
Semi-Supervised Template Attack

Liran Lerman, Stephane Fernandes Medeiros, Nikita Veshchikov, Cedric
Meuter, Gianluca Bontempi, and Olivier Markowitch

Département d’Informatique,
Université Libre de Bruxelles,

Boulevard du Triomphe,
1050 Brussels, Belgium.

Abstract. Side channel attacks take advantage of the information leak-
age in a cryptographic device. A template attack is a family of side
channel attacks which is reputed to be extremely effective. This kind of
attacks supposes that the attacker can fully control a cryptographic de-
vice before attacking a similar one. In this paper, we propose a method
based on a semi-supervised learning strategy to relax this assumption.
The effectiveness of our proposal is confirmed by software simulations as
well as by experiments on a 8-bit microcontroller.

Keywords: Side channel attack, Template attack, Power analysis, Machine
learning, Semi-supervised learning, Clustering, Hamming weight.

1 Introduction

Side Channel Attacks (SCA) take advantage of the fact that instantaneous power
consumption [10], execution time [9] or/and electromagnetic emanations leaks [4]
of a cryptographic device depending on the processed data and the performed
operations. Power analysis attack is a type of SCA which assumes that the use
of different keys implies differences in the power consumption. The evolution
of the techniques proposed for power analysis attacks along the years has been
characterized by an increase in the complexity of the statistical analysis.

Simple Power Analysis (SPA) [10] was the first proposed approach to realize
power attacks. It relies on an interpretation of the trace (of the power consump-
tion) in order to retrieve information about the used key. In other words, the
attacker tries to detect in the power consumption a pattern linked to information
about the executed operations. For example, Hollestelle et al. [7] showed that
such attack against RSA implemented with a square and multiply algorithm
allows the recovery of the key.

Differential Power Analysis (DPA) [10] uses more advanced statistical anal-
ysis than SPA by modeling theoretical power consumption for each key. The
likelihood of the observed power consumption for each model is then used to
predict the key.

Template Attacks (TA) [2] make an additional step by estimating the condi-
tional probability of the trace for each key (profiling step). It extracts all available



information from each trace and can be considered as the strongest form of side
channel attack [2]. This kind of attacks is feasible if the attacker can have access
to the values of the keys during the profiling step. This paper intends to make
one further step by relaxing this hypothesis. More precisely the attacker needs
to know only two keys and their related power consumption.

We have analyzed the pertinence of our attack with simulations as well as
with real data experiments. Our evaluations show significant key-recovery success
rates.

This paper is organized as follows: Section 2 introduces the notations and
the basics of TA approach. Section 3 presents our machine learning approach
applied to power analysis attack. A description of the experimental system and
the results of an attack based on a machine learning technique are described in
Section 4. Section 5 concludes the paper on a positive note and discusses future
works.

2 Template attack

Let us consider a crypto device executing a cryptographic algorithm with the
binary key Ok, k = 1, . . . ,K, where K = 2B is the number of possible values of
the key and B is the number of bits of the key. For each key let’s observe N
times over a time interval of length n the power consumption of such device and

lets denote by trace the series of observations T
(k)
(i) =

{
T

(k)
(i)(t) ∈ < | t ∈ [1;n]

}
,

i = 1, . . . , N associated to the kth key. The state-of-the-art TA modelizes the
stochastic dependency between the key and a trace by means of a multivariate
normal conditional density:

P (T
(k)
(i) |Ok;µk, Σk) =

1√
(2π)n|Σk|

e
− 1

2 (T
(k)

(i)
−µk)Σ

−1
k (T

(k)

(i)
−µk)

T

(1)

where µk ∈ <n and Σk ∈ <n×n, k = 1, . . . ,K, are respectively the expected
value and the covariance of the n variate trace associated to the kth key.

During the profiling step, a set of N traces T
(k)
(i) , i = 1, . . . , N , is collected for

each key. TA estimates the expected value µk and the covariance Σk by:

µ̂k =
1

N

N∑
i=1

T
(k)
(i) (2)

and:

Σ̂k =
1

N

N∑
i=1

(T
(k)
(i) − µ̂k)T (T

(k)
(i) − µ̂k) (3)

Once a new trace T is observed on the attacked device, TA returns the key
which maximizes the likelihood:

k̂ = arg max
k

P̂ (T |Ok) = P (T |Ok; µ̂k, Σ̂k) (4)



This approach makes implicitly the assumption that the distribution of the
traces for a given key follows a parametric Gaussian distribution, with (n2+3n)/2
parameters.

Lets consider the power consumption of the device at time t depending on
an internal value fk(x) where x ∈ χ is a (part of) plaintext and k = 1, . . . ,K. In

other words, we have that T
(k)
(i)(t) = L(fk(x)) + ε where L is the data-dependent

device leakage and ε is the independent random noise following a Gaussian dis-
tribution with zero mean.

A lot of power analysis found in literature are based on the Hamming weight
(HW) model [3,13,14,16,17]. More precisely, that model assumes that L is pro-

portional to the Hamming weight of the internal value (i.e. T
(k)
(i)(t) = λHW(fk(x))+

ξ + ε with λ ∈ < and ξ ∈ <).

3 The SSTA approach

As seen previously, template attacks are performed in two steps: a profiling step
and an attacking step. The state-of-the-art approach of TA assumes that during
the profiling step the attacker can fully control (change the plaintext and the
key) a copy of a device he wants to attack. By changing the key (or a part of it)
the attacker can build a template for each value of the (sub)key.

In this paper we propose to relax this restrictive hypothesis (full control of a
cloned device). The attacker only needs to control the attacked device with (at
least) two different chosen keys but he can still collect traces from the device
with unknown keys.

This section discusses Semi-Supervised Template Attack (SSTA) approach
and present related works.

3.1 Context and hypothesis

We assume that the attacker does not fully control the device and does not know
the values of all keys. We suppose that the device is such that each user is linked
to a particular key (e.g. a digipass or a bank card). In other words the attacker
cannot change the key but he knows that the same fixed key is used when he
manipulates the device. The attacker can collect two sets of traces linked to two
different keys Oα and Oβ . The Hamming weights of Oα and Oβ are different and
their values are not necessarily known by the attacker.

The attacker can collect a set of traces (linked to different unknown keys)
measured when the device executes cryptographic operations. He can collect
these traces while the device is used by different users having different keys.

The last hypothesis is that the power consumption is dependent on the Ham-
ming weight of the manipulated data. We focused on 8-bit architectures during
software and actual experiments, therefore we attacked one byte at a time in
order to find the entire key. However this approach can be generalized to n-bit
architectures (e.g. n = 32); in this case the attacker can focus on at most n bits
at a time.



3.2 Overview of the SSTA

In the machine learning domain, supervised learning is a model which infers a
function from traces and their respective keys. Unsupervised learning is any kind
of model which tries to find hidden structures in traces without knowing their
respective keys. Our work introduces Semi-Supervised Template Attack (SSTA)
which combines supervised and unsupervised learning [20].

In SSTA the attacker collects a set of traces T
(k)
(i) . For the sake of simplicity

we restrict to consider attacks on a single byte of the key. Suppose that the cryp-
tographic device manipulates the bth byte of the key k (namely kb) at time t (i.e.

T
(k)
(i)(t) = λHW(kb) + ξ + ε). At the moment t when the (sub)key is manipulated

by the device, the traces linked to two (sub)keys having the same Hamming
weight must be closer than if (sub)keys had different Hamming weights. There-
fore the attacker can regroup traces that have the same power consumption when
the cryptographic device manipulated the bth byte of the key by using the ad-
vantages offered by machine learning techniques [6]. In other words, clustering
techniques allow us to find all traces that have the same Hamming weight in
order to group them into clusters.

Next the attacker has to find the value of the Hamming weight of each cluster.
For this, we have to focus on the density distribution of the Hamming weights of
a byte as shown in Table 1 where pi denotes the probability to have a trace linked
to a key which has a Hamming weight of i. As we can see, there is approximately
1

256 of the set of traces that is measured when the cryptographic device used a
key with a Hamming weight of 0 or 8, 8

256 of the set of traces that is measured
when the cryptographic device used a key with a Hamming weight of 1 or 7, etc.
So, the attacker can recover the value of the Hamming weight of each cluster by
observing the relative number of traces (and their energy consumption) in each
cluster.

Finally, in the attacking step, the attacker measures a trace T on the attacked
device. Afterwards the model returns the estimated Hamming weight ĥ of kb
which minimizes:

ĥ = arg min
h
dt(T, T

(h)) (5)

where dt is a distance measurement between two traces on the instant t
(where kb is manipulated) and T (h) plays the role of prototype of the set of
neighboring traces linked to keys which have the bth byte of Hamming weight h.

Furthermore after the classification of a trace from the attacked device, this
trace can be added in the model in order to improve the accuracy of the attack
against another execution. In other words, the model can improve its success
rate at each execution of the attacked device.

Once the Hamming weight is known, the attacker has to find the value of the
attacked byte by brute-force attack (i.e. try each key which has the Hamming

weight ĥ). Brute-force enumeration, in case Hamming weight is known, would
require less attempts than the classical brute-force (enumerate all 256 possible
values), see Table 1.



Note that since the trace could be misclassified the model can give a wrong
Hamming weight. In order to handle this issue the attacker can try the closest
neighbors (i.e. ĥ+ 1 and ĥ− 1).

Hamming Number of Probability
weight different values (pi)

0 1 1
256

1 8 8
256

2 28 28
256

3 56 56
256

4 70 70
256

5 56 56
256

6 28 28
256

7 8 8
256

8 1 1
256

Table 1. Number of possible values of one byte depending on its Hamming weight.
The probability to have a trace linked to a key which has a Hamming weight of i is
denoted by pi.

Up to now, we supposed that we know the instant t when the device manip-
ulates the attacked byte. In order to find this instant t, we suppose that the at-
tacker has two keys (e.g. his key and his wife’s key) of different Hamming weights.
Thanks to methods of dependency (e.g. Pearson correlation, Kolmogorov-Smirnov)
the attacker can find the instant where the cryptographic device manipulates the
key. In our experiment we used mutual information in order to find this instant.

Finally, Algorithm 1 gives a pseudo-code of SSTA on a single byte of the key.

3.3 Overview of related works

As seen previously, SSTA is related to TA but also to other types of attacks.
Batina et al. [1] presented the Differential Cluster Analysis (DCA) against a

cryptographic device using an unknown fixed subkey. This technique uses cluster
analysis to detect internal collisions in their traces. It builds a cluster for each
value of a target (i.e. a function of the cryptographic algorithm that handles
the guessed key and a known value like the plaintext). In the second step it
regroups traces of the target device that have the same value. Finally it assesses
the quality of the cluster separation thanks to cluster criterion such as the “Sum-
Of-Squared-Error”. The main difference with SSTA is that DCA must know the
cryptographic algorithm which is implemented on the target device and the key
cannot change during the attack.



Algorithm 1 SSTA Algorithm: pseudo-code

Require: traces, attacked trace, attackersKey1, attackersKey2
Ensure: byteV alue

1: traces1 = getSetOfTraces(attackersKey1)
2: traces2 = getSetOfTraces(attackersKey2)
3: manipInst = byteManipulationInstant(traces1, traces2)
4: SetOfClusters clusters = emptySet
5: for all trace in traces do
6: putIntoCluster(trace, clusters,manipInst)
7: end for
8: HW = prediction(attacked trace, clusters,manipInst)
9: byteV alue = recoverKey(HW ) {enumeration by brute force}

Lerman et al. [11] and Hospodar et al. [8] discussed the role of machine learn-
ing in TA. They showed that a machine learning procedure is able to outperform
conventional TA. However their models suppose that in the profiling step the
attacker can have a full control of a device identical to the attacked one.

Dyrkolbotn et al. [3] targeted the precise Hamming weight of data with tem-
plate attack. However, their research was based on a supervised method where
they supposed that they can fully control a clone device in order to build their
classification model.

3.4 Discussion of assumptions

In this section we will discuss three important issues: the probability of having
two keys of different Hamming weights, the required number of traces to obtain
at least one trace per Hamming weight and the number of tests to perform in
order to recover the key.

Probability of having two keys of different HW
We suppose that the attacker has two (sub)keys with different Hamming weights
of the attacked byte. If the attacker cannot choose the values of these keys, then
the probability that he has such pair of keys when he takes two random keys is:

P (HW(Oα) 6= HW(Oβ)) = 1−P (HW(Oα) = HW(Oβ)) = 1−
8∑
i=0

p2i = 0.80 (6)

In other words, the probability that these keys have different Hamming
weights is very high. So the attacker can easily find such pair of keys in or-
der to find out when the key is manipulated.

Number of traces to collect in order to have at least one trace per HW
Once the attacker knows when the key is manipulated he should collect traces
in order to build his model. Our approach allows to estimate how many traces



should be collected. We must have at least one trace per value of Hamming
weight in order to build each template.

The probability p to obtain at least one trace per value of Hamming weight
is:

p = P (G0 > 0 ∧G1 > 0 ∧G3 > 0 ∧ ... ∧G8 > 0) (7)

where Gi is the number of traces linked to a key which has a Hamming weight
of i.

The equation (7) can be rewritten as:

p = P (G0 > 0)× P (G1 > 0)× P (G3 > 0)× ...× P (G8 > 0) (8)

where P (Gi > j) follows a binomial distribution with two parameters (the num-
ber of trials and the success probability in each trial): n and pi. The Figure 1
shows the number of traces n which should be collected depending on p. This
figure shows that the attacker has to collect at least 1226 traces in order to have
99% of chance to have at least one trace per value of Hamming weight. Since the
same traces can be used in order to attack any byte of the key, we need overall
1226 traces in order to find a key of any length.

Fig. 1. Probability to have a least one trace per Hamming weight value depending on
the number of collected traces.



Number of tests to perform in order to recover the key
Once the attacker finds the Hamming weight of the attacked byte he has to
retrieve the exact value of this byte. The complexity to find this exact value
depends on the value of the Hamming weight. We denote pi the probability to
have a trace linked to a key which has a Hamming weight of i, see Table 1.

In the case the Hamming weight of the byte is zero or eight, it takes no time
to find its value (kb = 0 or kb = 255 respectively) while there are 70 values of
a byte that have the Hamming weight of four. However the probability that the
trace is linked to a Hamming weight of zero or eight is lower than the probability
of having a Hamming weight of four.

In order to estimate the average number of attempts (named θ) needed to
find the value of a byte of the key knowing its Hamming weight we can use the
expected value:

θ =

8∑
i=0

pi ×Gi (9)

The equation (9) can be rewritten as:

θ =
1

256
× 1 +

8

256
× 8 +

28

256
× 28 +

56

256
× 56 +

70

256
× 70

+
56

256
× 56 +

28

256
× 28 +

8

256
× 8 +

1

256
× 1

= 50.27344

(10)

In other words, the average number of attempts needed to find the value of
a byte knowing its Hamming weight is 51. In a general case where the key is i
bytes length, brute force attack will have to test an average of 51i values.

4 Experiments

We validate our approach by conducting software simulations of our attack.
During software simulations, physical leakages targeted by this attack (i.e. key
manipulation) were simulated as the Hamming weight of the attacked part of
the key.

In order to confirm the results of these simulations, we performed a real
data experiment: we attacked the initial round and the first round of AES1

implemented on a microcontroller.

4.1 Validation

In order to assess the quality of SSTA, we adopt a holdout validation technique.
This technique needs two sets of traces. The first one (learning set) is used to
build the model (i.e. find the best point in a trace and build each template). The
second one (validation set) is used in order to assess the generalization accuracy.

1 AddRoundKey, SubBytes, ShiftRows, MixColumns, AddRoundKey.



We say that the attack is successful if it estimates the right Hamming weight
of the key based on a trace measured on the target device. It is therefore depend-
ing on the target intermediate function, the form of the data-dependent device
leakage L and the distribution of the noise ε. Following the idea of Whitnall et
al. [19] we say that the attack is theoretically successful if it always succeeds
with any trace measured on the target device and it is ideally successful in a
noise-free scenario.

It is impossible to verify theoretically successful and ideally successful (an
infinite number of traces is required for this verification). However, an estimation
can be computed with a large number of holdout validations.

4.2 Software simulations

In this first step of our experiment, we simulated the power consumption of an
8-bit microcontroller. For this, we considered the case of an univariate problem
where each trace has one point linked to the Hamming weight of the key (of 8
bits).

The estimation of the success rate2 of the attack depending on the noise
in the traces is shown in Figure 2. Note that the standard deviation is low
compared to the average success rates. An R implementation of “Partitioning
Around Medoids” [15]3 clustering technique was used. The holdout technique
used 3500 traces in the learning set and 1500 in the validation set. As expected
we can see that the more noise we have, the more difficult it is to succeed the
attack.

In other words, SSTA is ideally successful but not theoretically successful.

4.3 Real data experiment

After a simulation where each parameter can be controlled, we did a read data
experiment on an 8-bit microcontroller ATmega328P. The microcontroller was
programmed using an Arduino Uno board [18]. In order to cut off any noise
(generated by other parts of the Arduino Uno board’s circuits) the microcon-
troller was removed from the board and placed on an external protoboard. The
microcontroller was powered up using 5.3V supply. It used an external 16MHz
clock. We measured the power consumption by inserting a 47Ω resistor on the
power pin VCC of ATmega328P. For all acquisitions we used an Agilent Infini-
ium 80000B Series oscilloscope 2GHz 40GSa/s. See the acquisition scheme in
Figure 3.

Two different signals (handled using interruptions) could be send to the mi-
crocontroller one to change the value of the attacked byte of the key (i.e. to
increment its value) the other to order to encipher the plaintext using the last
value of the key.

2 Which is the average of one hundred success rate obtained in the same conditions
(i.e. with the same value of the standard deviation of the noise).

3 Package “cluster” [12] available on CRAN.



(a) Average of success rates (b) Standard deviation of success rates

Fig. 2. The Figure (a) shows the average success rates depending on the value of the
noise. Figure (b) shows the standard deviation of success rates depending on the noise.
Both figures were generated using 100 experiments on a simulated device. “Partitioning
Around Medoids” clustering technique was used.

The attack was realized with a plaintext of 16 bytes (all set to zero). All 16
bytes of the key (except the attacked byte) were also set to zero. The reason
of these fixed values is to decrease the complexity of subsequent steps of the
analysis. We chose to attack the 13th byte of the key4, its value changed from 0
to 255.

For each value of the attacked byte we realized 10 acquisitions. Each acqui-
sition is the average, realized on the oscilloscope during the acquisitions, of 128
single acquisitions using the same key and plaintext. So, for each key we have
10 traces each representing the average of 128 acquisitions. These values (10
traces and average of 128 acquisitions) were chosen with respect to logistical
constraints.

The result of a measure (an average of 128 acquisitions) is a trace such as
the one plotted in Figure 4. Traces were aligned using a trigger on the ’encipher’
signal send to the device. In order to realize the attack we compressed the traces
by using each fifth point.

The simple model based on the probability density function of Hamming
weight (see Table 1) will always give the answer 4 for the Hamming weight of a
byte, since it is the most probable value. Its success rate is 70

256 = 27.34%.
We realized our experiment based on the “holdout” technique with a learning

set of 8 traces per byte value and with 2 traces per byte value in the validation
set. The best point returned by the feature selection model was located at the

4 This value has been randomly chosen and do not impact on the results because of
the 8-bit architecture



Fig. 3. Trace acquisition scheme.

Fig. 4. Average of 128 traces. Mapping of AES steps on the trace: KEY EXP –
KeyExpansion, ARK – AddRoundKey, SB – SubBytes, SR – ShiftRows, MC – Mix-
Columns.



end of the initial AddRoundKey, which is the moment in time where the attacked
byte (i.e. the 13th) is being manipulated. In real data experiment we also used the
“Partitioning Around Medoids” clustering technique. The result of our attack is
shown in Table 2. The success rate is higher than the success rate of the simple
model.

Number of traces per key Number of traces per key Number of traces Success rate
in the learning set in the validation set in each average-trace

8 2 128 61.5%

Table 2. Success rate depending on the number of traces per key.

5 Conclusions

We presented and assessed a template attack, based on a semi-supervised tech-
nique of machine learning, able to infer a model from power consumption obser-
vations. This model predicts the Hamming weight of the attacked byte of a key.
The contribution is done on the profiling step where the attacker needs only to
know two different keys of different Hamming weights.

We implemented our technique using simulated and real data traces. In both
cases we show that we can find the Hamming weight of a byte of the key.

We analyzed the limits of our attack. Firstly we estimated the probability
that the attacker has two keys with two different Hamming weights. Secondly by
computing the number of traces which have to be collected in order to complete
a real data attack. Finally by computing the average number of attempts needed
to find the value of a byte of the key knowing its Hamming weight.

We suppose that the keys are uniformly distributed which is not necessarily
the case in asymmetric algorithms.

Future works will focus on the generalization of these preliminary results:
firstly by considering larger parts of the key, secondly by assessing the impact
of the plaintext on the prediction accuracy, thirdly by considering all rounds of
AES as well as other algorithms and finally by varying the cryptographic device
and its architecture.

Interesting future research perspectives are also to consider the adaptation
of clustering multivariate technique [5] as well as specific feature selection tech-
niques for the dimensionality reduction of traces.

Eventually, protected implementations against this kind of analysis will be
investigated.



References

1. Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust. Differential Cluster
Analysis. In Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of
Lecture Notes in Computer Science, pages 112–127. Springer, 2009.

2. Suresh Chari, Josyula Rao, and Pankaj Rohatgi. Template Attacks. In Burton
Kaliski, etin Ko, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
51–62. Springer Berlin / Heidelberg, 2003.

3. Geir Olav Dyrkolbotn and Einar Snekkenes. Modified Template Attack: Detecting
Address Bus Signals of Equal Hamming Weight. In NTNU Stig F. Mjlnes, editor,
The 2nd Norwegian Information Security Conference (NISK2009), pages 43–56.
Tapir Akademisk Forlag, Nov 2009.

4. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Anal-
ysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, CHES, volume 2162 of Lecture Notes in Computer Science, pages 251–261.
Springer, 2001.

5. Wolfgang Hardle and Zdenek Hlavka. Multivariate Statistics: Exercises and Solu-
tions. Springer Publishing Company, Incorporated, 1st edition, 2007.

6. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer
Series in Statistics. Springer, 2nd ed. 2009. corr. 3rd printing 5th printing. edition,
September 2009.

7. Gijs Hollestelle, Wouter Burgers, and Jerry I. Den Hartog. Power Analysis on
Smartcard Algorithms Using Simulation, 2004. Imported from DIES.

8. Gabriel Hospodar, Elke De Mulder, Benedikt Gierlichs, Joos Vandewalle, and In-
grid Verbauwhede. Least Squares Support Vector Machines for Side-Channel Anal-
ysis, page 99–104. Center for Advanced Security Research Darmstadt, 2011.

9. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996.

10. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

11. Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Side Channel At-
tack: an Approach Based on Machine Learning, page 29–41. Center for Advanced
Security Research Darmstadt, 2011.

12. Martin Maechler, Peter Rousseeuw, Anja Struyf, and Mia Hubert. Cluster Analysis
Basics and Extensions. 2005.

13. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations of
Power Analysis Attacks on Smartcards. In Proceedings of the USENIX Workshop
on Smartcard Technology on USENIX Workshop on Smartcard Technology, pages
17–17, Berkeley, CA, USA, 1999. USENIX Association.

14. Mathieu Renauld and Franois-Xavier Standaert. Algebraic Side-Channel Attacks.
In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Information Security
and Cryptology (INSCRYPT) 2009, volume 6151 of Lecture Notes in Computer
Science, pages 393–410. Springer, 12 2009.

15. Theodoridis Sergios and Koutroumbas Konstantinos. Pattern Recognition, Third
Edition. Academic Press, Inc., Orlando, FL, USA, 2006.



16. François-Xavier Standaert, Eric Peeters, Cédric Archambeau, and Jean-Jacques
Quisquater. Towards Security Limits in Side-Channel Attacks. IACR Cryptology
ePrint Archive, 2007:222, 2007.

17. Shiqian WANG, Thanh-Ha Le, and Mael Berthier. When CPA and MIA go hand
in hand, page 82–98. Center for Advanced Security Research Darmstadt, 2011.

18. Arduino website. http://www.arduino.cc, consulted 8 December 2011.
19. Carolyn Whitnall and Elisabeth Oswald. A Comprehensive Evaluation of Mutual

Information Analysis Using a Fair Evaluation Framework. In Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology Conference, volume 6841, page
311, 2011.

20. Xiaojin Zhu. Semi-Supervised Learning Literature Survey Contents. SciencesNew
York, 10(1530):10, 2008.


