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Abstract

We introduce a new definition of privacy called crowd-blending privacy that strictly relaxes
the notion of differential privacy. Roughly speaking, k-crowd blending private sanitization of a
database requires that each individual ¢ in the database “blends” with k other individuals j in
the database, in the sense that the output of the sanitizer is “indistinguishable” if i’s data is
replaced by j’s.

We demonstrate crowd-blending private mechanisms for histograms and for releasing syn-
thetic data points, achieving strictly better utility than what is possible using differentially
private mechanisms. Additionally, we demonstrate that if a crowd-blending private mechanism
is combined with a “pre-sampling” step, where the individuals in the database are randomly
drawn from some underlying population (as is often the case during data collection), then the
combined mechanism satisfies not only differential privacy, but also the stronger notion of zero-
knowledge privacy. This holds even if the pre-sampling is slightly biased and an adversary knows
whether certain individuals were sampled or not. Taken together, our results yield a practical
approach for collecting and privately releasing data while ensuring higher utility than previous
approaches.

1 Introduction

Data privacy is a fundamental problem in today’s information age. Large amounts of data are
collected from people by government agencies, hospitals, social networking systems, and other
organizations, and are stored in databases. There are huge social benefits in analyzing this data,
and in many situations, these organizations would like to release the data in some form for people
to analyze. However, it is important to protect the privacy of the people that contributed their
data; organizations need to make sure that sensitive information about individuals is not leaked to
the people analyzing the data.
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Many privacy definitions and schemes for releasing data have been proposed in the past (see
[CKLMO09] and [FWCY10] for surveys). However, many of them have been shown to be insufficient
due to realistic attacks on such schemes (e.g., see [Kif09]). The notion of differential privacy
[DMNS06, Dwo06], however, has remained strong and resilient to these attacks. Differential privacy
requires that when one person’s data is added or removed from the database, the output distribution
of the database access mechanism changes very little (by at most an € amount, where a specific
notion of closeness of distributions is used). Differential privacy has quickly become the standard
definition of privacy, and mechanisms for releasing a variety of functions (including histogram
queries, principal component analysis, learning, and many more; see [Dwo09, Dwo08] for a survey)
have been developed.

One way to interpret the notion of differential privacy is that an attacker does not learn more
about an individual ¢ than what can be deduced from the data of everyone else in the database
(see the appendix of [DMNS06]). In the context of e.g., social networks, where the data of an
individual may be strongly correlated with the data of his/her friends, such a notion may not always
provide sufficient privacy guarantees. To address this issue, an even stronger privacy definition,
zero-knowledge privacy, was introduced in [GLP11]. Roughly speaking, zero-knowledge privacy
requires that whatever an adversary learns about an individual ¢ can be “simulated” given just
some “aggregate” information about the remaining individuals in the database; for instance, this
aggregate information could be k random samples of the remaining individuals in the database. If
the aggregate information contains all individuals (excluding @), zero-knowledge privacy collapses
down to differential privacy, but for more restrictive classes of aggregate information (such as k
random samples, where k is smaller than the number of individual in the database) zero-knowledge
privacy is strictly stronger, and provides stronger privacy guarantees in contexts where there is
correlation between individuals.

Privacy from Random Sampling of Data. Both differential privacy and zero-knowledge pri-
vacy provide strong privacy guarantees. However, for certain tasks, mechanisms satisfying these
privacy definitions have to add a lot of “noise”, thus lowering the utility of the released data. Also,
many of these mechanisms run in exponential time (e.g., [DRV10, BLRO08]), so efficiency is also an
issue. This leaves open the question of whether there exists a practical approach to sanitizing data,
without harming utility too much.

One approach for circumventing the above-mentioned issues is to rely on the fact that in many
cases of interest, the data to be sanitized has been collected via random sampling from some un-
derlying population. Intuitively, this initial random sampling already provides some basic privacy
guarantees, and may thus help us in decreasing the amount of noise added during sanitization. In-
deed, there are several results in the literature indicating that random sampling helps in providing
privacy: In [CMO6] the authors quantify the level of the privacy that may be obtained from just
random sampling of data (without any further sanitization); in [NRS07] the authors consider a
certain type of “sample-and-aggregate” mechanism for achieving differential privacy (but the sam-
pling technique here is more elaborate than just random sampling from a population); a result in
[KLNT08] shows that random pre-sampling can be used to amplify the privacy level of a differen-
tially private mechanism; finally, in a manuscript [LQS11], the authors demonstrate that a random
pre-sampling step applied to a particular mechanism leads to a differentially private mechanism.

In this paper, we continue the investigation of using random sampling as a means to achieve
privacy. In particular, our goal is to provide a general definition of privacy that allows us to achieve
both differential and zero-knowledge privacy in situations where the data is collected using random
sampling from some population. In order to be realistic, we allow the random sampling during



data collection to be biased, and an adversary may even know whether certain individuals were
sampled or not. (Although the mechanisms in the earlier papers rely on random sampling, the
random sampling is usually thought of as being part of the sanitization procedure and thus the
mechanisms are only analyzed under the assumption that the sampling has been done “ideally”.)
Additionally, we will require that the privacy notion is meaningful in its own right, also without any
pre-sampling; we believe this requirement is crucial for guaranteeing a strong fall-back guarantee
even in case the result of the pre-sampling is leaked (and thus the attacker knows exactly who was
sampled).

1.1 Towards a Weaker Notion of Privacy

We aim to develop a new privacy definition that allows us to design mechanisms that have greater
utility or efficiency than differentially private mechanisms, but still provide a meaningful notion of
privacy; furthermore, we want mechanisms satisfying the new definition to achieve differential and
zero-knowledge privacy when the underlying data was collected via biased random sampling from
some population. To this end, we begin by reconsidering some older notions of privacy.

k-Anonymity and Blending in a Crowd. k-anonymity [Swe02] is a privacy definition specif-
ically for releasing data tables, where a data table is simply a table of records (rows), each of
which has values for the attributes (columns) of the table. Roughly speaking, a released data table
satisfies k-anonymity if every record in the table is the same as k — 1 other records in the table with
respect to certain “identifying” attributes (chosen beforehand). k-anonymity imposes constraints
on the syntax of the released data table, but does not consider the way the released data table was
computed from the underlying database; this issue has led to several practical attacks against the
notion of k-anonymity (e.g., see [WFWP07, ZJB07]). k-anonymity can be viewed as being based
on the intuition of “blending in a crowd”, since the records in the released output are required
to “blend” with other records. Intuitively, in many cases, if an individual blends in a crowd of
many people in the database, then the individual’s privacy is sufficiently protected. However, as
demonstrated by known attacks, k-anonymity does not properly capture this intuition as it does
not impose any restrictions on the algorithm/mechanism used to generate the released output.
Indeed, one of the key insights behind the notion of differential privacy was that privacy should be
a property of the sanitization mechanism and not just the output of it.

Relying on this insight, we aim to develop a privacy notion that captures what it means for
a mechanism to guarantee that individuals “blend in a crowd”. (Another definition partly based
on the intuition of blending in a crowd is (c, t)-isolation [CDM™05], which requires adversaries to
be unable to isolate an individual, represented by a data point in R, by roughly determining the
individual’s location in R?; we formalize the intuition of blending in a crowd in a very different
way.)

Crowd-Blending Privacy — A New Privacy Definition. Let us now turn to describing our
new privacy definition, which we call crowd-blending privacy. We say that an individual blends with
another individual with respect to a mechanism San if the two individuals are indistinguishable
by the mechanism San, i.e., whenever we have a database containing either one or both of the
individuals, we can replace one of the individual’s data with the other individual’s data, and the
mechanism’s output distribution remains essentially the same. We say that an individual ¢ blends
in a crowd of k people in the database D with respect to the mechanism San if there exist at least
k — 1 other individuals in the database D that blend with individual ¢ with respect to San. The
intuition behind this notion is that if an individual ¢ blends in a crowd of k people in the database,



then the mechanism essentially does not release any information about individual ¢ beyond the
general characteristics of the crowd of k people; in particular, the mechanism does not release any
personal information that is specific to individual ¢ and no one else.

Roughly speaking, we say that a mechanism San is crowd-blending private if the following
property holds: For every database and every individual in the database, either the individual
blends in a crowd of k people in the database with respect to San, or the mechanism San essentially
ignores the individual’s data.

We do not claim that crowd-blending privacy provides sufficiently strong privacy protection in
all scenarios: the key weakening with respect to differential privacy is that an attacker who knows
the data of everyone in an individual i’s crowd (except i) may learn information about individual ¢,
as long as this information is “general” in the sense that it applies to the entire crowd. For instance,
if the attacker knows everyone in the crowd of individual ¢, it may deduce that ¢ has, say, three
children, as long as everyone in i’s crowd has three children. Although to some extent, this may
be viewed as a privacy violation (that would not be allowed by the notion of differential privacy),
we would argue that the attribute leaked about individual ¢ is “non-sensitive” as it is shared by a
sufficiently large crowd. Thus, we view this weakening as desirable in many contexts as it allows
us to trade privacy of “non-sensitive information” for improved utility.

A potentially more serious deficiency of the definition is that (in contrast to differential and
zero-knowledge privacy) crowd-blending privacy is not closed under composition: San; and Sans
may both be crowd-blending private, but the crowds for an individual with respect to San; and
Sang could be essentially disjoint, making the individual’s crowd for the combination of San; and
Sans very small. Although we view composition as an important property of a privacy definition,
our goal here is to study the weakest possible “meaningful” definition of “stand-alone” privacy
that when combined with pre-sampling leads to strong privacy notions (such as differential and
zero-knowledge privacy) that themselves are closed under composition.

1.2 New Database Mechanisms

As it turns out, achieving crowd-blending privacy is significantly easier than achieving differen-
tial privacy, and crowd-blending private mechanisms may yield significantly higher utility than
differentially private ones.

Privately Releasing Histograms with No Noise for Sufficiently Large Counts. We show
that we can release histograms with crowd-blending privacy where no noise is added to bins with
a sufficiently large count (and only a small amount of noise is added to bins with a small count).
Intuitively, individuals in the same bin blend with each other; thus, the individuals that belong to
a bin with a sufficiently large count already blend in a crowd, so no noise needs to be added to
the bin. It is easy to see that it is impossible to release the exact count of a bin in a histogram
while satisfying differential privacy or zero-knowledge privacy. Using crowd-blending privacy, we
can overcome this limitation (for bins with a sufficiently large count) and achieve better utility.
These results can be found in Section 3.1.

Privately Releasing Synthetic Data Points in R? for Computing Smooth Functions.
Given a class C of counting queries whose size is not too large, it is shown in [BLRO8] how to
release a synthetic database for approximating all the queries in C simultaneously while satisfying
differential privacy; however, the mechanism is not necessarily efficient. It is known that it is
impossible (assuming the existence of one-way functions) to efficiently and privately release a



synthetic database for approximating certain classes of counting queries, such as the class of all 2-
way marginals (see [UV11, DNR109]). However, these query functions are non-smooth in the sense
that even slightly changing one row of the input database can affect the output of the query functions
quite a lot. Here, we focus on efficiently and privately releasing synthetic data for approximating
all “smooth” functions g : (RY)* — R™.

Roughly speaking, a function g : (R9)* — R™ is smooth if the value of g does not change much
when we perturb the data points of the input slightly. We show that we can efficiently release
synthetic data points in R? for approximating all smooth functions simultaneously while satisfying
crowd-blending privacy. On the other hand, we show that there are smooth functions that cannot
even be approximated with non-trivial utility from any synthetic data that has been released with
differential privacy (even if the differentially private mechanism is inefficient). These results can
be found in Section 4.

1.3 From Crowd-Blending Privacy to Zero-Knowledge Privacy

Our main technical result shows that if we combine a crowd-blending private mechanism with a
natural pre-sampling step, then the combined algorithm satisfies zero-knowledge privacy (and thus
differential privacy as well). We envision the pre-sampling step as being part of the data collection
process, where individuals in some population are sampled and asked for their data. Thus, if data
is collected using random sampling of individuals from some population, and next sanitized using
a crowd-blending private mechanism, then the resulting process ensures zero-knowledge privacy.

We first prove our main theorem for the case where the pre-sampling step samples each in-
dividual in the population with probability p independently. In reality, the sampling performed
during data collection may be slightly biased or done slightly incorrectly, and an adversary may
know whether certain individuals were sampled or not. Thus, we next extend our main theorem
to also handle the case where the sampling probability is not necessarily the same for everybody,
but the sampling is still “robust” in the sense that most individuals are sampled independently
with probability in between p and p’ (this probability can even depend on the individual’s data),
where p and p’ are relatively close to one another, while the remaining individuals are sampled
independently with arbitrary probability. As a result, we have that in scenarios where data has
been collected using any robust sampling, we may release data which both ensures strong utility
guarantees and satisfies very strong notions of privacy (i.e., zero-knowledge privacy and differen-
tial privacy). In particular, this methodology can allow us to achieve zero-knowledge privacy and
differential privacy while guaranteeing utility that is better than that of previous methods (such as
for releasing histograms or synthetic data points as described above). Our main theorems can be
found in Section 5.

It is worthwhile to note that the particular mechanism considered in [LQS11] (which in fact is
a particular mechanism for achieving k-anonymity) can easily be shown to satisfy crowd-blending
privacy; as a result, their main result can be derived (and significantly strengthened) as a corollary
of our main theorem.! (See Section 3.1 and 5 for more details.)

! As mentioned, none of the earlier work using random pre-sampling focus on the case when the sampling is biased;
furthermore, even for the case of perfect random sampling, the authors of [LQS11] were not able to provide a closed
form expression of the level of differential privacy achieved by their mechanism, whereas a closed form expression can
be directly obtained by applying our main theorem.



2 Preliminaries and Existing Privacy Definitions

A database is a finite multiset of data values, where a data value is simply an element of some
fixed set X, which we refer to as the data universe. Each data value in a database belongs to an
individual, so we also refer to a data value in a database as an individual in the database. For
convenience, we will sometimes order the individuals in a database in an arbitrary way and think
of the database as an element of X*, i.e., a vector with components in X (the components are
referred to as the rows of the database). Given a database D and a data value v € X, let (D,v)
denote the database D U {v}. A (database) mechanism is simply an algorithm that operates on
databases.

Given €,6 > 0 and two random variables (or distributions) Z and Z’, we shall write Z ~, 5 Z'
to mean that for every Y C Supp(Z) U Supp(Z’) we have

Pr[Z e Y] <ePr[Z' €Y]+6
and
Pr[Z € Y] <ePr[Z € Y] +6.

We shall also write Z ~ Z’ to mean Z ~( Z'. Differential privacy (see [DMNS06, Dwo06]) can
now be defined in the following manner:

Definition 1 ([DMNS06, Dwo06]). A mechanism San is said to be e-differentially private if for
every pair of databases D and D’ differing in only one data value, we have San(D) ~, San(D’).

There are two definitions in the literature for “a pair of databases D and D’ differing in only one
data value”, leading to two slightly different definitions of differential privacy. In one definition, it is
required that D contains D’ and has exactly one more data value than D’. In the other definition,
it is required that |D| = |D’|, |D \ D'| = 1, and |D’ \ D| = 1. Intuitively, differential privacy
protects the privacy of an individual ¢ by requiring the output distribution of the mechanism to be
essentially the same regardless of whether individual ¢’s data is included in the database or not (or
regardless of what data value individual ¢ has).

We now begin describing zero-knowledge privacy, which is a privacy definition introduced in
[GLP11] that is strictly stronger than differential privacy. In the definition of zero-knowledge
privacy, adversaries and simulators are simply randomized algorithms that play certain roles in
the definition. Let San be any mechanism. For any database D, any adversary A, and any
auxiliary information z € {0,1}*, let Outa(A(z) +» San(D)) denote the output of A on input z
after interacting with the mechanism San operating on the database D. San can be interactive
or non-interactive. If San is non-interactive, then San(D) simply sends its output (e.g., sanitized
data) to A and then halts immediately.

Let agg be any class of randomized algorithms. agg is normally a class of randomized aggrega-
tion functions that provide aggregate information to simulators, as described in the introduction.

Definition 2 ([GLP11]). A mechanism San is said to be (e, §)-zero-knowledge private with
respect to agg if there exists a T' € agg such that for every adversary A, there exists a simulator .S
such that for every database D, every individual ¢ € D, and every auxiliary information z € {0,1}*,
we have

Out A(A(2) © San(D)) ~es S(z, T(D\ {t}),|D]).



Intuitively, zero-knowledge privacy requires that whatever an adversary can compute about
individual ¢ by accessing (i.e., interacting with) the mechanism can also be essentially computed
without accessing the mechanism but with certain aggregate information about the remaining
individuals; this aggregate information is provided by an algorithm in agg. The adversary in the
latter scenario is represented by the simulator S. This ensures that the adversary essentially does
not learn any additional information about individual ¢ beyond the aggregate information provided
by an algorithm in agg on the remaining individuals.

agg is normally some class of randomized aggregation functions, such as the class of all functions
T that draws r random samples from the input database and performs any computation (e.g.,
computes the average or simply outputs the samples) on the r random samples (note that in the
definition, 7" is applied to D \ {t} instead of D so that the aggregate information from 7" does
not depend directly on individual ¢’s data). Zero-knowledge privacy with respect to this class of
aggregation functions ensures that an adversary essentially does not learn anything more about an
individual beyond some “r random sample aggregate information” of the other individuals. One can
also consider zero-knowledge privacy with respect to other classes of aggregation functions, such as
the class of (randomized) functions that first sample each row of the input database with probability
p (or in between p and p’) independently and then performs any computation on the samples. We
will actually use such classes of aggregation functions when we prove our main theorems later. It
can be easily shown that zero-knowledge privacy (with respect to any class agg) implies differential
privacy (see [GLP11]).

In the original definition of zero-knowledge privacy in [GLP11], T" operates on (D \ {t}, 1)
instead of D \ {t}, where L is any arbitrary element of the data universe X. The main point is
that the database that T is applied to does not include individual ¢’s data value (otherwise, a lot of
information about individual ¢ could possibly be leaked). Thus, using 7'(D \ {t}) in the definition
also makes sense, and we choose to use T'(D \ {t}) in this paper for convenience.? This version of
zero-knowledge privacy still implies differential privacy (essentially the same “hybrid /transitivity”
proof from [GLP11] works).

3 Crowd-Blending Privacy — A New Privacy Definition

We now begin to formally define our new privacy definition. Given ¢, € X, € > 0, and a mechanism
San, we say that ¢t and ¢’ are e-indistinguishable by San, denoted t =~ gqn t', if San(D,t) =~
San(D,t') for every database D. Intuitively, ¢ and ¢’ are indistinguishable by San if for any database
containing ¢, we can replace the ¢ by ¢’ and the output distribution of San remains essentially the
same. Usually, ¢t and ' are the data values of two individuals, and if ¢ and ' are indistinguishable
by San, then this roughly means that San cannot distinguish these two individuals regardless of
who else is in the database. If ¢ and ¢ are e-indistinguishable by San, we also loosely say that ¢
blends with ¢’ (with respect to San). We now describe what it means for an individual to blend in
a crowd of people in the database (with respect to a mechanism).

Definition 3. Let D be any database. An individual ¢ € D e-blends in a crowd of k people
in D with respect to the mechanism San if [{t' € D : ¢/ = gan t}| > k.

In the above definition, {t’ € D : t' =~ gqn t} should be regarded as a multiset. When the
mechanism San is clear from context, we shall simply omit the “with respect to the mechanism
San”. Intuitively, an individual ¢ € D blends in a crowd of k£ people in D if ¢ is indistinguishable

*Even if we used T(D \ {t}, L) instead of T(D \ {t}), our results would still hold with only minor modifications
and slight differences in privacy parameters. Recall that differential privacy also has two versions of its definition.



by San from at least £ — 1 other individuals in D. Note that by the definition of two individuals
being indistinguishable by San, ¢ € D must be indistinguishable by San from each of these k — 1
other individuals regardless of what the database is, as opposed to only when the database is D.
(A weaker requirement would be that for each of these k — 1 other individuals ¢’, ¢ and ¢’ only need
to be “indistinguishable by San with respect to D”, i.e., if we take D and replace t by t' or vice
versa, the output distributions of San on D and the modified D are essentially the same; we leave
investigating this and other possible weaker requirements for future work.) We are now ready to
state our new privacy definition.

Definition 4 (Crowd-blending privacy). A mechanism San is (k, €)-crowd-blending private if
for every database D and every individual ¢t € D, either ¢ e-blends in a crowd of k people in D, or
San(D) =, San(D \ {t}) (or both).

Crowd-blending privacy requires that for every individual ¢ in the database, either ¢ blends in
a crowd of k people in the database, or the mechanism essentially ignores individual ¢’s data (the
latter case is captured by San(D) ~, San(D \ {t}) in the definition). When an individual ¢ blends
in a crowd of k people in the database, the mechanism essentially does not release any information
about individual ¢ beyond the general characteristics of the crowd of k people. This is because the
mechanism cannot distinguish individual ¢ from the people in the crowd of k people, i.e., individual
t’s data can be changed to the data of another person in the crowd of k people and the output
distribution of the mechanism remains essentially the same. A consequence is that the mechanism
does not release any personally identifying information about individual ¢.

As mentioned in the introduction, crowd-blending privacy is not closed under composition (we
later give an example in Section 3.2); however, we note that the privacy guarantee of blending in a
crowd of k people in the database (described above) holds regardless of the amount of auxiliary in-
formation the adversary has (i.e., the definition is agnostic to the adversary’s auxiliary information).
Additionally, as mentioned previously, we show in Section 5 that when crowd-blending privacy is
combined with “robust pre-sampling”, we get zero-knowledge privacy and thus differential privacy
as well, both of which satisfy composition in a natural way. Thus, as long as robust sampling is used
during data collection before running a crowd-blending private mechanism on the collected data, in-
dependent releases from crowd-blending private mechanisms do compose and satisfy zero-knowledge
privacy and differential privacy. (We also mention that one can compose a crowd-blending private
mechanism with a differentially private mechanism to obtain a crowd-blending private mechanism;
see Section 3.2 for details.)

Relationship with Differential Privacy. Differential privacy implies crowd-blending privacy.

Proposition 5 (Differential privacy = Crowd-blending privacy). Let San be any e-differentially
private mechanism. Then, San is (k,€)-crowd-blending private for every integer k > 1.

Proof. This immediately follows from the two privacy definitions. O

(k, €)-crowd-blending privacy for some integer k does not imply differential privacy in general;
this will be clear from the examples of crowd-blending private mechanisms that we give later.
Crowd-blending privacy requires that for every database D and every individual ¢ € D, at least one
of two conditions hold. The second condition San(D) ~, San(D \ {t}) is similar to the condition
required in differential privacy. Thus, we can view crowd-blending privacy as a relaxation of
differential privacy. If we remove the first condition “¢ e-blends in a crowd of k people in D” from
crowd-blending privacy, we clearly get the same definition as differential privacy. If we remove the
second condition instead, it turns out that we also get differential privacy. (When we remove the



second condition San(D) =, San(D\{t}), we also change the definition to only consider databases
of size at least k, since otherwise it would be impossible for individual ¢ to blend in a crowd of k
people in the database.)

Proposition 6 (Removing the condition San(D) ~. San(D\{t}) in crowd-blending privacy results
in differential privacy). Let San be any mechanism, let € > 0, and let k be any integer > 2. Then,
San is e-differentially private if and only if San satisfies the property that for every database D
of size at least k and every individual t € D, t e-blends in a crowd of k people in D with respect to
San.

Proof. If San is e-differentially private, then for every database D of size at least k and every
individual t € D, t is e-indistinguishable by San from every individual in D, so t e-blends in a
crowd of k people in D.

Now, suppose San is not e-differentially private. Then, there exist a database D and a pair of
data values ¢, € X such that San(D,t) %, San(D,t'). Now, consider a database D’ consisting
of an individual with data value ¢ and k — 1 individuals with data value ¢’. Since San(D,t) %.
San(D,t'), t and t' are not e-indistinguishable by San, so the individual ¢ € D’ does not e-blend
in a crowd of k people in D’. O

3.1 Examples of Crowd-Blending Private Mechanisms

Given a partition P of the data universe X, and given a database D, one can compute the histogram
with respect to the partition P using the database D; the histogram specifies for each block of the
partition (which we refer to as a “bin”) the number of individuals in D that belong to the block
(which we refer to as the “count” of the bin). We first give an example of a crowd-blending private
mechanism that computes a histogram and suppresses (i.e., sets to 0) bin counts that are considered
too small.

Example (Histogram with suppression of small counts). Let P be any partition of X. Fix k € Z>o.
Let San be a mechanism that, on input a database D, computes the histogram with respect to the
partition P using the database D, suppresses each bin count that is < k (by setting the count to
0), and then releases the resulting histogram.

Then, San is (k,0)-crowd-blending private. To see this, we note that an individual ¢ in a
database D is 0-indistinguishable by San from all the individuals in D that belong to the same bin
as t. If there are at least k£ such people, then individual ¢ blends with k people in D; otherwise, we
have San(D) =g San(D \ {t}) since San suppresses each bin count that is < k.

It is easy to see that it is impossible to release the exact count of a bin while satisfying differential
privacy. Thus, crowd-blending privacy is indeed weaker than differential privacy. For crowd-
blending privacy, we can actually get better utility by adding a bit of noise to bins with low counts
instead of completely suppressing them.

Example (Histogram with noise for small counts and no noise for large counts). Let P be any
partition of X. Fix € > 0 and k € Z>o. Let San be a mechanism that, on input a database
D, computes the histogram with respect to the partition P using the database D. Then, San
replaces each bin count i < k with A(i), where A is any (randomized) algorithm that satisfies
A(j) me A(j — 1) for every 0 < j < k (A(7) is normally a noisy version of 7). San then releases the
noisy histogram.

3Here, we are using the version of differential privacy that considers a pair of databases of equal size.



Then, San is (k,€)-crowd-blending private. To see this, we note that an individual ¢ in a
database D is e-indistinguishable (in fact, 0-indistinguishable) by San from all the individuals in
D that belong to the same bin as t. If there are at least k such people, then individual ¢ blends
with k people in D, as required. If not, then we have San(D) =, San(D \ {t}), since the histogram
when using the database D is the same as the histogram when using the database D \ {t} except
for individual ¢’s bin, which differs by one; however, San replaces the count ¢ for individual ¢’s bin
with A(4), and the algorithm A satisfies A(i) ~. A(i — 1), so San(D) =, San(D \ {t}), as required.

We can choose the algorithm A to be A(j) = j + Lap(L), where Lap(}) is (a random variable
with) the Laplace distribution with probability density function fy(z) = s5el®//*. The proof that

2
A(j) me A(j — 1) for every 0 < j < k is simple and can be implicitly found in [DMNS06].

The differentially private mechanism in [DMNS06] for computing histograms has to add noise
to every bin, while our mechanism here only adds noise to the bins that have a count that is < k.

Example (Sanitizing a database by generalizing records safely). Many mechanisms for achieving
k-anonymity involve “generalizing” the records in the input table by replacing specific values with
more general values, such as replacing a specific age with an age range. If this is not done care-
fully, the privacy of individuals can be breached, as shown by many attacks in the past (e.g., see
[WEWPO07, ZJB07]). Most of these mechanisms do not satisfy crowd-blending privacy. However, if
the generalization of records is done carefully, achieving crowd-blending privacy may be possible.

One example is the mechanism of [LQS11]: Let Y be any set, and let f : X — Y be any
function. We think of Y as a set of possible “generalized records”, and f is a function that maps
a record to its generalized version. Let San be a mechanism that, on input a database D, applies
the function f to each individual in D; let f(D) be the multi-set of images in Y. San then removes
each record in f(D) that appears fewer than k times in f(D), and then outputs the result. It is
easy to see that San is (k,0)-crowd-blending private. To see this, we note that an individual ¢ in
a database D is O-indistinguishable by San from all the individuals in D that also get mapped to
f(t). If there are at least k such people, then individual ¢ blends with & people in D; otherwise,
we have San(D) ~y San(D \ {t}) since San removes each record in f(D) that appears fewer than
k times in f(D).

3.2 Discussion of Composition
Unfortunately, crowd-blending private mechanisms do not necessarily compose, as we now show:

Proposition 7. Let X = {1,2,3} be the data universe, and let k € Z* and € > 0. Let San; and
Sans be the histogram mechanism in the “Histogram with noise for small counts and no noise for
large counts” example with partitions P = {{1,2},{3}} and P» = {{1},{2,3}}, respectively. As
shown in the example, Sany and Sany are both (k,€)-crowd-blending private.

Let San be the composition of Sany and Sang, i.e., San(D) = (Sani(D), Sana(D)) for every
database D. Then, for every k' > 1 and every € >0, San is not (k' €')-crowd-blending private.

Proof. Fix k' > 1 and ¢ > 0. Let D be the database containing exactly k — 1 individuals with data
value 1, exactly 1 individual with data value 2, and exactly k — 1 individuals with data value 3.
Let t be the individual in D with data value 2.

We claim that individual ¢ is not €-indistinguishable by San from any individual in D other
than himself/herself. To see this, we note that if ¢ changes his/her data value to 1, then the number
of individuals in the database that belong to the block {2, 3} of the partition P» decreases from k to
k — 1; since Sans adds noise to counts that are < k but does not add noise to counts that are > k,
the output distribution of Sang changes completely and San(D) = San(D \ {t},1) clearly does
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not hold. If ¢ changes his/her data value to 3, then the number of individuals in the database that
belong to the block {1,2} of the partition P; decreases from k to k — 1; since San; adds noise to
counts that are < k but does not add noise to counts that are > k, the output distribution of San
changes completely and San(D) = San(D \ {t},3) clearly does not hold. Thus, individual ¢ is
not ¢-indistinguishable by San from any individual in D other than himself/herself, so individual
t does not €’-blend in a crowd of k' people in the database D.

We now claim that San(D) %« San(D \ {t}). To see this, we note that when the database is
D, San; does not add noise to the bin {1,2} of the histogram it computes, since the count of the
bin is k. However, when the database is D\ {t}, San; does add noise to the bin {1, 2}, since the
count of the bin is k — 1. Thus, San(D) % San(D \ {t}) clearly does not hold.

It follows that San is not (k’, ¢’)-crowd-blending private. O

Although crowd-blending private mechanisms do not necessarily compose, one can compose
via concatenation a crowd-blending private mechanism with a differentially private mechanism to
obtain a crowd-blending private mechanism.

Proposition 8. Let San; be any (k, €1)-crowd-blending private mechanism, and let Sans be any €a-
differentially private mechanism. Then, the mechanism San(D) = (Sany (D), Sans(D)) is (k,e1 +
2¢3)-crowd-blending private.

Proof. Let D be any database and ¢ be any individual in D. Since San; is (k, € )-crowd-blending
private, either ¢ €;-blends in a crowd of k people in D with respect to Sani, or Sani(D) =,
Sany (D \ {t}).

In the former case, we have [t' € D : t' =, gan, t| > k; now, we note that if ¢ € D satisfies
t Re,San, t, then t' also satisfies ¢/ Rle1+2e5,5an T since for every database D', we have

San(D',t') = (Sani(D',t'), Sana (D', 1)) ey 126, (Sani(D',t), Sang(D',t)) = San(D',t).

(The factor of 2 in 2es appears when we use a “hybrid/transitivity” argument: Since Sang is
eo-differentially private, we have Sana(D’,t') =, Sana(D’) =, San(D’',t), so Sana(D',t') =2,
San(D’,t).) Thus, individual ¢ (¢; 4+ 2€3)-blends in a crowd of k people in D with respect to San,
as required.

In the latter case, we have Sani(D) =, Sani(D \ {t}), so

San(D) = (Sany (D), Sany(D)) Rey e, (Sani(D\ {t}), Sana(D\{t})) = San(D\ {t}),

as required. ]

4 Privately Releasing Synthetic Data Points in R? for Computing
Smooth Functions

Roughly speaking, a function g : (R?)* — R™ is smooth if the value of g does not change much when
we perturb the data points of the input slightly. In this section, we show that we can efficiently
release synthetic data points in R? for approximating all smooth functions simultaneously while
satisfying crowd-blending privacy. On the other hand, we show that there are smooth functions that
cannot even be approximated with non-trivial utility from synthetic data that has been released
with differential privacy (even if the differentially private mechanism is inefficient).

In this section, the data universe X is any bounded subset of R? for some positive integer d, and
the input databases of mechanisms are elements of X*. We consider mechanisms that always output
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a synthetic database where each row is a data point in RY. We loosely use the term “synthetic
data/database” to mean that the data/database was outputted by a mechanism but still has the
same format as the original input data/database. Given a database/vector D, let D; denote the
it" row/component of D. We now state the definition of smoothness of a function g : (RY)* — R™.

Definition 9. Let M : Z>g — Rt and K : Z>o — R* be functions. A function g : (RY)* — R™ is
said to be (M(-), K(-))-smooth if for every pair of databases D, D’ € X* of equal size n such that
||D; — Di||1 < M(n) for every i € [n], we have ||g(D) — g(D')|1 < K(n).

Roughly speaking, a function is (M (-), K(-))-smooth if the value of the function changes by
at most a distance of K(n) when the data points in a database of size n are perturbed by at
most a distance of M (n). For example, the function that computes the mean of the data points
is (M(-), M(-))-smooth for every function M : Z>o — RT. In practice, outliers are often removed
before computing certain statistics on the data points, since outliers often cause the statistics to
be less meaningful. Thus, when we consider the utility of a mechanism, we will consider how well
the synthetic database released by the mechanism can be used to accurately approximate smooth
functions with an outlier removal preprocessing step.

We now discuss how we decide whether a data point is an outlier or not. For the rest of the
section, we fix a bounded data universe X C R%, a partition P of X, and an integer k > 1. Given a
database D, an individual ¢ in D is said to be an outlier in D (with respect to the partition P and
the threshold k) if the block of P containing ¢ contains fewer than k data points from D. We now
describe what it means for a mechanism to be useful for a class of functions with outlier removal
preprocessing.

Definition 10. Let San be any mechanism that always outputs a database whose rows are data
points in R?. Let C be any class of functions of the form g : (RY)* — R™. San is said to be
(a(-), B(-))-useful for C with outlier removal preprocessing if for every database D € X*, if
we let D be the database D with all outliers removed and 1 = |D[ then with probability at least
1 — B(R), San(D) outputs a synthetic database D such that

lg(D) — g(D)||; < a(7) for every g € C.

We now give an example of a crowd-blending private mechanism that releases synthetic data
points in R? for approximating all smooth functions with outlier removal preprocessing. Given a
subset A C R?, let the diameter of A, denoted diam(A), be defined by diam(A) = sup, e ||z —y|]1.

Example (Releasing noisy data points in R? for approximating all smooth functions with outlier
removal preprocessing). Let € > 0. Let San be a mechanism that, on input a database D, looks
at each data point  in D and does the following: If Z is an outlier in D, San simply deletes &.
Otherwise, San replaces Z with Ap(Z), where B is the block of the partition P that contains #, and
Ap is any (randomized) algorithm that satisfies Ag(y) ~. Ap(Z) for every pair of vectors ¥, Z € B
(Ap(Z) is normally a noisy version of Z). San then releases all the noisy data points.

Then, San is (k, €)-crowd-blending private. To see this, let D be any database and let ¢ be any
individual in D. If ¢ is an outlier in D, then we have San(D) = San(D \ {t}), since San simply
deletes all outliers and the removal of ¢ from D does not change whether the other individuals are
outliers or not; thus, San is (k, €)-crowd-blending private, as required. Thus, we now assume ¢ is
not an outlier in D. Then, let B be the block of the partition P that contains t. We note that
individual ¢ is e-indistinguishable by San from each individual ¢ € D in the block B, since for every
database D', we have San(D’,t) ~. San(D’,t') since Ap(t) =, Ap(t’). Since ¢ is not an outlier in
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D, there are at least k people in D that belong to the block B, so t e-blends in a crowd of k people
in D, as required.

For each block B of the partition P, we can choose the algorithm Ap to be Ap(y) = ¥ +
Lap(%(B))d, where Lap(%(B))d is a random vector with d components, each of which is inde-
pendently distributed as Lap(M(B)) Using techniques/results found in [DMNS06], it is easy to
show that Ap(y) ~. Ap(%) for every pair of vectors ¥,z € B.

Remark. Even though San essentially runs a differentially private mechanism within each block
(that does not contain too few data points), it is not the case that the only information that remains
for a block is the number of data points that belong to the block. This is because there can be
many data points within a block, and if San adds Laplacian noise to each data point as above, the
general distribution of data points and many statistics are preserved in expectation and would also
be reasonably accurate with high probability. Outputting just the number of data points within a
block does not tell us such distributional and statistical information. Thus, we do not get the same
result if San simply outputs the number of data points within each block like a histogram.

We now show that the above crowd-blending private mechanism with Ag(7) = y+Lap(dZL(B))

is useful for all smooth functions with outlier removal preprocessing.

Proposition 11. Let € > 0 and L > 0, and let M : Z>o — RT and K : Z>o — Rt be arbitrary

functions. Suppose diam(B) < L for every block B of the partition P. Let San be the mechanism
in the above example with Ap(y) = y+Lap(M(B))d. Then, San is (K (-), B(-))-useful for the class

C of all (M(-), K(+))-smooth functions with outlier removal preprocessing, where 5(n) = dive= it

}Zroof. Let D € X*, let D be the database D with all outliers removed, and let n = |D|. Let

= Scm(D). Since San(D) simply removes all outliers in D, we have D = San(D). Now, we
note that |D| = 7 and for every i G [A], we have D; = D; + Lap(diL(B)) , where B; is the block
of P that contains D;. Let A = L 50 that dmm(B) < X for every i € [n]. From the p.d.f. or

c.d.f. of Lap(]), it is easy to verify that for every 6 > 0, we have Prx o[ X] < 6] =1—e7x,
s0 Prypapoal[| X[l <] > 1 - de= 3 by a union bound. Then, for every i € [n], we have

Pr [Hﬁz‘—ﬁiHlSM(ﬁ) = Pr [1X][r < M(7)]
X~ La (duzm(Bi))d
> X|h<M
> P (X < M)
>1- deJAﬁn)

Then, by a union bound, with probability at least 1 — ﬁde‘ehgéﬁ), we have ||D; — Dj||1 < M(n) for
every i € [n]. Then, with probability at least 1 — nde™ dLn), we have ||g(D) — g(ﬁ)Hl < K(n) for
every (M(-), K(-))-smooth function g : (R?)* — R™ by definition of (M(-), K(-))-smooth. Thus,
San is (K(-), 8(-))-useful for the class C of all (M(-), K(-))-smooth functions with outlier removal
preprocessing. ]

eM (7)

We note that 8(n) = dne™ 4L~ can be made to be negligible by choosing M (n) = Q(n") for any
Kk > 0. We also note that the mechanism in the proposition can clearly be implemented efficiently.
We now show that there exist (M (-), K(-))-smooth functions that cannot be computed with non-
trivial utility from synthetic data released by a differentially private mechanism, regardless of the
running time of the mechanism.

13



Proposition 12. Let g : (RY)* — R? be the function defined by g(D) = Dy, which is clearly
(M(-), M(-))-smooth for every function M : Zso — RY. Let € > 0, and let San be any (possibly
inefficient) e-differentially private mechanism that always outputs a database where each row is a
data point in R%. Then, for every 6 > 0, San is not even (dWZ(X), 1—&66 — 0)-useful for the function

g with outlier remowval preprocessing.

Proof. Let & and § be any pair of data points in X such that ||Z— |1 > 3diam(X). Let D be the
database consisting of exactly k + 1 copies of Z followed by exactly k copies of 7, and let D’ be the
same as D except that the first row is changed from Z to 3. Then, both D and D’ do not contain

any outliers.
diam(X) 1

Let § > 0. To obtain a contradiction, suppose San is (=, 1 o d)-useful for the function
g with outlier removal preprocessing. Then, San is also (dianZ(X), T iee)—useful for g with outlier
removal preprocessing. Then, we have
7|y < di > L _ @
Pr[||San(D); — Z||1 < diam(X)/4] > 1 — T e~ 1t1e

Since San is e-differentially private and D and D’ differ by only one row, we have San(D) =,
San(D'), so

Pr(||San(D"), — Z||1 < diam(X)/4] > e~ - Pr[||San(D)1 — Z||1 < diam/(X) /4]

1
> .
— 14 ef

Since ||Z — ¢]|1 > 2diam(X), if ||San(D’)1 — Z|[1 < diam(X)/4 holds, then ||San(D’); — g1 <

diam(X)/4 does not hold. It follows that

Pr{llg(San(D")) = g(D")|l < diam(X)/4] = Pr([[San(D')y — gl < diam(X)/4]

< 1-Pr[||San(D’); — Z||1 < diam(X)/4]
1
<1-
- 1+ec
1
<1- (1 -9).
1+ec
This contradicts our assumption that San is (dimz(X), T iee — ¢)-useful for g with outlier removal
preprocessing. ]

In Proposition 12, we note that the image of X* under g is X (recall that the databases that

we run mechanisms on are elements of X*) and ?166 R~ % when € is small, and so requiring San

to be (di'"Z(X), T J:eé — §)-useful for g is only requiring San to possibly provide non-trivial utility;
however, the proposition says that San cannot even satisfy this non-triviality requirement. If we
apply Proposition 11 to the same function g, we see that for every function M : Zsg — R*, the

crowd-blending private mechanism is (M (-), 3(-))-useful for g with outlier removal preprocessing,
eM(R)

where f(n) = dne” "z~ and L is a bound on the diameter of every block of the partition P. The
utility guarantee of this result is non-trivial in many situations. Thus, it is possible to release
synthetic data points for approximating smooth functions while satisfying crowd-blending privacy,
but doing this while satisfying differential privacy is impossible in general.
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5 Owur Main Theorem

In this section, we prove our main theorem that says that when we combine a crowd-blending
private mechanism with a natural pre-sampling step, the combined algorithm is zero-knowledge
private (and thus differentially private as well). The pre-sampling step should be thought of as
being part of the data collection process, where individuals in some population are sampled and
asked for their data. A crowd-blending private mechanism is then run on the samples to release
useful information while preserving privacy.

We first prove our main theorem for the case where the pre-sampling step samples each individ-
ual in the population with probability p independently. In reality, the sampling performed during
data collection may be slightly biased or done slightly incorrectly, and an adversary may know
whether certain individuals were sampled or not. Thus, we later extend our main theorem to the
case where the sampling probability is not necessarily the same for everybody, but the sampling
is still robust in the sense that most individuals are sampled independently with probability in
between p and p’ (this probability can even depend on the individual’s data), where p and p’ are
relatively close to one another, while the remaining individuals are sampled independently with
arbitrary probability.

We begin with some necessary terminology and notation. A population is a collection of indi-
viduals, where an individual is simply represented by a data value in the data universe X. Thus, a
population is actually a multiset of data values, which is the same as a database. (If we want indi-
viduals to have unique data values, we can easily modify X to include personal/unique identifiers.)
Given a population P and a real number p € [0, 1], let Sam(P, p) be the outcome of sampling each
individual in P with probability p independently.

Although zero-knowledge privacy was originally defined for mechanisms operating on databases,
one can also consider mechanisms operating on populations, since there is essentially no difference
between the way we model populations and databases. (In the definition of zero-knowledge privacy,
we simply change “database” to “population” and D to P.) We now describe a class of (randomized)
aggregation functions that we will use in the definition of zero-knowledge privacy.

e iidRS(p) = i.i.d. random sampling with probability p : the class of algorithms 7" such that
on input a population P, T' chooses each individual in P with probability p independently,
and then performs any computation on the data of the chosen individuals.

We now state and prove the basic version of our main theorem.

Theorem 13 (Sampling + Crowd-Blending Privacy = Zero-Knowledge Privacy). Let San be any
(k, €)-crowd-blending private mechanism with k > 2, and let p € (0,1). Then, the algorithm San
defined by San.(P) = San(Sam(P,p)) for any population P is (e,x, .1 )-zero-knowledge private’®
with respect to 1idRS(p), where

o=t (p (32N =) and b= e ),

To prove Theorem 13, we will first prove two supporting lemmas. The first lemma essentially
says that if an individual ¢ blends with (i.e., is indistinguishable by San from) many people in the

4To make zero-knowledge privacy compose naturally for this type of aggregate information, we can extend iidRS (p)
to #dRS(p,r), where T is now allowed to perform r rounds of sampling before performing any computation on the
sampled data. It is not hard to see that zero-knowledge privacy with respect to #tdRS(p,r) composes in a natural
way.

®The constant hidden by the Q(-) in 6., can be easily computed; however, we did not try to optimize the constant
in any way.
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population, then t’s privacy is protected when we sample from the population and run San on the
samples:

Lemma 14 (Protection of individuals that blend with many people in the population). Let San
be any mechanism, P be any population, p € (0,1), and € > 0. Lett be any individual in P, and let
A be any non-empty subset of P\ {t} such that t' ~¢ gan t for every individual t’ € A. Let n = |A|.
Then, we have

San(Sam(P,p)) Re;inar b pina SaM(Sam (P \ {t}, p)),

where €finat = (p - (F5¢) + (1 = p)) and Spinar = e~ Ut p(=p)?)

In the lemma, A is any non-empty set of individuals in P\ {¢} that blend with individual ¢. (We
could set A to be the set of all individuals in P \ {t} that blend with individual ¢, but leaving A
more general allows us to more easily extend the lemma to the case of “robust” sampling later.) We
note that 6 inq is smaller when n = |A| is larger, i.e., when t blends with more people. Intuitively,
if an individual ¢ is indistinguishable by San from many other people in the population, then ¢’s
presence or absence in the population does not affect the output of San(Sam(-,p)) much, since the
people indistinguishable from ¢ can essentially take the place of ¢ in almost any situation (and the
output of San would essentially be the same). Since it does not matter much whether individual ¢
is in the population or not, it follows that ¢’s privacy is protected.

The proof of the lemma roughly works as follows: Consider two scenarios, one where individual
t is in the population (i.e., San(Sam(P,p)) in the lemma), and one where individual ¢ has been
removed from the population (i.e., San(Sam(P \ {t},p)) in the lemma). Our goal is to show that
the output of San is essentially the same in the two scenarios, i.e., San(Sam(P,p)) e .87ina
San(Sam(P \ {t},p)). Conditional on individual ¢ not being sampled in the first scenario, the two
scenarios are exactly the same, as desired. Thus, we now always condition on individual ¢ being
sampled in the first scenario. In the lemma, A is a set of individuals in the population (excluding
t) that are indistinguishable from ¢ by San. Let m denote the number of people in A that are
sampled. The proof involves showing the following two properties:

1. m is relatively smooth near its expectation: For every integer m near the expectation of m,
Pr[m = m] is relatively close to Pr[m = m + 1].

2. For every integer m € {0,...,n — 1}, the output of San in the first scenario conditioned on
m = m (and ¢ being sampled) is essentially the same as the output of San in the second
scenario conditioned on m = m + 1.

For the first property, we note that m follows a binomial distribution, which can be shown to
be relatively smooth near its expectation. To show the second property, we note that when we
condition on m = m (and ¢ being sampled) in the first scenario, m random samples are drawn
uniformly from A (one at a time) without replacement, and also t ¢ A is sampled for sure (and the
remaining individuals are sampled independently with probability p). This is very similar to the
second scenario conditioned on m = m+ 1, where m + 1 random samples are drawn uniformly from
A without replacement, since if we replace the (m + 1)* sample by ¢, we get back the first scenario
conditioned on m = m (and ¢ being sampled). Since the (m 4 1)"* sample is indistinguishable from
t by San, the output of San is essentially the same in both scenarios.

Using the two properties above, one can show that when m is close to its expectation, the output
of San is essentially the same in both scenarios. 0,4 in the lemma captures the probability of the
bad event where m is not close to its expectation, which we bound by essentially using a Chernoff
bound. We now give the formal proof of Lemma 14.
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Proof of Lemma, 14. Let €gaqm > 0, D = Sam(P,p), 5/\2 Sam(P \ {t},p), m = |D N A|, and
Y C {0,1}*. Let E be the event that ¢ is sampled when D is chosen. We first observe that

Pr[San(D) € Y] =Pr[San(D) € Y | E] - Pr[E] + Pr[San(D) € Y | E] - Pr[E|
= Pr[San(D U {t}) € Y] - p+ Pr[San(D) € Y] - (1 - p). (1)

We will now show that for every m € {0,...,n — 1}, we have

. Pr[San(D U {t}) € Y | i = m]
Pr[San(D) € Y | i = m + 1]

<e. (2)

Fix m € {0,...,n —1}. Let P_y_a = (P \ {t}) \ A. We note that for j € {0,...,n}, the
conditional distribution of D given m = j is equal to Sam(P_; —4,p) UA;, where A; is the outcome
of choosing j random samples uniformly without replacement from A. Then, using the fact that
t' e gan t for every individual ¢ € A, we have

Pr[San(D U {t}) € Y | m = m] = Pr[San(Sam(P_;_a,p) U A, U {t}) € Y]
< e Pr[San(Sam(P—t,—a,p) UAm41) € Y] =¢€° Pr[San(D) € Y | m =m + 1].
Similarly, we also have
Pr[San(D) € Y | m = m+ 1] = Pr[San(Sam(P_i_4,p) U Api1) € Y]
< e Pr[San(Sam(P_y_4,p) U Ay U{t}) € Y] = e Pr[San(D U {t}) € Y | m = m).

Thus, we have shown (2).

Now, we observe that for every m € {0,...,n—1},if m+1<(n+1)p- pees%im(lip), then

Pr[m = m)| _ (Mp™(1 —p)m _m+4ll-p < €Sam (3)
Prim=m+1] ( 5)p"H (1 —p—m+)  n-—m p = '
Let o = mésjemsim and 0ggm = Prfm +1 > (n+ 1)p- a]. Now, using (3) and (2) (and the fact

that m = n does not satisfy m +1 < (n+ 1)p - «), we have

Pr[San(D U {t}) € Y]
Pr[m = m] Pr[San(D U {t}) € Y | m =m] 4+ Pr[m+1> (n+1)p- o]

(]

m+1<(n+1)p-«

< Z e“Som Pr[m = m + 1] - e Pr[San(D) € Y | m = m + 1] + 65am
me{0,...,n}
m+1<(n+1)p-«
< e“Fesam Pr[San(D) € Y] 4 d5am- (4)

Let €otq1 = max{In(pectesam 4+ (1 —p)),ln(ﬁ)}. Combining (1) and (4), we have

Pr[San(D) € Y] < (etSem Pr[San(D) € Y] + 65am) - p + Pr[San(D) € Y] - (1 — p)
etotal Pr[San(D) € Y]+ p - sam.

IN
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By (1), we also have
Pr[San(D) € Y] > (1 — p) Pr[San(D) € Y] > ettt Pr[San(D) € Y].

Thus, we have San(D) ResoratDOSam San(D).

2=p
1—5)- Then, we have

Now, we set €54m = In(

1
1-p
- jjeﬂ + (1= p)), In(

€total — max{ln(pe6+65am + (1 - p))v ln(

)}

)}

= max{In(p - (2

1-— 1—p

= Inp- (7=2¢) + (1= 1))

and

p-Prim+1>(n+1)p-(2—p)]
Pr[m + Bin(1,p) > (n+ 1)p- (2 — p)]
e~ U+ D)p(1-p)%)

b 5Sam

IN

IN

where Bin(1,p) is a binomial random variable with 1 trial and success probability p, and the last
inequality follows from a multiplicative Chernoff bound. 0

We now show how pre-sampling combined with a crowd-blending private mechanism can protect
the privacy of individuals who blend with (i.e., are indistinguishable by San from) few people in
the population.

Lemma 15 (Protection of individuals that blend with few people in the population). Let San be
any (k, €)-crowd-blending private mechanism with k > 2, let P be any population, and let p € (0,1).
Let t be any individual in P, and let n = |{t' € P\ {t} : t' =c gan t}|. Then, if n < ﬁ, we have

San(Sam(P,p)) Re;inard pina SaM(Sam (P \ {t}, p)),

where € pina = In(pe€ + (1 — p)) and 0 fina = pe~Uk-(1=p)?)

The proof of the lemma roughly works as follows: In the lemma, n is the number of people in
the population that individual ¢ blends with, and is assumed to be small. We will show that when
we remove individual ¢ from the population, the output of San does not change much.

Consider two scenarios, one where individual ¢ is in the population, and one where individual ¢
has been removed from the population. Conditional on individual ¢ not being sampled in the first
scenario, the two scenarios are exactly the same, as desired. Thus, we now always condition on
individual ¢ being sampled in the first scenario. Since individual ¢ blends with few people in the
population, we have that with very high probability, the database obtained from sampling from
the population would contain fewer than k people that blend with individual ¢; since San is (k, €)-
crowd-blending private and individual ¢ does not blend in a crowd of k people in the database, San
must essentially ignore individual t’s data; thus, the first scenario is essentially the same as the
second scenario, since individual ¢’s data is essentially ignored anyway. 0 finq in the lemma captures
the probability of the bad event where the database obtained from sampling actually contains k
people that blend with individual t. We now give the formal proof of Lemma 15.
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Proof of Lemma 15. Suppose n < péilp). Let D = Sam(P,p), D = Sam(P \ {t},p), and Y C

{0,1}*. Let A={t' € P\ {t} : ¢ mcsan 1}, 50 n = [A]. Let i = |D N A|, and let E be the event
that individual ¢ is in D when D is chosen. We first note that
Pr[San(D) € Y] =Pr[San(D) € Y | E| - Pr[E] + Pr[San(D) € Y | E] - Pr[E]

= Pr[San(D) € Y] - (1 — p) + Pr[San(D U {t}) € Y] - p. (1)

Since San is (k, €)-crowd-blending private, we have
Pr[San(DU{t}) €Y | m <k —1] < e Pr[San(D) € Y | m < k — 1]
and
Pr[San(DU{t}) €Y |m < k—1] > e “Pr[San(D) € Y | m < k — 1].

Then, we have

Pr[San(D U {t}) € Y] < Pr[San(DU{t}) € Y | m < k — 1] Pr[m < k — 1] + Pr[m > k — 1]

<ePriSan(D)eY |m<k—1Prim < k—1]+Prim >k — 1]
< e Pr[San(D) € Y] + Pr[m > k — 1], (2)
and
Pr[San(D U {t}) € Y] > Pr[San(DU{t}) € Y | m < k — 1] Pr[m < k — 1]
e “Pr[San(D) €Y | m < k—1]Pr[m < k — 1]
e~“(Pr[San(D) € Y] — Pr[m > k — 1))

=e “Pr[San(D) € Y| —e “Prjm > k —1]. (3)

A\

v

Now, combining (1) and (2), we have

~ ~

Pr[San(D) € Y] < (pe + (1 — p)) Pr[San(D) € Y] + pPr[m > k — 1]. (4)
Also, combining (1) and (3), we have

Pr[San(D) € Y] > (pe~¢ + (1 — p)) Pr[San(D) € Y] — e “pPr[m > k — 1].

Rearranging this inequality, we get

Pr[San(D) € Y] < pee—i—l(l—p) Pr[San(D) € Y] + pef—le—(el—p)p Prim > k — 1]
< (pef + (1 —p)) Pr[San(D) € Y]+ pPrlm > k — 1], (5)

where the last inequality follows from the fact that the function f(z) = % is convex for x > 0, so

1 €
mgpe +(1-p).

Let 7 = %. Then, we have n < 7. The lemma now follows from (4), (5), and the inequality
pPrim >k —1] = pPr[m = 7p- (2 - p)]
< pPr[m + Bin([7| —n,p) + Bin(1, (r — [7])p) = 7p- (2 = p)]
< peUrP(1-p)?)

< pe—k(1-p)?)
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where Bin(j,p) denotes a binomial random variable with j trials and success probability p, and
the second inequality follows from a multiplicative chernoff bound (note that the expectation of
m+ Bin(|7| —n,p) + Bin(1,(r — |7])p) is Tp). O

We are now ready to prove Theorem 13. The proof roughly works as follows: By definition of
1idRS(p), a simulator in the definition of zero-knowledge privacy is able to obtain the aggregate
information Sam(P\ {t},p). With Sam(P\{t},p), the simulator can easily compute San(Sam(P\
{t},p)), which it can then use to simulate the computation of the given adversary. It is not
hard to see that the simulation works if San(Sam(P,p)) ~e,, 5., San(Sam(P \ {t},p)) holds.
Thus, consider any population P and any individual ¢ € P. Recall that Lemma 14 protects the
privacy of individuals that blend with many people in P, while Lemma 15 protects the privacy
of individuals that blend with few people in P. Thus, if individual ¢ blends with many people in
P, we use Lemma 14; otherwise, we use Lemma 15. It then follows that San(Sam(P,p)) ~c_, s
San(Sam(P \ {t},p)), as required. We now give the formal proof of Theorem 13.

zk

Proof of Theorem 13. We first note that Sam(-,p) € iidRS(p). Thus, we can let T'= Sam(-,p) in
the definition of zero-knowledge privacy with respect to itdRS(p). Let A be any adversary. We
will describe how to construct a simulator S for A. Let P be any population, ¢ be any individual
in P, and z € {0,1}*. Since the simulator S is given T'(P \ {t}) = Sam(P \ {t},p) and z as part
of its input, S can easily compute San.i(P \ {t}) = San(Sam(P \ {t},p)) and then simulate the
computation of the adversary A that is given San.;(P \ {t}) and the auxiliary information z; the
simulator S then outputs whatever A outputs.

Now, we note that if San,,(P) ~._, 5., San.;(P \ {t}), then Outa(A(z) < San.i(P)) =e.,.6.4
S(z, T(P\{t}),|P]|). Thus, to show that San,j is (€,x, I.x)-zero-knowledge private with respect to
itdRS(p), it suffices to show that San.,(P) =, 5., San.k(P\ {t}), ie.,

San(Sam(P,p)) Re.o., San(Sam(P\ {t},p)).
To this end, let A = {t/ € P\ {t} : ' ~cgan t} and n = |A|. Let 7 = -E=L- We will consider

p(2—p)°
two cases: n > T and n < 7.
Suppose n > 7. By Lemma 14, we have

San(Sam(P,p)) =e .5, San(Sam(P \ {t},p)),

where €¢; = In(p - (%eﬁ) + (1 —p)) =€, and 01 = e~ Un+Dp1-p)*) < =Qk-(1-P)) = 5,
Now, suppose n < 7. By Lemma 15, we have

San(Sam(P,p)) Re,.5, San(Sam(P \ {t},p)),

where €3 = In(pe€ + (1 —p)) < €1 = e, and Jy = pe= 219 <5,
It follows that

San(Sam(P,p)) =c.,.5.. San(Sam(P \ {t},p)),

as required. ]
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5.1 Our Main Theorem Extended to Robust Sampling

We now extend our main theorem to the case where the sampling probability is not necessarily
the same for everybody, but the sampling is still “robust” in the sense that most individuals are
sampled independently with probability in between p and p’ (this probability can even depend on
the individual’s data), where p and p’ are relatively close to one another (i.e., % is not too large),
while the remaining individuals are sampled independently with arbitrary probability.

We begin with some more notation. Given a population P and a function 7 : X — [0, 1], let
Sam(P, ) be the outcome of sampling each individual ¢ in P with probability m(¢) independently.
We note that for Sam(P, ), two individuals in P with the same data value in X will have the
same probability of being sampled. However, we can easily modify the data universe X to include
personal /unique identifiers so that we can represent an individual by a unique data value in X.
Thus, for convenience, we now define a population to be a subset of the data universe X instead
of being a multiset of data values in X. Then, each individual in a population would have a
unique data value in X, so m does not have to assign the same sampling probability to two different
individuals. We now describe a class of aggregation functions that we will use in the definition of
zero-knowledge privacy.

e iRS(p,p’,¢) = independent random sampling with probability in between p and p’ except for
¢ individuals: the class of algorithms 7T such that on input a population P, T independently
chooses each individual ¢ € P with some probability p; € [0, 1] (possibly dependent on t¢’s
data), but all except for at most ¢ individuals in P must be chosen with probability in
{0} U [p,p']; T then performs any computation on the chosen individuals’ data.

We now state the extended version of our main theorem.

Theorem 16 (Robust Sampling + Crowd-Blending Privacy = Zero-Knowledge Privacy). Let San
be any (k,€)-crowd-blending private mechanism with k > 2, let 0 < p <p' <1, let 7 : X — [0,1]
be any function, let ¢ = |[{zx € X : w(x) ¢ {0} U [p,p]}], and let pmax = sup,cx 7(z). Suppose
C<k—-1.

Then, the algorithm San.y defined by San,i(P) = San(Sam(P,n)) for any population P is
(€xk, 021 ) -z€TO-knowledge private with respect to iRS(p,p’, ), where

i e (2D 1 o

(1-p)2
5., = max J Pmax  Pmax L —0((k=0)-(1-p)?)
p 1-p

In the theorem, £ represents the number of individuals that are sampled with probability outside
of {0} U [p,p']. We prove the theorem by extending Lemmas 14 and 15 to the case of “robust”
sampling. We first describe some of the main changes to the lemmas and their proofs, and then
we give the formal proof of Theorem 16.

Let us first consider Lemma 14, which protects the privacy of individuals that blend with many
people in the population. Like before, consider two scenarios, one where individual ¢ is in the
population, and one where individual ¢ has been removed. Let m denote the number of people
in A that are sampled (recall that A is a set of individuals that blend with individual ¢). Recall
that in the proof of Lemma 14, we had to show two properties: (1) m is relatively smooth near
its expectation, and (2) the output of San in the first scenario conditioned on m = m (and ¢
being sampled) is essentially the same as the output of San in the second scenario conditioned on
m=m+ 1.
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For the first property, we used the fact that the binomial distribution is relatively smooth near
its expectation. Here, since the sampling is no longer i.i.d. but is still robust, we need the Poisson
binomial distribution (the sum of independent Bernoulli trials, where the success probabilities are
not necessarily the same) to be relatively smooth near its expectation. This can be shown as long
as the success probabilities are all relatively close to one another; this is ensured by changing the
lemma so that everyone in the set A is required to have a sampling probability in [p, p/].

For the second property, we used the fact that when we condition on m = m + 1 in the
second scenario, we are drawing m + 1 random samples from A (one at a time) uniformly without
replacement, and if we replace the (m + 1)"* sample by t, we get the first scenario conditioned
on m = m and t being sampled. This idea still works in the new setting where the sampling
probabilities are no longer the same, since there is still a “draw-by-draw” selection procedure for
drawing samples from A (one at a time) in a way so that right after drawing the j** sample, the
distribution of samples we currently have is the same as if we have conditioned on m = j (e.g., see
Section 3 in [CDL94]).

We now consider Lemma 15, which protects the privacy of individuals that blend with few
people in the population. The extension of Lemma 15 to robust sampling redefines what is meant
by “few people”, since even if an individual blends with few people, many of them could be sampled
with probability 1. With this modification, the proof of the extended lemma is similar to the proof
of the original lemma.

When we prove the extended theorem using the extended lemmas, when we are trying to show
that privacy holds for individual ¢, we look at how many people blend with ¢ that are sampled
with probability in [p,p’] (in particular, we exclude the ¢ people that are sampled with probability
outside of {0} U [p,p']); similar to before, if this number is large, we use the extended version of
Lemma 14; otherwise, we use the extended version of Lemma 15.

We now give the formal proof of Theorem 16. We begin by proving a lemma about the smooth-
ness of the Poisson binomial distribution® near its expectation, which will be used later in the proof
of Lemma 18.

Lemma 17 (Smoothness of the Poisson binomial distribution near its expectation). Let P be any
population, 0 < p <p <1, 7: X — [0,1] be any function, and €sqm > 0. Let A be any non-empty
subset of P such that m(a) € [p,p'] for every a € A. Let D = Sam(P,x), m = |DNA|, n = |A|,
and p =+ Y acam(a). Then, for every integer m € {0,...,n — 1}, we have the following:

n

= €Sam ~ ! 1— ~
e Ifm+1<(n+1)p- I_’GES%M’ then Prlm = m] < B 1=LeSem Pr[m = m + 1].
_ ~ 1y ~
o Ifm+1> (n—l—l)p-m, then Pr[m =m] > L3 e™em Prm = m + 1].
Proof. Fix m € {0,...,n — 1}. Given an individual ¢ in P, let p; = 7 (i), and let w; = 12’@,. Given

any set A’ of individuals in P and any integer m/, let Q(A’,m') = > Bcar, Bl=m’ | liep wi- Then,
we have

Prm=m]  2pcaB=mULiesPi)ILicas—p))  Q(A,m)
Prim=m+1] > B Bl=m+1Liep i) U Liea (1 — pi)) CQ(A,m+1)

We will show that for every j € A,

(1)

8?% (Q(C)A(,A nﬁ)n) =0 ®

5The Poisson binomial distribution is the distribution of the sum of independent Bernoulli random variables, where
the success probabilities in the Bernoulli random variables are not necessarily the same.
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Fix j € A. We note that for any integer m/, we have -2-Q(A,m') = Q(A\ {j},m’ — 1) and

ow;

Q(A,m) =Q(A\{j},m) +w;Q(A\ {j},m' —1). Then, we observe that

0 < Q(A7m) >:Q<Avm+1)Q(A\{J}7m_1)_Q(A7m)Q(A\{]}7m)
ow; \Q(A,m+1) Q(A,m+1)2 '

Now, using the equalities Q(A,m + 1) = Q(A\ {j},m + 1) + w;Q(A\ {j},m) and Q(A,m) =
QAN {7}, m) +w;Q(A\ {7}, m — 1), we get

0 ( Q(A,m) >_Q(A\{j},erl)-Q(A\{jhm—l)—Q(A\{jhm)-Q(A\{j}»m)
Q

8wj (A,m+ 1) N Q(Avm+1)2 '
(3)

We will show that this expression is at most 0 by showing that the numerator Q(A\ {j},m+1) -
Q(AN{j},m=1) =Q(A\ {j},m) - Q(A\{j},m) is at most 0. If m = 0, then Q(A\{j}, m—1) =0,

so the numerator is clearly at most 0. Thus, we now assume m > 1. Consider the full expansion
of QUA\{j},m+1)-QA\{j},m —1) and Q(A\ {j},m) - Q(A\ {j},m). Each term of both
expansions is of the form w?l x -w%wj1 ---wj,, where the indices i1,...,1, j1, ..., Js are all distinct,
and 2r + s = 2m. For example, a term w?l . --w,?rwjl ---wj, that appears in the expansion of
Q(A\{j},m+1)-Q(A\{j}, m—1) is obtained if both Q(A\{j},m+1) and Q(A\{j},m—1) choose
Wiy -, Wy, Q(A\{j}, m+1) chooses m + 1 —r of the factors wj,,...,w;, , and Q(A\ {j},m —1)
chooses the remaining factors in wj,, ..., wj,.

Now, consider a term of the form w?l . --w?rwjl ---wj,, where the indices i1,...,%,J1,...,Js
are all distinct, and 2r + s = 2m. It suffices to show that the number of times this term appears
in (the full expansion of) Q(A\ {j},m + 1) - Q(A\ {j},m — 1) is at most the number of times
it appears in Q(A \ {j},m) - Q(A\ {j},m). If r > m — 1, then this term appears 0 times in
QAN {j},m+1)-QA\ {j},m — 1), since Q(A\ {j},m — 1) needs to choose more than m — 1
factors in w;, , ..., w;,. but it can only choose at most m—1; thus, the numerator in (3) is at most 0, as
required. If r < m—1, then this term appears (mfl#) times in Q(A\{j},m+1)-Q(A\{j},m—1)
and (,° ) times in Q(A\ {j},m) - Q(A\ {j},m). Now, we note that (mflw) < (,.%,), since
s =2(m—r) and (%TI_—TZ) < (2(;1”__:)), as required.

Now, from (1),(2), and the fact that w(a) € [p,p’] for every a € A, it follows that

Pr[m = m] _ Q(A,m) < 2 BCA,|Bl=m HieBlfﬁ _1-pm+1 @)
Prim=m+1]  Q(A,m+1) = Y pca pem lLies 5 p n—m
and
Pr[m = m] _ Q(A,m) S >_Bca,Bl=m llics 1%/ _1- P m+ 1‘ 5)
Prim=m+1 QA,m+1) ZBQA7‘B‘:m+1Hi€B%;, p n—m

fm+1<(n+1)p- wamsim, then from (4) we have

Pr[ﬁl:m] <1_pm+1:1_p ﬁ <1_pm+1><p1_p€€Sam<p/1_pe€Sam

Prfim=m+1~ p n—-m p 1—-p\ p n—m)  pl—p “pl—yp
Ifm—l—lz(n—l—l)ﬁm, then from (5) we have
~ / / = = = / /
Pz[m—m] Z1—pm—|—1:1—p pi 1ipm+1 231_]9767656”"Zgl_peﬁsam.
Prim =m + 1] P n—m p 1—p p n—m pl—p pl—p
]
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We now prove a lemma that essentially says that if an individual blends with many people
in the population, then the individual’s privacy is protected when we robustly sample from the
population and run San on the samples. This lemma is essentially the extension of Lemma 14 to
robust sampling.

Lemma 18 (Protection of individuals that blend with many people in the population that have
a good sampling probability). Let San be any mechanism, P be any population, 0 < p < p' < 1,
m: X — [0,1] be any function, and € > 0. Let t be any individual in P, and let A be any non-empty
subset of P\ {t} such that for every individual t' € A, we have t' ~¢ gon t and w(t') € [p,p']. Let
n=|A|, pr=n(t), and p =13, ., 7(t'). Then, we have

San(Sam(P,m)) Re;ina b pina SaU(Sam (P \ {t}, 7)),

where €fina = (pr - (592G ) + (1 - py)) and §pina = max{B, 2} - e~ D20,

Proof. Let egqm >0, D = Sam(P,w),AE = Sam(P\ {t},7), m=|DNA|,and Y C {0,1}*. Let E
be the event that ¢ is sampled when D is chosen.
We first show that for every m € {0,...,n — 1}, we have

‘ln (Pr[S’an(]j u{t}) eY |m= m])

— — <e. (1)
Pr[San(D) € Y | m =m + 1]

It is known that there exists a “draw-by-draw” selection procedure for drawing samples from A
(one at a time) such that right after drawing the j* sample, the samples chosen so far has the
same distribution as the conditional distribution of Sam(A, ) given |Sam(A,7)| = j (e.g., see
Section 3 in [CDL94]). More formally, there exists a vector of random variables (X7i,...,X,)
jointly distributed over A™ such that for every j € [n|, {Xi,...,X;} has the same distribution as
the conditional distribution of Sam(A, ) given |Sam(A,7)| = j.

Now, fix m € {0,...,n—1}. Let Dy, = Sam(P \ (AU{t}),m)U{X1,..., X} Then, for every
D C P, we have Pr[DU{t} = D | m =m] = Pr[D,, U{t} = D] and Pr[D = D | m = m + 1] =
Pr[D,, U{Xm+1} = D]. Then, using the fact that ¢ ~ ga,, t for every individual ¢’ € A, we have

Pr[San(D U {t}) € Y | m = m] = Pr[San(D,, U {t}) € Y]
< e Pr[San(Dy, U{Xmy1}) € Y] = e Pr[San(D) € Y | m = m + 1].

Similarly, we also have
Pr[San(D) € Y | m =m + 1] = Pr[San(Dy, U {Xmi1}) € Y]
< e Pr[San(D,, U{t}) € Y] = e Pr[San(D U {t}) € Y | i = m).

Thus, we have shown (1).
Now, we observe that

~ ~ ~

Pr[San(D) € Y] =Pr[San(D) € Y | E] - Pr[E] + Pr[San(D) € Y | E] - Pr[E]

=Pr[San(D U {t}) € Y] p, + Pr[San(D) € Y] - (1 — p,). (2)
Let o = 136552;57:?1—]7) and B = m, and let 5Sam = maX{PI'[TAfL +1> (n + 1)]3 O[],PI‘[T?L <

(n+1)p-B]}. By Lemma 17 and (1) (and the fact that m = n does not satisfy m+1 < (n+1)p- ),
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we have

Pr[San(D U {t}) € Y]

< Z Pr[m =m] - Pr[San(DU{t}) €Y | m=m]+Pr[m+1> (n+1)p-a]
me{0,...,n}
m+1<(n+1)p-«
p, 1 —b €Sam m — € N N —
< Z ———e Prim =m+1]-e“Pr[San(D) € Y | m =m + 1] + dsam
pl—p
me{0,...,n}
m+1<(n+1)p-o
/
1— -
< D27 P petesam Pr[San(D) € Y] + Ssam (3)

pl—yp

and

Pr[San(D U {t}) € Y]

> Prfm=m] Pr[San(DU{t}) €Y | i =m]

me{0,...,n—1}
m+1>(n+1)p-8

v

v

1-p _ ~ _
Z B/ P e=esam Prim =m+1]-e “Pr[San(D) €Y | m =m + 1]
p

I—p
me{0,...,n—1}
m+1>(n+1)p-8

> (RLZP —eresin)y . (Pr[San(D) € Y] - Prfi < (n+ 1) - 4])

T pl-p

p 1y —(e+esam) D pl-p —(etesam)
> Sam)) . P D)ey] - sem)Y . S gum. 4
> (p’ 1 _pe ) - Pr[San(D) € Y] (p’ 1 _pe ) - 0Sam (4)

/

Let €otar = In(py - (% 11:117’, eftesam) + (1 — py)). Now, combining (2) and (3), we have

/
~ 1— ~
Pr[San(D) € Y] < (p; (%?ﬁ,ee%sdm) + (1~ pe)) Pr[San(D) € Y]+ pt - 65am
= ¢“totel Pr[San(D) € Y] + p; - Osam-

Combining (2) and (4), we also have

A 1 _ - 1 !
Pr[San(D) € Y] > (py - (& ——Le~(etesam)) 4 (1 — p,)) Pr[San(D) € Y] — py - (& ——L e~ (etesam)) . 5g,.

pPl-p p1l-p
— Pr[San(D) € Y]
1 R Elll;p/e_(ﬁ‘i'eSam)
< — Pr[San(D) € Y] + e Pt * OSam
pe (Fihem(ereso)) + (1 py) pe (e (heson)) + (1 —py)
/
1 — -~
S@r%a1—§'fmmﬂ+ﬂ—mﬁﬁwWUﬂeyHmr®m

~

— eStotal PI‘[SCLTL(D) (= Y] + D¢ - (5Sam7

where the last inequality follows from the fact that the function f(x) = % is convex for x > 0.
Thus, we have San(D) San(D).

~ 5
€total Pt 0Sam
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Now, we set €5qm = ln(f%g). Then, we have

_ P (1-p)2-p) . Pl-p)2-p) . _
€total = ln(Pt : (Eme ) + (1 —pt)) < ln(pt : (Ewe ) + (1 —pt)) = €final
and
_ - e€Sam _ - 1
Pi - Osam = pr-max{Pr{m + 1> (n+ Vp- 22—l Prii < (0 4+ Dp - 22—

= pi-max{Pr[m +1> (n+1)p- (2 - p)],Pr[m < (n+1)p- %]}

< - max{ Prli + Bin(L.7) > (n+ 1+ (2= P = Prli + Bin(1.p) < (n+ - 5}

2
< pr - max{se-UArp-p?) 1 (i)
p 1-p
< max{Pt P } . e~ U+ DR(1-P)?)
1—p
= 5finala

where Bin(1,p) is a binomial random variable with 1 trial and success probability p, and the second
last inequality follows from multiplicative Chernoff bounds. O

We now show how pre-sampling combined with a crowd-blending private mechanism can protect
the privacy of individuals who blend with few people in the population. The following lemma is
essentially the extension of Lemma 15 to robust sampling. This lemma is stated in a somewhat
more general form that allows us to use it to prove Theorem 16 later.

Lemma 19 (Protection of individuals that blend with few people in the population). Let San be any
(k, €)-crowd-blending private mechanism with k > 2, let P be any population, and let w: X — [0, 1]
be any function. Let t be any individual in P, and let A be any non-empty subset of P\ {t} such
that for every indwidual t' € A, we have t' ~¢ gan t. Let n = |Al, s = [{t' € P\ {t} : t' e .san t and

¢ AY, pp=m(t), andp= 23, ,7(t'). Then, if s<k—1,p>0, andn < 2(723_%%, then we have

San(Sam(P, 7)) Re;iarbpina San(Sam(P\ {t},m))
where €ping = In(pre® + (1 —py)) and dfina = pte_Q((k_s)'(l_ﬁ)Q).
Proof. Suppose s <k —1,p >0, and n < %. Let D = Sam(P, ), D= Sam(P \ {t}, ), and
Y C {0,1}*. Let m = |[D N Al, and let E be the event that individual ¢ is in D when D is chosen.
We first note that

Pr[San(D) € Y] =Pr[San(D) € Y | E| - Pr[E] + Pr[San(D) € Y | E] - Pr[E]
=Pr[San(D) € Y] (1 — p;) + Pr[San(D U {t}) € Y] - p;. (1)

We note that if m < k — s — 1, then t e-blends with fewer than k people in DU {t}, and since San
is (k, €)-crowd-blending private, we have

Pr[San(DU{t}) €Y |m < k—s—1] < e Pr[San(D) €Y | m < k —s — 1]
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and
Pr[San(DU{t}) €Y |m <k—s—1] > e “Pr[San(D) €Y | m < k — s — 1].
Then, we have
Pr[San(DU{t}) € Y] < Pr[San(DU{t}) €Y |m <k —s—1]Prfm <k —s—1]+Pr[m >k — s — 1]

< e Pr[San(D)eY |m<k—s—1]Prfm<k—s—1]+Prfm>k—s—1]
< e“Pr[San(D) € Y]+ Prjm > k — s — 1], (2)
and
Pr[San(D U {t}) € Y] > Pr[San(DU{t})) €Y |m <k —s—1]Pr[m <k — s — 1]
> ¢ “Pr[San(D) €Y |m<k—s—1]Prfm<k—s—1]
e “(Pr[San(D) € Y] — Prlm > k — s — 1])
= e “Pr[San(D) e Y] —e “Prlm >k —s—1]. (3)

A\

Now, combining (1) and (2), we have
Pr[San(D) € Y] < (pie‘ + (1 — py)) Pr[San(D) € Y] + p, Pr[m > k — s — 1]. (4)
Also, combining (1) and (3), we have
Pr[San(D) € Y] > (pre ¢ + (1 — p)) Pr[San(D) € Y] — e “p, Prlm > k — s — 1].

Rearranging this inequality, we get

Pr[San(D) € Y] < — +1(1 — Pr[San(D) € Y] + - i@ — Prjm >k — s — 1]
< (pref + (1 —py)) Pr[San(D) € Y] + p; Prlm > k — s — 1], (5)

where the last inequality follows from the fact that the function f(z) = % is convex for x > 0, so

1
pe e+ = P+ (L= py).

Let 7 = ]’;(_25__5. Then, we have n < 7. The lemma now follows from (4), (5), and the inequality

pePrim >k —s—1=p Prim > 71p- (2 — p)]
< pePr[m + Bin((7] —n,p) + Bin(1, (1 = [7])p) > 7p - (2 = P)]
< pre~p=p)?)

< pe—Ah=9)(1-p)?)

bl

where Bin(j,q) denotes a binomial random variable with j trials and success probability ¢, and
the second inequality follows from a multiplicative Chernoff bound (note that the expectation of
m+ B(|7] —n,p) + B(1, (Tt — |7])p) is Tp). O

Using the new lemmas (Lemmas 18 and 19), we can now prove Theorem 16 in a way similar to
Theorem 13.
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Proof of Theorem 16. We first note that Sam(-,7) € iRS(p,p’,1). Thus, we can let T' = Sam(-, )
in the definition of zero-knowledge privacy with respect to iRS(p,p’,l). Let A be any adversary.
We will describe how to construct a simulator S for A. Let P be any population, ¢ be any individual
in P, and z € {0,1}*. Since the simulator S is given T(P \ {t}) = Sam(P \ {t},7) and z as part
of its input, S can easily compute San,,(P \ {t}) = San(Sam(P \ {t},n)) and then simulate the
computation of the adversary A that is given San,;(P\{t}) and the auxiliary input z; the simulator
S then outputs whatever A outputs.

Now, we note that if San,,(P) ~c_, 5., San.i(P\ {t}), then Outa(A(2) <> San.,(P)) =c_, 5.,
S(z, T(P\{t}),|P]). Thus, to show that San,y is (€., 0.k )-zero-knowledge private with respect to
iRS(p,p',1), it suffices to show that San.i(P) ~., 5., San.,(P\{t}), i.e

San(Sam(P, 7)) ~e,, 5., San(Sam(P\ {t}, 7)).

To this end, let A = {t' € P\ {t} : t' mesan t and 7(¢') € [p,p]}, n = |A], pr = 7(2),
p=23eam(t), and s = [{t' € P\ {t} : ¢/ mcgan t and t’' ¢ A}|. It is easy to see that without
loss of generality, we can assume that P satisfies the property that 7(¢') # 0 for every ¢’ € P. We
note that s < [, which we use later in some of the inequalities below. Let 7 = 15(728:5' We will
consider two cases: n > 7 and n < 7.

Suppose n > 7. By Lemma 18, we have

San(Sam(P,m)) ¢, 5, San(Sam(P \ {t}, 7)),

where ¢; = ln( A(E LR ) + (1= pr)) < (P (%7“(—11’);2)—1’) ) 4 (1 — Pmax)) = €24 and

} e*Q((n‘i’l)p(l p) ) < maX{pmax pmax} e k l 1 p) ) _ 5 k-

d1 = max{ i

71 —p
Now, suppose n < 7. By Lemma 19, we have

San(Sam(P,m)) Re,.5, San(Sam(P \ {t}, 7)),

where eo = In(pec + (1 —py)) < €1 < €, and Jy = pte*Q((k*S)’(lfﬁ)% < pmaxe*Q((k*l)'(lfp/)Q) < 0.

It follows that
San(Sam(P, 7)) =e,, 5., San(Sam(P\ {t}, 7)),

as required. 0
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