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Abstract. In this paper we present a new algorithm to attack lattice
based cryptosystems by solving a problem over real numbers. In the
case of the NTRU cryptosystem, if we assume the additional informa-
tion on the modular operations, we can break the NTRU cryptosystems
completely by getting the secret key. We believe that this fact was not
known before.

Keywords: Lattice, multivariate polynomials, NTRU, Newton method.

1 Introduction

Latticed-based cryptosystems are one of the main families of post-quantum cryp-
tosystems. The earliest ones in this area are the NRTU cryptosystems, which
were proposed by Hoffstein, Pipher, Silverman [11]. It is currently a public key
scheme considered for practical applications, and is now an IEEE 1363.1 Stan-
dard [4]. It has reasonably short keys, which are easily created, high speed and
low memory requirements. NTRU has attracted considerable interests.

Due to the work of Coppersmith and Shamir [5], the security of NTRU was
shown to be equivalent to the hardness of some lattice problems. Although there
are many attacks, for example, the ciphertext-only attacks [5,10,8,9], it can be
argued that no significant weakness has ever been found on NTRU encryption
schemes, but it is not the case when used for signature schemes. By now, the
most effective attacks against NTRU may have been the chosen-ciphertext at-
tacks, most of which utilize the NTRU’s decryption failures. Algebraic attacks
on NTRU were also considered before [3], but it was shown that they are not
effective.

Recently, some new algebraic attack methods [1,6,7] have been developed
to deal with lattice type of problems. The fundamental idea behind it is the
observation that if x is one of the values in k. k + 1,...,k + [, then = satisfies

the algebraic equation:
k4

[[z-4)=o.

i=k
Instead of using the lattice reduction algorithm, these new attacks present a
new algebraic algorithm to complete the attack by getting enough polynomial
equations to solve the problem.



All these attacks are based on polynomial solvers over a finite field or ring.
They are not yet shown to be of any real threat to the security of the lattice
systems except that they can be used effectively to perform broadcasting attacks.

In this paper we present a new paradigm to attack lattice based cryptosys-
tems by solving a problem over the real numbers, using the ideas in [1,6,7].
The key observation here is to put the modular operations back into the context
of real numbers. This will introduce new parameters, but the equations to be
solved are now over the real numbers. This new paradigm opens a new direction
to look at the security of lattice based cryptosystems, namely we can now use
the whole machinery developed in the last two centuries to solve numerically
polynomial equations over real numbers to attack a lattice-based system. If we
do so directly, it is still not clear at the moment, which techniques is the best,
but in the case of the NTRU cryptosystem, if we assume the additional infor-
mation on the modular operations, we can break it completely by getting the
secret key. We believe that this fact was not known before, in particular, from
the perspective of lattice reduction.

In this paper, we will use NTRU as an example to illustrate the new attack
paradigm. The paper is organized as follows. We first present the basics about the
most current NTRU systems. The next section will be the basic attack paradigm.
In section 4, we will show how we can break the systems if the information of
the modular operations are known. The last section is devoted to conclusions
and future work.

2 NTRU systems

The basic idea behind the NTRU system is more easily explained for a ternary
system. For applications in the real world NTRU can be modified to work with
messages in binary. This introduces some minor complications when a cipher
text has to be be decrypted. For the technical details see [11], but it does not
affect us here since our attack tries to recover the secret key directly from the
public key. We will present both versions of NTRU below.

2.1 NTRU for a message in ternary

In an NTRU lattice, the important parameters are n, p and ¢, where p and ¢
have to be relatively prime. ¢ is either a prime number or ¢ = 2", but here
we will concentrate on the case where ¢ = 2", which is the case suggested for
practical applications. A common choice for p is 3.

In the NTRU crypto systems one works over the ring

R = Zylx]/(z" = 1)
with the coefficients defined over the ring (or field) Z/qZ = Z,, that is by taking
the coefficients mod ¢. The polynomials are therefore of the form

a(x) = ag + arx + agx® + -+ ap_2"



with the coefficients represented in the symmetric form, that is

—1
LqTJSCLjSL%J forj=0,...,n— 1.

The system requires the selection of “small” polynomials, and by that is
meant that the coefficients are small with respect to gq. Usually a third of the
coefficients are chosen to be -1, another third 1, and rest are set to 0. In order
to generate the public key two small polynomials f and g from R have to be
selected. Here f has to be invertible mod ¢ and also mod p, that is, polynomials
fq and f, have to be found so that

fgxf=1mod ¢ and f,x f=1mod p.

In order to simplify this requirement it is common to select instead a small
polynomial F' and to set then f =1+ pF' so that automatically f, = f. In this
way only f, has to be computed. The chances that f, exists are high but if it does
not exist another F' has to be selected. One then computes h = pf, x g mod g.

The public key is h.

The secret key is F' and g.

Let us look at a small example with n = 6 and ¢ = 32:

g(x) = 14z — z* + 25,
F(z) =z — 2%,
flz) =1+3z— 32"

so that
h(z) = 12 — 142 — 122? — 152° + 142" + 152°.

Of course it is more practical to write them in a vector form, which would be
g= [_15 15 Oa Oa _15 1]5
F=10,1,0,0,-1,0],
f = [15 35 Oa Oa _35 O]a
h=[12,—-14,—-12,—15,14,15],

but for our exposition the polynomial form will be more instructive.

The encryption process: Let m be a message encoded as a ternary poly-
nomial m(z) in R, where its coefficients are -1, 1, 0. Choose another ternary
polynomial r(z) at random in R with d, coefficients equal 1 and another d,
coefficients equal -1. The cipher-text is given by

e(z) =m(zx) + r(x) x h(x).



The decryption process: First compute
D(z) = f(z) x

=m(z) x f(z) +pr(z) x g(z) mod ¢

x (1+pF(x)) + pr(z) x g(z)

e(z) mod ¢

=m(x)

Then
m(xz) = D(x) =m mod p.

2.2 NTRU for a message in binary

Converting a message to ternary is inconvenient. Since the only requirement
between p and ¢ is that they are relatively prime to each other, the following
choice for p is suggested

p=2+4zx.

What does it mean then to reduce a polynomial hA(x) mod p(x). One way to do
this is to divide h(x) by p(z) in R. Use the remainder as the new h(z) and repeat
this process until the remainder no longer changes. For example for the given h
the polynomials listed below are encountered in this process

h(z) = =7 — 6z + 2% + 723 + 82* — 62° mod (2 + x)
=4+ 4x + 42% — 22% — 32* — 42° mod(2 + z)
=2 —2r — 222 — 22 + 22* + 22° mod(2 + )
=-1-a+22+2%+2*—2° mod(2 + x)
=242z + 222 + 2% + 2t +2° mod(2 + x)
=-—x—z? 4zt 42° mod(2 + x)
=z +22%2+ 2% +2* +2° mod(2 + x)
=4zt +2° mod(2 + x)

Note that now also the polynomials F' and g can be selected with coeflicients
either 0 or 1. Since this choice for p is more common we will give another example
how to encrypt and decrypt. We will also use these values for our illustrations
in our attack on the system.

The values are now n =7 and ¢ = 32. Choose

g(x) =1+2%+2° (1)
F(z) = 2?4+ 2* (2)

so that the public key with p = 2 4+ & becomes
h(z) =2 — 152 + 822 — 423 + 9z — 425 — 1325. (3)

The encryption process: Let m = 1+2z+z3 be the message to be encrypted
and r(z) = 22 + 23 + 2° the additional polynomial which is used to hide it via
e(x) = m(z) + r(x) x h(z), then the encrypted message is

e=—9—152% — 323 — 112* — 92° + 725.



The decryption process: As before calculate a(z) = f(x) *e(z) mod g and
obtain
a(z) =54 4x + 92% + 923 + 42t + 92° 4 825.

The choice of p = 2 + x destroys the symmetry, which the ternary system with
p = 3 provided, as the coefficients of a(x) are not necessarily correct in the
interval (—15, 16). Applying the reduction with mod (24x) could give the wrong
result. It is necessary to estimate where the coefficients need to be, see [11]. In
our example they need to lie in the interval (—8, 23). Since they are already there,
we can now apply the reduction mod(2 + z) and obtain the original message.

3 The attack algorithm

To find the secret key is to factor

h(z) = pg(x) x fy(x)

Let
Fx)=Fy+Fa+ ..+ F, 2",

and

g@)=go+gix+..+ gn,lx"*,

Then we have

h(z) x (1 + pF(z)) = pg();
this will give a set of n linear equations over Z, in the variables F; and g;.
Because the choice of the coefficients is only (1,0) for F; and g;, we also have

Fi(F; —1)=(F - 0)(F; —1) =0,

9i(9i —1) = (9: = 0)(9: — 1) = 0.
This means we can solve a set of n linear equations with 2n quadratic equa-

tions to find the secret key. But this is very difficult since it is over Z,.
Now let us look again at the set the equation:

h(z) x f(z) = pg(),
which is over R. Now let us define the ring
R=Z(z)/(z" - 1).
Then the equations above become a set of equations over R in the form
h(x) + ph(z) x F(z) = pg(x) + 4G (a), (4)

where the part ¢G(z) comes from the modular operation in the original equa-
tions, and
G(x) =Go+Gix+---+ anlxnil.



This means if we know the statistical range of G(z) then we can build a set
of new equations in the form of

d
H(GJ a’l) - Oa
1=1
so that the coefficients G; are now restricted to the set of integers aq,...,aq.

Here we should note that when we represent elements in Z,, we represent
them in the form
—q/2+1,...,0,...,q/2.

From this, we can conclude that the range of G(z) should not be large sta-
tistically. Numerical experiments show that the range of the coefficients in G is
restricted, as seen in figure 1. In 100,000 experiments the value of each coefficient
G; has been recorded and then the average of each occurrence is plotted.

N=167, q=512, range of nonzero values of G from -28 to 30
14 T

0
-50 0 50

Fig. 1. Frequency of nonzero values for coefficients G;



Anyway, by doing this, we can find F'(x) and g(x) by solving a set of equations
consisting of n linear equations, 2n quadratic equations and n degree d over Z,
the integer ring and therefore over real numbers. This means that we can use
Newton type of numerical method to solve this set of equations. To do this
we could first do substitutions from the linear equations. If we substitute all
the variables F;, we would have a set of equations consisting of 2n quadratic
equations and n degree d over Z.

4 Attack with additional modular information

After finding the statistical range of the coefficients of
G(:E) =Go+Gix+---+ anlxnil.

in the equation (4) we will now work with the assumption that |G;| < d for
1=0,...,n— 1. With the given public key

h(.I) = h,o + h,l.TE + e + hnfl.fnil

and knowing that the function f(z) has the form f(z) = 1+ (2 + z)F(z) we
rewrite equation (4) as

p(x) x h(z) x F(z) —p(r) x g(x) — ¢G(x) + h(z) = 0 ()

so that it is clearer that it is a system of linear equations of the form Ay+c¢ =0
with the unknown vector of coefficients given by

y:(FOaFla"'aanlaQOagla'"agnflaGOaGla"')anl)t

and
Cc = (h,o, hl, ceey hnfl)t.

The system of equations to be solved is therefore

Ay+c=0
Fi(F;—1)=0
9i(9i—1) =0
d
G [[(Gi =) (Gi+j)=0.

j=1
For our example with h(x) given in (3) we have

y:(Fo,...,Fg,go,...,gg,Go,...,Gg)



The matrix A is given by

[-9 -30 1 14 0 1 -28-20 0 0 0 0 —-1-32 0 0 O
-28-9-30 1 14 0 1 -1-20 0 0 0O O 0 =32 0 O
1 -28-=9-30 1 14 0 0-1-20 0 0 0 0 0 =32 0
0 1 -28-9-30 1 14 0 0-1-20 0 0 0 0 0 -32
4 0 1 -28-9-30 1 0 0 0O-1-20 0 0 0O 0 O
1 14 0 1 -28-9-300 0 0 0O -1-20 O 0O O O
-0 1 4 0 1 -282-90 0 0 0 0-1-20 0 0 0
and ~ _

2

—15

8

c=| —4

9

—4

__13_
and for . =0,...,6

F,(F;—1)=0,

9i(9: —1) =0,

Gi(G? - 1)(G?/4—-1)=0.

These are 28 equations for 21 unknowns. Note that in the last set of equations
we used G?/4 — 1 instead of G? — 4 in order to reduce the impact of these
equations in the numerical computations. Also note that the equations have a
cyclic structure.

Since our unknowns are no longer restricted to be integers, we can use nu-
merical routines to solve the system of nonlinear equations. MATLAB provides
such a routine and it is called fsolve. It requires two parameters, a reference to
the function and an initial guess. The optional parameter allows for the setting
of various options, for example the tolerance in the function evaluations and/or
the tolerance in the x values, before MATLAB decides that a solution has been
found. Another parameter is the number of function evaluations and it can be
set to a large value, since in our case the given functions are easy to evaluate. If
the Hessian of the system of equations can be computed explicitly, which is true
in our case, this can also be given as a parameter instead of asking MATLAB to
find the Hessian numerically. Options can also be set on how much MATLAB
should report on the progress of finding a root. The underlying method uses
the sum of the squares of the equations and then tries to minimize this func-
tion. The Levenberg-Marquardt algorithm is used but the faster but less robust
Gauss—Newton algorithm can also be selected.

As expected the choice of the initial guess places a significant role in finding
the solution, since the function to be minimized has lots of local minima. Even
for this small example finding the correct solution

Y= [05 Oa 15 Oa 15 0505 1505 Oa 150505 15 Oa _1505 _25 Oa _15 O]

|
copwoooo
S

ocl,oooooo
)

|
wOoO oo oo
S




is not guaranteed unless one starts within a reasonable distance from the actual
solution. Starting with the zero vector as initial guess, fsolve usually returns
with an answer which is closer to zero than the actual solution, so that after
rounding the answer we again end up with the zero vector. Similar things will
happen when we start with a vector of all elements set to one, except that after
rounding to the nearest integers not all elements will be one. It is clear that we
have to find a better initial condition. The LLL-algorithm may provide this, but
we have not yet pursued this direction in our efforts.

Instead we have investigated what happens when some of the parameters of
y are known in advance. For example assume that all of the G;’s are known
in advance. In this case the values for the F;’s are usually close to the actual
solution, so that after rounding them to the nearest integer (0 or 1) we obtain the
correct values for the F;’s. With this information it is then possible to calculate
from (4) the correct values for the g;’s.

For two examples we display the output generated by fsolve. In the first
example we use n = 167 and ¢ = 512 and start with an initial vector for y with
the elements set to zero or one at random.

Maximum discrepancy between derivatives = 6.77635e-005
Directional
Iteration Func-count Residual Step-size derivative
0 335 1.49964e+009
1 339 0.00110883 1 -18
2 343 0.00053037 1 5.41e-010
3 347 0.000530367 1 -5.39e-016
4 352 0.000530367 1.44 2.99e-018
5 356 0.000530367 0.00231 -1.31e-018
6 360 0.000530367 0.00231 -1.31e-018
7 363 0.000530367 -4.46e-009 -1.31e-018

No improvement in search direction: Terminating.
exitflag=9 Line search cannot sufficiently decrease the residual
along the current search direction.
iterations: 8
funcCount: 365
stepsize: 5.853671218953386e-020
cgiterations: []
firstorderopt: []
algorithm: ’medium-scale: Gauss-Newton, line-search’
message: ’No improvement in search direction: Terminating.’

The running time was 0.7 seconds. When looking at the coefficients found
for F most of them are within 1076 of their actual values so that rounding them
gives the correct answer. On the other hand rounding the numerically obtained
coefficients for g a fair number of them were set to one instead to zero or the
other way around. Using equation (4) these g; values can be corrected.



For the second example we use n = 809 and ¢ = 2048. Here we have chosen
the zero vector as the starting point, which usually speeds up the convergence
to a solution. MATLAB completed in 44.9 seconds and produced the following
output (and more)

Directional
Iteration Func-count Residual Step-size derivative
0 1619 9.53946e+011
1 1623 7.31676e-006 1 -540
2 1627 3.51426e-006 1 7.03e-016
3 1631 3.51426e-006 1 -4.45e-018

Optimizer appears to be converging to a minimum that is not a root:
Sum of squares of the function values is > sqrt(options.TolFun).
Try again with a new starting point.

Despite the claim of MATLAB that it did not converge to a root, the coefficients
of F' in the solution vector are again close enough to their correct integer values.
After rounding them we can find the values for the g;’s.

With this approach we are able to recover the coefficients F; and g; even for
large systems starting with the zero vector as the initial guess. The numerical
routine fsolve is surprisingly fast and it might even work for larger systems.
The only problem seems to be that it uses single precision in order to preserve
memory, and thus has its own limitations. Nevertheless, this is not important
since we start out with an initial guess for y with the G;’s set to their correct
values. It is more important to determine how many of the coefficient G; are
really needed to obtain the secret key, and this is the direction we are pursuing
now.

5 Conclusion

In this paper, we presented a new paradigm to attack lattice-based cryptosys-
tems by solving a problem over real numbers The key step here is to put the
modular operations back into the context of real numbers. This will introduce
new parameters, but the equations are now over the real numbers.

For example, if we assume the additional information on the modular oper-
ations of the NTRU cryptosystem, we can break it completely by getting the
secret key. We believe this was not known before from the perspective of lattice
reduction.

This new paradigm opens a new direction to look at the security of lattice-
based cryptosystems. We can now use the whole machinery developed in the
last two centuries to solve polynomial equations numerically in order to attack
a lattice based system. We have not yet fully explored these machineries. It is
not clear at the moment, how effective they will be to attack the lattice-based
cryptosystems, but it certainly deserves additional work.
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