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Abstract. This paper presents differential-based distinguishers against ISO standard hash functions
RIPEMD-128 and RIPEMD-160. The compression functions of RIPEMD-128/-160 adopt the double-
branch structure, which updates a chaining variable by computing two functions and merging their
outputs. Due to the double size of the internal state and difficulties of controlling two functions si-
multaneously, only few results were published before. In this paper, second-order differential paths are
constructed on reduced RIPEMD-128 and -160. This leads to a practical 4-sum attack on 47 steps
(out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. We then extend the
distinguished property from the 4-sum to other properties, which we call a 2-dimension sum and a
partial 2-dimension sum. As a result, the practical partial 2-dimension sum is generated on 48 steps of
RIPEMD-128 and 42 steps of RIPEMD-160, with a complexity of 235 and 236, respectively. Theoreti-
cally, 2-dimension sums are generated faster than the exhaustive search up to 52 steps of RIPEMD-128
and 51 steps of RIPEMD-160, with a complexity of 2101 and 2158, respectively. The practical attacks
are implemented, and examples of generated (partial) 2-dimension sums are presented.
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1 Introduction

Hash functions are taking important roles in various aspects of the cryptography. Since the collision
resistance of MD5 and SHA-1 were broken by Wang et al. [21, 22], cryptographers have looked for
stronger hash function designs. While various new designs are discussed in the SHA-3 competition
[16], some of existing hash functions seem to have much higher security than MD4-family. Evaluating
the security of such hash functions are important especially if they are standardized internationally.

RIPEMD-128 and RIPEMD-160 designed by [4] are hash functions standardized by ISO [7].
They are designed to have the same digest size as MD5 and SHA-1 so that MD5 and SHA-1 can
be replaced with them. In addition, because SHA-3 will not produce 128- and 160-bit digests,
RIPEMD-128 and -160 might be used in the future to provide secure 128- and 160-bit digests.

RIPEMD-128 and -160 adopt the narrow-pipe Merkle-Damg̊ard structure. Their compression
functions adopt the double-branch structure, which takes a previous chaining variable Hi−1 and
a message block Mi−1 as input and computes two compression functions CFL(Hi−1,Mi−1) and
CFR(Hi−1,Mi−1). The chaining variable output Hi is computed by merging Hi−1, CFL(Hi−1,Mi−1),
and CFR(Hi−1, Mi−1). Due to the double size of the internal state and the difficulties of controlling
the two functions simultaneously, only few results were published before. Note that, in order to
prevent the recent meet-in-the-middle preimage attacks [5, 14, 15], some hash functions adopt a
structure, which applies the feed-forward function several times, e.g. ARIRANG [3]. Sasaki pointed
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out that such a structure can also be viewed as the double-branch structure [13]. Hence, the analysis
on the double-branch structure seems useful even for the future hash function design.

RIPEMD-128 produces 128-bit digests and its compression function consists of 4 rounds, 64
steps. RIPEMD-160 produces 160-bit digests and its compression function consists of 5 rounds, 80
steps. Mendel et al. investigated the differential property of the compression functions of RIPEMD-
128 and -160 [9]. They applied the linear approximation to the compression functions of RIPEMD-
128 and -160, and showed that low Hamming weight differential paths for pseudo-near-collisions
exist up to 3 rounds (48 steps) for RIPEMD-128 and up to some intermediate step in the third
round (steps 33 – 48) for RIPEMD-160. Although [9] is useful to obtain some intuition on collision
attacks against RIPEMD-128 and -160, a lot of work is necessary to complete the attacks and the
complexity and even the possibility of the attacks are unclear. More details will be discussed in
Sect. 3. Another previous work is the ones by Ohtahara et al. [10] and Wang et al. [19], which
investigated preimage attacks on RIPEMD-128 and -160. [10] showed that the first 33 steps of
RIPEMD-128 and the first 31 steps of RIPEMD-160 can be attacked while [19] showed that the
intermediate 35 steps of RIPEMD-128 can be attacked. Their complexities are very close to the
one by the brute force attack.

In this paper, boomerang type differential properties are discussed. The boomerang attack was
first proposed by Wagner as a tool for analyzing block ciphers [17]. It divides the entire function
E(·) into two subparts E0 and E1 such that E(·) = E1◦E0(·). Let the probabilities of the differential
paths for E0 and E1 be p and q, respectively. The boomerang attack exploits the fact that a second
order differential property with a probability p2q2 exists for the entire function E. Recently, several
researchers have applied this property on compression functions so as to mount distinguishers [1,
2, 8, 12]. [12] showed the framework to attack the MD4-family (using the single-branch structure)
consisting of up to 5 rounds.

Our Contributions

In this paper, differential-based distinguishers against the compression functions of RIPEMD-128
and RIPEMD-160 are presented.

The first target of this research is the 4-sum property. The 4-sum indicates 4 different inputs
where the XOR sum of the corresponding outputs is 0. The current best generic attack to find
4-sums is the generalized birthday attack [18], which requires 2n/3 computations for n-bit output.
Then, the 4-sum property is extended to a new differential property, which we call a 2-dimension
sum, or more generally an N -dimension sum. The current best generic attack to find 2-dimension
sums requires 2n computations. Note that the partial 4-sum and partial N -dimension sum can be
introduced naturally.

Then, differential paths are constructed on reduced RIPEMD-128 and -160. The differential
path construction is based on the idea of the boomerang distinguisher against the MD4-family by
Sasaki [12]. Our strategy is regarding CFL as the first part of the boomerang attack (E0) and CFR

as the second part of the boomerang attack (E1), hence the entire function (E) consists of 8 and 10
rounds for RIPEMD-128 and -160, respectively. This simplifies the differential path construction
because the differential paths for CFL and CFR can be analyzed almost independently. However,
because the framework by [12] can only work up to 5 rounds, several improvements are necessary
to maximize the number of attacked rounds.

On RIPEMD-128, to construct differential paths, we combine the local collision with the frame-
work by [12]. This leads to a long differential path which is satisfied with a high probability. As
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Table 1. A summary of the attack on the compression functions

Target #Steps Property Complexity Reference Remarks

RIPEMD-128 33 preimage 2119 [10]
(64 steps in total) 36 preimage 2123 [19] starting from an intermediate step

46 4-sum 234 Ours
47 4-sum 239 Ours
48 2-dimension sum 248 Ours
48 partial 2-dimension sum 235 Ours
52 2-dimension sum 2101 Ours

RIPEMD-160 31 preimage 2148 [10]
(80 steps in total) 38 4-sum 242 Ours

40 partial 2-dimension sum 242 Ours
43 2-dimension sum 2151 Ours
40 4-sum 236 Ours starting from the second round
42 partial 2-dimension sum 236 Ours starting from the second round
51 2-dimension sum 2158 Ours starting from the second round

a result, 4-sums and partial 2-dimension sums are generated with a practical complexity up to 47
steps and 48 steps of RIPEMD-128, respectively. In addition, 2-dimension sums are theoretically
generated faster than the brute force attack up to 52 steps of RIPEMD-128.

On RIPEMD-160, the local collision involves more message words than RIPEMD-128, and thus
using the local collision is inefficient. Instead, we show an interesting property of the non-linear
differential path of RIPEMD-160 which can avoid the quick propagation of the difference. As a
result, 4-sums and partial 2-dimension sums are generated with a practical complexity up to 38
steps and 40 steps of RIPEMD-160, respectively. In addition, with an infeasible complexity, 2-
dimension sums are generated faster than the brute force attack up to 43 steps of RIPEMD-160. If
the attack target starts from the second round, the numbers of attacked steps become 40, 42, and
51 for 4-sums, partial 2-dimension sums, and theoretical 2-dimension sums. The attack results are
summarized in Table 1.

Paper Outline. In Sect. 2, the specification of RIPEMD-128 and -160 are explained. In Sect. 3,
related work is summarized. In Sect. 4, a new differential property called 2-dimension sum is
introduced. In Sect. 5, attacks on RIPEMD-128 are explained. In Sect. 6, attacks on RIPEMD-160
are explained. Finally, we conclude this paper in Sect. 7.

2 Specifications

RIPEMD-128 and RIPEMD-160 are hash functions proposed by Dobbertin et al. [4] as stronger
hash functions than RIPEMD [11], which take a message of arbitrary length as input and produce
a 128-bit and a 160-bit hash digests, respectively. Because our attack target is their compression
functions, we omit the description of their domain extensions. The differences between RIPEMD-
128 and RIPEMD-160 are the digest size and the compression function structure. In the following
sections, the compression functions are described.
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2.1 RIPEMD-128

The compression function of RIPEMD-128 takes a 128-bit chaining variable Hi−1 and a 512-bit
message block Mi−1 as input and outputs a 128-bit chaining variable Hi. Mi is divided into sixteen
32-bit message words m0,m1, . . . , m14 and m15. Let pL

j be a 128-bit chaining variable and aL
j , bL

j , cL
j

and dL
j be 32-bit variables satisfying pL

j = aL
j ‖bL

j ‖cL
j ‖dL

j , where 0 ≤ j ≤ 64. Similarly, pR
j and

aR
j , bR

j , cR
j , dR

j are defined.

pL
0 ← Hi−1, pR

0 ← Hi−1,

pL
j+1 ← SFL

j (pL
j , mπL(j)) for j = 0, 1, . . . , 63, pR

j+1 ← SFR
j (pR

j ,mπR(j)) for j = 0, 1, . . . , 63,

where SFL
j and SFR

j are step functions for CFL and CFR respectively, and perform the following
computations.

aL
j+1 ← dL

j , aR
j+1 ← dR

j ,

bL
j+1 ← (aL

j + fj(bL
j , cL

j , dL
j ) + mπL(j) + kL

j ) ≪ sL
j , bR

j+1 ← (aR
j + f63−j(bR

j , cR
j , dR

j ) + mπR(j) + kR
j ) ≪ sR

j ,

cL
j+1 ← bL

j , aR
j+1 ← dR

j ,

dL
j+1 ← cL

j , aR
j+1 ← dR

j .

‘+’ represents the addition on modulo 232, ‘≪ x’ represents left cyclic shift by x bits, fx is a
Boolean function, πL and πR are the message expansion, and kL

j and kR
j are the constant. Details

of these values are listed in Tables 2.
Finally, the output chaining variable Hi = H

(a)
i ‖H(b)

i ‖H(c)
i ‖H(d)

i is computed as shown in Ta-
ble 3.

2.2 RIPEMD-160

The compression function of RIPEMD-160 is almost the same as the one for RIPEMD-128. The
chaining variable size is 160 bits, and thus 160-bit intermediate states are represented by five 32-bit
variables, e.g. pL

j = aL
j ‖bL

j ‖cL
j ‖dL

j ‖eL
j . The step functions SFL and SFR are iteratively computed 80

times (0 ≤ j ≤ 79). The details of the computation of SFL are as follows.

aL
j+1 ← eL

j , bL
j+1 ← ((aL

j + fj(bL
j , cL

j , dL
j ) + mπL(j) + kL

j ) ≪ sL
j ) + eL

j ,

cL
j+1 ← bL

j , dL
j+1 ← cL

j ≪ 10,

eL
j+1 ← dL

j .

Most of the parameters are shared with RIPEMD-128. The details are described in Table 2. In the
computations of SFR, bR

j+1 are computed as follows;

bR
j+1 ← ((aR

j + f79−j(bR
j , cR

j , dR
j ) + mπR(j) + kR

j ) ≪ sR
j ) + eR

j .

The other variables aR
j+1, c

R
j+1, d

R
j+1, and eR

j+1 are computed similarly to SFL. Finally, the output
chaining variable Hi is computed as shown in Table 3.
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Table 2. Boolean functions, message expansions, rotation numbers of RIPEMD-128 and RIPEMD-160

fx(X, Y, Z)

x = 0, 1, . . . , 15 X ⊕ Y ⊕ Z
x = 16, 17, . . . , 31 (X ∧ Y ) ∨ (¬X ∧ Z)
x = 32, 33, . . . , 47 (X ∨ ¬Y )⊕ Z
x = 48, 49, . . . , 63 (X ∧ Z) ∨ (Y ∧ ¬Z)
x = 64, 65, . . . , 79 X ⊕ (Y ∨ ¬Z)

πL(j) πR(j)

j = 0, 1, . . . , 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
j = 16, 17, . . . , 31 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
j = 32, 33, . . . , 47 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
j = 48, 49, . . . , 63 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
j = 64, 65, . . . , 79 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

sL
j sR

j

j = 0, 1, . . . , 15 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6
j = 16, 17, . . . , 31 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
j = 32, 33, . . . , 47 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
j = 48, 49, . . . , 63 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8
j = 64, 65, . . . , 79 9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6 8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11

RIPEMD-128 RIPEMD-160
kL

j kR
j kL

j kR
j

j = 0, 1, . . . , 15 0x00000000 0x50a28be6 0x00000000 0x50a28be6

j = 16, 17, . . . , 31 0x5a827999 0x5c4dd124 0x5a827999 0x5c4dd124

j = 32, 33, . . . , 47 0x6ed9eba1 0x6d703ef3 0x6ed9eba1 0x6d703ef3

j = 48, 49, . . . , 63 0x8f1bbcdc 0x00000000 0x8f1bbcdc 0x7a6d76e9

j = 64, 65, . . . , 79 - - 0xa953fd4e 0x00000000

3 Related Work

At ISC 2006, Mendel et al. presented differential properties of linearized RIPEMD-128 and RIPEMD-
160 [9]. Their work can be summarized as follows;

1. Replace the addition operation with the XOR operation.
2. Replace all Boolean functions with the XOR of three input words.
3. Ignore the first round under the assumption that any differential path can be satisfied by using

the message modification technique [21].
4. Find a path which has a low Hamming weight on chaining variable aj where j > 16, by using

algorithms from coding theory.

Table 3. Computations for the Output of the Compression Function

RIPEMD-128 RIPEMD-160

H
(a)
i H

(b)
i−1 + cL

64 + dR
64 H

(b)
i−1 + cL

80 + dR
80

H
(b)
i H

(c)
i−1 + dL

64 + aR
64 H

(c)
i−1 + dL

80 + eR
80

H
(c)
i H

(d)
i−1 + aL

64 + bR
64 H

(d)
i−1 + eL

80 + aR
80

H
(d)
i H

(a)
i−1 + bL

64 + cR
64 H

(e)
i−1 + aL

80 + bR
80

H
(e)
i − H

(a)
i−1 + bL

80 + cR
80
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5. Estimate the attack complexity up to step x as 22·Σx
j=17HW (aj).

As a result, the authors discovered a near-pseudo-collision differential path up to 3 rounds (48
steps) for RIPEMD-128 and RIPEMD-160 with the Hamming weight of 18 and 224, respectively.
According to their counting method, these indicate that near-pseudo-collisions might be found up
to round 3 with 236 computations on RIPEMD-128 and 2448 computations on RIPEMD-160. This
indicates that attacking 3 rounds of RIPEMD-160 would be impossible. Note that as the authors
mentioned [9, Sect.3.2], the estimation of the attack complexity is quite conservative. The final
attack complexity might be higher in practice.

Although [9] is useful to obtain the intuition for the differential attack on RIPEMD-128/-160,
there are many gaps between their estimation and attacks in practice.

– Differential path construction for the first round is non-trivial.
– Wang et al. pointed out the difficulties of applying the message modification to the double

branch structure [20], and thus it is unclear that both of the paths in the first rounds of CFL

and CFR can be satisfied efficiently,
– Difference propagations in the linearized mode and in the original mode are different. For

example, let ∆1 be 0x01 and ∆2 be 0x01. ∆1⊕∆2 is always 0x00, but ∆1 + ∆2 might be 0x10
with a probility 1/2.

– Several Boolean functions do not behave as linear, e.g., f16(0x00, 0x01, 0x01) is always 0x01.
– [9] only gives the minimum Hamming weight. Other crucial information such as message differ-

ences is not available.

In summary, [9] tells that the differential attack on 3 rounds of RIPEMD-160 would be impossible.
However, only from the results of [9], it is hard to guess the actual attack complexity or even the
possibility of the attack on reduced RIPEMD-128/160.

4 Differential Properties to be Distinguished

In this section, we give a summary and introduce a new differential property to be used to distinguish
the target compression function from the ideal function. Because our attacks are based on the
boomerang attack, differential properties with 2 differences are mainly discussed.

4.1 Previously Discussed Properties

4-sum is a set of 4 different inputs (I0, I1, I2, I3) where the sum of the corresponding outputs is 0,
namely CF(I0) ⊕ CF(I1) ⊕ CF(I2) ⊕ CF(I3) = 0. The current best generic attack to find a 4-sum
is a generalized birthday attack [18], which requires 2n/3 computations and 2n/3 memory for n-bit
output. Hence, if 4-sums are generated faster than 2n/3 computations, CF is not regarded as ideal.

It is possible to limit the form of input values on 4-sum properties. For example, the problem
is changed to finding a set of 4 different inputs (I0, I1, I2, I3), where two pairs have a pre-specified
difference ∆ and the sum of the corresponding outputs is 0. Namely, I0 ⊕ I1 = I2 ⊕ I3 = ∆ and
CF(I0)⊕CF(I1)⊕CF(I2)⊕CF(I3) = 0. As far as we know, the current best generic attack for this
problem requires 2n/2 computations;

1. Choose 2n/2 different I0s. Compute I1 ← I0 ⊕∆ and then compute CF(I0)⊕ CF(I1).
2. Choose 2n/2 different I2s. Compute I3 ← I2 ⊕∆ and then compute CF(I2)⊕ CF(I3).
3. Find a collision between CF(I0)⊕ CF(I1) and CF(I2)⊕ CF(I3).

Therefore, if such 4 inputs are generated faster than 2n/2 computations, CF is not regarded as ideal.
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4.2 2-Dimension Sums and Suitability for the Double-Branch Structure

We introduce a new differential property, which we call 2-dimension sum. In this notion, we set
more limitations to the form of input values on 4-sum properties. The problem is changed to finding
a set of 4 different inputs (I0, I1, I2, I3) which satisfy I1 = I0 ⊕∆, I2 = I0 ⊕ ∇, I3 = I0 ⊕∆ ⊕ ∇,
and CF(I0)⊕ CF(I1)⊕ CF(I2)⊕ CF(I3) = 0, for two pre-specified differences ∆ and ∇. A generic
attack for this problem seems to require 2n computations; choose the value of I0 and check that
the corresponding CF(I0)⊕ CF(I0 ⊕∆)⊕ CF(I0 ⊕∇)⊕ CF(I0 ⊕∆⊕∇) is 0.

2-dimension sums are particularly useful to attack the double-branch structure. The attacker
can construct a pseudo-near-collision path for CFL with setting input chaining variable difference
to ∆. Then, a pseudo-near-collision path for CFR is independently constructed with setting other
difference ∇. If the product of the probability of each path (after message modification) is higher
than 2−n/2, the 2-dimension sum can be generated faster than 2n by using the boomerang attack
approach [12]. Different from the original RIPEMD, RIPEMD-128 and -160 adopt very different
functions as CFL and CFR. Therefore, the independence of the path construction for CFL and CFR

greatly helps the attacker. More discussion is given in Sect. 5 and 6.
Note that the partial 2-dimension sum is naturally introduced, where CF(I0)⊕ CF(I0 ⊕∆) ⊕

CF(I0⊕∇)⊕CF(I0⊕∆⊕∇) becomes 0 only for the specified partial bits, say d bits. In this case,
the complexity of the generic attack is 2d and thus a valid distinguisher must find it faster than 2d.

4.3 N-Dimension Sum for N-Branch Hash Functions

The concept of the 2-dimension sums can be naturally expanded to an N -dimension sum. Let a set
of N pre-specified difference be (∆1,∆2, . . . , ∆N ). Let a notation ∆[δ1δ2 · · · δN ], where δx ∈ {0, 1}
represent

⊕N
x=1(∆x · δx). The property of the N -dimension sum is defined to finding an input

value I such that, for all possible 2N patterns of (δ1δ2 · · · δN ),
⊕

CF(I ⊕ ∆[δ1δ2 · · · δN ]) = 0. A
generic attack on N -dimension sum is the same as the one for 2-dimension sum, which requires 2n

computations.
Similarly to the 2-dimension sum, the N -dimension sum is useful to attack the N -branch struc-

ture, because differential paths can be constructed independently for each of N branches. If the
overall probability of N -sum is higher than 2−n, for example the probability of each path is higher
than 2−

n

N×2N−1 , the N -dimension sum can be generated faster than 2n. Hash function FORK-256
[6] adopts the 4-branch structure and the computation of each branch is light, and thus it seems a
suitable application target of the N -dimension sum.

5 Attacks on RIPEMD-128

We construct 2-dimension sums against the compression function of RIPEMD-128. Hereafter, we
compute the difference in modular subtraction because the main operation of RIPEMD-128/-160 is
the modular addition. The message differences, differential path, and sufficient conditions against
RIPEMD-128 are shown in Tables 4, 5 and 6 respectively.

5.1 Overall Strategy

A graphical description of our strategy is given in Fig. 1. First, we construct a ∆-differential-path

∆
∆M−−→ ∆′ in the left branch, and a ∇-differential-path ∇ ∇M−−→ ∇′ in the right branch. Then we try
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∆∆∆∆
∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆∆’

’

∆∆∆∆’

∆∆∆∆

∆∆∆∆’

Left Branch:         
∆∆∆∆-differential-path

Right Branch:     
-differential-path

∆∆∆∆

Fig. 1. Our Attack Strategy on RIPEMD-128 and -160

Table 4. Differential path construction for 3-round RIPEMD-128

round πL(j) πR(j)

1 0© 1 2 3 4 5 6© 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6© 15 8 1 10 3 12
∆ MM ← ∆ constant MM ←

2 7 4 13 1 10 6© 15 3 12 0© 9 5 2 14 11 8 6© 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
constant ← LC → constant ∇ constant

3 3 10 14 4 9 15 8 1 2 7 0© 6© 13 11 5 12 15 5 1 3 7 14 6© 9 11 8 12 2 10 0 4 13
constant ∆ ∆ → constant ∇ →

to search for an input of the compression function (H, M) such that (H, M), (H + ∆,M + ∆M ),
(H +∇,M +∇M ), and (M + ∆ +∇,H + ∆M +∇M ) satisfy the following conditions.

– Both the difference between (H,M) and (H + ∆,M + ∆M ) and the difference between (H +
∇,M +∇M ) and (H +∇+ ∆,M +∇M + ∆M ) follow ∆-differential-path in the left branch.

– Both the difference between (H,M) and (H +∇,M +∇M ) and the difference between (H +
∆,M + ∆M ) and (H + ∆ +∇,M + ∆M +∇M ) follow ∇-differential-path in the right branch.

For such a (H, M), we obtain the following relationship;

CF(H, M) + CF(H + ∆ +∇,M + ∆M +∇M )−CF(H + ∆,M + ∆M )−CF(H +∇,M +∇M ) = 0,

where CF is the compression function of RIPEMD-128. The proof is simple algebra and is omitted.

5.2 Constructing ∆-differential-path

We should keep the differential path as simple as possible in order to maximize its probability. One
natural approach is to restrict the difference propagations. Particularly, we expect that f functions
do not produce new differences.

The f functions of the first and the third rounds in the left branch have no or weak absorption
property, which means these f functions produce new differences with a high probability. So we
must make the ∆-differential-path short in these two rounds. In order to achieve it, we generate
a local collision in the second round of the left branch, and pick a message difference ∆M which
appear at a very beginning step in the first round and at a very late step in the third round.
Therefore the whole differential path consists of 3 sub-paths: a short path at the beginning steps
in the first round; a local collision in the second round; and a short path at the late steps in the
third round. Such a strategy will maximize the probability of the whole differential path. Finally
we choose to use message difference ∆M as below
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∆m0 = −210; and ∆m6 = 231.

∆ is also determined backwards according to the differential path in the first round.

∆a0 = 28; ∆b0 = 0; ∆c0 = 231 + 216; and ∆d0 = 231 + 216.

The value of ∆′ changes with the number of the attacked steps. Moreover, we do not need to specify
∆′ according to amplified probability using multiple outside differential paths [12].

Remark on multiple differential path. At step 44 of ∆-differential-path, a difference of ∗25 is
produced by the f function. For this difference, we do not limit the sign for each pair, but we need
the condition that the signs are identical between two pairs. Hence, the probability to satisfy this
condition is 2−1 rather than 2−2. We also set 2 similar conditions at steps 46 and 47.

5.3 Constructing ∇-differential-path

The f function of the second round in the right branch has weak absorption property. So we must
make ∇-differential-path short in the second round of the right branch. In order to achieve it, since
the f function in the first round of the right branch has strong absorption property, we decide
to generate a relatively long but simple sub-path in the first round, which should be ended by
the message difference in the second round. We should pick a message difference which appears at
a very beginning step in the second round and at a very late step in the third round. The whole
differential path consists of 2 sub-paths: a long path going through the whole first round and ending
at a beginning step in the second round; and a short path at the late steps in the third round.
Finally we choose the message difference ∇M and corresponding ∇ as below

∇m6 = −230; ∇a0 = 220; ∇b0 = 0; ∇c0 = 0; and ∇d0 = 26.

5.4 Searching for (H, M)

Firstly, we search for (H, M)s which satisfy the differential path for the first 17 steps in both
branches. The complexity of finding such (H,M)s, i.e. the complexity for satisfying the first 17 steps
can be ignored by applying the message modification technique and optimizing the computation
order. More precisely, the message modification is a technique to efficiently satisfy all conditions
in the first round. It exploits the property that each step in the first round is computed with a
message word which is not fixed yet. For example, to satisfy the conditions of the variable bj+1 in
the first round, you can iterate the computation in step j many times by only changing the value
of mπ(j) without influencing the previous steps. Hence, by satisfying the conditions step by step,
the complexity is greatly reduced. Moreover, modifying the message word m12 never impacts to the
sufficient conditions in the first round. This is because m12 is used in late steps of the first round in
both branch (See Table. 4). Thus, once we obtain an (H,M) satisfying the differential path up to
step 17, we can generate another valid (H, M) by modifying m12. As a summary, the complexity
for satisfying the differential path for the first 17 steps can be ignored.

For the remaining steps (after step 17), we simply satisfy the path in the brute-force manner.
Hence, the entire attack complexity only depends on the number of conditions after step 17.
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5.5 Complexity Evaluation and Experiments

Besides counting the number of sufficient conditions of ∆- and ∇-differential-path after step 17, we
also verify the amplified probability for multiple outside differential paths experimentally.

Attack on 46 steps. There are 11 and 8 sufficient conditions in the ∆- and ∇-differential-paths,
respectively. Each condition must be satisfied in two pairs and thus its probability is 2−2. How-
ever, 2 conditions in the ∆-differential-path are the one discussed in the remarks in Sect. 5.2,
which satisfied with probability 2−1. Overall, the complexity is 236(=2×(9+8)+2). We then exper-
imentally check the amplified probability, and the final complexity is 234.

Attack on 48 steps. We experimentally checked the amplified probability, and the final complex-
ity is 248.

Attack on 52 steps. ∇-differential-path in the fourth round of the right branch becomes very
complicated because the f function does not have the absorption property. Thus we only verified
the amplified probability in the fourth round instead of constructing a specific differential path.
As a result, the complexity to obtain a 4-sum is 2101.

The attack was implemented on single PC. The generated 46-step 2-dimension sum, which is also
3-round (48-step) partial 2-dimension sum, is shown in Table. 8 in Appendix.

6 Attacks on RIPEMD-160

Two attacks are presented on RIPEMD-160; in the first scenario, the attack target is starting from
the first round and in the second scenario, the attack target is starting from the second round.

In the first scenario, the f functions of both branches do not have the absorption property
in the first and third rounds. This makes the efficient differential path construction hard. On the
other hand, in the second scenario, the absorption property is available in both branches in the first
and third rounds. The differential path is more efficient than the first scenario, and the number of
attacked steps is beyond 3 rounds (up to 52 steps).

6.1 Overall Strategy and Relatively Slow Differential Propagation

Different from RIPEMD-128, using the local-collision to construct the path is not efficient in
RIPEMD-160. For RIPEMD-128, the local-collision is formed only with differences in 2 message
words. However, in RIPEMD-160, we need the difference in 3 message-words due to the direct
addition from chaining variable ej . Hence, we avoid using the local-collision. Instead, we insert the
difference only into 1 message word that appears in a latter step of the second round, and just prop-
agate it to the third round as much as possible. The problem is that the differential propagation
in RIPEMD-160 seems much quicker than RIPEMD-128 due to the direct addition from chaining
variable ej , and thus not so many steps can be attacked. However, we explain an useful property
of RIPEMD-160 where we can limit the impact of the differential propagation. In fact, this is the
main reason why we can attack more than 3 rounds in the second scenario.

Cancelling differences between ej and fj+1. Assume that, in some step, there is no differ-
ence in chaining variables and a message difference is inserted. If the difference is not propagated
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Table 5. Differential Paths for 2-Dimension Sums on 3-Round RIPEMD-128

∗means that the +/−sign of difference is not specified. Input chaining variable difference for CFL is that ∆aL
0 = 28,

∆bL
0 = 0, ∆cL

0 = ∗231 + 216, and ∆dL
0 = ∗231 + 216. Input chaining variable difference for CFR is that ∆aR

0 = 220,
∆bR

0 = 0, ∆cR
0 = 0, and ∆dR

0 = 26.
Path for CFL Path for CFR

j ∆bL
j ∆mπL(j) πL(j) j ∇bR

j ∇mπR(j) πR(j)

1 −28 0 1 228 5
2 ∗231 1 2 215 14
3 ∗231 2 3 7
4 3 4 0
5 4 5 29 9
6 5 6 230 2
7 ∗231 6 7 11
8 7 8 4
9 8 9 216 13
10 9 10 −230 6
11 10 11 15
12 11 12 8
13 12 13 230 1
14 13 14 10
15 14 15 3
16 15 16 12
17 7 17 −230 6

· · · · · · · · · · · · · · · · · · · · · · · ·

22 28 ∗231 6 22 13
23 15 23 5
24 3 24 10
25 12 25 14
26 −28 0 26 15

· · · · · · · · · · · · · · · · · · · · · · · ·

39 8 39 −24 −230 6
40 1 40 9
41 2 41 11
42 7 42 8
43 −221 −28 0 43 −29 12
44 ∗25 ∗231 6 44 2
45 11 45 10
46 ∗226 13 46 0
47 −228 ∗ 212 5 47 −216 4
48 ∗210 12 48 13
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Table 6. Sufficient Conditions of Attacks on 3-Round RIPEMD-128

j ∆ Conditions for Step j in CFL ∇ Conditions for Step j in CFR

0 cL
0,16 = 0, d0,16 = 0 bR

0,6 = cR
0,6, bR

0,28 = 1, bR
0,15 = 0, cR

0,28 = 0, dR
0,6 = 0

1 bL
1,16 = bL

0,16 bR
1,28 = 0, bR

1,15 = 1

2 no carry in bL
2 bR

2,15 = 0

3 no carry in bL
3 bR

3,9 = 0

4 bR
4,15 = bR

3,15, bR
4,30 = 0, bR

4,9 = 1

5 bR
5,9 = 0, bR

5,30 = 1

6 b6,30 = 0

7 bR
7,9 = bR

6,9, bR
7,16 = 0

8 bR
8,30 = bR

7,30, bR
8,16 = 1

9 bR
9,16 = 0

11 bR
11,16 = bR

10,16

12 bR
12,30 = 0

13 bR
13,30 = 0

15 bR
15,30 = bR

14,30

22 bL
22,8 = 0

23 cL
22,8 = dL

22,8

24 bL
24,8 = 0

25 bL
25,8 = 1

39 bR
39,4 = 1

40 bR
40,4 = 0, cR

39,4 = dR
39,4

41 bR
41,4 = 1

42 bR
42,9 = bR

41,9

43 bL
43,21 = 1, bL

43,5 = 0 bR
43,9 = 1

44 dL
43,21 = 0, bL

44,21 = 1 bR
44,9 = 0

45 bL
45,26 = 0, bL

45,5 = 1 bR
45,9 = 0

46 bL
46,28 = 0, bL

46,12 = 0, no carry in bL
46 bR

46,16 = bR
45,16

47 bL
47,28 = 1, bL

47,26 = 1, no carry in bL
47 bR

47,16 = 1

48 no carry in bL
48

Extra conditions on
(H, M) and (H +∇, M +∇M )

44 Share the same bit value bL
44,5

46 Share the same bit value bL
46,26

47 Share the same bit value bL
47,12

through the f function in the following 3 steps, only chaining variables e will have the differ-
ence. This situation is illustrated in Fig. 2. Let j be the step index of this chaining variable and
(∆aj ,∆bj ,∆cj ,∆dj ,∆ej) = (0, 0, 0, 0, +2n). In step j, ej is directly added to compute bj+1, and
thus the difference +2n is always propagated to bj+1. However, as shown in Fig. 2, ∆ej and ∆bj+1

can cancel each other in step j + 1 through fj+1.
Assume that the difference 2n in bj+1 does not cause the carry, and thus only n-th bit position

has the difference. In step j + 1, if the difference in the n-th bit of bj+1 is output through fj+1,
moreover if its sign is opposite (−2n), the cancellation occurs.

In the attack starting from the first round, we utilize this property in the third round where
fx(X,Y, Z) is (X ∨ ¬Y )⊕ Z in both branches. Therefore, Y = 1 and Z = 1 are the conditions for
this event. On the other hand, in the attack starting from the second round, fx(X,Y, Z) in the left
branch is (X ∧ Z) ∨ (Y ∧ ¬Z). In this case, the sign of ∆fj+1 cannot be opposite of ∆ej , and we
need another technique explained in the next paragraph.
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mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

+2n [any]

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [any] +2n [+n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2
+2n

[+n]

-2n [-n]

difference 
cancellation

Fig. 2. Difference cancellation between ej and fj+1.
The sign of ∆fj+1 must be opposite of ∆ej . Informa-
tion in ‘[ ]’ represents the bitwise difference. ‘[any]’
represents that the bitwise difference is irrelevant.

mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [+(n+1), -n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2

-2n [-n]

difference 
cancellation

+2n

[+(n+1), -n]

+2n [any]

+2n [any]

Fig. 3. Difference cancellation with considering the
carry effect for the case that the sign of ∆fj+1 is
always the same as ∆ej

Table 7. Differential path construction for the first 3-rounds of RIPEMD-160

round πL(j) πR(j)

1 0 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2© 11 4 13 6 15 8 1 10 3 12
← ∆ constant MM ← ∇ constant

2 7 4 13 1 10 6 15 3 12 0 9 5 2© 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2©
constant ∆ → constant ∇

3 3 10 14 4 9 15 8 1 2© 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2© 10 0 4 13
→ ∆ → ∇

Cancelling differences with considering the carry effect. This is a technique for the case
that ∆fj+1 is always the same as ∆ej . In step j, we make a carry in bj+1 as shown in Fig. 3.
Therefore, n-th bit position changes in the opposite direction as ∆ej . Finally, in step j + 1, by
propagating the difference in the n-th bit and by absorbing the difference in the (n + 1)-th bit, the
cancellation occurs.

6.2 Scenario 1: Attack from the First Round

The message differences for the attack starting from the first round is shown in Table 7.
We need to insert both of the ∆-difference and ∇-difference in the 10th bit of m2. To avoid

the contradiction of two paths, the differences and the values of m2 must be carefully chosen. We
choose the following message differences;

∆m2 = m2
2 −m1

2 = m4
2 −m3

2 = +210,∇m2 = m3
2 −m1

2 = m4
2 −m2

2 = −210. (1)

To achieve this, we first choose m1
2 and then compute m2

2 ← m1
2 + 210 and m3

2 ← m1
2 − 210. m4

2

should be m1
2 + 210 − 210 and thus identical with m1

2. Hence, the attack only requires 3 messages
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m1
2,m

2
2,m

3
2 rather than the standard message quartet. It seems strange but the ∆ and ∇-differences

in (1) are surely satisfied. In fact, our experiment shows that the attack can work even if m1
2 = m4

2.
The differential paths for CFL and CFR, and their sufficient conditions are shown in Tables 11

and 12 in Appendix.
For the differential path in Table 11, the first round of CFL and CFR can be guaranteed with

the message modification technique in negligible time. Hence, the attack cost only depends on the
differential path from the second round. The probability of satisfying the differential path up to
step 38 is 2−42. Hence, we can generate 4-sums up to 38 steps with 242 computations. Because
242 < 2160/3, the attack runs faster than the generic 4-sum attack using the generalized birthday
attack. This can be regarded as partial 2-dimension sums up to 40 steps because the newly computed
values in the last 2 steps are not used to compute two output chaining variables H

(b)
i−1 and H

(c)
i−1.

The attack was implemented on a PC. The generated 38-step 4-sum (or 40-step partial 2-dimension
sum) is shown in Table 9 in Appendix. Theoretically, 2-dimension sums can be generated up to 43
steps with 2151 computations.

6.3 Scenario 2: Attack from the Second Round

The overall strategy is the same as the first scenario. The details of the attack such as the choice
of the message difference, differential path construction, and sufficient conditions are optimized for
this scenario. The biggest difference from the first scenario is that the f function in the third round
(round 4) have the absorption property. Hence, the differential propagation can be controlled more
efficiently and this enables us to attack more rounds. Due to the limited space, we only show the
data to launch the attack. The message differences, differential paths, and sufficient conditions are
shown in Table 13, 14 and 15 in Appendix, respectively. The complexity to generate 4-sums up to
40 steps is 236 computations, which is faster than the generic 4-sum attack using the generalized
birthday attack. The generated 40-step 2-dimension sum, which can also be regarded as 42-step
partial 2-dimension sum, is shown in Table 10 in Appendix.

7 Concluding Remarks

We presented differential-based distinguishers against compression functions of RIPEMD-128 and
RIPEMD-160. The differential paths were constructed by regarding CFL as the first part and CFR

as the second part. This enabled us to analyze CFL and CFR almost independently.
On RIPEMD-128, to construct differential paths, we combined the local collision with the

framework by [12]. Partial 2-dimension sums were practically generated for 3 rounds (48 steps)
of RIPEMD-128. Theoretically, 2-dimension sums are generated faster than the brute force attack
up to 52 steps. On RIPEMD-160, we exploited the cancelling property of the differences between
∆ej and ∆fj+1. Partial 2-dimension sums were practically generated up to 40 steps of RIPEMD-
160. Theoretically, 2-dimension-sum attack can work up to 43 steps. If the attack starts from the
second round, partial 2-dimension sums were practically generated up to 42 steps and theoretically,
2-dimension-sum attack can work up to 51 steps.
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A Examples of Generated Data and Details of the Attacks on RIPEMD-160

Table 8. An example of 4-sum on 46-steps and partial 2-simension sum on 3-rounds (48-steps) of RIPEMD-128

H1
i 0x400268ec; 0x159b2e00 0x 6a66026; 0x268c3594;

0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x44a67388; 0x9034d3f9;

M1
i 0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H1
i+1 0x8e492929; 0x34c37860; 0x085981da; 0x3a28780d;

3-Round H1
i+1 0xf57d1452; 0x00cc6f47; 0x9c7fe2e0; 0x5cdae22d;

H2
i 0x400269ec; 0x159b2e00; 0x86a76026; 0xa68d3594;

M2
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0xc4a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H2
i+1 0x4b37a7fb; 0xe0a9ebf0; 0x09e98a18; 0x17b730cd;

3-Round H2
i+1 0x672c3692; 0x5e5c2707; 0xe9e5bbda; 0xc6e4b82a;

H3
i 0x401268ec; 0x159b2e00; 0x06a66026; 0x268c35d4;

M3
i 0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x04a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0xd2ae4d5e; 0x5b495822; 0x13ac118a; 0x9c22aa6a;

3-Round H3
i+1 0x5955db12; 0x62b6a1a4; 0xe0a50755; 0xa0eb49c4;

H4
i 0x401269ec; 0x159b2e00; 0x86a76026; 0xa68d35d4;

M4
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x84a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0x8f9ccc30; 0x072fcbb2; 0x153c19c8; 0x79b1632a;

3-Round H3
i+1 0xcb04f456; 0xc0465964; 0x2e0ae04f; 0x0afb77c2;

46-Step 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000;
3-Round 4-Sum 0xfffff704; 0x00000000; 0x00000000; 0x00065801;

Table 9. A 38-step 2-dimension sum and 40-step partial 2-dimension sum on RIPEMD-160 from the first round.

H1
i 0x4144c3a7; 0x8a965cea; 0x647e4d03; 0x04e7a03c; 0x18814c3e;

M1
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H1
i+1 0x33d3fb92; 0x753e7a17; 0x50fb34b1; 0x1874be98; 0x48de951c;

H2
i 0x4146bfa7; 0x8a965cea; 0x647e4d03; 0x04e7a43c; 0x08814c3e;

M2
i 0x15f04e2b; 0xb2c328cd; 0x8eea7a12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H2
i+1 0x07e43a48; 0x1482c47c; 0x473df79e; 0xefed372c; 0x55037e85;

H3
i 0x404cc5a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a23c; 0x18814c3e;

M3
i 0x15f04e2b; 0xb2c328cd; 0x8eea8212; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0xad046562; 0x61c2166a; 0x9d7dc2b3; 0x901e2f34; 0x12d8aa5c;

H4
i 0x404ec1a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a63c; 0x08814c3e;

M4
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0x8114a418; 0x010660cf; 0x93c085a0; 0x6796a7c8; 0x1efd93c5;

38 Steps 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000; 0x00000000;

40 Steps 4-Sum noisy data noisy data 0x00000000; 0x00000000; noisy data
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Table 10. A 40-step 2-dimension sum and 42-step partial 2-dimension sum for RIPEMD-160 from the 2nd round.

H1
i 0x4d5d6030; 0x9a35fc23; 0x05f928c8; 0xa8310281; 0x4130be1e;

M1
i 0xa067bf68; 0x24062cba; 0x1fd1ec79; 0x71c986a3; 0xe6ddd4e5; 0xa07f9fb5; 0x383b2647; 0xc52d0687;

0x3f474bb8; 0x7dad7ea3; 0xa1ae1c49; 0xd8a4ce49; 0x9834c195; 0xf04d8c7e; 0xf49b5db9; 0xe1d2e0bc;

40 Steps H1
i+1 0x3835744e; 0x4e2b4c05; 0xe4e4a765; 0xa4ac81eb; 0x51aab742;

H2
i 0x4d5d603d; 0x8a35fc23; 0x05f928c8; 0xa8318281; 0x4130b81e;

M2
i 0xa067bf68; 0x24062cba; 0x1fd1ec79; 0x71c986a3; 0xe6ddd4e5; 0xa07f9fb5; 0x383b2647; 0xc52d0687;

0x3f474bb8; 0x7dad7ea3; 0xa1ae1c49; 0xd8a4ce49; 0x9835c195; 0xf04d8c7e; 0xf49b5db9; 0xe1d2e0bc;

40 Steps H2
i+1 0xabeb44b4; 0xe3837f1b; 0xc3749168; 0xa4c998be; 0xc9469bfe;

H3
i 0x497d6030; 0x9ab5fc23; 0x05f828c8; 0xa8310a81; 0x0130be1e;

M3
i 0xa067bf68; 0x24062cba; 0x1fd1ec79; 0x71c986a3; 0xe6ddd4e5; 0xa07f9fb5; 0x383b2647; 0xc52d0687;

0x3f474bb8; 0x7dad7ea3; 0xa1ae1c49; 0xd8a4ce49; 0x9834c195; 0xf04dac7e; 0xf49b5db9; 0xe1d2e0bc;

40 Steps H3
i+1 0x794898eb; 0x43abcdde; 0x1475d80b; 0xa9ee7d07; 0xf6f6119f;

H4
i 0x497d603d; 0x8ab5fc23; 0x05f828c8; 0xa8318a81; 0x0130b81e;

M4
i 0xa067bf68; 0x24062cba; 0x1fd1ec79; 0x71c986a3; 0xe6ddd4e5; 0xa07f9fb5; 0x383b2647; 0xc52d0687;

0x3f474bb8; 0x7dad7ea3; 0xa1ae1c49; 0xd8a4ce49; 0x9835c195; 0xf04dac7e; 0xf49b5db9; 0xe1d2e0bc;

40 Steps H3
i+1 0xecfe6951; 0xd90400f4; 0xf305c20e; 0xaa0b93da; 0x6e91f65b;

40 Steps 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000; 0x00000000;

42 Steps 4-Sum noisy data noisy data 0x00000000; 0x00000000; noisy data

Table 11. Differential paths for 2-dimension sums on RIPEMD-160 in the first scenario.

Input chaining variable difference for CFL is that ∆aL
0 = +217 − 210, ∆bL

0 = 0, ∆cL
0 = 0, ∆dL

0 = +210, and
∆eL

0 = −228. Input chaining variable difference for CFR is that ∆aR
0 = −224 +219 +29, ∆bR

0 = +219, ∆cR
0 = −28,

∆dR
0 = +29, and ∆eR

0 = 0.
Path for CFL with ∆m2 = −210 Path for CFR with ∇m2 = +210

j ∆bL
j ∆mπL(j) πL(j) j ∇bR

j ∇mπR(j) πR(j)

1 0 1 −20 5
2 1 2 14
3 −210 2 3 7
4 3 4 0
5 4 5 9
6 5 6 +210 2
7 6 7 11

· · · · · · · · · · · · · · · · · · · · · · · ·

28 5 28 12
29 −221 −210 2 29 4
30 14 30 9
31 11 31 +210 1
32 8 32 +221 2
33 −231 3 33 15
34 10 34 5
35 14 35 −214 1
36 −216 4 36 +231 3
37 +29 9 37 7
38 15 38 +230 14
39 +27 8 39 −224 − 215 6
40 −226 − 22 1 40 +29 9
41 −226 + 219 −210 2 41 −220 11
42 −225 7 42 +215 + 28 + 26 8
43 +225 0 43 −225 − 224 − 22 12
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Table 12. Sufficient conditions on RIPEMD-160 in the first scenario.

j ∆ Conditions for Step j in CFL ∇ Conditions for Step j in CFR

0 bL
0,10 = cL

0,10, no carry in dL
0 and eL

0 bR
0,9 = 0, cR

0,19 = 1, dR
0,8 = 0, no carry in bR

0 , cR
0 and dR

0

1 bR
0,0 = 0, bR

0,18 = 1, cR
0,9 = 1, cR

0,22 = 1

2 bR
0,22 = 0, bR

1,29 = 1

3 bR
2,10 = 1

28 no carry in bL
29

29 cL
29,21 = dL

29,21

30 bL
30,21 = 0

31 bL
31,31 = 1 carry does not occur in bR

32

32 no carry in bL
33 cR

32,21 = 0

33 cL
33,31 = 1 bR

33,21 = 1

34 bL
34,31 = 1 bR

34,31 ∨ ¬cR
34,31 = 1, no carry in bR

35

35 bL
35,31 ∨ ¬cL

35,31 = 1, no carry in bL
36 cR

35,14 = 0, no carry in bR
36

36 cL
36,16 = 0, no carry in bL

37 bR
36,14 = 1, cR

36,31 = 0

37 bL
37,16 = 1, cL

37,9 = 1, dL
37,9 = 1 bR

37,31 = 1, bR
37,24 ∨ ¬cR

37,24 = 1, no carry in bR
38

38 bL
38,9 = 1, bL

38,26 ∨ ¬cL
38,26 = 1 no carry in bL

39 cR
38,30 = 0, bR

38,9 ∨ ¬cR
38,9 = 1, no carry in bR

39

39 cL
39,7 = 0, bL

39,19 ∨ ¬cL
39,19 = 1 no carry in bL

40 bR
39,30 = 1, cR

39,24 = 1, cR
39,15 = 0, dR

39,24 = 1, no carry in bR
40

40 bL
40,7 = 1, cL

40,26 = 1, cL
40,2 = 0, dL

40,26 = 1, no carry in bL
41 bR

40,24 = 1, bR
40,15 = 1, cR

40,9 = 1, dR
40,9 = 1,

bR
40,8 ∨ ¬cR

40,8 = 1, no carry in bR
41

41 bL
41,26 = 1, bL

41,2 = 1, cL
41,26 = 0, cL

41,24 = 1, dL
41,24 = 1, bR

41,9 = 1, cR
41,20 = 0, bR

41,25 ∨ ¬cR
41,25 = 1,

bL
41,17 ∨ ¬cL

41,17 = 1, no carry in bL
42 bR

41,2 ∨ ¬cR
41,2 = 1, no carry in bR

42

42 bL
42,24 = 1, bL

42,19 = 1, bL
42,4 = 0, cL

42,25 = 0, cL
42,4 = 1, bR

42,20 = 1, cR
42,15 = 0, cR

42,8 = 1, cR
42,6 = 0, dR

42,8 = 1,

bL
42,12 ∨ ¬cL

42,12 = 1 bR
42,19 ∨ ¬cR

42,19 = 1

Table 13. Differential path construction for the intermediate 3-rounds of RIPEMD-160

round πL(j) πR(j)

2 7 4 13 1 10 6 15 3 12© 0 9 5 2 14 11 8 6 11 3 7 0 13© 5 10 14 15 8 12 4 9 1 2
MM ← ∆ constant MM ← ∇ constant

3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12© 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13©
constant ∆ constant ∇

4 1 9 11 10 0 8 12© 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13© 9 7 10 14
→ ∆ → ∇
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Table 14. Differential paths for 2-dimension sums on RIPEMD-160 in the second scenario.

‘∗’ represents that the sign is not fixed for each pair, but must be identical between two pairs. Input chaining
variable difference for CFL is that ∆aL

16 = +23 + 22 + 20, ∆bL
16 = −228, ∆cL

16 = 0, ∆dL
16 = +215, and ∆eL

16 =
−210 − 29. Input chaining variable difference for CFR is that ∆aR

16 = −226 + 221, ∆bR
16 = +223, ∆cR

16 = −216,
∆dR

16 = +211, and ∆eR
16 = −230.
Path for CFL with ∆m12 = +216 Path for CFR with ∇m13 = +213

j ∆bL
j ∆mπL(j) πL(j) j ∇bR

j ∇mπR(j) πR(j)

17 +27 7 17 −23 6
18 −216 4 18 11
19 +223 13 19 3
20 −26 1 20 7
21 10 21 0
22 6 22 +213 13
23 15 23 5
24 3 24 10
25 +216 12 25 14
26 0 26 15

· · · · · · · · · · · · · · · · · · · · · · · ·

47 5 47 4
48 +221 +216 12 48 +218 +213 13
49 1 49 8
50 9 50 6
51 11 51 4
52 +231 10 52 +228 1
53 0 53 3
54 8 54 11
55 +225 +216 12 55 15
56 +29 4 56 26 0
57 13 57 5
58 3 58 12
59 +23 7 59 2
60 +219 15 60 +222 + 216 +213 13
61 14 61 9
62 5 62 7
63 +213 6 63 10
64 +229 2 64 +226 + 20 14
65 4 65 12
66 0 66 ∗231 ∗ 25 15
67 +213 5 67 ∗222 ∗ 217 ∗ 216 ∗ 211 10
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Table 15. Sufficient conditions on RIPEMD-160 in the second scenario.

j ∆ Conditions for Step j in CFL ∇ Conditions for Step j in CFR

17 bL
16,15 = 1, cL

16,28 = dL
16,28, no carry in bL

16 and dL
16 bR

16,11 = cR
16,11, dR

16,23 = 0, dR
16,16 = 1, no carry in bR

16, cR
16, and dR

16

18 bL
17,28 = 0, cL

16,28 = dL
16,28, no carry in bL

18 bR
17,26 = cR

17,26, dR
17,23 = 1, dR

17,3 = 0

19 bL
18,7 = 0, bL

18,6 = 1, cL
18,16 = dL

18,16, no carry in bL
19 bR

18,1 = cR
18,1, dR

18,3 = 1

20 bL
19,17 = 1, bL

19,16 = 0, cL
19,23 = dL

19,23, no carry in bL
20 bR

19,13 = cR
19,13

21 bL
20,26 = 1, bL

20,23 = 0, cL
20,6 = dL

20,6

22 bL
21,6 = 0, bL

21,1 = 1

23 bL
22,16 = 1

48 no carry in bL
48 no carry in bR

48

49 dL
48,21 = 0 cR

48,18 = dR
48,18

50 dL
49,21 = 1 bR

49,18 = 0

51 bL
50,31 = cL

50,31 bR
50,28 = 0

52 no carry in bL
52 no carry in bR

52

53 dL
52,31 = 1 cR

52,28 = 0, dR
52,28 = 1

54 bL
53,31 = 1 bR

53,28 = 0

55 bL
54,9 = cL

54,9 no carry in bL
55 bR

54,6 = 1

56 dL
55,25 = 0, 1-bit carry in bL

56 no carry in bR
56

57 dL
56,25 = 1, dL

56,10 = 0, dL
56,9 = 1 cR

56,6 = 0, dR
56,6 = 1

58 bL
57,3 = cL

57,3, dL
57,10 = 1, dL

57,9 = 1 bR
57,6 = 0

59 bL
58,20 = cL

58,20, bL
58,19 = cL

58,19, 1-bit carry in bL
59 bR

58,16 = 1

60 dL
59,4 = 0, dL

59,3 = 1, 1-bit carry in bL
60 no carry in bR

60

61 dL
60,20 = 0, dL

60,19 = 1, dL
60,4 = 1, dL

60,3 = 1 cR
60,22 = dR

60,22, cR
60,16 = 0, dR

60,16 = 1

62 bL
61,14 = cL

61,14, bL
61,13 = cL

61,13, dL
61,20 = 1, dL

61,19 = 1 bR
61,22 = 0, bR

61,16 = 0

63 bL
62,30 = cL

62,30, bL
62,29 = cL

62,29, 1-bit carry in bL
63 bR

62,26 = 1, bR
62,0 = 1

64 dL
63,14 = 0, dL

63,13 = 1, no carry in bL
64 no carry in bR

64

65 cL
64,29 ∨ ¬dL

64,29 = 1, dL
64,14 = 0, dL

64,13 = 0 cR
64,26 ⊕ dR

64,26 = 1, cR
64,0 ⊕ dR

64,0 = 1

66 cL
65,14 = 1, cL

65,13 = 1, dL
65,29 = 0 no carry after adding f , no carry in bR

66,

the signs of ∗25 in bR
66 are identical between two pairs.

67 cL
66,29 = 1 the signs of ∗222 ∗ 217 ∗ 216 ∗ 211 in bR

67 are identical

between two pairs.
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