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Abstract. Sensitive electronic data may be required to remain confidential for
long periods of time. Yet encryption under a computationally secure cryptosys-
tem cannot provide a guarantee of long term confidentiality, due to potential
advances in computing power or cryptanalysis. Long term confidentiality is
ensured by information theoretically secure ciphers, but at the expense of im-
practical key agreement and key management. We overview known methods to
alleviate these problems, whilst retaining some form of information theoretic
security relevant for long term confidentiality.
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1 Introduction

Consider the following scenario: Alice encrypts her data today using the most trusted
computationally secure cryptosystem. An adversary Eve gains access to the encrypted
data and stores it in a safe place. In 20 or 30 years time the cryptosystem is broken,
due to a novel cryptanalysis or feasibility of a brute force attack on the key. A patient,
passive Eve finally learns Alice’s secrets.

Long term data security is a challenging goal, and from a cryptographic point of
view may be divided into long term authenticity and long term confidentiality. While
much work has been done on long term authenticity, which can be accomplished with
encapsulation and re-signing [40, 88], achieving practical long term confidentiality is
a major open problem [19].

This article provides a survey of cryptographic schemes relevant for long term
confidentiality. We make an albeit hazy distinction between long term confidentiality
of stored data, which requires a method to distribute and store keys, and long term
confidentiality of transmitted data, which may only require secure key distribution.

The phrase ‘long term’ varies in the literature from ‘longer periods of time’ [22,57]
to indefinitely [80, 91, 105, 106]. Of course, in theory one can store electronic data
indefinitely at a physically secure, isolated location. But this imposes all sorts of im-
practicalities, so is not of major interest. It is also clear that in certain scenarios the
requirement of confidentiality diminishes or vanishes over time, for example patents
after acceptance and subsequent publication. Yet some forms of data do require long
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term confidentiality, often by law. For example, German law stipulates that medical
and legal data remain confidential from third parties even after death of a patient
or client [50]. As more and more sensitive medical and legal data is processed and
stored electronically, ensuring its long term confidentiality is highly desirable. Non-
legal scenarios where long term confidentiality is desirable include industrial, and
governmental or military secrets (e.g. defence strategies, construction plans).

The current trend towards cloud computing means that more and more data is
being processed and stored by online resources beyond physical and logical control of
the owner. It is a simple task for an adversary to intercept, copy, and store any data
sent across a public network and from this point on, confidentiality is determined
solely by the original encryption scheme. Hence re-encryption is useless, and even
deletion of data cannot be guaranteed.

Current cryptographic schemes in wide deployment today, such as RSA, Diffie–
Hellman, and AES, do not offer long term confidentiality guarantees. This is because
concrete security is based on the current infeasibility of a specific computational
problem, such as factoring a 1024-bit RSA modulus or computing a 128-bit AES
key, and there are no known techniques to prove the hardness of such problems.

Indeed, if quantum computers are fully realised then factoring and computing dis-
crete logarithms will become feasible, and hence most public key cryptosystems in use
will become insecure [101]. Even post-quantum schemes [19], which provide resistance
against quantum adversaries, offer no long term guarantees of confidentiality, as they
are still based in the computational model of security.

The effect of quantum computers on the security of symmetric key ciphers (e.g.
due to Grover’s algorithm [51]) is considerably less severe, and may be compensated
by e.g. doubling key sizes [13]. Nevertheless, data encrypted with key sizes considered
secure today (e.g. 128 bit) are still at risk of retroactive decryption.

At best, future security is estimated heuristically, with variable key length recom-
mendations [15,65]. The block cipher DES provides a good illustration. Since its FIPS
standardisation in 1976 [82], DES enjoyed widespread deployment for over 20 years.
But by the late 1990s computers were so cheap and powerful that a 256 brute force
search for the key became a feasible task [38]. Although this development was antic-
ipated by security experts and DES was replaced by Triple-DES, the confidentiality
protection of prior ciphertexts was lost.

Yet cryptosystems do exist that provide long term confidentiality, and were known
long before the modern era of public key cryptography. Such schemes are said to be
information theoretically secure, unconditionally secure, or perfectly secret. Since every
public key cryptosystem is susceptible to a brute force search on the key, uncondi-
tionally secure ciphers (such as the famous One Time Pad) necessarily belong in the
realm of symmetric key cryptography.

However, such ciphers are not used in practice (at least on any moderate scale)
because of the practical problems of key agreement and key management: how do
Alice and Bob securely and practically agree on large amounts of secret key material,
and how do they securely and practically store such material? Attempts to solve
these problems whilst retaining some form of information theoretic security has led to
a closer scrutiny of the assumptions underlying perfect secrecy, which may be stated
as:

1. An adversary has complete and perfect access to the channel.
2. Given any ciphertext, a computationally unbounded adversary learns no informa-

tion about the corresponding plaintext.
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Here the channel refers to any medium whereby communicating parties Alice and
Bob exchange information. This channel may be authenticated, in which case Alice
and Bob have a guarantee that they are talking to each other and not an imposter
Eve, or the channel may be unauthenticated, and there is no such guarantee.

We will see how by relaxing one or other of the above two assumptions, it is
possible to make progress on the problems of key agreement and key management.
However, all of the methods we discuss currently have limitations, either in terms of
practicality or by imposing unrealistic assumptions on an adversary. Nevertheless, the
ideas discussed motivate very challenging research problems.

We mention several related survey articles which overlap to some extent with our
exposition [2,7,48,72,97,103,116]. This article differs through having a wider scope by
bringing together all the models relevant for long term confidentiality. Moreover, we
provide a discussion on current limitations and practicalities of each model considered.

Outline. Section 2 introduces the basic notions of entropy and perfect secrecy rele-
vant for later discussions. In Section 3 we survey information theoretic key agreement
protocols, relevant for long term confidentiality of transmitted data, and in Section 4
we discuss information theoretic secret sharing schemes, relevant for long term confi-
dentiality of stored data. We close with a brief summary in Section 5.

2 Shannon, entropy, and perfect secrecy

Claude Shannon’s A Mathematical Theory of Communication [100] is a masterpiece.
His theorems tell us precisely how reliably we can communicate and how much mean-
ingful information we can convey over a given channel. All of this is achieved in the
natural language of entropy, a fundamental notion throughout the sciences, and of
particular importance for cryptography.

2.1 Entropy

Let X be a discrete random variable over an alphabet χ. The entropy of X is defined
as

H(X) := −
∑
x∈χ

P (X = x)log2P (X = x).

Intuitively, H(X) is a measure of the uncertainty of an outcome prior to an obser-
vation of X, or equivalently, information gained by an observation of X. For example,
let X be the event that a coin is tossed n times, and suppose the coin is unbiased.
There are 2n possible outcomes and it is easily seen that H(X) = n. (It is conven-
tion that logarithms are in base 2 so that entropy is measured in bits.) Now suppose
we repeat the experiment with a completely biased coin that turns up heads every
time. Then the outcome is certain and H(X) = 0. In general, entropy is bounded by
0 ≤ H(X) ≤ log2|χ| with the upper bound obtained when X is uniformly distributed.

To facilitate our later discussion on information theoretic cryptographic protocols
we need a few more concepts.

The joint entropy of two random variables X and Y is given by

H(XY ) := −
∑
x

∑
y

P (X = x, Y = y) log2 P (X = x, Y = y),
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and is bounded by H(XY ) ≤ H(X) +H(Y ) with equality when X and Y are statis-
tically independent. The conditional entropy of X given Y may be defined as

H(X|Y ) := H(XY )−H(Y ),

and the mutual information of X and Y is given by

I(X;Y ) := H(X)−H(X|Y ) = H(X) +H(Y )−H(XY ).

Mutual information is a symmetric measure of the mutual dependence ofX and Y , and
the conditional entropy H(X|Y ) is a measure of how much uncertainty remains about
X after observing Y . For example, if X and Y are independent, then H(X|Y ) = H(X)
and I(X;Y ) = 0. In general, H(X|Y ) ≤ H(X), saying that information cannot
increase uncertainty. Finally, the conditional mutual information of X and Y given
Z can be defined as

I(X;Y |Z) := H(X|Z)−H(X|Y Z).

A detailed treatment of the rich subject of information theory is given in [23].

2.2 Perfect secrecy

A cryptosystem consists of a set of possible plaintexts, a set of possible ciphertexts, and
a set of possible keys, together with some method of encryption and decryption. Let
M,C and K denote random variables for plaintext, ciphertext, and key, respectively.
A cryptosystem is said to have perfect secrecy if H(M |C) = H(M), i.e. that any given
ciphertext yields no information about the underlying plaintext.

Perfect secrecy is the strongest possible security measure for a cryptosystem. How-
ever, Shannon proved that any cryptosystem satisfying perfect secrecy must also sat-
isfy H(K) ≥ H(M). Put plainly, the key must be at least as long as the plaintext. This
limit imposes a severe restriction on the practicality of perfectly secure cryptosystems,
as distribution and management of such large keys becomes a major issue.

The most famous example of a perfectly secure cryptosystem is the One Time
Pad, attributed to Vernam [113]. Encryption of a binary message m with a random
key k is simply componentwise XOR: c = m ⊕ k. Decryption is likewise given by
c⊕ k = (m⊕ k)⊕ k = m. The One Time Pad is clearly optimal in the sense that the
bound H(K) ≥ H(M) is met, but still impractical for the reasons just mentioned.

3 Key agreement from information theory

In this section we survey known solutions for information theoretic key agreement.
The main models in question are noisy channel models, quantum key distribution, the
Bounded Storage Model and the Limited Access Model. We describe the basics of each
model and discuss limitations in terms of practicalities and adversarial assumptions.
We mention two relevant survey articles of Maurer [72] and Wolf [116] which overlap
with parts of this section.

3.1 Noisy channel models

Noise is a naturally occurring phenomenon of every physical communication chan-
nel. Remarkably, this simple fact alone allows for key agreement over a public chan-
nel. With his wire-tap channel, which is still the focus of ongoing research [8, 9],
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Wyner [120] was the first to demonstrate the possibility of key agreement utilising
noise. In a one way communication setting where two parties are connected via a
noisy channel, Wyner showed that key agreement is possible under the assumption
that an adversary Eve receives only a degraded version of the received signal. Wyner’s
model was enhanced by Csiszár and Körner [24] to a more realistic broadcast setting,
whereby Eve receives a noisy version of the transmitted signal via a different channel.
Key agreement is possible in this setting only if Eve’s channel is noisier than the
receiver’s, again a rather unwanted premise. Allowing for interactive two way com-
munication, Maurer [77] demonstrated the possibility of secret key agreement even
if Eve’s channel is less noisy than Alice and Bob’s. We sketch the details of this
impressive result.

Maurer’s model. Suppose a random bitstring R is publicly broadcast. Alice, Bob,
and Eve receive R via different noisy channels with respective error probabilities
α, β, ε 6= 0. Suppose Alice receives the string X, Bob receives the string Y , and Eve
receives the string Z, where we need to assume Z 6= X and Z 6= Y . Crucially, we
suppose 0 < ε < α, β < 1/2, i.e. that Eve has the most reliable channel and

I(X;R) < I(Z;R), and

I(Y ;R) < I(Z;R).

To derive a secure key from the strings X and Y , Alice and Bob first engage in
an advantage distillation phase. Over a secondary (noiseless, authenticated) public
channel, advantage distillation enables Alice and Bob to exchange information about
X and Y in such a way that they gain some informational advantage over Eve. More
precisely, after an exchange of messages Alice computes a string SA and Bob computes
a string SB such that

I(SA;T ) < I(SA;SB), and

I(SB ;T ) < I(SA;SB),

where T summarises Eve’s total knowledge. Next, in an information reconciliation
phase, Alice and Bob use their extra information to agree on a common string S with
high probability. Finally, in a privacy amplification phase, again by a public exchange
of messages Alice and Bob shrink S to form a secure key about which Eve has only
negligible information.

Each of these phases is a fairly involved process. Advantage distillation and infor-
mation reconciliation are achieved using error-correcting codes; details and specific
suggestions are given in [18,70,77,116]. Privacy amplification may be achieved via uni-
versal hashing or randomness extraction techniques, and may be considered a subject
in its own right [11,12,93,95,109,111,122].

Secret key rates. An interesting notion in Maurer’s model is that of a secret key rate,
which generalises Csiszár and Körner’s earlier notion of secrecy capacity to a two
way communication setting. The secret key rate S(X;Y ||Z) of the joint probability
distribution PXY Z is defined as the maximum rate R as follows [116]: For every ε > 0
there exists N0 such that for all N ≥ N0 Alice and Bob can agree on k-bit strings
S and S′ based on N independent realisations of X,Y (XN denotes the block of the
first N realizations of X) with the properties:

k > (R− ε)N
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H(S|XNU) = 0

H(S′|Y NU) = 0

P (S 6= S′) < ε

I(S;ZNU) < ε

H(S) > k − ε.

Herein U represents the entire communication held over the public channel. Informally
speaking, S(X;Y ||Z) is the maximum rate at which Alice and Bob can generate an
almost uniformly distributed string about which Eve has virtually no information and
which hence can be used securely as a cryptographic key. Intuitive bounds (as shown
by Maurer [77]) on the secret key rate are given by

max{I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)} < S(X;Y ||Z),

S(X;Y ||Z) < min{I(X;Y ), I(X;Y |Z)}.

Further theoretical results on secret key rates are given in [1,74,75,77,92,115] including
some interesting open problems.

Limitations of noisy channel models. The models of Wyner and Csiszár and Körner
clearly place unrealistic assumptions on the quality of an adversary’s channel. An
objection to Maurer’s model, and all noisy channel models, is that in practice one
does not know the error probability ε of Eve’s noisy channel. (Indeed, Eve may be
listening via several different channels.) Even if one fixes a bound for ε, one must also
agree on an acceptable amount of information that an adversary can learn. Also, the
complexities of error correction and privacy amplification make it difficult to judge
practical secret key rates. The number of messages exchanged must also be considered.
All of this makes it difficult to set a concrete security level at which to confidently
engage in key agreement (despite experimental work [62]). Moreover it is not clear how
to physically realise noisy channels with the required properties. While noisy channel
models seem reasonable for wireless settings, there is not much hope for networked
settings such as the Internet, as one cannot easily build a noisy channel on top of the
TCP/IP stack.

We remark that the case of active adversaries (i.e. unauthenticated channels) has
been extensively studied in [71,73,93,94,121,122]. However, even in this scenario it is
generally assumed that Eve is passive for the initial noisy broadcast, which is again
unrealistic.

3.2 Quantum key distribution

Quantum key distribution offers a quite different method of key agreement, yet has
many features in common with noisy channel models.

In quantum computing, information is transmitted at the quantum level, rather
than the classical level. The analog of the classical bit is the quantum bit, or qubit.
The qubit may be measured as being in one of two states (0 or 1 say), but until
measurement exists in a combination, or superposition, of the two states. A qubit can
be physically realised as a polarised photon. A fibre optic cable may thus act as a
quantum channel, and measurements taken with a beamsplitter. Peculiarities at the
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quantum level are such that measurement influences the state of a qubit, and in general
it is impossible to copy a qubit. This fact, the so-called no-cloning theorem [119], may
be utilised by Alice and Bob to generate a secret key, since in theory eavesdropping
is detectable over a quantum channel.

The BB84 Protocol. Bennett and Brassard [10] were the first to propose a quan-
tum key agreement protocol, named BB84. (Although Wiesner [114] was the first to
recognise the significance of quantum theory for cryptography.) The BB84 Protocol
involves two public channels, one quantum and one classical, and essentially works as
follows.

First Alice and Bob agree on two different bases. Each of the used bases is a pair
of orthogonal quantum states, and the states of one basis are conjugate and non-
orthogonal to the states of the other basis. Preparation and measurement of a qubit
is performed with respect to one of these bases. In each basis, one of the states is used
to encode 0 and the other state to encode 1. To agree on a secret key, Alice generates
a random bitstring and for each bit randomly chooses one of the two bases to encode
the bit. She then prepares each qubit depending on the respective bit value and basis
and sends it to Bob over the quantum channel. Bob measures each qubit in one of
the two bases (which he randomly selects) and stores the pairs (bit, basis). Then
Bob and Alice communicate over the classical channel and compare their choices of
the basis for each pair. The pairs where the basis is different are discarded by both
parties. In the end, both hold a list of bits where Alice’s encoding matches Bob’s
measurement. Bob and Alice now reveal a random sample of the bits and determine
the error rate. If no errors occurred they can directly use the remaining bits as a
secure key. However, if there is noise or an eavesdropper (who disturbs the original
states by his measurements) on the quantum channel this introduces errors in Bob’s
measurements. In that case, information reconciliation and privacy amplification (over
the classical channel) are employed to agree on a highly secure key.

Since Bennett and Brassard’s original paper, there has been an explosion of interest
and theoretical and practical progress in quantum key distribution. We merely refer
the reader to several excellent survey articles [2, 48, 97], and [16] for important early
references.

Limitations of quantum key distribution. Quantum key distribution is currently ex-
pensive, requiring dedicated hardware and networks to prepare, transmit and measure
photons. There have been several attacks on specific implementations, using for exam-
ple bright illumination [68] and indeed eavesdropping [17, 47]. Keys can nevertheless
be exchanged [49] but at the cost of additional privacy amplification and reduction
of the secret key rate. See [47,89] for further references on quantum hacking.

Practicality of quantum key distribution is currently limited by low distances
and key rates, although steady progress is being made. Recent experiments [33, 56,
66, 98, 110] achieve distances of 140 to 250 kilometres with key rates of several bits
per second. Other experiments reach significantly higher key rates of 1 Mbits/s at a
distance of 20 kilometres and 24 kbits/s at a distance of 100 kilometres [31, 78, 81].
On the theoretical side, studies have shown that over free space inter-satellite and
satellite-to-ground stations, quantum communication links are possible due to lower
atmospheric density and hence lower link attenuation [4, 87]. Thus large distances
might be bridged in the future.
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Another limitation of quantum key distribution is the inherent point to point
infrastructure. Two paradigms have emerged to extend capabilities to networks and
achieve scalability and robustness against denial of service attacks and technical break-
downs. The first is the quantum channel switching paradigm realised by the DARPA
Quantum Network [39] and the Tokyo QKD Network [96]. An end-to-end quantum
channel is established on demand between two participants by optical switching at the
network nodes. However, this does not allow to extend the distance for key transmis-
sion and it requires a secret pre-shared key between any two participants. The second
paradigm is that of trusted repeaters, which is followed by the SECOQC implementa-
tion [86]. In this setting independent quantum channels exist between network nodes.
A key is then routed via intermediary nodes from the sender to the receiver. Based
on this topology any distance can be bridged, but intermediary nodes learn the key
and thus must be trustworthy in order to guarantee security.

3.3 The Bounded Storage Model

The Bounded Storage Model proposed by Maurer [76] provides an alternative method
for key agreement. In this model, Alice and Bob are assumed to share a short secret
key k which they expand into a much longer key x suitable for use, say, with the
One Time Pad. An adversary Eve is assumed to have a limited storage capacity, but
is otherwise computationally unbounded; in particular Eve has unlimited memory
available to her during any function evaluation.

The model is conceptually simple, and works as follows. Suppose Eve’s storage
capacity is s, and suppose there exists a very large public source of randomness R
satisfying |R| > s. The source of R may be, for example, a satellite broadcast. Alice
and Bob use k to agree on, and access, a small portion r of R. They then apply a
known randomiser, or key expansion function f to create the key x = f(r, k), where
now |x| � |k|. Eve meanwhile is allowed to read the entirety of R, compute an
arbitrary function h depending on R, and store the output h(R). The only restriction
on h is that its output satisfies |h(R)| ≤ s. After Eve stores h(R), it is assumed that
the signal R is lost forevermore. For security, the function f must satisfy the property
that with high probability the probability distribution of x conditioned on h(R) and
k is close to uniform. (An explicit choice of f is given in [76].)

Significant improvements have been made to the Bounded Storage Model since its
inception. In Maurer’s original work [76], Eve was not assumed to have such a powerful
function h; she could merely store an arbitrary s actual bits of R. The relaxation to
the function h was made by Cachin and Maurer [21] using privacy amplification
techniques, but came with considerable storage costs to Alice and Bob as well as non-
negligible probability that Eve learns a non-negligible amount of information about
x. These problems were removed by Aumann and Rabin [6], but with the undesirable
requirement that |R| � s. Dziembowski and Maurer [34,36] then showed that secure
key agreement is possible for s/|R| arbitrarily close to 1. Everlasting security is proved
in [5,29], meaning that after the signal R is lost, Eve learns no new information about
x from learning k, even if she now has an unbounded amount of storage.

There is a small mountain of literature devoted to the Bounded Storage Model. In
several works [5,30,36,67], reuse of the initial key k with new randomisers is considered
and shown to be secure. Lu [67] and Vadhan [112] reduced the initially required size
of k and used randomness extractors for the construction of their schemes. In [21,35,

8



37] it is shown that information theoretic key agreement is possible without a pre-
shared secret key k, but at the impractical expense of enormous storage requirements
Ω(

√
|R|) for honest parties. The so-called Hybrid Bounded Storage Model has been

considered in [5, 29]. This model suggests to use a computationally secure initial key
k. Dziembowski and Maurer [35] showed that this approach is in general not secure,
but there may exist natural initial key agreement protocols providing everlasting
security. The formalisation and security proof of such a scheme is still open. Harnik
and Naor [54] showed that black box proofs for everlasting security in the hybrid
model cannot exist. Ding [28] and Dodis and Smith [32] consider the practical problem
of transmission errors, and the case of quantum adversaries has been considered in
[25,61].

Limitations of the Bounded Storage Model. In spite of all this theoretical work, there
still remain two fundamental questions regarding practicality:

– how is the source of randomness R physically realised?
– to what extent is storage a limiting factor?

To realise R, it has been suggested to use a broadcast satellite or signal of a deep
space radio source at an estimated rate of 100 gigabit/sec [21, 29, 30]. Besides the
expense of this approach, such transmission rates are beyond current capabilities.
Even with this transmission rate, it takes considerable time to listen to the signal.
Given the example from Dziembrowski and Maurer [36] and assuming Eve’s storage
capacity to be at most one petabit (s = 1015), Alice and Bob must listen to R for a
day and a half to reach the required randomiser size of 12.5 petabits.

The second issue is of an even more fundamental character. Unless R exceeds all
current storage facilities combined, a storage capacity is really a financial cap on the
adversary’s budget. And storage is cheap. Amazon Simple Storage Service allows to
store 1GB at a monthly cost of $0.037 in its cheapest variant [3]. In the above example
this would imply a total cost of about $60,000 to store R entirely.

3.4 The Limited Access Model

The Limited Access Model proposed by Rabin [90] and implemented in [45,59] is an-
other recent conceptual proposal for information theoretic key agreement. The model
requires a large network of public servers called Page Server Nodes (PSNs). Each PSN
generates random, fixed length bitstrings and stores each string in a page. Each page
has the property that after it is accessed twice its content is overwritten by the PSN
with a fresh random string. As in the Bounded Storage Model, the Limited Access
Model supposes Alice and Bob share a short secret key k which they expand into a
much longer key x,

The model essentially works as follows. A portion of the key k is used to agree on
a selection of pages from a selection of PSNs. Alice and Bob access the relevant pages
and download the associated bitstrings. The bitstrings are XORed together to form
x. Security is based on the assumptions that:

– an adversary cannot monitor all PSNs.
– an adversary cannot monitor all strings downloaded by any one user.

Thus if Alice and Bob download n of N total pages and Eve monitors u < N random
pages, then the probability that Eve is able to derive x is at most (u/N)n. Under
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these assumptions, everlasting security is ensured. For suppose the initial key k is
later compromised. Then an adversary Eve learns nothing of x since the constituent
bitstrings have all been overwritten by the PSN, having been accessed twice, by
Alice and Bob. And under the two assumptions, Eve has not stored all the strings
downloaded by either Alice or Bob, and thus she gains no extra information about x
from discovering k.

But what if Eve becomes active and accesses a relevant page of a PSN after Alice
yet before Bob, say? When Bob accesses the page, he will download a different string
from Alice and a common key x will not be established. This is where the remaining
part of the key k comes into play.

After downloading, Alice and Bob perform a so-called page reconciliation proto-
col, to identify and discard any bitstrings that do not match. Encrypting under the
remaining part of k, Alice sends to Bob the page locations and hashes (or MACs, as
in [45]) of the associated bitstrings. Bob compares hash (or MAC) values and sends
back information on any discrepancies found. The key x is formed from XORing
matching bitstrings, part of which is reserved to update the initial key k to generate
further key material.

Limitations of the Limited Access Model. There are clear limitations of the Limited
Access Model. The first assumption may be seen as a distributed bounded storage
assumption. Whilst it is a nice idea that the task of generating randomness is dis-
tributed across a network, one may question to what extent monitoring (distributed)
storage locations acts as a limiting factor on an adversary. The second assumption is
certainly not standard (the exact opposite is usually assumed), but clearly needed for
security. Rabin also suggests that Alice evades monitoring by visiting Internet cafes
or friends and download pages anonymously. While this may work on a small scale, it
is clearly not practical at any interesting scale. Moreover, there is nothing to prevent
an adversary monitoring Alice’s local Internet cafes.

As in the Bounded Storage Model, an initial key k is required. The authors of [46,
59] suggest to use a common computationally secure protocol. But in this case the
page reconciliation protocol may affect everlasting security: suppose an all-powerful
Eve computes k and then finds all preimages of the hash (or MAC) values. It may
then be possible to mount a better-than-brute-force attack on the key x. Thus security
depends on the particulars of the hash or MAC function.

A less severe practical issue concerns the necessarily large number of page server
nodes. Rabin presents a search engine based construction not requiring PSNs. Using
k as search engine input, common web pages are randomly selected as sources of
randomness. However, it is an open question as to how much randomness such a
system provides. Furthermore the web pages are not destroyed after downloading
twice, hence everlasting security might be at risk.

4 Long term confidential data storage by proactive secret
sharing

For long term confidentiality of stored data, different solutions are needed than those
for data transmission. This is because encryption with the One Time Pad is not
suitable since the problem of secure long term storage of data is replaced by secure
long term storage of the key.
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The challenge of long term confidentiality of stored data is met by proactive perfect
secret sharing. Proactive security means to periodically update or reestablish the
security of a system, even if no threats to the system are found. The rationale behind
proactive security is that intrusion detection is very difficult due to slow attacks as
considered by Storer et al. [103]. Because of the long lifetime of the data, an attacker
has a large time window within which to mount an attack. Occasionally entering a
system making only small changes at any given time may go undetected. Thus over
long periods of time it seems reasonable to assume that intrusion will occur at some
point.

Perfect secret sharing was introduced independently by Shamir [99] and Blak-
ley [14] in 1979. This technique allows for information theoretically secure storage of
data in a distributed environment; a secret is divided into shares that are distributed
to different participants (e.g. storage servers) in such a way that any nonqualified
subset of participants learns no information about the secret. Hence, information the-
oretic security is preserved as long as an adversary does not compromise a qualified
subset of participants.

To protect against this kind of attack, Herzberg et al. [55] introduced the process
of share renewal to secret sharing schemes. This proactive measure allows for shares
(compromised or otherwise) to be updated at periodic intervals, so that in order to
learn the secret an adversary must now compromise a qualified subset of participants
within a given time period. Thus in theory an adversary can compromise every par-
ticipant over different time periods and still learn no information about the secret.
This so-called mobile adversary model has been widely adopted for long term storage
security [22,52,53,55,117,118].

Security of (proactive) secret sharing schemes relies on several assumptions. First,
it is assumed that an adversary does not eavesdrop on communications during share
distribution and share renewal. Thus shares must be distributed using secure channels
and long term secure data transmission (as considered in Section 3) is a preliminary
to long term security of storage. Second, it is clearly necessary to assume that uncom-
promised participants securely erase old shares. Third, it must be possible to end an
adversary’s access to a system by e.g. a reboot, thus a system is not compromised once
and for all. Furthermore, in case an adversary has access to a system during the share
renewal phase, the renewed shares of the considered system are still compromised,
following Herzberg et al. [55] and approved by Nikov and Nikova [83].

Note that an active adversary can easily destroy a secret by providing inconsistent
share updates during share renewal. In order to provide security against such active
adversaries, the technique is extended by applying verifiable secret sharing protocols
[22, 55]. In summary, in proactive verifiable secret sharing schemes, the lifetime of a
system is divided into fixed time periods, each ending with an update phase. The
update phase consists of the steps share renewal, detection of corrupted shares and
share recovery. Verifiability is only required to protect the secret from destruction,
and not mandatory for confidentiality.

4.1 Functionality

In the general model of secret sharing schemes, there are n participants (or share-
holders) P1, . . . , Pn, and a special entity called the Dealer. The Dealer distributes
the secret to the n participants in such a way that only qualified subsets can jointly
reconstruct the secret. The set of all qualified subsets Γ is called the access structure
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of the scheme. Thus a subset P of participants is able to jointly reconstruct the secret
if and only if P ∈ Γ . A secret sharing scheme whereby any k out of n participants
can compute the secret is called a (k, n)-threshold scheme. To achieve information
theoretic security for any secret sharing scheme, each share must be of length at least
as the secret itself [63]. Schemes that achieve the lower bound on share sizes are called
optimal.

In the following we describe Shamir’s secret sharing scheme [99] as a basis for
proactive systems. It is the best known perfect secret sharing scheme and considered
in a great variety of works, including practical applications [20,55,58,105]. For a more
general view on secret sharing schemes, see the recent survey by Beimel [7].

Shamir’s secret sharing scheme. Shamir’s secret sharing scheme is a perfect (k, n)-
threshold scheme that makes use of polynomials over a finite field F. It is optimal in
the share size, and n < |F| is required.

To share a secret s ∈ F, k − 1 secret coefficients ai ∈ F, i = 1, 2, . . . , k − 1 are
chosen uniformly at random by the Dealer. The secret s forms the constant term of
the polynomial

f(x) = s+

k−1∑
i=1

aix
i.

For n mutually different xj ∈ F, j = 1, 2, . . . , n, the evaluations of the polynomial
yj = f(xj) form the shares. From each subset of k shares and the corresponding xj the
secret can unambiguously be reconstructed by interpolation using Lagrange’s formula

s = f(0) =

k∑
i=1

yi

k∏
l=1,l 6=i

xl
xl − xi

.

The application of Shamir’s scheme to arbitrarily large secrets requires arbitrarily
large fields, leading to inefficiencies. Miyamoto et al. [79] provide an approach avoiding
large fields and admitting an efficient implementation. The main idea is to first split
the secret into blocks of several bits say, such that each block can be seen as an
element of a given, relatively small field F. An example would be to split the secret
into bytes and use F = GF (28). Then each block is shared individually using Shamir’s
scheme while reusing the xj . After sharing all blocks, all shares belonging to the same
xj are respectively assembled into a vector of shares.

Share renewal. There are essentially three approaches for share renewal with Sha-
mir’s scheme. The first and most general way to renew the shares works with any
secret sharing scheme. First the share is reconstructed by a central instance, e.g. the
Dealer. New shares are then created and distributed to the participants; old shares are
securely deleted. However, this method exposes the secret to the central instance [53].
Hence during share renewal, intrusion into a single system suffices to compromise the
secret.

One method to renew shares without reconstruction uses the fact that Shamir’s
scheme is additively homomorphic. To renew the shares, one shares the zero element of
F , and provides the shares to the participants. They add these shares locally to their
prior shares of the secret. This method is applied by Herzberg at al. [55], where each
of the participants independently share the zero element and distribute the shares to
the other participants.
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While this approach keeps the current access structure, a third approach proposed
by Frankel at al. [42] and Desmedt and Jojoda [27] uses homomorphic properties of
exponentiation, and optionally allows change of the access structure during share re-
newal. As described by Gupta and Gopinath [53] for Shamir’s scheme, the participants
share their initial shares according to the intended access structure and distribute the
obtained temporary shares to the other participants. Given a (k, n)-threshold secret
sharing scheme, a participant can then compute its new share from k of these tem-
porary shares.

Verifiability. The problem with share renewal without reconstruction is that an active
adversary may destroy the secret such that it cannot be reconstructed anymore. To
provide security against destruction, these schemes are combined with share verifi-
cation schemes obtaining verifiable proactive secret sharing. Most of these schemes
use zero knowledge proofs [102] or commitment schemes, where some information is
broadcasted. Feldman [41] proposed a conditionally secure verification scheme based
on the intractability of solving discrete logarithms. However, the confidentiality of the
secret is only computationally secure and hence not applicable in the context of long
term confidentiality.

Pederson [85] provides an information theoretically secure verification scheme sim-
ilar to Feldman. He achieves information theoretic security by involving a random
value into his commitment scheme to mask the actual value of the shares. However,
this approach doubles the share size and security against an alteration of the secret
is still computational.

The scheme of Herzberg et al. [55] works with either Feldman’s or Pederson’s
approach.

Wong et al. [117] combine Desmedt and Jojoda’s share renewal protocol with
Feldman’s verification scheme, which was extended by Gupta and Gopinath [52] to
be robust against participants that behave maliciously when receiving share updates.
To achieve information theoretic security Gupta and Gopinath [53] apply Pedersons’s
verification scheme to their approach.

Stinson and Wei [102] propose a completely unconditionally secure proactive ver-
ifiable secret sharing scheme, which is improved in [26]. In [83] an attack utilising
the broadcast information against the schemes from [26, 102] is presented. Yet, they
consider a changed adversarial model. This attack is generalised to general access
structures in [84].

4.2 Practicality and limitations

Information theoretically secure secret sharing schemes suffer from large computa-
tional overheads during share distribution and renewal. This limits their practical
applicability as discussed by Subbiah and Blough [108]. Verifiability to resist mali-
cious dealers makes the schemes even more complex and might threaten confidential-
ity by broadcasting verification messages. Considering the total amount of data to be
stored, given the secret s, an overall amount of data of at least k · |s| must be stored to
achieve security against a passive adversary that can compromise (k−1) participants.
If we consider active adversaries that aim to destroy the secret, this amount is further
increased: in the Herzberg et al. [55] mobile adversary model, for a (k, n)-threshold
secret sharing scheme, in order to guarantee security even if up to k − 1 servers are
dishonest, one requires 2(k − 1) < n. This results in a data storage of n · |s|.
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Proactivity results in a lot of data traffic during share renewal. Each participant
sends and receives an amount of data at least (n−1)·|s|, thus periodically producing a
massive network load. This is accompanied by the computational overhead of sharing
and reconstruction.

However, the main hurdle to overcome is that secure channels between participants
must be assumed since in general, confidentiality is lost when an adversary is able
to eavesdrop during share distribution. Because of these problems, proactive, or even
verifiable proactive secret sharing schemes are rarely used in practice. However, secret
sharing is applied in several archival systems such as POTSHARDS [104, 105], Pasis
[44], GridSharing [108], and the approaches of Hühnlein et al. [58] and Masinter and
Welch [69].

But none of the above systems apply proactive secret sharing. While this is men-
tioned to be investigated further for POTSHARDS, Masinter and Welch apply pe-
riodic availability and integrity checks, and only apply reconstruction if defects are
recognised. We refer to the survey on existing archival systems by Storer et al. [103]
for further reading.

Schemes proposed to reduce the overhead come with new disadvantages. Kraw-
czyk [63] proposed a secret sharing scheme with short shares using a combination
of encryption, information dispersal and perfect secret sharing. However, the result
is a computationally secure scheme. Subbiah [107] proposed a scheme that uses an
additional system secret, which is shared among the participants and is claimed to
provide proactive security against passive adversaries. Shares of the system secret are
periodically updated and used to refresh the shares of all the stored secrets. However,
the scheme has a flaw: the use of one and the same set of shares for share renewal of
all stored secrets is comparable to One Time Pad encryption always reusing one key,
which is clearly insecure.

5 Summary

We have reviewed known information theoretic methods for key agreement and key
management relevant for long term confidentiality. For key agreement, noisy channel
models are problematic as it is hard to see how weakening the assumption that an
adversary has complete and perfect access to the channel can lead to concrete se-
curity guarantees. Quantum key distribution is a promising approach, but currently
has engineering and scalability issues. The Bounded Storage Model is impractical
to physically realise, and the Limited Access Model needs to overcome simple eaves-
dropping attacks. Moreover, each model requires an enormous amount of randomness:
achievable bit rates of physical random number generators range from several kbit/s
up to 400 Mbits/s [43, 64], and recent experiments even achieve 300 Gbit/s [60], but
are rather costly. Concerning long term storage of confidential data, proactive se-
cret sharing presents a solution. However, information theoretic key agreement is a
prerequisite.

Despite a mountain of theoretical work, a practical solution to long term confi-
dentiality remains an elusive goal.
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