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We propose a new identity-based threshold signature (IBTHS) scheme from
bilinear pairings enjoying the following advantages in efficiency, security and
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mal since each party pays no other communication cost except broadcasting
one single message. The computational complexity of the threshold signing
procedure is considerably low since there appears no other time-consuming
pairing except two pairings for verifying each signature shares. The commu-
nication channel requirement of the threshold signing procedure is the lowest
since the broadcast channel among signers is enough. It is proved secure
with optimal resilience in the standard model. It is the private key associ-
ated with an identity rather than a master key of the Public Key Generator
(PKG) that is shared among signature generation servers. All these excellent
properties are due to our new basic technique by which the private key in
the bilinear group is indirectly shared through simply sharing an element in
the finite field.
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1. Introduction

In 1987, Desmedt introduced the concept of threshold signatures [1]. In a
(t, n) threshold signature scheme, a secret key (and equivalently, the signing
power) is distributed to a group of n players in a way that any subset of t
players can cooperatively produce a signature on behalf of the group, while
up to t − 1 players cannot. A threshold signature scheme is a very impor-
tant cryptographic primitive because of its twofold application: to increase
the availability of the signing agency and at the same time to increase the
protection against forgery by making it harder for the adversary to learn
the secret signature key. Since Desmedt’s work, in the so-called threshold
cryptography field, many threshold signature schemes based on different as-
sumptions, such as [2, 3, 4, 5, 6, 7], have been constructed.

In 1984, Shamir [8] asked for identity-based (ID-based) encryption and
signature schemes to simplify key management procedures in certificate-
based public key setting. Since then, in the so-called identity-based cryp-
tography filed, many ID-based cryptographic schemes, such as the results in
[9, 10], have been proposed. Bilinear pairing [9] is the most popular tool to
construct identity-based cryptographic primitives. The ID-based public key
setting can be an alternative for certificate-based public key setting, espe-
cially when efficient key management and moderate security are required.

In 2004, as the combination of the above two interesting concepts, the
notion of identity-based threshold signature (IBTHS) was proposed by Baek
and Zheng [11]. They defined the security of the IBTHS scheme and pre-
sented a concrete implementation from bilinear pairings. Different from
Boneh and Franklin’s threshold approach [9] that distributes the master key
of the PKG into a number of other PKGs (called the Distributed PKGs)
to perform threshold decryption or threshold signature generation, the im-
portant feature of the Baek-Zheng scheme is that a private key associated
with an identity rather than a master key of the PKG is shared among sig-
nature generation servers. In other words, it is the holder of the ID-based
private key rather than PKG that distributes the key shares. Then several
IBTHS schemes from bilinear pairings have been proposed [12, 13, 14, 15].
Now we simply review these results. In [11], Baek and Zheng generalized
the basic tools in finite field for threshold cryptography including Sharmir
sharing, Feldman sharing, Pedersen sharing and distributed key generation
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protocol to the paring-based cryptography field. Depending on these basic
tools, Baek and Zheng’s IBTHS scheme corresponding to Hess’s identity-
based signature scheme is naturally obtained as in [4]. Directly applying the
Baek and Zheng’s methodology to various identity-based signature, a line of
works [12, 13, 14] were proposed. Although the threshold signing protocols
of [12, 13] avoid the distributed key generation sub-protocol which consumes
most of the time for Baek and Zheng’s scheme, their robustness is weaker
than that of the Baek-Zheng’s scheme in some sense as stated in [15, 14].
Based on the identity-based signature scheme secure without random oracles
[16, 17], Sun et al. constructed a non-interactive identity-based threshold
signature scheme without random oracles [14]. Since the IBTHS schemes
of [11, 12, 13, 14] all heavily depend on the secret sharing tools based on
pairings whose computation is very time-consuming [18], their computation
efficiency is not very satisfying in practice. To solve this problem, Gao et al.
[15] proposed a new identity-based signature scheme and then constructed
the corresponding IBTHS scheme which enjoys the computation efficiency
similar to the non-identity-based threshold signature scheme in [6].

In this paper, we propose a new identity-based threshold signature (IBTHS)
scheme from bilinear pairings. It obtains the following satisfying proper-
ties in efficiency, security and functionality due to several new techniques of
ours. (1) The round-complexity of the threshold signing protocol is optimal.
Namely, during the signing procedure, broadcasting the signature share is
the only communication cost for each player. (2) The computational com-
plexity is optimal in the sense that only two bilinear pairings are involved for
verifying each signature shares during the threshold signing procedure. (3)
The communication channel is optimal. Namely, only the broadcast chan-
nel among signers is enough during the threshold signing procedure. (4)
It is proved (t, n)secure (unforgeable and robust) in the standard model, for
n ≥ 2t−1, and so its resilience is optimal. (5) It is the private key associated
with an identity rather than a master key of the Public Key Generator that
is shared among signature generation servers. To the best of our knowledge,
there is no identity-based threshold signature scheme which enjoys all the
above advantages among all the schemes in [11, 12, 13, 14, 15].

The rest of the paper is organized as follows. We first review the basic
property of pairings, the computational assumption on which our scheme is
(indirectly) based, and the security notion of IBTHS schemes is described in
Section 2. We then present our IBTHS scheme in Section 3, prove it secure
in Section 4 and compare it with other IBTHS schemes in Section 5. Section
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6 concludes this paper.

2. Preliminaries

2.1. Bilinear Pairing and Complexity Assumption

This section briefly reviews the definition of bilinear pairings and the
relative complexity assumption.

Definition 1. Let G and GT be groups of prime order p and let g be a
generator of G. The map e : G × G → GT is said to be an bilinear pairing
and the group G is called a bilinear group, if the following three conditions
hold:

(1) e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ Z∗p;

(2) e is non-degenerate, i.e. e(g, g) 6= 1;

(3) e is efficiently computable.

The security of our signature scheme will be reduced to the hardness of
the computational Diffie-Hellman (CDH) problem in the group in which the
signature is constructed. We brief review the definition of the CDH problem.

Definition 2. Given a group G of prime order p with generator g and el-
ements ga, gb ∈ G where a, b are selected uniformly at random from Z∗p, the
CDH problem in G is to compute gab.

2.2. Security Definitions

As in [11], we review the syntax and security definitions of identity-based
signature schemes and identity-based threshold signature schemes below.

Definition 3. (identity-based signature scheme). An identity-based signa-
tures scheme IDS is a tuple of the following four algorithms (Setup, Ex-
tract, Sign, Verify):

• System initialization algorithm Setup (k). Given a security parame-
ter k, PKG generates the system common parameters params and the
master secret key x. params are made public, while x is kept secret.

• Private key extraction algorithm Extract (params, u). Given identity
u and master key x, PKG computes the private key du and sends it to
the corresponding entity secretly.
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• Signing algorithm Sign (params, du,m). Given the common parameter
params, the private key du associated with u and a message m, this
algorithm generates the signature σ of u on m.

• Verification algorithm Verify (params, u,m, σ). Given an identity u,
a message m and a signature σ, this algorithm checks the validity of σ
to output 1 (valid) or 0 (invalid).

We now review the unforgeability notion for the identity-based signature
scheme against chosen message attack, which we denote by UF-IDS.

Definition 4. Let AIDS be an attacker assumed to be a probabilistic Turing
machine. Consider the following game GIDS in which AIDS interacts with
the challenger CIDS.

Phase 1. The challenger runs the Setup algorithm and gives AIDS the
resulting common parameter params.

Phase 2. AIDS issues a number of private key extraction queries, each
of which consists of u. On receiving u, the challenger runs the private key
extraction algorithm to get the private key du gives it to AIDS. In addition
to the key extraction queries, AIDS issues a number of signature generation
queries, each of which consists of (u,m). The challenger first runs the private
key extraction algorithm to obtain a corresponding private key and then runs
the signature generation algorithm and gives a resulting signature σ to AIDS.

Phase 3. AIDS outputs (u∗, m̃, σ̃), where σ̃ is a valid signature of the
identity u∗ on the message m̃. A restriction here is that AIDS must not
make a private key extraction query for u∗ or a signature generation query
for (u∗, m̃).

We denote AIDS’s success by

SuccUF−IDS
IDS,AIDS

(k) = Pr[Verify(params, u∗, m̃, σ̃) = 1]

We denote by SuccUF−IDS
IDS,AIDS

(t, qe, qs) the maximum of the attacker AIDS’s

success over all attackers AIDS having running time t and making at most
qe key extraction queries and qs signature generation queries. The ID-based
signature scheme is said to be (t, qe, qs, ε) UF-IDS secure if

SuccUF−IDS
IDS,AIDS

(t, qe, qs) < ε.

Definition 5. (identity-based threshold signature (IBTHS) scheme). Let
IDS =(Setup, Extract, Sign, Verify) be an identity-based signature scheme.
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A (t, n) IBTHS scheme IDT S for IDS involves the PKG, a group of n users
(signing entities) under the same identity, and the verifier, and is defined by
the pair of probabilistic polynomial time algorithms (KeyDis,ThrSig).

• Key distribution algorithm KeyDis (params, du, n, t). Given a private
key du associated with an identity u, this algorithm generates n shares
{du,i}ni=1 and provides them to the signing players {Γi}ni=1 respectively.
It also generates a set of public verification keys that can be used to
check the validity of each private key share and to verify partial signa-
tures in the future.

• Threshold signing algorithm ThrSig (params, du,i,m). Assume that
each server Γi is given the common parameter params, a share du,i
of the private key du associated with u and a message m. n signature
generation servers jointly generate a signature σ for the message m.

Security requirement of IBTHS schemes includes both unforgeability and
robustness [11]. We first briefly review the notion of unforgeability against
chosen message and identity attack, or UF-IBTHS-CMA for short.

Definition 6. Let AIDTS be an attacker assumed to be a probabilistic Turing
machine. Consider the following game GIDTS in which AIDTS interacts with
the challenger CIDTS.

Phase 1. The challenger runs the Setup algorithm and gives AIDTS the
resulting common parameter params.

Phase 2. AIDTS corrupts t−1 signature generation servers(The attacker
is assumed to be static).

Phase 3. AIDTS issues a number of private key extraction queries, each
of which consists of u. On receiving u, the Challenger runs the key extraction
algorithm taking u as input and obtains a corresponding private key du. The
challenger gives u to AIDTS.

Phase 4. AIDTS submits a target identity u∗. On receiving u∗, the chal-
lenger runs the key extraction algorithm taking u∗ as input and obtains a
corresponding private key du∗. Subsequently, it runs the private key distribu-
tion algorithm taking du∗ as input to share it among n signature generation
servers. We denote the key shares by du∗,i for i = 1, . . . , n. The challenger
gives du∗,i for i = 1, . . . , t − 1, (private keys for the corrupted servers) to
AIDTS.

Phase 5. AIDTS issues a number of signature generation queries, each
of which consists of a message denoted by m. On receiving m, the challenger,
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on behalf of the uncorrupted servers, runs the signature generation algorithm
taking du∗,i for i = t, . . . , n and m as input, and responds to AIDTS with σ
output by the signature generation algorithm . Note that in this phase, AIDTS

is allowed to issue private key extraction queries (identities) except for u∗.
Note also that AIDTS is allowed to see partial signature broadcast during the
execution.

Phase 6. AIDTS outputs (u∗, m̃, σ̃), where σ̃ is a valid signature of the
identity u∗ on the message m̃. A restriction here is that AIDTS must not
make a private key extraction query for u∗ and it must not make a signature
generation query for m̃ .

We denote AIDTS’s success by

SuccUF−IDTHS
IDTHS,AIDTS

(k) = Pr[Verify(params, u∗, m̃, σ̃) = 1]

We denote by SuccUF−IDTHS
IDTHS,AIDTS

(t, qe, qs) the maximum of the attacker AIDTS’s

success over all attackers AIDTS having running time t2 and making at most
qe key extraction queries and qs signature generation queries. The ID-based
threshold signature scheme is said to be (t, qe, qs, ε) UF-IDTHS secure if

SuccUF−IDTHS
IDTHS,AIDTS

(t, qe, qs) < ε.

Definition 7. A (t, n) ID-based threshold signature scheme is said to be
robust if it computes a correct output even in the presence of a malicious
attacker that makes the corrupted signature generation servers deviate from
the normal execution.

3. Construction

Let G be a group of prime order p for which there exists an efficiently
computable bilinear map into GT . Additionally, let e : G×G→ GT denote
the bilinear map and g be the corresponding generator. The size of the group
is determined by the security parameter. In the following all identities and
messages will be assumed to be bit strings of length nu and nm respectively.
To construct a more flexible scheme which allows identities and messages of
arbitrary lengths, collision-resistant hash functions Hu : {0, 1}∗ → {0, 1}nu ,
Hm : {0, 1}∗ → {0, 1}nm , can be defined and used to create identities and
messages of the desired length.

The identity-based signature scheme IDT S=(Setup, Extract, Sign,
Verify) underlying our IBTHS scheme IDT S = (KeyDis, ThrSig) is the
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one due to Paterson and Schuldt [16]. All these involved algorithms are as
follows.

Setup. The system parameters are generated as follows. A secret α ∈ Zp
is chosen at random. We choose a random generator, g ∈ G, and set the value
g1 = gα and choose g2 randomly in G. Additionally, the authority chooses
a random value u′,m′ ∈ G and vectors U = (ui),M = (mi) of length nu
and nm, respectively, whose elements are chosen at random from G. The
published public parameters are params = (G,GT , e, g, g1, g2, u

′, m′, U,M).
The master secret is gα2 .

Extract. Let u be a string of nu bits representing an identity, u[i] denote
the ith bit of u, and U ⊂ {1, · · · , nu} be the set of all i for which u[i] = 1. A
private key for identity u is generated as follows. First, a random ru ∈ Zp is
chosen. Then the private key du is constructed as:

du = (gα2 (u′
∏
i∈U

ui)
ru , gru).

Note that a user can easily re-randomize his private key after he has received
it from the master entity.

Sign. Let u be the bit string of length nu representing a signing iden-
tity and let m be a bit string representing a message. As in the Extract
algorithm, let U be the set of indicies i such that u[i] = 1, and likewise, let
M ⊂ {1, · · · , nm} be the set of indicies j such that m[j] = 1, where m[j] is
the jth bit of m. With the private key du = (gα2 (u′

∏
i∈U

ui)
ru , gru), A signature

of u on m is constructed by randomly picking rm ← Zp and computing

σ = (gα2 (u′
∏
i∈U

ui)
ru(m′

∏
i∈M

mi)
rm , gru , grm) ∈ G3

Verify. Given a purported signature σ = (σ[1], σ[2], σ[3]) ∈ G3 of an
identity u on a message m, a verifier accepts σ if the following equality holds:

e(σ[1], g) = e(g2, g1)e(u′
∏
i∈U

ui, σ[2])e(m′
∏
i∈M

mi, σ[3]).

KeyDis. Given a private key

du = (gα2 (u′
∏
i∈U

ui)
ru , gru),

the number of servers n and a threshold parameter t, this algorithm dis-
tributes du to n servers as follows.

(1). First, it picks a0, a1, . . . , at−1 ∈ Zp, constructs the polynomial over
Zp
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f(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1

and sets r′u = a0.
(2). Second, it computes the public parameter Y for all n parties:

Y = (
gα2 (u′

∏
i∈U ui)

ru

(u′
∏

i∈U ui)
r′u

, gru)

= (gα2 (u′
∏
i∈U

ui)
ru−r′u , gru).

(3). Third, for each server Γk, it computes the shared key du,k and the
verification key yk:

du,k = f(k),

yk = e(u′
∏
i∈U

ui, g)f(k).

(4). Last, it secretly sends the distributed private key du,k to each server
Γk, 1 ≤ k ≤ n, and publishes Y, y1, y2, . . . , yn.

Remark. In the above algorithm, we share the private key in G by an
indirect but very simple way. Roughly speaking, the above method uses the
Shamir sharing scheme to simply share the secret r′u ∈ Zp. The private key
du ∈ G can be reconstructed immediately after r′u ∈ Zp is reconstructed,
since

du = (Y [1]e(u′
∏
i∈U

ui, g)r
′
u , Y [2]) .

In contrast, the method in [11] involves much complicated pairing computa-
tion due to direct sharing du ∈ G by the sharing method customized for the
bilinear group. What’s more, due to this initial difference in key distribution
and the following full dependence on bilinear map in the threshold signing
protocol, the method in [11] becomes much more consuming in terms of com-
putation and communication than that of ours.

ThrSig. Given the message m, the n sharers {Γk}nk=1 generate the sig-
nature of the identity u by the following protocol.

(1). With its shared key du,k = f(k), each sharer Γk randomly selects
rk ∈ Zp, computes and broadcasts the signature share
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σk = ((u′
∏

i∈U ui)
f(k)(m′

∏
i∈M

mi)
rk , grk).

With Γ′ks verification key yk = e(u′
∏
i∈U

ui, g)f(k), the validity of the signature

share σk = (σk[1], σk[2]) due to player Γk can be publicly verified by checking

e(σk[1], g) = yk · e(m′
∏
i∈M

mi, σk[2]).

(2). Each party locally reconstructs the full signature as follows. He
first collects t valid signature shares using the above verification equation.
Suppose that Φ is the set of indices of t honest players who generated valid
signature shares. Given the signature shares {σk}k∈Φ and the public param-
eter Y :

{σk}k∈Φ = {(σk[1], σk[2])}k∈Φ,

Y = (Y [1], Y [2])

= (gα2 (u′
∏
i∈U

ui)
ru−r′u , gru),

the signature σ = (σ[1], σ[2], σ[3]) is computed as follows.

σ[1] = Y [1]
∏
k∈Φ

σk[1]lΦ,k ,

σ[2] = Y [2],

σ[3] =
∏
k∈Φ

σk[2]lΦ,k ,

where the Lagrange coefficient lΦ,k =
∏
j∈Φ,
j 6=k

−j
k−j . Since

σ[1] = Y [1]
∏
k∈Φ

σk[1]lΦ,k

= Y [1](u′
∏
i∈U

ui)

∑
k∈Φ

f(k)lΦ,k
(m′

∏
i∈M

mi)

∑
k∈Φ

rklΦ,k

= gα2 (u′
∏
i∈U

ui)
ru(m′

∏
i∈M

mi)

∑
k∈Φ

rklΦ,k
,

σ[2] = Y2 = gru ,

σ[3] =
∏
k∈Φ

σk[2]lΦ,k = (m′
∏
i∈U

mi)

∑
k∈Φ

rklΦ,k
,
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it is obvious that σ = (σ[1], σ[2], σ[3]) is a valid signature. In other words,
the correctness property of our scheme is satisfied.

4. Security Proof

Theorem 1. (Robustness) The (t, n) IBTHS scheme ours is robust in the
presence of up to t− 1 malicious servers if n ≥ 2t− 1.

Proof. First consider the KeyDis algorithm. It is observed that t honest
players are required for later operation and at most t − 1 players can be
corrupted, which requires n ≥ 2t− 1. Furthermore, the misbehaving players
cannot affect the functionality of the KeyDis protocol, and consequently
the status of all the uncorrupted players. Therefore the KeyDis protocol is
robust if n ≥ 2t− 1.

In the ThrSig phase, suppose up to t− 1 players are corrupted and the
number of honest players is at least n − (t − 1) ≥ t. Each of the corrupted
players can either be halted or issue invalid partial signature. In the first
case, the corrupted player does not produce any malicious data hence cannot
affect the protocol execution of honest players. In the second case, if the par-
tial signature is invalid, then by definition, it can be detected hence excluded
from the final signature. Therefore, due to the correctness property, all the
honest (at least t) players can still generate a valid signature in the presence
of up to t− 1 corrupted players, and our scheme is robust if n ≥ 2t− 1. The
proof completes. �

To reduce the unforgeability of our IBTHS scheme to that of the un-
derlying identity-signature scheme, for the identity-based signature scheme
and the corresponding security model in Section 2, we consider a slightly
modified forger model which requires that for any two signatures σ1 =
(σ1[1], σ1[2], σ1[3]) and σ2 = (σ2[1], σ2[2], σ2[3]) of the same identity on differ-
ent messages from the challenger, the equation σ1[2] = σ2[2] should hold. In
other words, although there are many identity-based private key correspond-
ing to one identity in the Paterson-Schuldt scheme, the challenger is required
to fix a single one and to use it to generate the signature of this identity
on different messages. In this customized security model, it is obvious that
the security results and the proof procedure of the identity-based signature
scheme in [16] remains the same as before.

Below, we prove that if the Paterson-Schuldt signature is unforgeable,
then our IBTHS scheme is also unforgeable.
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Theorem 2. The (t, n) IBTHS scheme of ours is (t2, qe, qs, ε) UF-IDS secure,
assuming the Paterson-Schuldt identity-based signature scheme is (t1, qe, qs, ε)
UF-IDTHS secure where

t1 = t2 + qs(t+ 1)(n− t+ 1)Te

and Te is the time for an exponentiation in G.

Proof. Let AIDTS be the attacker that defeats the UF-IDTHS security
of our IBTHS scheme. In the following, we will construct an attacker A1

that defeats the UF-IDS security of the Paterson-Schuldt signature scheme
in the game GIDS with his challenger CIDS as in Definition 4, by simulating
the challenger CIDTS in the game GIDTS with AIDTS as in Definition 6.

Here note that as discussed above, AIDS requires that for any two signa-
tures σ1 = (σ1[1], σ1[2], σ1[3]) and σ2 = (σ2[1], σ2[2], σ2[3]) of the same iden-
tity on different messages from the challenger CIDS, the equation σ1[2] =
σ2[2] should hold.

Phase 1. AIDS obtains the public parameter param from its own chal-
lenger CIDS and then passes it to the attacker AIDTS.

Phase 2. AIDTS corrupts t−1 signature generation servers Γ1,Γ2, . . . ,Γt−1

and controls their behavior. The other servers Γt,Γt+1, . . . ,Γn is simulated
by AIDS. (That is, the attacker is assumed to be static).

Phase 3. AIDTS issues a number of private key extraction queries, each
of which consists of u. For the query u, AIDS obtains the answer du from its
own challenger CIDS and then passes it to AIDTS.

Phase 4. AIDTS submits a target identity u∗. First, AIDS asks its
challenger CIDS for a signature of u∗ on one randomly chosen message m∗,
for whichM∗ ⊂ {1, · · · , nm} be the set of indicies j such that m∗[j] = 1. We
will see this signature as

σ∗ = (σ∗[1], σ∗[2], σ∗[3])
= (gα2 (u′

∏
i∈U∗

ui)
ru(m′

∏
i∈M∗

mi)
rm∗ , gru , grm∗ ).

Second, AIDS randomly picks R ∈ G and then sets

Y = (
σ∗[1]

R
, σ∗[2]),

y0 =
e(R, g)

e(m′
∏

i∈M∗
mi, σ∗[3])

.
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If we see R as (u′
∏
i∈U∗

ui)
r′u(m′

∏
i∈M∗

mi)
rm∗ , then we have

Y = (gα2 (u′
∏
i∈U∗

ui)
ru−r′u , gru),

y0 = e(R,g)
e(m′

∏
i∈M∗

mi,g
rm∗ )

= e(u′
∏
i∈U

ui, g)r
′
u .

Third, for 1 ≤ k ≤ t− 1, AIDS randomly picks elements xk ∈ Zp as the key
share of Γk, sets the verification key yk = e(u′

∏
i∈U

ui, g)xk , and sends xk, yk to

Γk. Let f(x) ∈ Zp[x] be the degree (t − 1) polynomial implicitly defined to
satisfy

f(0) = r′u, f(k) = xk, for 1 ≤ k ≤ t− 1.

Fourth, for t ≤ k ≤ n, AIDS computes the Lagrange coefficients l0,k, l1,k, . . . , lt−1,k

such that f(k) =
t−1∑
j=0

lj,kf(j), and sets yk = y
l0,k
0 y

l1,k
1 . . . y

lt−1,k

t−1 , where lj,k =∏
s 6=j,0≤s≤t−1

k−s
j−s . At last, AIDS publishes Y, y1, y2, . . . , yn.

Phase 5. AIDTS issues a number of signature generation queries, each
of which consists of a message denoted by m. First, AIDS gets the signature

σ = (gα2 (u′
∏
i∈U∗

ui)
ru(m′

∏
i∈M

mi)
rm , gru , grm)

of the identity u∗ on the message m. Second, given

Y = (Y [1], Y [2]) = (gα2 (u′
∏
i∈U∗

ui)
ru−r′u , gru),

for t ≤ k ≤ n, AIDS computes

σk[1] = (
gα2 (u′

∏
i∈U∗

ui)
ru (m′

∏
i∈M

mi)
rm

Y [1]
)l0,k

∏
1≤j≤t−1

(u′
∏
i∈U∗

ui)
lj,kf(j)

= (u′
∏
i∈U∗

ui)
f(k)(m′

∏
i∈M

mi)
rml0,k ,

σk[2] = grml0,k .

Then AIDS broadcasts signature shares σk = (σk[1], σk[2]), for t ≤ k ≤ n.
Phase 6. At last, when AIDTS outputs (u∗, m̃, σ̃), AIDS passes them to

its challenger CIDS.
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Since we often consider the very large qs, the time complexity of the algo-
rithm AIDS is dominated by the exponentiations performed in Phase 5, in
addition to the time t1 of AIDTS. There are qs(t+1)(n−t+1) exponentiations
in Phase 5. So the time complexity of AIDS is t2 + qs(t + 1)(n − t + 1)Te.
Additionally, it is obvious that the success probability of AIDTS is the same
to that of AIDS. Thus, the theorem follows. �

In [16], the authors proved the security of the above scheme as the fol-
lowing theorem:

Theorem 3. Theorem 1 The Paterson-Schuldt identity-based signature scheme
is (t, qe, qs, t) unforgeable against adaptive chosen identity and message at-
tack in the standard model, assuming that the CDH problem in G is (t′, ε′)
intractable, where

ε′ = ε
16(qe+qs)qs(nu+1)(nm+1)

t′ = t+O{[qenu + qs(nu + nm)]ρ+ (qe + qs)τ},

where ρ is the time for a multiplication in G1 and τ for an exponentiation.

Combining Theorems 1, 2, 3, we now obtain the following theorem on the
unforgeability of our IBTHS scheme:

Theorem 4. (Unforgeability) In the standard model, our proposed IBTHS
scheme is UF-IBTHS secure against an adversary who corrupts up to t ≤
(n+1)/2 players, if the CDH problem is intractable in the underlying pairing
friendly group G.

It can be seen from Theorem 1,4 that an adversary can corrupt up to
t − 1 of the n players in the network, for any value of t − 1 < n/2. This is
the optimal achievable threshold or resilience for solutions that provide both
secrecy and robustness.

5. Comparison

Our IBTHS scheme enjoys the following desirable property in terms of
functions. First, in our scheme, any user which holds the private key as-
sociated with an identity, including the identity himself and the PKG, can
distribute the the private key (Property 1). Second, our scheme is more
robust in the sense that a valid signature can always be generated only if
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more than t − 1 parties among all n parties are honest (Property 2), while
the threshold signing process [12, 13] will aborts even if there is among all n
parties only one party who honestly plays its role except refusing to present
the valid signature share at the last step. Third, the threshold signature
scheme of ours is proved secure in the standard model (Property 3) .

In addition to the desirable function property, our scheme also enjoys
excellent efficiency property. First, the round complexity (Property 4) and
the communication channel condition (Property 5) is optimal , since in the
threshold signing process, the only requirements for each party is to compute
and broadcast his signature share. Second, the time-consuming bilinear pair-
ing is performed only 2 times for each signature share verification (Property
6).

Now we compare our scheme with the other ones. Baek and Zheng’s
scheme only enjoys Property 1, 2, but involves the Distributed Key Genera-
tion Protocol Based on the Bilinear Map sub-protocol which is very expensive
in terms of time and communication. Chen et al.’s scheme only enjoys Prop-
erty 1, 5. Yu et al.’s scheme only enjoys Property 5. Sun et al.’s scheme in
[14] enjoys Property 1, 2, 3, 4, but involves many more pairings in the key
distribution and the threshold signing process. Gao et al.’s scheme enjoys
property Property 1,2,4,5,6.

6. Conclusion

We proposed a new identity-based threshold signature (IBTHS) scheme
from bilinear pairings. The threshold signing protocol is optimal in terms of
communication complexity and communication channel requirement. It in-
volves no other time-consuming pairing except two pairings for verifying each
signature share. It is proved secure with optimal resilience in the standard
model. It is the private associated with an identity rather than a master key
of the Public Key Generator (PKG) that is shared among signature genera-
tion servers. All these excellent properties are due to our new basic technique
by which the private key in the bilinear group is indirectly shared through
simply sharing an element in the finite field.
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