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Abstract. Magnitude Squared Coherence is a signal processing tool that indi-

cates how well two time domain signals match one with the other by tracking 

linear dependencies in their spectral decomposition. This paper introduces dif-

ferent ways of using the Magnitude Squared Coherence for Side Channel Anal-

ysis. This distinguisher has several advantages over well-known distinguishers.  
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1 Introduction  

Following [1], many Side-Channel Attacks have been proposed in the literature. Sur-

prisingly, most of them directly work with time domain traces. Easy connection with 

engineering intuition could explain this trend despite some inherent drawbacks of 

such an approach. Among them, the impossibility of capturing the complete leakage 

scattered over many time samples of raw traces appears as a limitation. 

By contrast, much less attention has been paid to Side-Channel Analysis performed 

in the frequency domain that could bring a solution to this problem. To the best of the 

authors' knowledge, Gebotys, Ho and Tiu first proposed to apply a differential attack 

after the application of a Fast Fourier Transform (FFT) [2]. This work was then ex-

tended towards CPA-like attacks in [3-4]. Various similar approaches were described 

in [5].  

If [3-7] demonstrate the greater efficiency of power analyses carried out in the fre-

quency domain, they do not propose a solution to the aforementioned limitation of 

time domain analyses. Indeed, all aim at disclosing the secret key by analyzing sepa-

rately each harmonic of the signal spectrum. Doing so, only a part of the leakage 

which is scattered over several harmonics is exploited.  



Within this context, this paper introduces different Magnitude Squared Coherence 

Analyses to overcome the aforementioned limitation.  All the proposed techniques are 

more efficient (less traces are necessary to disclose the secret key) than the one intro-

duced in our former works [6-7]. Moreover, some of them appear more generic be-

cause they rely on non-parametric statistical analyses of Coherence distributions. This 

latter point is not tackled in this paper; it is still the subject of on-going works. 

The rest of the paper is organized as follows. Section 2 reminds some basics about 

Magnitude Squared Coherence and its first application [6-7] in the context of SCA. 

Sections 3, 4 and 5 introduce different parametric and non parametric analyses of 

Coherence distributions. These additional techniques complete our first proposal, the 

SCAN [6-7]. Experimental results are given in section 6. They demonstrate that the 

proposed attacks are more efficient (only a reduced set of traces is necessary to dis-

close the secret key manipulated by unprotected cryptographic circuits) but require 

more cpu-time to be completed. In Section 7, the impact of the different parameters 

involved in the setting of the MSC based analyses is discussed. Finally, a conclusion 

is drawn in section 8. 

 

Preliminary Note 

Note that it could have been interesting to evaluate, MSC based analyses, using the set of 

traces provided by the DPA contest 2. However, these traces correspond to AES power con-

sumption measurements. They carry less information in the frequency domain because of the 

low cut-off frequencies of both power pad en supply network but also because of the low sam-

pling rate used to collect them. We therefore preferred EM measurements.  

2 Magnitude Squared Coherence  

2.1 Theory 

Magnitude Squared Coherence is a signal processing tool that returns real values be-

tween 0 and 1 to indicate how well two time domain signals x(t) and y(t) match one 

with the other. To estimate the similarity level, linear dependencies in the spectral 

decomposition of x(t) and y(t) are tracked by computing MSC(f) values at different 

frequencies according to: 
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In which, Pxy is the cross-power spectral density of x(t) and y(t) and, Pxx and Pyy the 

related power spectral densities.  

To calculate power and cross-power spectral densities between x(t) and y(t), the 

Welch's averaged modified periodogram method [8] is typically used. It consists in 

first dividing the two signals in w time windows of the same length (i.e. with the same 

number of samples) and then calculating the power spectral densities of each window 

before averaging them to obtain final MSC(f) values at different frequencies. 



2.2 MSC application to SCA 

To retrieve the secret key by SCA, an adversary typically collects a set of n raw traces 

{T1 … Tn} corresponding to a set of messages {m1 … mn} acquired during different 

cryptographic operations. Then, he applies a selection function that sorts traces in 

several subsets according to a hypothesis on the secret key. Finally, the adversary 

applies a distinguisher to identify among all possible keys the correct one. Among the 

known efficient distinguishers, he may adopt the Difference of Means [1], the Pearson 

[9], the Spearman or the Kendall correlation coefficients or even the mutual informa-

tion [10]. 

In a first attempt to exploit MSC within the context of SCA, we formerly proposed 

the SCAN [7] for Squared Coherence ANalysis. The basic idea of the SCAN is to 

simply replace, in the original DPA, the Difference operation of two mean values by 

the computation of a coher value (2), between two mean EM traces. 

 However, MSC could also be used in a less straightforward manner requiring an 

additional preprocessing of traces. Indeed, the adversary can first compute the MSC(f) 

coefficients between each pair of traces for frequency values falling into the band-

width of its SCA platform. He may finally apply the aforementioned distinguishers to 

one or several MSC(f) samples to retrieve the secret key. However, this procedure 

suffers from the same limitation as the procedures of [2, 3, 4]; it does not allow cap-

turing the whole leakage which is scattered over several harmonics. An alternative, to 

overcome this limitation, is to compute, as SCAN does, the mean Coherence coeffi-

cient of MSC(f) values on a given frequency bandwidth: 
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where Ti and Tj denote time domain traces. 

At the end of this preprocessing, the adversary obtains a set Coher of 1/2n(n-1) 

coher values ranging between 0 and 1. Compared to the procedures associated to 

DPA, CPA, MIA, or SCAN the adversary have thus at disposal 1/2(n-1) times more 

informers to retrieve the secret. This is an interesting advantage of working with pairs 

of traces rather than analyzing traces one by one. Such an advantage could be of 

prime importance while attacking systems in which key is regularly refreshed. The 

remaining question is then how to efficiently extract, from the resulting Coher distri-

bution, the secret key. 

3 Mean and Variance Analyses 

Many statistical SCA procedures aim at analyzing the first or second moment of spe-

cific distributions sorted according to the values provided by a selection function fk
w
:  
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If the Hamming Weight (HW) model is chosen, fk
w
 predicts the value ci of w bits 

processed by the cryptographic algorithm according to the value of a clear/ciphered 

message mi and to a guess kK of the key. If the Hamming Distance (HD) model is 

preferred, fk*
w
 rather outputs a word ci of w bits indicating which of the w bits have 

switched during a given clock cycle.  

An adversary adopting MSC for SCA may analyze the Means and the Variances of 

some subsets of Coher. Indeed, he may sort the coher values by selecting pairs of 

traces according to one of the two following functions: 
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As shown, fk
w
 is the xor or the hamming weight of the xor of two words ci and cj 

computed by the function fk
w
 according to the HW or to the HD model and to a guess k 

on the key. 

3.1 Mean analysis 

Following (3), let us define Ck*fk*
1
=0 and Ck*fk*

1
=1 as two subsets of Coher 

with w=1. Because Ck*fk*
1
=0 gathers coher values associated to pairs of traces with 

a given bit having the same HW or HD, the expectation E(Ck*fk*
1
=0) should be 

greater than E(Ck*fk*
1
=1) for the right guess of the key while, for wrong hypotheses 

the expectations must have nearly the same value. Extending this reasoning to several 

bits as in [13], an adversary may therefore expect disclosing the secret key kgK us-

ing the following DoM distinguisher: 
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3.2 Variance analysis 

Similarly, because Ck*fk*
1
=0 gathers coher values associated to pairs of traces with 

the same HW or HD, one may expect that the variances V(Ck*fk*
1
=0) or 

V(Ck*fk*
1
=1) have greater values for wrong guesses than for the secret key. An 

adversary may thus apply the following Difference of Variances (DoV) distinguisher: 
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4 Correlation Analysis 

From engineering intuition and empirical observations, let us assume that the expecta-

tions E(Ck*fk*
w
=q) (fk*

w 
corresponding to the second equation of (4)) are decreas-

ing with increasing values of q, i.e with the HW or HD difference associated to a pair 

of traces. Considering this statement, an adversary may analyze the correlation be-

tween the coher and the fk*
w
 values. One effective manner is to adopt the Pearson’s 

coefficient to quantify the linear relationship between them. The associated distin-

guisher is in that case: 
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where coherp denotes the p
th
 coherence value and fk*

w
>1p the p

th
 Hamming Dis-

tance value (3).  
 Note that one may also consider the Spearman coefficient to capture a monotonic 

but non linear variation of coher values with fk or even use the Kendall’s coefficient  
for more generic analyses.  

5 Non-Parametric Tests 

If the Kendall rank correlation is a non parametric distinguisher, its use remains cpu-

time consuming when applied to large sets of data. For generic and more efficient 

MSC based analyses, an adversary may exploit well known statistical tests such as the 

Kolmogorov-Smirnov (KS), the Cramer-Von-Mises (CVM) tests or even more so-

phisticated and adaptive tests, e.g. [11]. Indeed, such tools allow comparing the cumu-

lative density functions (CDF) of two empirical samples in a non-parametric manner, 

i.e. without any assumption on the underlying distribution law.  

For sake of simplicity let us consider only the KS-test even if slightly better expe-

rimental results were obtained with [11]. In that case, the comparison of two empirical 

CDF, F1 and F2, is based on the calculus of (F1,F2), the maximum distance between 

the two CDF defined by 
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where g1 and g2 are the number of samples of F1 and F2. 



Assuming (a) that the CDF associated to the secret key is unique and different 

from that of wrong key guesses and (b) that the distributions of wrong guesses are 

similar in shape, the KS test can be used according to the following distinguisher:  
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It aims at identifying the key guess associated to the CDF differing the most from 

all the others. 

6 Experimental Results & Discussion 

To confirm the relevance of MSC based SCA, including SCAN, this section reports 

experimental results obtained by application of different analyses against an unpro-

tected DES implementation, mapped into an FPGA, and operating at 50 MHz. For 

this purpose, we selected a list of distinguishers that are representative of the state-of-

the-art and adopted both the Hamming Weight and Distance models. In addition to 

multi-bit SCAN we first proposed in [7], we considered: 

  Correlation analysis in the time domain as the reference. This test is usually the 

first one considered in the literature for evaluating a leaking device. In the present 

context, it allowed us to confirm experimentally that a Hamming Distance leakage 

model was a reasonable abstraction to predict the DES electromagnetic emissions.  

 Second, we applied the multi-bit DPA of Bevan and Knudsen [13] in the time do-

main (MB-DPA).  

 Third, we applied the Correlation Power Frequency Analysis (CPFA) described in 

[4] and further analyzed in [3], to provide a comparison with previous attempts to 

exploit frequency-based attacks.  

 Finally, we implemented two types of MIA attacks [10], one estimating the proba-

bility density functions with histograms, and one based on a Gaussian assumption 

that turned out to be a quite accurate approximation in our experiments. 

Our evaluations followed the framework in [12] and, in particular, we computed a 

global Success Rate (SR) taken over the 8 DES last round sub-keys. These metrics 

have been estimated for a reduced set of traces (5000) per attack, and sampled over 50 

independent attacks. EM traces were acquired using a Lecroy scope featuring a 20 

GS/s sampling rate and using a low noise 63db amplifier with a 1 GHz bandwidth. 

Additionally, we measured the cpu-times spent to run the different analyses, coded 

in C, to process EM traces. Note that all our experiments were conducted on PC in-

cluding an Intel Duo Core operating at 3 GHz and 8 Go of RAM.  

Note that MSC coefficients were computed considering a time window of 512 

samples (i.e. 25.6 ns to be compared to clock period 20 ns) centered on the last round. 

According to the Welch’s method, this window was divided into 127 sub-windows 

(w=127) of 8 samples (400ps) overlapping with its two neighboring windows by 4 

samples (200ps). Note that the width of the sub-windows was chosen in order to be 

equal to the typical delay value of FPGA’s LUT. Power and cross-power spectral 



densities were obtained by applying an FFT to the 127 sub-windows. The FFT were 

carried out considering 64 points i.e. using zero padding [8,14]. Only the spectral 

harmonics falling into the -3db bandwidth (fmin = 50MHz, fmax = 1GHz) of our acquisi-

tion platform were kept to compute the final coher values (2). 

6.1 Number of traces required  

Table 1 gives, for each attack applied considering the HD model, the number of traces 

required to obtain a Global Success Rate of 10%, 20%, 40%, 60%, 80% and 100%. 

Shaded cells highlight analyses providing a given success rate with less than 1k EM 

traces.  

As shown, all considered distinguishers disclose the secret key. This confirms that 

the Hamming Distance model was, as expected, a reasonable abstraction of EM radia-

tions of the iterative and unprotected DES implementation. However, the main con-

clusion that we may draw from table I is that MSC based analyses including SCAN 

require clearly less EM traces than standard distinguishers to disclose the key. As an 

evidence, the distinguishers of eq. 5 (mean analysis), eq. 7 (correlation analysis) and 

eq. 9 (KS test) give a success rate of 100% with roughly 750 traces while CPA gives 

for the same number of traces only a score of 10%. MSC based analyses, including 

SCAN, are thus more efficient than standard distinguishers. Generally speaking one 

may conclude that MSC based analyses (eq. 5, 7 and 9) require 6 times less EM traces 

to disclose the key with a Success Rate of 100% than CPA and 2 times less traces 

than SCAN.  
Table 1. Number of processed traces vs Success Rate (HD model) 

Success Rate 10% 20% 40% 60% 80% 100% 

CPA [9] 775 1075 1525 2150 4475 5000 

DPA [13] 850 1175 1750 2800 4250 4975 

MIA histo [10] 3350 3775 4375 4850 4975 5000 

MIA pdf [10] 1150 1400 1775 2150 2600 4575 

CPFA [4] 1110 1205 1410 1630 2025 3150 

SCAN [7] 260 320 430 660 910 1725 

Eq. 5 230 260 310 440 495 650 

Eq. 6 440 450 535 670 780 1135 

Eq. 7 320 410 480 532 660 730 

Eq.9 (1 bit) 350 370 440 455 540 690 

Eq.9 (4 bits) 495 550 630 750 830 1060 

 
Table 2. Number of processed traces vs Success Rate (HW model) 

Success Rate 10% 20% 40% 60% 80% 100% 

CPA [9] Fail Fail Fail Fail Fail Fail 

DPA [13] Fail Fail Fail Fail Fail Fail 

MIA histo [10] Fail Fail Fail Fail Fail Fail 

MIA pdf [10] Fail Fail Fail Fail Fail Fail 



CPFA [4] Fail Fail Fail Fail Fail Fail 

SCAN [7] 1510 1800 2270 2690 3220 4600 

Eq. 5 2430 2510 2685 3460 3980 4855 

Eq. 6 4250 4400 Fail Fail Fail Fail 

Eq. 7 2375 2515 2705 3495 3990 4810 

Eq.9 (1 bit) 2120 2580 3310 3710 4070 4495 

Eq.9 (4 bits) 2750 3025 3635 3895 4085 4300 

 

Table 2 gives the results of the same analyses as Table 1 while the opponent pre-

fers the HW model. ‘Fail’ in a cell indicates that the key was not found after the 

processing of 5k traces. As shown, DPA, CPA, MIA, CPFA do not succeed in dis-

closing the secret with such a reduced set of measurements. This was an expected 

result because the HW model is a really rough abstraction of the EM radiations of our 

DES implementation. Indeed, it does not require any RAM access or any transfer of 

data via a pre-charged bus. Despite the limited relevance of HW model, and in con-

trast with standard distinguishers, most MSC based analyses allow disclosing the 8 

sub-keys with a success rate of 100% with less than 5k traces.  

6.2 CPU times  

If MSC based analyses disclose the secret-key with few measurements, they involve 

the computation of many FFT on short length vectors. One may thus wonder if such 

analyses are cpu-time consuming or not. Tables 3 and 4 report the normalized cpu-

times required, using different distinguishers, to obtain a given success rate consider-

ing both HW and HD models. The normalization was done with respect to the time 

necessary to obtain a Success Rate of 10% with a HD based CPA. With the equip-

ment described in the first paragraph of section 6, the time unit is equal to 20 seconds. 

Note that all these cpu-time analyses were conducted so that to obtain a guess of the 

key only after the processing of the number of traces leading to the targeted success 

rate value.  
Table 3. Normalized CPU-time vs Success Rate (HD model) 

Model  Success Rate 10% 40% 80% 100% 

HD 

Time Domain 

CPA [9] 1.0 2.0 5.8 6.4 

DPA [13] 1.2 2.5 6.0 7.0 

MIA histo [10] 16.95 23.9 28 28.4 

MIA pdf [10] 19 29 43 76 

Frequency domain 

Eq. 5 43 78 197 341 

Eq. 6 156 231 489 1038 

Eq. 7 84 185 354 430 

Eq.9 (1 bit) 98 155 236 386 

Eq.9 (4 bits) 198 320 556 900 

CPFA [4] 1.43 1.82 2.61 4.07 

SCAN [7] 1.05 1.25 1.9 3.05 

 



 

 

 
Table 4. Normalized CPU-time vs Success Rate (HW model) 

Model  Success Rate 10% 40% 80% 100% 

HW 

Time Domain Analys-

es  

    CPA [9] Fail Fail Fail Fail 

    DPA [13] Fail Fail Fail Fail 

    MIA histo [10] Fail Fail Fail Fail 

    MIA pdf [10] Fail Fail Fail Fail 

Frequency Domain 

Analyses 

Eq. 5 4761 5823 12803 19051 

Eq. 6 14606 fail fail Fail 

Eq. 7 4552 5915 12842 18692 

Eq.9 (1 bit) 3626 8845 13382 16309 

Eq.9 (4 bits) 6095 10674 13468 14917 

CPFA [4] Fail Fail Fail Fail 

SCAN [7] 2.7 3.8 5.1 6.9 

 

From Tables 3 and 4, one may conclude that MSC based analyses, excluding 

SCAN, are cpu-time consuming. This is especially true when incoherence values are 

computed for all pairs of traces. The cpu-time of these analyses range from 50 (eq.9) 

to 160 (eq.5) times the cpu-time spent by a CPA. Note however that (a) the cpu-time 

required (1 min 01s) to obtain, with a Success Rate of 100%, the secret key with a 

SCAN is only half the one spent to run a CPA and (b) that only MSC based analyses 

are able to disclose the secret key, using the HW model, with such a reduced set of 

curves (5k traces). Note that running MSC based analyses with Matlab is extremely 

long and that proper C codes are mandatory to obtain such cpu-time costs. 

As an additional observation, we compared the cpu-times required to run HW 

based DPA, CPA and SCAN with one shot EM traces, i.e. without using the averag-

ing capabilities of the scope. 150k one shot traces were processed to disclose the key 

using HW model based CPA and DPA while, with an HW based SCAN, 65k traces 

only are sufficient. The CPA and SCAN took 42 min and 22 min, respectively. 

6.3 Discussion 

Considering Tables 1 to 4 that give evidence of the efficiency and costs of MSC based 

analyses, several conclusions may be drawn. Firstly, among all considered MSC 

based analyses, SCAN offers the most interesting trade-offs between efficiency and 

cpu-time. Secondly, MSC based analyses (excluding SCAN) are interesting candi-

dates for SCA when only reduced set of measurements are available (less than 5k to 

10k traces). This is typically the case when secret keys are frequently refreshed and 

derived from a master key.  

Secondly, all considered frequency domain analyses, i.e. MSC based analyses in-

cluding SCAN and CPFA [4], allow disclosing the key with a smaller number of EM 

traces than time domain analyses. To our opinion, (a) the associated reduction of 



noise thanks to the analysis of a reduced set of harmonics and (b) the gathering, on 

these harmonics of leakages scattered over several time domain samples may explain 

this observation. 

Thirdly, working with pair of traces, here with MSC based analyses excluding 

SCAN, allows obtaining 1/2(n-1)n informers with n measurements. This is a really 

interesting advantage that allows disclosing key with few traces. However, less cpu-

time consuming techniques to compare traces should be envisaged to process, in a 

reasonable time, large sets (>10k traces) of measurements. 

7 Setting parameters of a SCAN and MSC based Analyses 

All aforementioned MSC based analyses, including SCAN, were conducted with the 

same setting of parameters. More precisely, a time window of 512 samples (25.6ns) 

was analyzed. This time window was divided into w=127 sub-windows of 8 samples 

overlapping with the two neighboring ones by 4 samples accordingly to the Welch’s 

method.  64 points FFT were conducted for each sub-window using zero-padding and 

only harmonics between 50 MHz and 1 GHz were kept to compute MSC(f). 

If these settings were applied considering the unit delay of FPGA luts (500ps), 

one may wonder if modifying these settings reduces or increases the efficiency of the 

MSC based analyses. We thus analyzed the impact of these different parameters on 

the efficiency of the SCAN (which offers the best trade-off between efficiency and 

cpu-time) considering that all results hold for all MSC based analyses. 

The impact of the number of points, NFFT, of conducted FFT was analyzed be-

cause it allows tuning the number of harmonics falling into the frequency bandwidth 

of interest i.e. between fmin and fmax. Table 5 gives the number of traces required to 

reach a Success Rate value of 80% and the cpu-times necessary to process 5k traces 

for the SCAN attack based on a HD model. The bandwidth BW was set so that fmin=50 

MHz and fmax=1.5 GHz. As shown, increasing NFFT improves significantly the effi-

ciency of the SCAN without increasing the cpu-time required to disclose the key (the 

latter being mainly fixed by the time spent to read traces on the disk). This enhance-

ment is due to the increased number of harmonics falling into the considered frequen-

cy bandwidth BW. Note that the computation of the coher values at the end of the 

required traces represents a small amount of time compared to the reading and the 

sorting of the traces which explains the small impact of the NFFT parameter on the 

cpu-time. The impact should be much greater for the others MSC based attacks. 

Table 5. Impact of NFFT on SCAN efficiency and cpu-time (w=63, overlap=8, fmin=50 MHz 

fmax=1.5 GHz) 

NFFT # of traces to reach a 

SR of 80% 

CPU-times (s) for 

processing 5k traces 

# of harmonics in 

BW 

16  2450 2min 22s 1 

32 1975 2min 23s 2 

64 1350 2min 24s 4 

128 1175 2min 26s 9 



       

Table 6. Impact of fmax on SCAN efficiency and cpu-time (w=63, overlap=8, fmin=50MHz, 

NFFT =128) 

fmax # of traces to reach 

a SR of 80% 

CPU-times (s) 

for processing 

5k traces 

# of harmonics in 

BW 

1.5 GHz 1175 2min 26s 9 

3.0 GHz 950 2min 26s 19 

4.0 GHz 750 2min 26s 25 

6.0 GHz 700 2min 26s 38 

8.0 GHz 675 2min 26s 51 

10 GHz 670 2min 26s 65 

 

Considering the results of Table 5, we analyzed the impact of the fmax value on the 

SCAN efficiency considering NFFT=128. Results and parameter settings are reported 

Table 6. Note that 10 GHz is the maximum value that can be imposed due to the sam-

pling rate of the scope (20GS/s). We observed an increase of the SCAN efficiency 

with the number of harmonics falling between fmin and fmax. Note however that after 4 

GHz the increase is moderated. This was an expected result. Indeed, the cut-off fre-

quency of our scope is 3.5 GHz while our low noise amplifier has a 3db cut-off fre-

quency of 1 GHz.  No valuable EM information is captured after 3.5 GHz. 

Finally, we analyzed the impact of the number of sub-windows (w) on the SCAN 

efficiency. Note that the overlapping (overlap) between neighboring windows was 

fixed to be half the width of sub-windows. Results and related parameters are reported 

table 7. As shown, there is an optimal number of sub-windows wopt=63. This opti-

mum, which is relatively flat, corresponds to a sub-window width of 800 ps. This 

result confirms our intuition according to which EM traces must be analyzed over 

time intervals corresponding, at first order, to the unit delay of CMOS cells used to 

design the IC. In our case, the FPGA Lut delay is about 500 ps.  

Table 7. Impact of the number of sub-window on SCAN efficiency and cpu-time (over-

lap=50%, fmin=50MHz, fmax=10 GHz, NFFT =128) 

# of sub-windows Sub-windows 

width 

 (in ps) 

# of traces to reach 

 a SR of 80% 

CPU-times (s) for 

processing 5k traces 

127 400ps =8×50ps 1175 2 min 32s 

63 800ps =1650ps 1020 2 min 24s 

31 1600ps =3250ps 1175 2 min 21s 

15 3200ps =6450ps 1625 2 min 19s  

7 6400ps =12850ps 3350 2 min 18s 

 

All above results define two guidelines for MSC based analyses. The first one is to 

fix w so that the sub-window width matches the unit delay of CMOS cells used to 



design the IC. This value changes with the CMOS technology but also with the nature 

of the IC: ASIC or FPGA. Cell delays are typically smaller in an ASIC than in FPGA 

for a given technology.  

The second guideline is to increase as far as possible the number of harmonics 

falling into the frequency bandwidth BW of interest, typically the one of the used SCA 

platform or scope. The easiest way, but not the cheaper one, is to use a scope with 

high cut-off frequency and sampling rate. 

 However, this number should be maximized under cpu-time constraints i.e. ac-

cording to the n number of traces to be processed. Indeed, the cpu-time of MSC based 

analyses (5, 6, 7 and 9), excluding SCAN, quadratically increases with n.  

8 Conclusion 

SCA in the frequency domain has been recently proposed as an alternative to usual 

time domain analyses. Within this context, several Magnitude Squared Coherence 

based analyses have been introduced and evaluated here considering an unprotected 

DES implementation. Some guidelines to use Magnitude Squared Coherence within 

the context of SCA have also been identified.  

The experimental results reported in this paper demonstrate that Magnitude 

Squared Coherence based analyses offer several advantages. Among them, the main 

one is their ability to disclose the secret key with really reduced set of traces com-

pared to standard distinguishers. This may represent an advantage if the secret key is 

regularly refreshed. A second advantage is their limited sensitivity to the accuracy of 

the considered power consumption model (HW or HD). For all MSC based analyses 

considered in this paper, these advantages arise at the cost of greater cpu-times except 

for one attack: the SCAN.  

Several additional advantages should still be demonstrated. Among them, one may 

identify the opportunity of tuning the frequency bandwidth of interest. This may allow 

increasing Signal to Noise Ratio or, may allow tracking leakages on modulated sig-

nals. All these results and perspectives clearly highlight the interest of frequency do-

main analyses and especially the interest of Magnitude Squared Coherence as a tool 

for SCA.   
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