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Abstract. In this study, a novel strong designated verifier signature scheme based on
bilinear pairings with provable security in the standard model is proposed, while the
existing ones are secure in the random oracle model. In 2007 and 2011, two strong des-
ignated verifier signature schemes in the standard model are proposed by Huang et al.
and Zhang et al., respectively; in the former, the property of privacy of the signer’s
identity is not proved and the security of the latter is based on the security of a pseu-
dorandom function. Our proposal can deal with the aforementioned drawbacks of the
previous schemes. Furthermore, it satisfies non-delegatability for signature verification.
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1 Introduction

Jakobsson et al. [11] introduced the notion of designated verifier proofs (DVP) in 1996. These
proofs allow a signer (Alice) to designate a verifier (Bob) and prove the validity of a statement
only to Bob; while Bob cannot use this transcript to convince anyone else. This motivates non-
transferability and is generally achieved by proving either the validity of the statement or the
knowledge of Bob’s secret key. Consequently, Bob can always generate the same transcript. A
designated verifier signature (DVS) is the non-interactive version of the DVP. A DVS is publicly
verifiable and a valid DVS is generated by Alice or Bob. The DVS is applied in various cryp-
tographic schemes such as voting [11], undeniable signature [4, 5, 7], deniable authentication
[25] where it is required that only designated entities can be convinced of several statements.
It is desirable that a third party except Alice and Bob cannot tell whose signature is sent to
Bob. A DVS with this property is called a strong designated verifier signature (SDVS)[11]. The
strongness of a SDVS as privacy of a signer’s identity (PSI) is formalized in [14] by Laguil-
lamie and Vergnand in 2004. A valid designated verifier signature for Bob on behalf of Alice
is generated if and only if the secret key of either Alice or Bob is known. This property means
non-delegatability for signing and is introduced by Limpaa et al. [16] in 2005. In 2011, Huang
et al. [10] informally define non-delegatability for signature verification; it requires that if one
verifies a valid designated verifier signature on a message, she must ”know” the secret key of
the designated verifier.
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1.1 Related Work

Several variants for DVS such as ring signatures [18, 20], universal designated verifier sig-
natures (UDVS) [6, 7, 12, 21, 24, 27], multi-designated verifier signatures [11, 13], and identity-
based designated verifier signatures (IBDVS)[3, 8, 9, 23], and (SDVS)[3, 8] are proposed. Several
DVS schemes [14, 15, 19, 21, 22] are shown to be delegatable since introducing the notion of non-
delegatability [16], while there are a few non-delegatable DVS schemes [9, 16, 28] in the random
oracle model [1]. Recently, two SDVS schemes in the standard model are proposed in [10] and
[28], respectively.

1.2 Contribution

In this paper, a provable secure SDVS scheme based on bilinear pairings without random
oracles is proposed. This scheme is based on Water’s scheme proposed in [26]. The security of
the proposal, i.e. unforgeability and privacy of the signer’s identity are based on the standard
complexity assumptions. On the top of non-transferability, this scheme is non-delegatable for
signature verification which means Bob’s secret key is required to verify a designated verifier
signature, while it is delegatable for signing. Non-delegatability for signature verification of
our proposal is based on BDH assumption which can be converted to the DL assumption in
some conditions [17] which is equivalent with the definition of non-delegatability for signature
verification. Compared to the SDVS scheme proposed in [10], our proposal does not use a
pseudorandom function (fairly strong assumption); furthermore, in comparison to the SDVS
scheme in [28], it has a security proof for the PSI property.

1.3 Outline of the paper

The rest of this manuscript is organized as follows. Section 2 presents a number of preliminaries,
bilinear pairings and complexity assumptions, as the signature foundation. The model of SDVS
including outline of the SDVS scheme and its security properties are described in section 3.
The proposed scheme and its formal security proofs are presented in section 4. Sections 5 and
6 present the comparison for our scheme to other schemes; and the conclusion, respectively.

2 Preliminaries

In this section, we review several fundamental backgrounds employed in this research, including
bilinear pairings and complexity assumptions.

2.1 Bilinear pairings

Let G and GT be two cyclic multiplicative groups of prime order p; furthermore, let g be a
generator of G. The map e : G × G −→ GT is said to be an admissible bilinear pairing if the
following conditions hold true.

1. e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a and b ∈ Zp

2. e is non-degenerate, i.e. e(g, g) 6= 1GT

3. e is efficiently computable.

We refer readers to [2] for more details on the construction of bilinear pairings.
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2.2 Complexity assumptions

Definition 1 (Bilinear Diffie-Hellman (BDH) problem in (G, GT )). Given (g, ga, gb, gc ∈ G)
for some unknown a, b, and c ∈ Zp compute e(g, g)abc ∈ GT .

Definition 2 (Decisional Bilinear Diffie-Hellman (DBDH) problem in (G, GT )). Given (g, ga, gb,
gc ∈ G) for some unknown a, b, and c ∈ Zp and Z ∈ GT , decide whether Z = e(g, g)abc.

A DBDH oracle ODBDH which takes (g, ga, gb, gc ∈ G) and Z ∈ GT as inputs, outputs 1
if Z = e(g, g)abc and 0 otherwise.

Definition 3 (Gap Bilinear Diffie-Hellman (GBDH) problem in (G, GT )). Given (g, ga, gb, gc ∈
G) for some unknown a, b, and c ∈ Zp compute e(g, g)abc ∈ GT with the help of the DBDH
oracle ODBDH .

The probability that a polynomial bounded algorithm A can solve the GBDH problem is
defined as SuccGBDH

A = pr[e(g, g)abc ←− A(G, GT , g, ga, gb, gc, ODBDH)].

Definition 4 (Gap Bilinear Diffie-Hellman (GBDH) assumption in (G, GT )). Given (g, ga, gb, gc

∈ G) for some unknown a, b, and c ∈ Zp, SuccGBDH
A is negligible.

3 Model of strong designated verifier signature schemes

In this section, we review the outline and security properties of the strong designated verifier
signature schemes.

3.1 Outline of designated verifier signature schemes

There are two participants in a designated verifier signature scheme, the signer S and the
designated verifier V . A designated verifier signature scheme consists of five algorithms as
follows.

– Setup: Given a security parameter k, this algorithm outputs the system parameters.
– Key generation: It takes the security parameter k as its input and outputs the secret-public

key (ski, pki) for i ∈ {S, V }.
– Sign: This algorithm takes the signer’s secret key skS , the designated verifier’s public key

pkV , and a message M as its inputs to generate a signature σ.
– Verify: This algorithm takes the designated verifier’s secret key skV , the signer’s public

key pkS , the message M , and the signature σ as its inputs and returns > if the signature
is valid, otherwise returns ⊥ indicating the signature is invalid.

– Transcript simulation: This algorithm takes the designated verifier’s secret key skV , the
signer’s public key pkS , and a message M as its inputs to output an identically distributed
transcript σ′ which is indistinguishable from the one generated by the signer.
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3.2 Security properties of designated verifier signature schemes

A SDVS scheme ought to be unforgeable, non-transferable, and satisfy the privacy of the
signer’s identity. An SDVS is said to be non-delegatable if it satisfies non-delegatability. Formal
definitions of these properties are expressed as follows.

1. Correctness: A properly formed SDVS must be accepted by the verifying algorithm. For-
mally, the correctness of the SDVS requires that for any (pkS , skS), (pkV , skV ) and any mes-
sage M ∈ {0, 1}∗, we have pr[ver(skV , pkS , pkV ,M, σ = sign(skS , pkS , pkV ,M)) = 1] = 1.

2. Unforgeability: It requires that no one other than the signer S and the designated verifier
V can produce a valid designated verifier signature. To have a formal definition for un-
forgeability, the following game between the simulator B and a probabilistic polynomial
time (PPT) adversary A is considered to be played.

(a) B prepares the key pairs (pkS , skS) for S and (pkV , skV ) for V , and gives (pkS , pkV )
to A.

(b) A issues queries to the following oracles.
– Os: This oracle generates a signature σ on a given message M using skS such that

this signature is valid w.r.t. pkS and pkV , then returns it to A.
– Osim: This oracle generates a simulated signature σ′ on a given message M using

skV such that this simulated signature is valid w.r.t. pkS and pkV , then returns it
to A.

– Ov: This oracle takes a query of the form (M,σ) as an input and returns a bit b
which is 1 if σ is a valid signature on M w.r.t. pkS and pkV ; otherwise, returns 0.

(c) A outputs a forgery (M∗, σ∗) and wins the game if the two following conditions hold
– V er(skV , pkS , pkV ,M∗, σ∗) = 1
– It did not query Os and Osim on input M∗.

The formal definition of unforgeability [11] is expressed in Definition 5.

Definition 5 (Unforgeability). An SDVS scheme is (t, qs, qsim, qv, ε)-unforgeable if no ad-
versary A which runs in time at most t; issues at most qs queries to Os; issues at most
qsim queries to Osim; and issues at most qv queries to Ov can win the above game with
probability at least ε.

3. Non-transferability: This property means that it should be infeasible for any PPT distin-
guisher to tell whether σ on a message M was generated by the signer S or simulated by
the designated verifier V . Formally, the definition 6 is considered [11].

Definition 6 (Non-transferability). An SDVS is non-transferable if there exists a PPT
simulation algorithm Sim on skV , pkS , pkV , and a message M outputs a simulated sig-
nature which is indistinguishable from the real signatures generated by the signer on the
same message. For any PPT distinguisher A, any (pkS , skS), (pkV , skV ), and any message
M ∈ {0, 1}∗, Eq. (1) holds.
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σ0 ←− Sign(skS , pkS , pkV ,m),
σ1 ←− Sim(skV , pkS , pkV ,m),
b←− {0, 1},
b′ ←− A(pkS , skS , pkV , skV , σb)
: b′ = b

− 1
2

∣∣∣∣∣∣∣∣∣∣
< ε(k) (1)

Where ε(k) is a negligible function in the security parameter k, and the probability is taken
over the randomness used in Sign and Sim, and the random coins consumed by A. If the
probability is equal to 1

2 , the SDVS scheme is perfectly non-transferable or source hiding.

4. Privacy of the Signer’s Identity (PSI): A SDVS has the property of PSI if no one can tell
signatures generated by the signer S0 for a V is different from signatures generated by
the signer S1 for the V in case of not knowing the secret key of the V . To have a formal
definition for PSI, the following game between the simulator B and the distinguisher A is
considered.

(a) B generates key pairs (pkS0 , skS0) for signer S0, (pkS1 , skS1) for signer S1, and (pkV , skV )
for designated verifier V , and invokes A on input pkS0 , pkS1 , and pkV .

(b) B issues queries (M,d) to the Os and Ov which d ∈ {0, 1} indicating which signer
responds to that query.

(c) B tosses a coin d ∈ {0, 1} for the message M∗ submitted by A, then computes the
challenge signature σ∗ ←− Sign(skSd

, pkSd
, pkV ,M∗) and returns σ∗ to A

(d) A outputs a bit d′ and wins the game if the two following conditions hold.
– d′ = d
– It did not query Ov on input (d, M∗, σ∗) for any d ∈ {0, 1}

The formal definition of this property [14] is given in Definition 7.

Definition 7 (Privacy of the Signer’s Identity). An SDVS scheme is (t, qs, qv, ε)-PSI-secure
if no adversary A which runs in time at most t; issues at most qs; and qv queries to Ov can
win the aforementioned game with probability that deviated from 1

2 by more than ε.

5. Non-delegatability for signing: It requires that if one generates a valid designated verifier
signature on a message, it must ”know” the secret key of either S or V . So, a signature is a
proof of knowledge of secret key of either S or V . The formal definition of non-delegatability
is presented in [16].

6. Non-delegatability for signature verification: It requires that if one verifies a valid desig-
nated verifier signature on a message, she must ”know” the secret key of V as aforemen-
tioned in [10].

We consider Definition 8 to have a formal definition of non-delegatability for signature
verification.
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Definition 8 (Non-delegatability for signature verification). It is assumed that A is a
verifier algorithm for a SDVS scheme. The SDVS scheme is non-delegatable for signature
verification if there is a black-box knowledge extractor B for every algorithm A and every
valid signature σ on the message M satisfies the following conditions: if A outputs 1, the
signature is valid, with probability ε in time t, then B produces skV with probability
ε′ = f(k, ε) in expected polynomial time for every pkS , pkV , and the message M , where
f() is a polynomial.

4 Our designated verifier signature scheme

In this section, we describe our designated verifier signature scheme. There are two participants
in the system the signer S and the designated verifier V . In the following, all the messages to be
signed will be represented as bit strings of length n. To construct a more flexible scheme which
allows messages of arbitrary length, a collision resistant Hash function H should be employed.
Our scheme consists of five algorithms as follows.

1. Setup: The system parameters are as follows. Let (G, GT ) be bilinear groups where |G| =
|GT | = p for some prime p; further, let g be the generator of G. e denotes an admissible
pairing e : G×G −→ GT . Pick m′ ∈ G, and a vector m = (mi) of length n, whose entries
are random elements from G. The public parameters are (G, GT , e,m′,m).

2. Key generation: The signer S picks randomly xS and yS ∈ Z∗
p and sets her secret key skS =

(xS , yS). Then, the signer S computes her public key pkS = (pk1S , pk2S) = (gxS , gyS ). Sim-
ilarly, the designated verifier’s secret key is skV = xV ∈ Z∗

p and his public key is pkV = gxV .

3. Signing. Let M be an n-bit message to be signed by the signer S and Mi denotes the
i-bit of M , and M̃ ⊆ {1, 2, ..., n} be the set all i for which Mi = 1, the designated verifier
signature is generated as follows. First, the signer S picks a random value r ∈R Z∗

p and
computes σ1 = gr. The designated verifier signature σ = (σ1, σ2) on M is constructed as
expressed in Eq.(2).

σ2 = e(gxSyS (m′ ∏
i∈M̃

mi)r, gxV ) (2)

4. Verifying. To check whether σ = (σ1, σ2) is a valid designated verifier signature on the
message M , the designated verifier V uses his secret key to verify whether the Eq. (3)
holds.

σ2 = e(gxS , gyS )xV e(m′ ∏
i∈M̃

mi, σ1)xV (3)

If the equality holds, the designated verifier V accepts the signature σ = (σ1, σ2); other-
wise, the designated verifier V rejects it.

5. Simulation of a transcript. The designated verifier V can use his secret key to compute a
signature on an arbitrary message M ′. He picks a random value r′ ∈R Zp and computes
σ′1 = gr′ and computes the Eq. (4).

σ′2 = e(gxS , gyS )xV e(m′ ∏
i∈M̃

mi, σ
′
1)

xV (4)
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4.1 Analysis of the scheme

In this section, we will primarily show the correctness of the proposed scheme. Subsequently,
we prove that the proposal is secure in the standard model.

Correctness. The correctness of the scheme can be verified by the equation (5).

σ2 = e(gxSyS (m′ ∏
i∈M̃

mi)r, gxV )
= e(gxSyS , gxV )e((m′ ∏

i∈M̃
mi)r, gxV )

= e(gxS , gyS )xV e((m′ ∏
i∈M̃

mi), σ1)xV

(5)

Theorem 1. If there exists an adversary A who can (t, qs + qsim, qv, ε) forge the designated
verifier signature scheme, then there exists another algorithm B who can use A to solve an
instance of the GBDH problem in (G, GT ) with probability ε′ in time t′, such that

ε′ ≥ ε
8(n+1)(qs+qsim+qv)

t′ ≤ (2n + 2 + 4(qs + qsim))T1 + qvT2 + (qs + qsim + qv)te + ((n + 2)(qs + qsim) + 2 + nqv)
t1 + 2qvt2 + t

(6)
where t1 and t2 are the time for a multiplication in G and GT respectively; T1 and T2 are

the time for an exponentiation in G and GT respectively; moreover, te is the time for a pairing
computation in (G, GT ).

Proof. Let A be a forger for the designated verifier signature. We use A to construct another
algorithm B to break GBDH assumption with probability ε′ in time t′. Given a random instance
of GBDH problem (g, ga, gb, gc) of a bilinear group (G, GT ), its goal is to output e(g, g)abc with
the help of the DBDH oracle ODBDH . B will run A as a subroutine and act as A’ challenger to
solve a random instance of GBDH problem. Hence, B will response A’s queries in the following
approach.

Setup. B sets an integer l = 4(qs + qsim + qv) and chooses an integer k, uniformly at random
between 0 and n. B then chooses a value x′ and a random n-vector, x = (xi) where x′, xi ∈ Zl.
Additionally, B picks randomly a value y′ and a random n-vector, y = (yi) where y′, yi ∈ Zp.
These values are kept internal to B.
For a message M , we let M̃ ⊆ {1, 2, ..., n} be the set of all i for which Mi = 1. To simplify the
analysis as aforementioned in Water’s scheme [26], we consider three functions F (M) = (p −
lk)+x′+

∑
i∈M̃

xi, J(M) = y′+
∑

i∈M̃
yi and K(M) which takes the value 0 if x′+

∑
i∈M̃

xi =
0(modl), takes 1, otherwise.
Afterwards, B sets the public keys of users and common parameters as follows:

– B assigns the public key of the signer pkS = (pk1S , pk2S) = (ga, gb) and the public key of
the designated verifier pkV = gc where ga, gb, and gc are the inputs of the GBDH problem.

– B assigns m′ = pkp−kl+x′

2S gy′ and mi = pkxi

2Sgyiand sets −→m = {m1,m2, ...,mn}

Hence, we have (m′ ∏
i∈M̃

mi) = pk
F (M)
2S gJ(M). B returns (G, GT , e, p, g,m′,−→m) and (pk1S ,

pk2S , pkV ) to A.
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Answering signature and simulation queries. It is supposed that the adversary A asks
for a designated verifier signature on a n-bit message M . Thus, B has to create a valid signature
tuple without knowing the private key of S or V . The simulator B proceeds in the following
approach.

– If K(M) = 0, B terminates the simulation and reports failure.
– If K(M) 6= 0 which indicates that F (M) 6= 0(modp), since it is assumed p > nl for any

reasonable values of p, n, l as mentioned in [26]. B can construct a valid designated verifier
signature by picking r ∈ Zp randomly and computes σ = (σ1, σ2) where

σ1 = pk
−1

F (M)

1S gr

σ2 = e(pk
−J(M)
F (M)

1S (m′ ∏
i∈M̃

mi)r, pkV )
(7)

Correctness

σ2 = e(pk
−J(M)
F (M)

1S (m′ ∏
i∈M̃

mi)r, pkV )

= e(pk
−J(M)
F (M)

1S (pk
F (M)
2S gJ(M))r, gxV )

= e(pka
2S((pk2S)F (M)gJ(M))

−a
F (M) ((pk2S)F (M)gJ(M))r, gxV )

= e(pka
2S((pk2S)F (M)gJ(M))r− a

F (M) , gxV )
= e(gab((pk2S)F (M)gJ(M))r̂, gxV )
= e(gab(m′ ∏

i∈M̃
mi)r̂, gxV )

(8)

Here, we have σ1 = pk
−1

F (M)

1S gr = gr− a
F (M) .

Answering verify queries. Suppose A issues a verify query for the message-signature pair
(M,σ = (σ1, σ2)).

– If F (M) = 0, B submits (g, ga, gb, gc, σ2
(e(gc,σ1))J(M) ) to the DBDH oracle ODBDH . B outputs

”valid” if ODBDH returns 1; otherwise, B returns ”invalid”.

Correctness
σ2 = e(pk1S , pk2S)xV e((m′ ∏

i∈M̃
mi), σ1)xV

= e(ga, gb)ce(gJ(M), σ1)c

= e(g, g)abce(gc, σ1)J(M)

(9)

Which indicates (g, ga, gb, gc, σ2
(e(gc,σ1))J(M) ) is a valid BDH tuple.

– If F (M) 6= 0, B can compute a valid signature on this message M just as he responses to
the designated verifier signature and simulation queries. Let (M, σ̃1, σ̃2) be the signature
computed by B. Then B submits (g, (m′ ∏

i∈M̃
mi), σ1

σ̃1
, gc, σ2

σ̃2
) to the DBDH oracle. B

outputs ”valid” if ODBDH returns 1. Otherwise, B outputs ”invalid”.
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Correctness If (M,σ = (σ1, σ2)) is a valid designated verifier signature, then we have

σ2 = e(pk1S , pk2S)ce(m′ ∏
i∈M̃

mi, σ1)c (10)

Similarly, since (M, σ̃1 = (σ̃1, σ̃2)) is another designated verifier signature computed by B,
then we have

σ̃2 = e(pk1S , pk2S)ce(m′ ∏
i∈M̃

mi, σ̃1)c (11)

We can obtain

(σ2
σ̃2

) = (
e(m′ ∏

i∈M̃
mi,σ1)

e(m′ ∏
i∈M̃

mi,σ̃1)
)xV

= e((m′ ∏
i∈M̃

mi), σ1
σ̃1

)c.
(12)

Therefore, σ2
σ̃2

= e(m′ ∏
i∈M̃

mi,
σ1
σ̃1

)c which indicates that (g, (m′ ∏
i∈M̃

mi), (σ1
σ̃1

), gc, σ2
σ̃2

) is
a valid BDH tuple.

If B does not abort during the simulation, A will output a valid designated verifier signature
σ∗ on the message M∗ with success probability ε.

Probability analysis. In order to compute the success probability of B, we consider events
that B will not abort. B will not abort if both the two conditions hold as mentioned in [26].

– β: B does not abort during the designated verifier signature, simulation, and verify queries.
– γ: F (M∗) = 0(modp)

The success probability of B is SussGBDH
B = Pr[β ∧ γ]ε

Pr[β ∧ γ] = pr[
⋂(qs+qsim+qv)

i=1 K(Mi) 6= 0]pr[x +
∑

i∈M∗ xi = lk|β]
= (1− pr[

⋃(qs+qsim+qv)
i=1 K(Mi)])pr[x +

∑
i∈M∗ xi = lk|β]

≥ (1− (qs+qsim+qv)
l )pr[x +

∑
i∈M∗ xi = lk|β]

= 1
n+1 (1− (qs+qsim+qv)

l )pr[K(M∗)=0]
pr(β) pr[β|K[M∗] = 0]

≥ 1
(n+1)l (1−

(qs+qsim+qv)
l )pr[β|K[M∗] = 0]

≥ 1
(n+1) (1−

(qs+qsim+qv)
l )(1− pr[

⋃(qs+qsim+qv)
i=1 K(Mi) = 0|K[M∗] = 0])

= 1
(n+1) (1−

(qs+qsim+qv)
l )2

≥ 1
(n+1)l (1−

2(qs+qsim+qv)
l )

(13)

Hence, SuccGBDH
B ≥ 1

(n+1)l (1 −
2(qs+qsim+qv)

l ) which is optimized by l = 4(qs + qsim + qv).
Therefore, we have SuccGBDH

B ≥ ε
8(n+1)(qs+qsim+qv)

Theorem 2. The proposal is non-transferable.
Proof. To prove non-transferability of the scheme, we show that the signature simulated by the
designated verifier V is indistinguishable from the one generated by the signer S. As a result,
we have to show that the two following distributions are the same.
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σ = (σ1, σ2) :


r ∈R Z∗

p

σ1 = gr(modp)
σ2 = e(gxSyS (m′ ∏

i∈M̃
mi)r, gxV )

(14)

σ′ = (σ′1, σ
′
2) :


r′ ∈R Z∗

P

σ′1 = gr′(modp)
σ′2 = e(gxS , gyS )xV e((m′ ∏

i∈M̃
mi), σ′1)

xV

(15)

Let σ = (σ1, σ2) be a valid signature which is randomly chosen from the set of all valid
signer’s signatures intended to the verifier V . Subsequently, we have distributions of probabil-
ities as follows:

Prσ = Pr[(σ1, σ2) = (σ1, σ2)] = Prr∈RZ∗
p

[
σ1 = σ1

σ2 = σ2

]
=

1
p− 1

, (16)

and

Prσ′ = Pr[(σ′1, σ
′
2) = (σ1, σ2)] = Prr′∈RZ∗

p

[
σ′1 = σ1

σ′2 = σ2

]
=

1
p− 1

(17)

The analysis means both distribution of probability are the same. Hence, our proposal sat-
isfies the non-transferable property.

Theorem 3. If there exists an adversary A who can (t, qs, qv, ε) break the PSI of the scheme,
then there exists another algorithm B who can use A to solve an instance of the DBDH problem
in (G, GT ) with probability ε′ in time t′, where

ε′ ≤ εDBDH

t′ ≥ (n + 3 + qs)T1 + (qv + qs)T2 + (qs + qv)te + n(qs)t1 + (qv + qs)t2 + t
(18)

where t1 and t2 are the time for a multiplication in G and GT respectively; T1 and T2 are
the time for an exponentiation in G and GT respectively; moreover, te is the time for a pairing
computation in (G, GT ).

Proof. Let A be the distinguisher against privacy of a signer’s identity. We use A to construct
another algorithm B to break DBDH assumption with probability ε′ in time t′. Given a random
instance of DBDH problem of a bilinear group (G, GT ), i.e. (g, ga0 , ga1 , gc, Z) where a0, a1, and
c are random elements of Zp unknown to it, B’s goal is to output whether e(g, g)a0a1c = Z.

Setup. B chooses a value y′ and a random n-vector, y = (yi) where y′, yi ∈ Zp. These values
are kept internal to B.
For a message M , we let M̃ ⊆ {1, 2, ..., n} be the set of all i for which Mi = 1. We define a
function J ′(M) = y′ +

∑
i∈M̃

yi. Then B sets the public keys of users and common parameters
as follows:

– B randomly chooses b0 and b1 ∈ Zp and sets the public keys of the two signers pkS0 =
(ga0 , ga1) and pkS1 = (gb0 , gb1). B sets the common secret key between S0 and V , kS0V = Z,
the common secret key between S1 and V , kS1V = e(gb0 , gc)b1 , and the public key of the
designated verifier pkV = gc where ga0 , ga1 , gc, and Z are the inputs to the DBDH problem.
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– B assigns m′ = gy′ and mi = gyi and sets −→m = (m1,m2, ...,mn)

Hence, we have (m′ ∏
i∈M̃

mi) = gJ′(M). B returns (G, GT , e, p, g,m′,m) and (pkS0 , pkS1 , pkV )
to A.

Answering signature queries. Suppose the adversary A asks for a designated verifier sig-
nature on a n-bit message M from the signer Sd where d ∈ {0, 1}. B has to create a valid
signature tuple. The simulator B proceeds as follows:

– B can construct a valid designated verifier signature w.r.t. common secret key between the
signer Sd and the designated verifier V , kSdV , by picking r ∈ Zp randomly and computing
σ = (σ1, σ2) where

σ1 = gr

σ2 = kSdV e((m′ ∏
i∈M̃

mi), gc)r (19)

Answering verify queries. Suppose A issues a verify query for the message-signature
pair (M,σ, d), B can verify the signature (M,σ, d) using σ2 = kSdV e(σ1, g

c)J′(M) since it
knows kSdV and J ′(M). When A submits its challenge message M∗, B chooses a random
bit d ∈R {0, 1} and returns σ∗. The successive queries issued by A are handled as mentioned
above. Finally, A outputs a bit d′. Then, B outputs 1 if d′ = d, indicating Z = e(g, g)a0b0c

and 0 otherwise, indicating Z is a random element of G. Let b be the bit B outputs. We
have

ε′ = |pr[b = 1 ∧ Z = e(g, g)a0a1c]− pr[b = 1 ∧ Z ←−R GT ]|
= 1

2 (|pr[b = 1|Z = e(g, g)a0a1c]− pr[b = 1|Z ←−R GT ]|) ≤ 1
2εDBDH ≤ εDBDH

(20)

Our proposed scheme is non-delegatable for signature verification. Informally, it is assumed
that the common secret key between S and V , kSV = e(gxS , gyS )xV , and a SDVS signature
(M,σ = (σ1, σ2)) are given to a third party. To verify the validity of the signature in the
relation σ2 = kSV e(m′ ∏

i∈M̃
mi, σ1)xV , she still needs to know the designated verifier’s secret

key. Non-delegatability for signature verification in theorem 4 is based on BDH assumption
which can be converted to the BDL assumption in some conditions [17] which is equivalent
with the definition of non-delegatability for signature verification. The proposal is delegatable
for signing: a signer S or a verifier V can release kSV ; hence, any third party can sign a message
M on behalf of the signer for the verifier. To this purpose, the third party chooses r ∈R Z∗

p and
computes σ1 = gr and σ2 = kSV e((m′ ∏

i∈M̃
mi)r, gxV ). To verify the validity of this signature

(M,σ = (σ1, σ2)), the verifier V acts as explained in Eq.(3).

Theorem 4. If there exists an adversary A who can (t, qs + qsim, ε) violate the property of
non-delegatability for signature verification, then there exists another algorithm B who can
solve an instance of the BDH problem in (G, GT ) with probability ε′ in time t′ such that

ε′ ≥ ε
8(n+1)(qs+qsim)

t′ ≤ (2n + 2 + 4(qs + qsim))T1 + T2 + (qs + qsim + 1)te + ((n + 2)(qs + qsim) + 2 + n)
t1 + 2t2 + t

(21)
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where t1 and t2 are the time for a multiplication in G and GT respectively; T1 and T2 are
the time for an exponentiation in G and GT respectively; moreover, te is the time for a pairing
computation in (G, GT ).

Proof. Let A be a verifier for the designated verifier signature. We use A to construct another
algorithm B to break BDH assumption with probability ε′ in time t′. Given a random instance
of BDH problem (g, ga, gb, gc) of a bilinear group (G, GT ), its goal is to output e(g, g)abc with
the help of the verifier A. B will run A as a subroutine and act as A’s challenger to solve the
instance of BDH problem. B will response A’s signature and simulation queries as mentioned
in the proof of theorem 1. If B does not abort during the simulation and A can output 1, which
means that the signature is valid, B can compute the value of e(g, g)abc in case of F (M) = 0
using Eq. (22).

e(ga, gb)c = ( σ2
e(gc,σ1)

)J(M) (22)

If B does not abort during the simulation, A will output 1 with success probability ε which
means the signature σ∗ on the message M∗ is valid.

Probability analysis In order to compute the success probability of B, we consider events
that B will not abort. B will not abort if both the two conditions hold as aforementioned in
theorem 1.

– β: B does not abort during the designated verifier signature and simulation queries.
– γ: F (M∗) = 0(modp)

The success probability of B is SussBDH
B = Pr[β ∧ γ]ε which is computed in theorem 1.

Note that, BDH problem polytime reduces to the BDL problem in some conditions [17]
which is equivalent to the Definition 8.

5 Comparison

As a comparison, we consider the existing SDVS schemes in the standard model as shown
in Table 1. Security of our scheme is only based on standard complexity assumptions, while
the security of Huang et al. scheme [10] is based on security of PRF in addition to standard
complexity assumptions. The proposed scheme has the security proof for PSI, while the scheme
in [28] does not have security proof for PSI. Furthermore, our proposal is non-delegatable for
signature verification, while two schemes do not have this property.

schemes Unforge. Non-dele. PSI Non-trans.

Huang et al. 2011 X × X X
Zhang et al. 2007 X × × X
Our Scheme X X X X

Table 1. Comparison table based on properties(X: satisfied, ×: unsatisfied)

Note that, non-delegatability in Table 1 means non-delegatability for signature verification.
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6 conclusion

We propose a novel designated verifier scheme and prove that the scheme is secure without
random oracles. To the best of our knowledge, this is the first designated verifier signature
scheme that has non-delegatability for signature verification in the standard model. The se-
curity of our scheme relies on standard complexity assumptions not security of PRF or other
primitives.
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