Then by Lemma for each y € Y we know that H"et*ic" (X |y =

€Ly,s’
9—Hoo (X|Y=y) !

y) > v —log L, where s’ ~ s and L, = e P =a]" Fix D € D},. Denote by Z, a distribution
with Hy(Zy) > v —log L, and |E[D(X|Y = y)] — E[D(Z,)]| < €L,. These Z, give rise to a
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distribution Z. We calculate the performance of D on all of X, 7

|E[D(X)] -

Z)|=> Pr[y = D((X|Y =y)] - E[D(Z,)]|
yeyY
<> Prfy =
yey
mingec x Pr y%;
—Heo(X[Y)
= <2 =elL

mingex Pr[X = z]

It now suffices to show that Z has sufficient average min-entropy, we calculate:

Ho(Z|Y) =

This completes the proof.

—log
—log
—log

—log

v+ log <minPr[X = x]) + Hoo

> Prly =yj2 =)

yey

Z Pyzf(yflog Ly)

yey

Z P27V L,

yey
92— Hoo (X|Y=y)

P27
y%; min,ex Pr[X = z]

l Pr[X =a] | —1 P2~ Hoe(XIY=0)
v+ log <m1)r(1 r| ]) og Z Y

yeyY

min (X|Y))
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A Distinguisher Equivalences for Metric and HILL entropy

Lemma.. HHILL ) > ke HELLY (X)) > ko HIW(X) > k< HE (X)) >k, for s; ~ sg &

€,51 €,52 €,81 €,52
S3 = S4.
Proof. Tt suffices to show HIT™(X) > k = HggLL/*(X) > k where s’ ~ s. We proceed by contra-
diction. Suppose that HgISLL/*(X) < k. That is, for all Y such that Hy(Y) > k,3dD € prand.0.1]
such that |E[D(X)] — E[D(Y)]| > e. Fix Y with Hy(Y) > and choose a D € L0 guch that
|E[D(X)]-E[D(Y)]| > . Our goal is to build a D € DX such that | E[D” (X)]|-E[D"(Y)]| > €
where s” &~ s. We first construct a distinguisher D’(-) as follows:

D'(x) = 0 with probability 1 — D(x)
1 with probability D(z)

It is clear that D’ € DI nd {01} for o close to s (D' can be implemented by choosing a random
number r € [0,1) of the same precision as the output of D and performing a single comparison:
output 1 if r < D(x) and 0 otherwise). Note also that for all z, E[D'(z)] = D(x), and therefore
VX,E[D'(X)] = E[D(X)], and thus

|E[D'(X)] - E[D'(Y)]] = [E[D(X)] —E[D(Y)]] > €,

Note that D’ € Dz,a nd {01} Por notational convenience we denote the randomness needed by D’ as
a single uniform string U. That is |E[D'(X,U)] — E[D'(Y,U)] > e. Thus we have that

€< IuIGEU[ "(X;u)] — UIEEUE[D'(Y;H)H

<3 |U’|IEJ [D'(X;u)] — E[D'(Y;u)]|
ueU

Thus, there exists a w € U such that |E[D'(X;u)] — E[D'(X;u)]| > e. We hardwire that u in place
of the random gates of D’ to define D”(-) which on input x outputs the result of D'(z;u). Clearly,

D" e DX where 8 & s and |E[D/(X)] — E[D/(Y)]] = |E[D(X;u)] — E[D(X;u)]| > e. This
completes the proof. O

Lemma HYeWie(X) > k= HYi (X) > k, for s' ~ s.

Proof. Assume not. Then there exists D € DI 01 guch that VY with Hy(Y) > k, we have

|E[D(X)] — E[D(Y)]| > e. Build D' € D" out of D by:

D) = 0 with probability 1 — D(z)
1 with probability D(z).

The argument is the same as in the corresponding case of Lemma ]
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