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Abstract
This note is devoted to hyper-bent functions with multiple trace terms (including binomial

functions) via Dillon-like exponents. We show how the approach developed by Mesnager to
extend the Charpin–Gong family and subsequently extended by Wang et al. fits in a much
more general setting.

To this end, we first explain how the original restriction for Charpin–Gong criterion can
be weakened before generalizing the Mesnager approach to arbitrary Dillon-like exponents.
Afterward, we tackle the problem of devising infinite families of extension degrees for which
a given exponent is valid and apply these results not only to reprove straightforwardly the
results of Mesnager and Wang et al., but also to characterize the hyper-bentness of new
infinite classes of Boolean functions.

Keywords. Boolean functions, hyper-bent functions, Walsh–Hadamard transform, exponential
sums, Kloosterman sums, Dickson polynomials, Dillon exponents.

1 Introduction
Hyper-bent functions were defined by Youssef and Gong [21] in 2001 and are both of theoretical
and practical interest. In fact, they were initially proposed by Golomb and Gong [8] as a
component of S-boxes to ensure the security of symmetric cryptosystems. But such functions are
rare, and in particular they are interesting from a combinatorial point of view: they indeed have
stronger properties than the well-known bent functions which were already studied by Dillon [6]
and Rothaus [17] more than three decades ago and whose classification is still elusive. Therefore,
not only their characterization, but also their generation are challenging problems.

In 2008, Charpin and Gong [2] studied the hyper-bentness of Boolean functions in the following
form:

fa(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

where n = 2m is an even integer, R is a set of representatives of the cyclotomic classes modulo
2m + 1 of full size n and the coefficients ar live in the subfield F2m .

Such an approach was first extended by Mesnager (in 2009 for the binomial case [15] and
further in 2010 for the general case [14]) to treat Charpin–Gong like functions with an additional
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trace term over F4 :
fa,b(x) =

∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
where the same restriction lies on the coefficient ar, the coefficient b is in F4 and m must verify
m ≡ 1 (mod 2), i.e. m is odd.

Adopting the approach developed by Mesnager, Wang et al. studied in late 2011 (for the
general case [20], but also specific treatments for the binomial case [19, 18]) the following family
with an additional trace term on F16 :

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr4
1

(
bx

2n−1
5

)
where some further restrictions lie on the coefficients ar, the coefficient b is in F16 and m must
verify m ≡ 2 (mod 4).

Both these approaches are quite similar and crucially depend on the fact that the hypothesis
made on m implies that 3 or 5 do not only divide 2n − 1, but also 2m + 1. In this note, we show
how such approaches can be extended to an infinity of different trace terms, covering all the
possible Dillon-like exponents. In particular, we show that they are valid for an infinite number
of other denominators, e.g. 9 or 11. To this end, we consider a function of the general form

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bxs(2

m−1)
)

where n = 2m is an even integer, R is a set of representatives of the cyclotomic classes modulo
2m + 1, the coefficients ar are in F2m , s divides 2m + 1, i.e. s(2m − 1) is a Dillon-like exponent,
t = o(s(2m − 1)), i.e. t is the size of the cyclotomic coset of s modulo 2m + 1, and the coefficient
b is in F2t . Our objective is to show how we can treat the property of hyper-bentness in this
general case.

In Section 2, we provide some background on the different objects we manipulate in the
following sections, namely Boolean functions, Walsh-Hadamard transform, Dickson polynomials,
exponential sums.Section 3 and 4 build the core of this paper: in the former one, we study general
Dillon-like exponents; in the latter one, we devise for which extension degrees a given exponent is
valid. Section 5 then provides both known and new applications of the developed theory.

2 Notation and preliminaries
Throughout this paper, m ≥ 0 is a positive integer and n = 2m is an even integer. The base field
for our work will be F2m , but our final motivation is the study of Boolean functions defined over
F2n . The element α denote a primitive element of F2n . While working over finite fields, we use
the shorthand notation 1/0 = 0. For any set S such that 0 ∈ S, S∗ denotes S∗ = S \ {0} and |S|
denotes the cardinality of S.

2.1 Boolean functions and polynomial forms
Let n be a positive integer. A Boolean function f on F2n is an F2 -valued function. The weight of
f , denoted by wt(f), is the Hamming weight of the image vector of f , i.e. the cardinality of its
support supp(f) = {x ∈ F2n | f(x) = 1}.

For any positive integer k, and r dividing k, the field trace from F2k to F2r , denoted by Trkr ,
can be explicitely defined as Trkr (x) =

∑ k
r−1
i=0 x2ir . In particular, we denote the absolute trace of
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an element x ∈ F2n by Trn1 (x) =
∑n−1
i=0 x

2i . Recall that, for every integer l dividing k, the trace
function Trkl is surjective and satisfies the transitivity property, that is Trk1 = Trl1 ◦Trkl .

Every non-zero Boolean function f defined on F2n has a trace expansion of the form

f(x) =
∑
j∈Γn

Trn1
(
ajx

j
)

+ ε(1 + x2n−1)

where Γn is a set of representatives of the cyclotomic classes modulo 2n − 1, the coefficients aj
are in F2n , and ε = wt(f) modulo 2. Such a representation can be made unique by restricting the
fields of definition of the coefficients aj to F2o(j) and by writing f as

f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1)

where o(j) is the size of the cyclotomic coset of j modulo 2n − 1. It is then called the polynomial
form of f .

Going from the non-unique trace representation to the unique one basically amounts to
take the traces of the coefficients from F2n to F2o(j) . Going the other way around relies on the
surjectivity of the trace map from F2n to F2o(j) .

2.2 Walsh–Hadamard transform and bentness
The “sign” function of a Boolean function f is the integer-valued function χf = χ (f) = (−1)f ,
i.e. f composed with the additive character of F2 .

The Walsh–Hadamard transform of f is the discrete Fourier transform of χf , whose value at
ω ∈ F2n is defined as

χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx) .

The extended Walsh–Hadamard transform of f is defined as

χ̂f (ω, k) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωxk) ,

for ω ∈ F2n and k an integer co-prime with 2n − 1.
Bent functions are functions with maximum nonlinearity.

Definition 2.1. A Boolean function f : F2n → F2 is said to be bent if χ̂f (ω) = ±2n2 for all
ω ∈ F2n .

Hyper-bent functions have even stronger properties than bent functions. More precisely,
hyper-bent functions can be defined as follows.

Definition 2.2. A Boolean function f : F2n → F2 is said to be hyper-bent if its extended
Walsh–Hadamard transform only takes the values ±2n2 .

Note that bent and hyper-bent functions only exist for n even. Moreover, it is well-known
that their Hamming weight is even. Therefore, their polynomial forms are of the form

f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)
.

It is well-known that the algebraic degree of a bent function is at most n/2 [17]. If it is
moreover hyper-bent, then it is exactly n/2 [1, Theorem 1].
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2.3 A characterization of hyper-bentness
Dillon [6] introduced a convenient criterion for bentness involving the support of a Boolean
function, forming the so-called Partial Spreads class PS− of Boolean functions.

Theorem 2.3 (PS− class [6]). Let Ei, i = 1, 2, · · · , N , be N subspaces of F2n of dimension m
satisfying Ei ∩ Ej = {0} for all i, j ∈ {1, 2, · · · , N} with i 6= j. Let f be a Boolean function on
F2n . Assume that the support of f can be written as supp(f) =

⋃N
i=1E

∗
i . Then f is bent if and

only if N = 2m−1. In this case, f is said to belong to the PS− class.

Dillon also exhibited a subclass of PS−, denoted by PSap, whose elements are defined in an
explicit form as follows. To this end, consider F2n as a F2m -vectorspace of dimension 2 with basis
{1, w}; then every element z ∈ F2n can be decomposed as z = x+ wy with (x, y) ∈ F2m × F2m .

Definition 2.4 (PSap class [6]). The PSap class consists of all Boolean functions f defined as
follows. Let g be a balanced Boolean function on F2m such that g(0) = 0. Then define the Boolean
function f on F2n ' F2m × F2m as f(x, y) = g(xy2m−2) for every (x, y) ∈ F2m × F2m .

A similar result for hyper-bentness was provided by Youssef and Gong [21] who showed that
hyper-bent functions actually exist. They partially state this main result in terms of sequences.
The following proposition is an easy translation of their result stated using only the terminology
of Boolean functions as it was given by Carlet and Gaborit [1].

Proposition 2.5 (PS#
ap class [21, Theorem 1], [1, Proposition 3]). Let α be a primitive element

of F2n . Let f be a Boolean function defined on F2n such that f(α2m+1x) = f(x) for every
x ∈ F2n and f(0) = 0. Then f is a hyper-bent function if and only if the weight of the vector
(f(1), f(α), f(α2), · · · , f(α2m)) equals 2m−1. In this case f is said to belong to the PS#

ap class.

Charpin and Gong [2] have derived a slightly different version of the preceding proposition.

Proposition 2.6 ([2, Theorem 2]). Let α be a primitive element of F2n . Let f be a Boolean
function defined on F2n such that f(α2m+1x) = f(x) for every x ∈ F2n and f(0) = 0. Denote
by U the cyclic subgroup of F∗2n of order 2m + 1. Let ζ = α2m−1 be a generator of U . Then f is
a hyper-bent function if and only if the cardinality of the set

{
i | f(ζi) = 1, 0 ≤ i ≤ 2m

}
equals

2m−1.

Remark 2.7. It is important to point out that bent functions f defined on F2n such that
f(α2m+1x) = f(x) for every x ∈ F2n and f(0) = 0 are always hyper-bent. A proof of this
claim can be found in the paper of Charpin and Gong [2, Proof of Theorem 2] or it can be
directly observed that the support supp(f) of such a Boolean function f can be decomposed as
supp(f) =

⋃
i∈S α

iF∗2m , where S =
{
i | f(αi) = 1

}
, that is, thanks to Theorem 2.3, f is bent

if and only if |S| = 2m−1, proving that such bent functions are actually hyper-bent functions
according to Proposition 2.5.

Finally, Carlet and Gaborit have proved the following more precise statement about the
functions considered in Proposition 2.5.

Proposition 2.8 ([1, Proposition 4]). Hyper-bent functions as in Proposition 2.5 such that
f(1) = 0 are the elements of the PSap class. Those such that f(1) = 1 are the functions of the
form f(x) = g(δx) for some g ∈ PSap and δ ∈ F2n \ {1} such that g(δ) = 1.
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2.4 Dickson polynomials
Recall that the family of binary Dickson polynomials Dr(x) ∈ F2 [x] is defined by

Dr(x) =
r
2∑
i=0

r

r − i

(
r − i
i

)
xr−2i .

Moreover, the family of Dickson polynomials Dr(x) ∈ F2 [x] can also be defined by the recurrence
relation

Di+2(x) = xDi+1(x) +Di(x)
with initial values

D0(x) = 0, D1(x) = x .

The reader can refer to the monograph of Lind, Mullen and Turnwald [13] for many useful
properties and applications of Dickson polynomials. In particular, for any non-zero positive
integers r and s, Dickson polynomials satisfy

1. deg(Dr(x)) = r,

2. Drs(x) = Dr(Ds(x)),

3. Dr(x+ x−1) = xr + x−r.

A well-known result by Chou, Gomez-Calderon and Mullen [3] describes the cardinality of the
preimage of an arbitraty element.

Theorem 2.9 ([3, Theorem 9’], [13, Theorem 3.26’]). Let F2m be the finite field with 2m elements
and 1 ≤ r ≤ 2n − 1 be an integer. Let

k = gcd(r, 2m − 1), l = gcd(r, 2m + 1) .

Let x, y ∈ F2m be two elements such that Dr(x) = y. Then

∣∣D−1
r (y)

∣∣ =


k+l

2 if y = 0 ,
k if y 6= 0 and Trm1 (1/x) = 0 ,
l if y 6= 0 and Trm1 (1/x) = 1 .

Furthermore, a finer analysis of this result shows that Dickson polynomials leave stable the
trace of the inverse of an arbitrary element.

Lemma 2.10 ([5, pp 355–356]). Let r ≥ 0 be an integer and x ∈ F2m . Then

Trm1
(

1
Dr(x)

)
= Trm1

(
1
x

)
.

We therefore denote the subsets of elements with a given trace of inverse as follows.

Definition 2.11. For i ∈ F2 , let Ti denote the set

Ti = {x ∈ F2m | Trm1 (1/x) = i} .

The following property is then a corollary to the above results.

Corollary 2.12. Let 1 ≤ r ≤ 2n − 1 be an integer. Then the map x 7→ Dr(x) induces a
permutation of

• T0 if and only if k = gcd(r, 2m − 1) = 1;

• T1 if and only if l = gcd(r, 2m + 1) = 1.
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2.5 Exponential sums
Let f : F2m → F2 be a Boolean function. We denote the exponential sum associated with f by
Ξ(f), that is

Ξ(f) =
∑
x∈F2m

χf (x) .

The classical binary Kloosterman sums on F2m are then defined as follows.

Definition 2.13 (Kloosterman sums). Let a ∈ F2m . The binary Kloosterman sums associated
with a is

Km(a) = Ξ
(

Trm1
(
ax+ 1

x

))
.

The values of Kloosterman sums have been explicitely determined.

Proposition 2.14 ([12, Theorem 3.4]). The Kloosterman sums Km(a) on F2m takes all the
integer values divisible by 4 in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

The following partial exponential sums are a classical tool to study hyper-bentness. Beware
that the Boolean function is defined on F2n in the first definition and F2m in the second one.

Definition 2.15. Let f : F2n → F2 be a Boolean function and U be the set of (2m + 1)-th roots
of unity in F2n . We define Λ(f) as

Λ(f) =
∑
u∈U

χf (u) .

Definition 2.16. Let f : F2m → F2 be a Boolean function and, for i ∈ F2 , denote by Ti(f) the
partial exponential sum on Ti associated with f , that is

Ti(f) =
∑
x∈Ti

χf (x) .

The following lemma is easily deduced from the equality (−1)Trm1 (x) = 1− 2 Trm1 (x) where
the values of the trace are understood as the integers 0 and 1.

Lemma 2.17. Let f : F2m → F2 be a Boolean function. Then

Ti(f) = 1
2
(
Ξ(f) + (−1)iΞ (Trm1 (1/x) + f(x))

)
.

Applying furthermore Corollary 2.12 gives the following result.

Corollary 2.18. Let 1 ≤ r ≤ 2n − 1 be an integer and f : F2m → F2 be a Boolean function.
Suppose moreover that k = gcd(r, 2m − 1) = 1. Then

T0(f ◦Dr) = T0(f) ,

T1(f ◦Dr) = Ξ(f ◦Dr)− T0(f) .

Finally, we have the following relation between Kloosterman sums and the above partial
exponential sums.

Corollary 2.19. Let a ∈ F∗2m . Then

Km(a) = −2T1(Trm1 (ax)) ,

= 2T0(Trm1 (ax)) .
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Proof. According to Lemma 2.17,

T0(Trm1 (ax))− T1(Trm1 (ax)) = Km(a) .

Moreover,
T0(Trm1 (ax)) + T1(Trm1 (ax)) = Ξ (Trm1 (ax)) = 0 .

3 Hyper-bent Boolean functions with Dillon-like exponents:
a generic approach

3.1 Extending the Charpin–Gong criterion
The family of Boolean functions Fn consists of the functions fa given in trace representation by
Dillon-like only exponents, that is

fa(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

(1)

where R is a set of representatives of the cyclotomic classes modulo 2m + 1 (hence the elements
r(2m − 1) yield a set of representatives of the cyclotomic classes modulo 2n − 1 of the form
[i(2m − 1)]) and the coefficients ar live in the field F2n . Departing from the approach of Charpin
and Gong, we do not require that the cyclotomic classes are of maximal size n = 2m.

Lemma 3.1. Let fa be a Boolean function in Fn. Then fa(α2m+1x) = fa(x).

Proof. We indeed have

fa(α2m+1x) =
∑
r∈R

Trn1
(
ar(α2m+1x)r(2

m−1)
)

=
∑
r∈R

Trn1
(
arα

r(2n−1)xr(2
m−1)

)
= fa(x) .

Proposition 2.6 can therefore be directly applied to characterize the hyper-bentness of fa with
the partial exponential sum Λ(a) = Λ(fa).

Proposition 3.2. Let fa be a Boolean function in Fn. The function fa is hyper-bent if and only
if Λ(a) = 1.

Proof. According to Proposition 2.6, fa is hyper-bent if and only if its restriction to U has
Hamming weight 2m−1. Now Λ(a) = |U | − 2 wt(fa|U ) = 2m + 1 − 2 wt(fa|U ). Thus fa is
hyper-bent if and only if Λ(a) = 1.

Remark 3.3. An hyper-bent function fa ∈ Fn is in PSap if and only if
∑
r∈R Trn1 (ar) = 1.

In fact, the complete extended Walsh–Hadamard spectrum of fa can be expressed with Λ(a).
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Proposition 3.4. Let fa be a Boolean function in Fn. For ω = 0,

χ̂fa(0, k) = 1 + Λ(a) (−1 + 2m) ,

and, for ω ∈ F∗2n non-zero,

χ̂fa(ω, k) = 1− Λ(a) + 2m(−1)fa(ω(2m−1)/(2k)) .

Proof. It is a well-known fact that every non-zero element x ∈ F∗2n has a unique polar decomposi-
tion as a product x = yu where y lies in the subfield F2m and u ∈ U .

The extended Walsh–Hadamard transform of fa at (ω, k) can consequently be expressed as

χ̂fa(ω, k) =
∑
x∈F2n

χ
(
fa(x) + Trn1

(
ωxk

))
= 1 +

∑
x∈F∗

2n

χ
(
fa(x) + Trn1

(
ωxk

))
= 1 +

∑
u∈U

∑
y∈F∗

2m

χ
(
fa(yu) + Trn1

(
ωykuk

))
.

But

fa(yu) =
∑
r∈R

Trn1
(
ar(yu)r(2

m−1)
)

=
∑
r∈R

Trn1
(
ary

r(2m−1)ur(2
m−1)

)
=
∑
r∈R

Trn1
(
aru

r(2m−1)
)

= fa(u) ,

so that

χ̂fa(ω, k) = 1 +
∑
u∈U

∑
y∈F∗

2m

χ
(
fa(u) + Trn1

(
ωykuk

))
= 1 +

∑
u∈U

χfa(u)
∑
y∈F∗

2m

χ
(
Trn1

(
ωykuk

))

= 1 +
∑
u∈U

χfa(u)

−1 +
∑
y∈F2m

χ
(
Trn1

(
ωykuk

))
= 1− Λ(a) +

∑
u∈U

χfa(u)
∑
y∈F2m

χ
(
Trn1

(
ωykuk

))
.

If ω = 0, then χ̂f (ω, k) = 1 + Λ(a) (−1 + 2m) as desired.
If ω 6= 0, then the transitivity of the trace yields

Trn1
(
ωykuk

)
= Trm1

(
Trnm

(
ωykuk

))
= Trm1

(
ωykuk +

(
ωykuk

)2m)
= Trm1

(
ωykuk + ω2myku−k

)
= Trm1

(
yk
(
ωuk + ω2mu−k

))
.
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As a consequence of this equality and of the fact that k is co-prime with 2m + 1, the sum over
F2m is non-zero if and only if u2k = ω2m−1. Therefore

χ̂fa(ω, k) = 1− Λ(a) + 2m(−1)fa(ω(2m−1)/(2k)) .

In particular, Proposition 3.2 is a direct corollary to the above proposition.

Remark 3.5. Set
fa(x) =

∑
r∈R

Trn1 (arxr) ,

and let Λ(a) = Λ(fa). The integers 2m − 1 and 2m + 1 are co-prime and so the (2m − 1)-power
map induces a permutation of U . In particular, one has Λ(a) = Λ(a).

We now restrict to the family Gn of Boolean functions defined as above, but where the
coefficients ar are restricted to the subfield F2m . The following remark shows that it is enough to
restrict to Dillon-like exponents whose cyclotomic coset sizes do not divide m.

Remark 3.6. If t = o(r(2m − 1)), then

Trn1
(
arx

r(2m−1)
)

= Trt1
(

Trnt (ar)xr(2
m−1)

)
.

Suppose now that ar ∈ F2m , e.g. fa ∈ Gn. If t divides m, then Trnt (ar) = Trmt
(
ar + a2m

r

)
= 0

and
Trn1

(
arx

r(2m−1)
)

= 0 .

Otherwise, if k = gcd(t,m), then Trnt (ar) ∈ F2k .

Furthermore, Proposition 3.4 can be used to compute the dual of fa in the case where fa is
hyper-bent.

Proposition 3.7. Suppose that fa ∈ Gn is hyper-bent. Then it is its own dual, i.e. we have

χ̂fa(ω) = 2mχfa(ω) .

Proof. If fa is hyper-bent, then Λ(a) = 1 and one has

χ̂fa(ω) = 2mχfa(u) ,

where u1−2m = ω2m−1. In particular, one has fa(u) = fa(ω−1). One then concludes that
fa(ω−1) = fa(ω) using the facts that a2m

r = ar and that 2m(1− 2m) ≡ 2m − 1 (mod 2n − 1).

For functions fa in Gn, Remark 3.5 combined with the transitivity of the trace yields a useful
expression of Λ(a) using the partial exponential sum T1 whose proof we recall here.

Lemma 3.8 ([14, Lemma 12]). Let fa be a Boolean function in Gn and l be any positive
integer. Let ga be the Boolean function defined on F2m as ga(x) =

∑
r∈R Trm1 (arDr(x)). Then

Λ(fa(xl)) = 1 + 2T1(ga ◦Dl).
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Proof. Using the facts that the (2m − 1)-power map induces a permutation of U , that a2m
r = ar

and that Dr(x+ x−1) = xr + x−r for any x ∈ F2n , one gets

Λ(fa(xl)) =
∑
u∈U

χ

(∑
r∈R

Trn1
(
ar

(
u2m−1

)lr))

=
∑
u∈U

χ

(∑
r∈R

Trn1
(
aru

lr
))

=
∑
u∈U

χ

(∑
r∈R

Trm1
((
aru

lr
)

+
(
aru

lr
)2m))

=
∑
u∈U

χ

(∑
r∈R

Trm1
(
ar
(
ulr + u−lr

)))

=
∑
u∈U

χ

(∑
r∈R

Trm1
(
arDr(Dl(u+ u−1))

))
.

To conclude, recall that the map x 7→ x+ x−1 is 2-to-1 from U \ {1} to T1 to obtain

Λ(fa(xl)) = 1 + 2
∑
tinT1

ga(Dl(t))

= 1 + 2T1(ga ◦Dl) .

The following extension of the Charpin–Gong criterion is then straightforward.

Theorem 3.9 (Extension of the Charpin–Gong criterion [2, Theorem 7]). Let fa be a Boolean
function in Gn. Let ga be the Boolean function defined on F2m as ga(x) =

∑
r∈R Trm1 (arDr(x)).

Then fa is hyper-bent if and only if T1(a) = T1(ga) = 0. Moreover, if fa is hyper-bent, then it is
in the PSap class.

Proof. This is a direct consequence of Proposition 3.2 and Lemma 3.8.

3.2 Extending the Mesnager criterion
The above approach yields a satisfactory criterion for Boolean functions fa in the family Gn. In
particular, using Lemma 2.17, one gets a characterization of the hyper-bentness of fa involving
only complete exponential sums, or equivalently the Hamming weight of fa and that of ga.

Nonetheless, the restriction that lies on the coefficients ar is not satisfying, namely they should
live in the field F2n . In this subsection, we extend the approach of Mesnager to partially address
this issue.

We therefore consider a different family of Boolean functions defined as follows. The family of
Boolean functions Hn consists of the functions fa,b defined as

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bxs(2

m−1)
)

(2)

where R is a set of representatives of the cyclotomic classes modulo 2m + 1, the coefficients ar are
in F2m , s divides 2m + 1, i.e. s(2m− 1) is a Dillon-like exponent, t = o(s(2m− 1)), i.e. t is the size
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of the cyclotomic coset of s modulo 2m+ 1, and the coefficient b is in F2t . Moreover, let τ = 2m+1
s .

Remark that fa,0 = fa where fa ∈ Gn is the function defined in the previous subsection. Set

fa,b(x) =
∑
r∈R

Trn1 (arxr) + Trt1 (bxs) .

Remark 3.10. According to Remark 3.6, the family Hn is always strictly larger than the family
Gn.

Let U =
{
u ∈ F∗2n | u2m+1 = 1

}
be the subgroup of F∗2n of order 2m+1, V = {v ∈ F∗2n | vs = 1}

its subgroup of order s and W = {w ∈ F∗2n | wτ = 1} its subgroup of order τ . Denote by α a
primitive element of F2n . Then ζ = α2m−1 is a generator of U , ρ = ζτ is a generator of V and
ξ = ζs is a generator of W .

Remark 3.11. Note that F∗2t ⊃W . Indeed, by definition s(2m − 1) ≡ 2ts(2m − 1) (mod 2n − 1).
Thus (2t − 1)s ≡ 0 (mod 2m + 1), which implies that 2t − 1 ≡ 0 (mod τ), that is τ divides 2t − 1.

Remark 3.12. Let us consider the τ -power homomorphism φ : x ∈ F∗2n 7→ xτ ∈ F∗2n . Its kernel
is W and so it is τ -to-1.

Furthermore, V and W are subsets of U , so that the restriction of φ to U maps U onto V
and is again τ -to-1.

A similar statement is clearly true for s, switching the sets V and W .

Remark 3.13. The set U can be decomposed as

U =
τ−1⋃
i=0

ζiV =
s−1⋃
i=0

ζiW .

Definition 3.14. For 0 ≤ i ≤ τ − 1, define Si(a) and Si(a) to be the partial exponential sums

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
,

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
.

Moreover, define Λ(a, b) = Λ(fa,b) and Λ(a, b) = Λ(fa,b).

Remark 3.15. The Boolean function fa,b is hyper-bent if and only if Λ(a, b) = 1. Moreover,
Remark 3.5 can be extended to fa,b and fa,b and yields Λ(a, b) = Λ(a, b). Finally, Proposition 3.7
can be extended to show that, if fa,b is hyper-bent, then its is fa,b2m .

Remark 3.16. One obviously has

τ−1∑
i=0

Si(a) = Λ(a, 0) = Λ(a) .

In particular, Lemma 3.8 yields

τ−1∑
i=0

Si(a) = 1 + 2T1(a) .

11



In the particular case where fa is a monomial function, i.e. fa(x) = Trn1
(
axr(2

m−1)), Re-
mark 3.16 can be further refined.

Lemma 3.17. Suppose that r is co-prime with 2m + 1. One has
τ−1∑
i=0

Si(a) = 1−Km(a) .

Proof. The function u 7→ u+ u−1 being onto and 2-to-1 from U \ {1} to T1, one gets

Km(a) = −2T1(Trm1 (ax))

= −
∑

u∈U, u 6=1
χ
(
Trm1

(
a
(
u+ u−1)))

= −
∑

u∈U, u 6=1
χ (Trn1 (au))

= 1−
∑
u∈U

χ (Trn1 (au)) .

Furthermore, the r-power map induces a permutation of U and thus∑
u∈U

χ (Trn1 (au)) =
∑
u∈U

χ (Trn1 (aur))

= Λ(a)
= Λ(a) .

The two partial exponential sums Si and Si defined above are closely related.

Lemma 3.18. For 0 ≤ i ≤ τ − 1, one has

Si(a) = S−2i(a) .

Proof. First, one has

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar
(
ζiv
)r(2m−1)))

=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar

(
ζi(2

m−1)v2m−1
)r))

.

But 2m − 1 is co-prime with s, so that the (2m − 1)-power map induces a permutation of V , as
does multiplication by ζτ . Moreover, 2m + 1 ≡ 0 (mod τ) implies that 2m − 1 ≡ −2 (mod τ).
Hence,

Si(a) =
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar
(
ζ−2iv

)r))
.

12



Remark 3.16 can then be extended to express Λ(a, b) as a linear combination of the sums Si.
Proposition 3.19. One has

Λ(a, b) =
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .

Proof. One has

Λ(a, b) = Λ(a, b)

=
∑
u∈U

χ
(
fa(u) + Trt1 (bus)

)
=
∑
u∈U

χ
(
fa(u)

)
χ
(
Trt1 (bus)

)
=
τ−1∑
i=0

∑
v∈V

χ
(
fa(ζiv)

)
χ
(

Trt1
(
b
(
ζiv
)s))

=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))∑

v∈V
χ
(
fa(ζiv)

)
=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .

We now devise an additional relation between the partial exponential sums Si and the partial
exponential sum T1. In particular, we express the partial exponential sum S0 using T1.
Lemma 3.20. Let l be a divisor of τ and let k be the integer k = τ/l. Then

k−1∑
i=0

Sil(a) =
k−1∑
i=0

Sil(a) = 1
l

(1 + 2T1(ga ◦Dl)) .

For l = 1, it reads
τ−1∑
i=0

Si(a) =
τ−1∑
i=0

Si(a) = (1 + 2T1(ga)) ,

which is nothing but Remark 3.16. For l = τ , it reads

S0(a) = S0(a) = 1
τ

(1 + 2T1(ga ◦Dτ )) .

Proof. According to a straightforward extension of Remark 3.11, the l-power map is l-to-1 from
U onto

⋃k−1
i=0 ζ

ilV . Therefore,
k−1∑
i=0

Sil(a) =
k−1∑
i=0

∑
v∈V

χ
(
fa(ζilv)

)
= 1
l

∑
u∈U

χ
(
fa(ul)

)
.

One then concludes with Lemma 3.8.
The results for Si readily follows from the fact multiplication by −2 induces a permutation of

{il}k−1
i=0 and Lemma 3.18.
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Remark 3.21. Recall that τ divides 2m + 1, and so does l. Therefore, τ and l are co-prime with
2m − 1. According to Corollary 2.12, Dl induces a permutation of T0, whence the validity of the
equality

k−1∑
i=0

Sil(a) =
k−1∑
i=0

Sil(a) = 1
l

(1 + 2Ξ (ga ◦Dl)− 2T0(a)) .

In the case where l = τ , it reads

S0(a) = S0(a) = 1
τ

(1 + 2Ξ (ga ◦Dτ )− 2T0(a)) .

To conclude this section, we show how further identities involving the partial exponential
sums Si can be obtained by restricting the field of definition of the coefficients ar to a strict
subfield of F2m .

Lemma 3.22. Let l be a divisor of m and k = m/l. Suppose that the coefficients ar lie in F2l
and that 2l ≡ j (mod τ), where j is a k-th root of −1 modulo τ . Then

Si(a) = Sij(a) .

Proof. Recall that 2m ≡ −1 (mod τ). Hence, if 2l ≡ j (mod τ), then j is a k-th root of −1
modulo τ .

Since ar ∈ F2l , one has a2l
r = ar. Recall that Trm1

(
x2) = Trm1 (x), so that

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
=
∑
v∈V

χ

(∑
r∈R

Trm1
(
ar(ζiv)r

))

=
∑
v∈V

χ

(∑
r∈R

Trm1
(
a2l
r (ζ2liv2l)r

))

=
∑
v∈V

χ

(∑
r∈R

Trm1
(
ar(ζijζi(2

l−j)v2l)r
))

.

But the (2l)-power map and multiplication by ζi(2l−j) induce permutations of V and therefore

Si(a) =
∑
v∈V

χ

(∑
r∈R

Trm1
(
ar(ζijv)r

))
= Sij(a) .

Remark 3.23. In the particular case where l = m, note that 2m ≡ −1 (mod τ). Therefore, one
has

Si(a) = S−i(a) .

One then deduces from Proposition 3.19 that

Λ(a, b) = χ
(
Trt1 (b)

)
S0(a) +

τ−1
2∑
i=1

(
χ
(
Trt1

(
bξi
))

+ χ
(
Trt1

(
bξ−i

)))
Si(a) .
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Remark 3.24. It is a difficult problem to deduce a completely general characterization of hyper-
bentness in terms of complete exponential sums from the results of the current section, that is a
characterization valid for any m, s and b. Nevertheless, several powerful applications of these
results, valid for infinite families of Boolean functions, will be described in Section 5.

3.3 An alternate proof
To provide an alternate proof of Proposition 3.19, we introduce inverse exponential sums.

Proposition 3.25. For c ∈ F2t , let Λ̃(a, c) be the exponential sum

Λ̃(a, c) =
∑
b∈F2t

χ
(
Trt1 (bc)

)
Λ(a, b) .

1. For all c ∈ F2t , one has
Λ̃(a, c) = 2t

∑
u∈U, us=c

χ
(
fa(u)

)
.

2. If c ∈ F2t \W , then Λ̃(a, c) = 0. If c ∈W , that is if c = ξi for some i, then

Λ̃(a, ξi) = 2tSi(a) .

Proof. 1. Switching the summations on U and F2t yields

Λ̃(a, c) =
∑
b∈F2t

χ
(
Trt1 (bc)

)∑
u∈U

χ (fa,b(u))

=
∑
b∈F2t

χ
(
Trt1 (bc)

)∑
u∈U

χ (fa(u))χ
(

Trt1
(
bus(2

m−1)
))

=
∑
u∈U

χ (fa(u))
∑
b∈F2t

χ
(

Trt1
(
b
(
c+ us(2

m−1)
)))

.

The sum over F2t is non-zero if and only if c = us(2
m−1) so that

Λ̃(a, c) = 2t
∑

u∈U, us(2m−1)=c

χ (fa(u))

= 2t
∑

u∈U, us=c
χ
(
fa(u)

)
.

2. According to Remark 3.11, if c ∈ F2t \W , then the equation us = c has no solutions in U .
Therefore, Λ̃(a, c) = 0.
Suppose now that c ∈W and that c = ξi = ζis for some i. The kernel of the s-power map
is V so that us = ζis if and only if u ∈ ζiV . Thus

Λ̃(a, c) = 2t
∑
v∈V

χ
(
fa(ζiv)

)
.

The partial exponential sum Λ(a, b) can now be expressed with Λ̃(a, c).
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Lemma 3.26. One has
Λ(a, b) = 1

2t
∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) .

Proof. Going back to the definition of Λ̃(a, c), one has∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) =

∑
c∈F2t

χ
(
Trt1 (bc)

) ∑
d∈F2t

χ
(
Trt1 (dc)

)
Λ(a, d)

=
∑
d∈F2t

Λ(a, d)
∑
c∈F2t

χ
(
Trt1 (bc)

)
χ
(
Trt1 (dc)

)
=
∑
d∈F2t

Λ(a, d)
∑
c∈F2t

χ
(
Trt1 ((b+ d) c)

)
.

But
∑
c∈F2t

χ
(
Trt1 ((b+ d) c)

)
= 0 if b 6= d and 2t otherwise. Therefore∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) = 2tΛ(a, b) .

Remark 3.27. Proposition 3.25 and Lemma 3.26 provide an alternate proof of Proposition 3.19:

Λ(a, b) = 1
2t
∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c)

= 1
2t

 ∑
c∈F2t\W

χ
(
Trt1 (bc)

)
Λ̃(a, c) +

∑
c∈W

χ
(
Trt1 (bc)

)
Λ̃(a, c)


= 1

2t
∑
c∈W

χ
(
Trt1 (bc)

)
Λ̃(a, c)

= 1
2t

τ−1∑
i=0

χ
(
Trt1

(
bξi
))

Λ̃(a, ξi)

= 1
2t

τ−1∑
i=0

χ
(
Trt1

(
bξi
))

2tSi(a)

=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .

4 Building infinite families of extension degrees
In the previous subsection, we set an extension degree m and studied the corresponding exponents
s. It is however customary to go the opposite way around, i.e. set an exponent, or a given form
of exponent, which is valid for an infinite family of extension degree and devise characterizations
valid for this inifinity of extension degrees. In this section we provide the link between these two
approaches.

The above construction relies on the fact that τ divides 2m + 1, that is 2m ≡ −1 (mod τ)
or equivalently that −1 is in the cyclotomic coset of 1 modulo 2m + 1. We now focus on the
construction of values of τ for which an infinite number of such m exists. Recall that the integers
s and τ of the previous section verify s = 2m+1

τ .
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4.1 Prime case
Let p be an odd prime number.

The set of modular integers Z/pZ is a field and there exists i such that 2i ≡ −1 (mod p) if
and only if the multiplicative order of 2 modulo p is even. In this case, taking m ≡ l (mod 2l),
where 2l is the multiplicative order of 2 modulo p, yields an infinite family of values of m for
which 2m ≡ −1 (mod p). The corresponding denominator is τ = p. The size t = o(s) of the
cyclotomic coset of s = (2m + 1)/τ modulo 2m + 1, is then

t = 2l .

Furthermore, one has
2m ≡ 2l (mod 2t − 1) ,

so that if fa,b ∈ Hn is hyper-bent, then its dual is f
a,b2l .

To actually devise such prime numbers, we now focus on the specific case where the multi-
plicative order of 2 modulo p is maximal, that is where 2 is a primitive root modulo p. In this
situation, the above condition becomes

2
p−1

2 ≡ −1 (mod p) .

This implies that the Legendre symbol
(

2
p

)
of 2 modulo p is −1 and that 2 is a quadratic

nonresidue modulo p. It is well-known that the Legendre symbol of 2 modulo an odd prime p is(
2
p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 (mod 8) ,
−1 if p ≡ ±3 (mod 8) .

Therefore, if 2 is a primitive root modulo p, then one must have p ≡ ±3 (mod 8). This gives
a practical criterion to discard prime numbers such that 2 is not a primitive element. Further
characterizations of primes p such that 2 is a primitive root modulo p can be found in a paper of
Park, Park and Kim [16].

For such a prime number p, taking m ≡ p−1
2 (mod p− 1) yields an infinite family of values of

m for which 2m ≡ −1 (mod p), the corresponding denominator being τ = p. The size t = o(s) of
the cyclotomic coset of s = (2m + 1)/τ modulo 2m + 1, is then

t = p− 1 = τ − 1 .

Finding an inifinite number of odd prime numbers for which 2 is a primitive element would
thus give an elegant solution to our problem, i.e. finding an infinite family of denominators τ
associated with infinite families of extension degrees m. This question is however difficult; it is a
special case of Artin’s conjecture on primitive roots.

Conjecture 4.1 (Artin’s conjecture on primitive roots). Let a be an integer which is neither a
perfect square nor −1. Then the number of primes numbers p such that a is a primitive element
modulo p is infinite.

It should be noted that Artin’s conjecture has been proved by Hooley [10] under the Generalized
Riemann Hypothesis. Heath-Brown [9] has proved unconditionally that there exist at most two
exceptional primes for which Artin’s conjecture fails; nonetheless, this proof is non-constructive.

From a more computational perspective, the first elements of the sequence of primes such
that 2 is a primitive element is sequence A001122 in OEIS [11] and begins with

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 .
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As mentioned in the beginning of this section, it is not necessary that 2 is a primitive root
modulo 2 for 1 and −1 to lie in the same cyclmotomic coset modulo p. The list of odd primes p
smaller than 100 such that the multiplicative order of 2 modulo p is even and a strict divisor of
p− 1, together with half the order l of 2, i.e. the smallest integer l such that 2l ≡ −1 (mod p), is

(17, 4), (41, 10), (43, 7), (97, 24) .

Finally, there exist as well odd primes for which 1 and −1 are not in the same cyclotomic
coset modulo p. The list of such primes smaller than 100 is

7, 23, 31, 47, 71, 73, 79, 89 .

4.2 Prime power case
Let p be an odd prime number and k ≥ 2 a positive integer. The multiplicative group of units
modulo pk is once again cyclic and isomorphic to(

Z/pkZ
)× ' (Z/(p− 1)Z)× (Z/pZ)k−1

.

The condition for the prime case is thus still valid; there exists i such that 2i ≡ −1 (mod pk) if
and only if the multiplicative order of 2 modulo pk is even. In this case, taking m ≡ l (mod 2l),
where 2l is the multiplicative order of 2 modulo pk, yields an infinite family of values of m for
which 2m ≡ −1 (mod p). The corresponding denominator is τ = pk. The size t = o(s) of the
cyclotomic coset of s = (2m + 1)/τ modulo 2m + 1, is then

t = 2l .

If fa,b ∈ Hn is hyper-bent, then its dual is f
a,b2l .

It is a classical result [4, Lemma 1.4.5 and following remarks], that if an integer a is a primitive
root modulo p, then a or a+ p is a primitive root modulo p2. Furthermore, if a is a primitive root
modulo p2, then it is modulo pk for any k ≥ 2. Conversely, if a is not a primitive root modulo pi,
then it is not a primitive root modulo pk for any k ≥ i. The approach of the previous subsection
can therefore be extended to any prime power pk with k ≥ 2 by just checking that 2 is a primitive
root modulo p2. If it is, then

2
φ(pk)

2 ≡ −1 (mod φ(pk))

for any k ≥ 2, where φ denotes Euler’s totient function. In particular, φ(pk) = (p− 1)pk. In this
case, one would choose m ≡ φ(pk)

2 (mod φ(pk)), the corresponding denominator being τ = pk.
The size t = o(s) of the cyclotomic coset of s = (2m + 1)/τ modulo 2m + 1, is then

t = φ(pk) .

The primes smaller than 100 such that 2 is a primitive root modulo p2 are

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 .

From a computational perspective, more can be said. Indeed, if 2 is primitive root modulo p,
but is not modulo p2, a simple calculation shows that 2p−1 ≡ 1 (mod p2), that is p is a Wieferich
prime. The sequence of such primes is sequence A001220 in the OEIS [11]. Only two of them are
currently known: 1093 and 3511; and 2 is not a primitive root for both of these primes. Checking
that 2 is a primitive root modulo p is therefore enough to ensure that it is modulo any power of p
as long as p is not too large, less than fifteen decimal digits according to Dorais and Klyve [7].
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The list of odd primes p smaller than 100 such that the multiplicative order of 2 modulo p2 is
even and a strict divisor of φ(p2), together with half the order l of 2, i.e. the smallest integer l
such that 2l ≡ −1 (mod p2), is

(17, 68), (41, 410), (43, 301), (97, 2328) .

Finally, the list of odd primes p smaller than 100 such that 1 and −1 do not lie in the same
cyclotomic coset modulo p2 is

7, 23, 31, 47, 71, 73, 79, 89 .

4.3 Composite case
We now consider the general case of an odd composite number. Let’s say that τ = pk1

1 · · · pkrr is a
product of r ≥ 2 distinct prime powers.

The multiplicative group of units modulo τ is not cyclic anymore and is isomorphic to the
product of the cyclic groups corresponding to each prime power:

(Z/τZ)× '
(
Z/pk1

1 Z
)×
× · · · ×

(
Z/pkrr Z

)×
.

The multiplicative order of 2 modulo τ is the least common multiple of its multiplicative orders
modulo the prime powers dividing n. There exists an integer i such that 2i ≡ −1 (mod τ) if and
only if there exists such integers for each prime power dividing τ , that is if the multiplicative
order of 2 modulo pkjj is even for 1 ≤ j ≤ r, and if moreover their least common multiple is an odd
multiple of each of them, that is if they all have the same 2-adic valuation. In such a situation,
taking m ≡ l (mod 2l), where 2l is the multiplicative order of 2 modulo τ , yields an infinite
family of values of m for which 2m ≡ −1 (mod τ). Recall that the corresponding denominator is
τ . The size t = o(s) of the cyclotomic coset of s = (2m + 1)/τ modulo 2m + 1, is then

t = 2l .

If fa,b ∈ Hn is hyper-bent, then its dual is f
a,b2l .

In particular, if 2 is a primitive root modulo each prime power dividing τ , then the multiplicative
order of 2 modulo τ is

2l = lcm(φ(pk1
1 ), . . . , φ(pkrr )) ,

and 2l ≡ −1 (mod τ) if and only if ν2(p1 − 1) = · · · = ν2(pr − 1), where ν2 denotes the 2-adic
valuation. Conditioned by the fact that there exists an infinite number of primes p such that 2 is
a primitive root modulo p or modulo p2 and such that p− 1 has a given 2-adic valuation, we can
construct an infinite number of composite odd numbers addressing our original problem.

The list of suitable odd composite numbers τ smaller than 100, together with half the
multiplicative order l of 2 modulo τ , that is the smallest integer such that 2l ≡ −1 (mod τ), is

(33, 5), (57, 9), (65, 6), (99, 15) .

5 Applications
In this section, we show how the results of Section 3 can be applied to several infinite families
of Boolean functions in order to obtain characterizations of their hyper-bentness in terms of
complete exponential sums. Much of these applications can be straightforwardly extended to
other cases.
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5.1 The case b = 1
We first apply results of Subsections 3.1 and 3.2 to fa,1 defined as in Equation (2) in the specific
case where b = 1.

Since 1 lies in F2 , there exists β ∈ F2m such that Trnt (β) = 1. In particular, fa,1 belongs to
both families Gn and Hn. Applying Theorem 3.9 shows that fa,1 is hyper-bent if and only if

∑
t∈T1

χ

(∑
r∈R

arDr(t) + βDs(t)
)

= 0 .

Applying Lemma 2.17, this condition is straightforwardly expressed in terms of complete expo-
nential sums, or of the Hamming weights of fa,β and ga,β .

We now show how the results of Subsection 3.2 can be applied to obtain a different characteri-
zation ot the hyper-bentness of fa,1. According to Proposition 3.2, fa,1 is hyper-bent if and only
if

Λ(a, 1) = 1 .

Let ξ be a primitive τ -th root of unity. First, recall that ξ lies in F2t , that Trt1
(
ξ2) = Trt1 (ξ) and

that
τ−1∑
i=0

ξi = 0 .

Second, remark that the results of Section 4 imply that t is even, so that Trt1 (1) = 0. Moreover,
ξ is a (2t/2 + 1)-th root of unity so that ξ + ξ−1 ∈ F2t/2 which implies that

Trt1
(
ξi
)

= Trt1
(
ξ−i
)
.

Finally, Proposition 3.19 reads

Λ(a, 1) = S0(a) + 2
τ−1

2∑
i=1

χ
(
Trt1

(
ξi
))
Si(a) .

Nonetheless, the trace of ξi for i 6= 0 depends on the exact value of τ . In the sequel, we deal with
some specific cases.

5.1.1 Prime case

For simplicty, we first suppose that τ = p is a prime and that 2 is a primitive root modulo p. In
this case, t = p− 1 and i is co-prime with p, so that

Trp−1
1

(
ξi
)

=
p−2∑
j=0

ξi2
j

=
p−1∑
j=1

ξij =
p−1∑
j=1

ξj = 1 .

Therefore

Λ(a, 1) = 2S0(a)−
τ−1∑
i=1

Si(a) .

Applying Lemma 3.20 with l = 1 and l = τ yields

Λ(a, 1) = 2
τ

(1 + 2T1(ga ◦Dτ ))− (1 + 2T1(ga)) .

Consequently, we get the following characterization.
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Proposition 5.1. Suppose that τ = p is a prime and that 2 is a primitive root modulo p. Then

τΛ(a, 1) = 4T1(ga ◦Dτ )− 2τT1(ga)− τ + 2 .

In particular, fa,1 is hyper-bent if and only if

2T1(ga ◦Dτ )− τT1(ga) = τ − 1 .

5.1.2 Prime power case

We now treat the case where τ = pk is a prime power and that 2 is a primitive root modulo pk,
including the case where k = 1. Then t = φ(pk) = (p− 1)pk−1. Remark that in this situation, for

every positive integers i ≥ 0 and j > 0 such that i+ j = k, one has
(
ξp
i
)pj

= ξp
k = 1, so that

pj−1∑
l=0

ξlp
i

= 0 . (3)

Then

Trφ(pk)
1

(
ξi
)

=
φ(pk)−1∑
j=0

ξi2
j

=
∑

1≤j≤pk−1, p-j

ξij .

If pe || i with 0 ≤ e ≤ k − 1, then i = lpe with l co-prime with p− 1 and

Trφ(pk)
1

(
ξi
)

=
∑

1≤j≤pk−1, p-j

ξjlp
e

=
∑

1≤j≤pk−1, p-j

ξjp
e

=
pk−1∑
j=0

ξjp
e

+
pk−1−1∑
j=0

ξjp
e+1

=
pk−1∑
j=0

ξjp
e

+
pk−1∑
j=0

ξjp
e+1

+
pk−1∑
j=pk−1

ξjp
e+1

.

Equation (3) shows that the first two sums of the right hand side of the last equality can be
splitted into a multiple of sums equal to zero. If 0 ≤ e ≤ k− 2, then the third sum is zero as well,
so that

Trφ(pk)
1

(
ξi
)

= 0 .

If e = k − 1, then the third sum reads

pk−1∑
j=pk−1

ξjp
k

=
pk−1∑
j=pk−1

ξj = 1 .

Therefore

Trφ(pk)
1

(
ξi
)

= 1 .
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Summing up the above observations yields

Λ(a, 1) =
pk−1∑
i=0

Si(a)− 2
p−1∑
i=1

Sipk−1(a)

= 2S0(a) +
pk−1∑
i=0

Si(a)− 2
p−1∑
i=0

Sipk−1(a) .

Applying Lemma 3.20 with l = 1, l = pk−1 and l = pk then gives

Λ(a, 1) = 2
pk

(1 + 2T1(ga ◦Dpk))− 2
pk−1 (1 + 2T1(ga ◦Dpk−1)) + (1 + 2T1(ga)) .

Consequently, we get the following characterization.

Proposition 5.2. Suppose that τ = pk is a prime power and that 2 is a primitive root modulo
pk. Then

pkΛ(a, 1) = 4T1(ga ◦Dpk))− 4pT1(ga ◦Dpk−1) + 2pkT1(ga) + pk − 2p+ 2 .

In particular, fa,1 is hyper-bent if and only if

2T1(ga ◦Dpk)− 2pT1(ga ◦Dpk−1) + pkT1(ga) = p− 1 .

5.1.3 Other cases

The cases where τ is an odd composite number or where 2 is not a primitive root modulo τ are
more involved and will be treated in subsequent works.

5.2 Explicit values for τ
The previous subsection dealt with a fixed value of b ∈ F∗2t casting as few restictions as possible
on τ . In this subsection we go the other way around and treat the first few possible values of
τ for all values of b with as few restrictions as possible on the corresponding infinite family of
Boolean functions.

5.2.1 The case τ = 3

The smallest possible value for τ is τ = 3. This case was originally addressed by Mesnager in
2009 for the binomial case [15] and further in 2010 for the general case [14]. We now show how
the characterizations for the general case can be directly deduced from the results of Section 3.

In this case, t = 2 and m ≡ 1 (mod 2). In particular, t < 2m as soon as m 6= 1. Furthermore,
if fa,b is hyper-bent, then its dual is fa,b2 .

According to Remark 3.23,

Λ(a, b) = χ
(
Tr2

1 (b)
)
S0(a) +

(
χ
(
Tr2

1 (bξ)
)

+ χ
(
Tr2

1
(
bξ−1)))S1(a) .

Note that ξ is a 3-rd root of unity and that ξ + ξ−1 = 1, so that

Λ(a, b) = χ
(
Tr2

1 (b)
)
S0(a) + χ

(
Tr2

1 (bξ)
) (

1 + χ
(
Tr2

1 (b)
))
S1(a) .

Moreover, F∗4 = 〈ξ〉. Thus, if b = 1, then Λ(a, 1) = S0(a)− 2S1(a), and if b = ξ or b = ξ−1, that
is if b is a 3-rd root of unity or equivalently a primitive element of F4 , then Λ(a, b) = −S0(a).
Applying Lemma 3.20 with l = 1 and l = 3 then gives the following theorem and the corresponding
characterizations for hyper-bentness.
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j\i 0 1 2 3 4
0 0 1 1 1 1
1 0 0 1 0 1
2 0 0 0 1 1
3 1 1 1 1 0
4 0 1 0 1 0
5 0 0 1 1 0
6 1 1 1 0 1
7 1 0 1 0 0

j\i 0 1 2 3 4
8 0 1 1 0 0
9 1 1 0 1 1
10 0 1 0 0 1
11 1 1 0 0 0
12 1 0 1 1 1
13 1 0 0 1 0
14 1 0 0 0 1

Table 1: Traces for τ = 5

Theorem 5.3 ([15]). Let τ = 3 and m ≡ 1 (mod 2). Then

1. If b = 1, then 3Λ(fa,1) = 4T1(ga ◦D3)− 6T1(ga)− 1.

2. If b is a primitive element of F4 , then 3Λ(fa,b) = 2T1(ga ◦D3) + 1.

5.2.2 The case τ = 5

The next possible value for τ is τ = 5. This case was originally addressed by Wang et al. in late
2011 for the general case [20], but they also gave specific treatments for the binomial case [19, 18].
We now show how their characterizations for the general case can be directly deduced from the
results of Section 3.

In this case, t = 4 and m ≡ 2 (mod 4). In particular, t < 2m as soon as m 6= 2. Furthermore,
if fa,b is hyper-bent, then its dual is fa,b4 .

According to Remark 3.23,

Λ(a, b) = χ
(
Tr4

1 (b)
)
S0(a)

+
(
χ
(
Tr4

1 (bξ)
)

+ χ
(
Tr4

1
(
bξ−1)))S1(a)

+
(
χ
(
Tr4

1
(
bξ2))+ χ

(
Tr4

1
(
bξ−2)))S2(a) .

Introduce γ = ξ + ξ−1 ∈ F4 . Then

Λ(a, b) = χ
(
Tr4

1 (b)
)
S0(a)

+ χ
(
Tr4

1 (bξ)
) (

1 + χ
(
Tr4

1 (bγ)
))
S1(a)

+ χ
(
Tr4

1
(
bξ2)) (1 + χ

(
Tr4

1
(
bγ2)))S2(a) .

Next, recall that ξ is a 5-th root of unity , so that
∑4
i=0 ξ

i = 0. In particular, γ + γ2 = 1 and

Tr4
1 (bγ) + Tr4

1
(
bγ2) = Tr4

1 (b) .

We now explicitely compute the traces Tr4
1
(
bξi
)
. The finite field F16 is represented as

F2 [x]/(C4(x)) where C4(x) = x4 + x + 1 is the 4-th Conway polynomial. We denote the class
of x modulo C4(x) by β; this is a primitive element of F16 . Let ξ = β3 be a 5-th root of unity.
The traces Tr4

1
(
bξi
)
are given in Table 1. The expression of Λ(a, βj) as a sum of the partial

exponential sums Si, together with the minimal polynomial mj of βj , are given in Table 2.
Moreover, if the coefficients ar lie in F2l , where l = m/2, then l ≡ 1 (mod 2) and 2l ≡ ±2

(mod 5) and Lemma 3.22 tells that either S1(a) = S2(a) or S1(a) = S3(a). But S2(a) = S3(a),
so that one always has

S1(a) = S2(a) .
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j Λ(a, βj) mj

0 S0 − 2S1 − 2S2 x+ 1
1 S0 x4 + x+ 1
2 S0 x4 + x+ 1
3 −S0 − 2S2 x4 + x3 + x2 + x+ 1
4 S0 x4 + x+ 1
5 S0 + 2S1 − 2S2 x2 + x+ 1
6 −S0 − 2S1 x4 + x3 + x2 + x+ 1
7 −S0 + 2S1 x4 + x3 + 1

j Λ(a, βj) mj

8 S0 x4 + x+ 1
9 −S0 − 2S1 x4 + x3 + x2 + x+ 1
10 S0 − 2S1 + 2S2 x2 + x+ 1
11 −S0 + 2S2 x4 + x3 + 1
12 −S0 − 2S2 x4 + x3 + x2 + x+ 1
13 −S0 + 2S1 x4 + x3 + 1
14 −S0 + 2S2 x4 + x3 + 1

Table 2: Λ(a, βj) for τ = 5

Finally applying Lemma 3.20 for l = 1 and l = 5 gives the following theorem which summarizes
the above discussion.
Theorem 5.4 ([20]). Let τ = 5 and m ≡ 2 (mod 4).

1. If b = 1, then 5Λ(fa,1) = 4T1(ga ◦D5)− 10T1(ga)− 3.

2. If b is a primitive element of F16 such that Tr4
1 (b) = 0, then 5Λ(fa,b) = 2T1(ga ◦D5) + 1.

3. Suppose moreover that ar ∈ F2
m
2 .

(a) If b is a primitive element of F16 such that Tr4
1 (b) = 1, then 5Λ(fa,b) = −3T1(ga ◦

D5) + 5T1(ga) + 1.
(b) If b is a primitive 5-th root of unity, then 5Λ(fa,b) = −T1(ga ◦D5)− 5T1(ga)− 3.
(c) If b is a primitive 3-rd root of unity, then 5Λ(fa,b) = 2T1(ga ◦D5) + 1.

5.2.3 The case τ = 7

For τ = 7, 1 and −1 do not lie in the same cyclotomic coset modulo 7, hence the next suitable
value for τ is τ = 9.

5.2.4 The case τ = 9

In the case τ = 9, t = 6 andm ≡ 3 (mod 6). In particular, t < 2m as soon asm 6= 3. Furthermore,
if fa,b is hyper-bent, then its dual is fa,b8 .

According to Remark 3.23,

Λ(a, b) = χ
(
Tr6

1 (b)
)
S0(a)

+
(
χ
(
Tr6

1 (bξ)
)

+ χ
(
Tr6

1
(
bξ8)))S1(a) +

(
χ
(
Tr6

1
(
bξ2))+ χ

(
Tr6

1
(
bξ7)))S2(a)

+
(
χ
(
Tr6

1
(
bξ3))+ χ

(
Tr6

1
(
bξ6)))S3(a) +

(
χ
(
Tr6

1
(
bξ4))+ χ

(
Tr6

1
(
bξ5)))S4(a) .

Introduce γ = ξ8 + ξ ∈ F8 . Note that

γ2 = ξ2 + ξ7 ,

γ3 = ξ + ξ3 + ξ6 + ξ8 ,

γ4 = ξ4 + ξ5 ,

γ5 = ξ3 + ξ4 + ξ5 + ξ6 ,

γ6 = ξ2 + ξ3 + ξ6 + ξ7 .
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Thus

Λ(a, b) = χ
(
Tr6

1 (b)
)
S0(a)

+ χ
(
Tr6

1 (bξ)
) (

1 + χ
(
Tr6

1 (bγ)
))
S1(a) + χ

(
Tr6

1
(
bξ2)) (1 + χ

(
Tr6

1
(
bγ2)))S2(a)

+ χ
(
Tr6

1
(
bξ3)) (1 + χ

(
Tr6

1
(
b(γ3 + γ)

)))
S3(a) + χ

(
Tr6

1
(
bξ4)) (1 + χ

(
Tr6

1
(
bγ4)))S4(a) .

Next, recall that
∑8
i=0 ξ

i = 0. Hence, γ2 + γ3 + γ4 = 1 and

Tr6
1 (bγ) + Tr6

1
(
bγ2)+ Tr6

1
(
b(γ + γ3)

)
+ Tr6

1
(
bγ4) = Tr6

1 (b) .

We now explicitely compute the traces Tr6
1
(
bξi
)
. The finite field F64 is represented as

F2 [x]/(C6(x)) where C6(x) = x6 + x4 + x3 + x+ 1 is the 6-th Conway polynomial. We denote
the class of x modulo C6(x) by β; this is a primitive element of F64 . Let ξ = β7 be a 9-th root
of unity. The traces Tr6

1
(
βjξi

)
are given in Table 3. The expression of Λ(a, βj) as a sum of

the partial exponential sums Si, together with the minimal polynomial mj of βj , are given in
Tables 4 and 5.

Moreover, if the coefficients ar lie in F2l , where l = m/3, then 2l is −1, 2 or −4 modulo 9
when l is respectively 0, 1 and 2 modulo 3. In the last two cases, Lemma 3.22 tells that

S1(a) = S2(a) = S4(a) .

The corresponding expressions for Λ(a, b), obtained after applying Lemma 3.20 for l = 1, l = 3
and l = 9, are given in Table 6, where mb is the minimal polynomial of b.

Finally, the following theorem summarizes the above discussion.

Theorem 5.5. Let τ = 9 and m ≡ 3 (mod 6).

1. If b = 1, then 9Λ(a, 1) = 18T1(ga)− 12T1(ga ◦D3) + 4T1(ga ◦D9)) + 5.

2. If b is a primitive 3-rd root of unity, then 9Λ(fa,b) = 18T1(ga)−6T1(ga◦D3)−2T1(ga◦D9)+5.

3. Suppose moreover that ar ∈ F2
m
3 and m

3 6≡ 0 (mod 3).

(a) If the minimal polynomial of b is x3 +x+1, then 9Λ(a, b) = −6T1(ga)+8T1(ga◦D3)+1.
(b) If the minimal polynomial of b is x3 + x2 + 1, then 9Λ(a, b) = −6T1(ga) − 4T1(ga ◦

D3) + 4T1(ga ◦D9)− 3.
(c) If the minimal polynomial of b is x6 +x3 +1, then 9Λ(a, b) = 6T1(ga)+4T1(ga ◦D3)+5.
(d) If the minimal polynomial of b is x6 + x4 + x2 + x + 1, then 9Λ(a, b) = −6T1(ga) +

8T1(ga ◦D3) + 1.
(e) If the minimal polynomial of b is x6 + x5 + x4 + x2 + 1, then 9Λ(a, b) = −6T1(ga) +

2T1(ga ◦D3)− 2T1(ga ◦D9)− 3.
(f) If the minimal polynomial of b is x6 +x+ 1, then 9Λ(a, b) = −6T1(ga)− 4T1(ga ◦D3) +

4T1(ga ◦D9)− 3.
(g) If the minimal polynomial of b is x6 +x5 + 1, then 9Λ(a, b) = 6T1(ga)− 2T1(ga ◦D3)−

2T1(ga ◦D9) + 1.
(h) If the minimal polynomial of b is x6 + x4 + x3 + x + 1, then 9Λ(a, b) = 6T1(ga) −

8T1(ga ◦D3) + 4T1(ga ◦D9) + 1.
(i) If the minimal polynomial of b is x6 + x5 + x2 + x + 1, then 9Λ(a, b) = 6T1(ga) −

2T1(ga ◦D3)− 2T1(ga ◦D9) + 1.
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j\i 0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 1 0 0
1 0 0 0 1 1 0 1 1 0
2 0 0 0 1 0 1 1 0 1
3 1 0 0 1 1 1 0 1 1
4 0 1 0 1 0 0 1 1 0
5 0 1 1 1 1 0 1 0 1
6 1 1 0 0 0 1 1 1 1
7 0 0 1 0 0 1 0 0 0
8 0 0 1 1 0 1 1 0 0
9 0 0 1 0 1 1 0 1 0
10 0 0 1 1 1 0 1 1 1
11 1 0 1 0 0 1 1 0 0
12 1 1 1 1 0 1 0 1 0
13 1 0 0 0 1 1 1 1 1
14 0 1 0 0 1 0 0 0 0
15 0 1 1 0 1 1 0 0 0
16 0 1 0 1 1 0 1 0 0
17 0 1 1 1 0 1 1 1 0
18 0 1 0 0 1 1 0 0 1
19 1 1 1 0 1 0 1 0 1
20 0 0 0 1 1 1 1 1 1
21 1 0 0 1 0 0 0 0 0
22 1 1 0 1 1 0 0 0 0
23 1 0 1 1 0 1 0 0 0
24 1 1 1 0 1 1 1 0 0
25 1 0 0 1 1 0 0 1 0
26 1 1 0 1 0 1 0 1 1
27 0 0 1 1 1 1 1 1 0
28 0 0 1 0 0 0 0 0 1
29 1 0 1 1 0 0 0 0 1
30 0 1 1 0 1 0 0 0 1
31 1 1 0 1 1 1 0 0 1

j\i 0 1 2 3 4 5 6 7 8
32 0 0 1 1 0 0 1 0 1
33 1 0 1 0 1 0 1 1 1
34 0 1 1 1 1 1 1 0 0
35 0 1 0 0 0 0 0 1 0
36 0 1 1 0 0 0 0 1 1
37 1 1 0 1 0 0 0 1 0
38 1 0 1 1 1 0 0 1 1
39 0 1 1 0 0 1 0 1 0
40 0 1 0 1 0 1 1 1 1
41 1 1 1 1 1 1 0 0 0
42 1 0 0 0 0 0 1 0 0
43 1 1 0 0 0 0 1 1 0
44 1 0 1 0 0 0 1 0 1
45 0 1 1 1 0 0 1 1 1
46 1 1 0 0 1 0 1 0 0
47 1 0 1 0 1 1 1 1 0
48 1 1 1 1 1 0 0 0 1
49 0 0 0 0 0 1 0 0 1
50 1 0 0 0 0 1 1 0 1
51 0 1 0 0 0 1 0 1 1
52 1 1 1 0 0 1 1 1 0
53 1 0 0 1 0 1 0 0 1
54 0 1 0 1 1 1 1 0 1
55 1 1 1 1 0 0 0 1 1
56 0 0 0 0 1 0 0 1 0
57 0 0 0 0 1 1 0 1 1
58 1 0 0 0 1 0 1 1 0
59 1 1 0 0 1 1 1 0 1
60 0 0 1 0 1 0 0 1 1
61 1 0 1 1 1 1 0 1 0
62 1 1 1 0 0 0 1 1 1

Table 3: Traces for τ = 9
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j Λ(a, βj) mj

0 S0 + 2S1 + 2S2 − 2S3 + 2S4 x+ 1
1 S0 + 2S1 − 2S3 x6 + x4 + x3 + x+ 1
2 S0 + 2S2 − 2S3 x6 + x4 + x3 + x+ 1
3 −S0 − 2S4 x6 + x5 + x4 + x2 + 1
4 S0 − 2S3 + 2S4 x6 + x4 + x3 + x+ 1
5 S0 − 2S1 − 2S3 x6 + x+ 1
6 −S0 − 2S1 x6 + x5 + x4 + x2 + 1
7 S0 + 2S1 + 2S3 x6 + x3 + 1
8 S0 + 2S1 − 2S3 x6 + x4 + x3 + x+ 1
9 S0 + 2S1 − 2S2 + 2S3 − 2S4 x3 + x+ 1
10 S0 − 2S2 − 2S3 x6 + x+ 1
11 −S0 + 2S1 x6 + x5 + x2 + x+ 1
12 −S0 − 2S2 x6 + x5 + x4 + x2 + 1
13 −S0 − 2S4 x6 + x5 + x4 + x+ 1
14 S0 + 2S2 + 2S3 x6 + x3 + 1
15 S0 + 2S3 − 2S4 x6 + x4 + x2 + x+ 1
16 S0 + 2S2 − 2S3 x6 + x4 + x3 + x+ 1
17 S0 − 2S2 − 2S3 x6 + x+ 1
18 S0 − 2S1 + 2S2 + 2S3 − 2S4 x3 + x+ 1
19 −S0 − 2S1 x6 + x5 + x4 + x+ 1
20 S0 − 2S3 − 2S4 x6 + x+ 1
21 −S0 + 2S1 + 2S2 + 2S4 x2 + x+ 1
22 −S0 + 2S2 x6 + x5 + x2 + x+ 1
23 −S0 + 2S1 x6 + x5 + 1
24 −S0 − 2S4 x6 + x5 + x4 + x2 + 1
25 −S0 + 2S1 x6 + x5 + x2 + x+ 1
26 −S0 − 2S1 x6 + x5 + x4 + x+ 1
27 S0 + 2S1 − 2S2 − 2S3 − 2S4 x3 + x2 + 1
28 S0 + 2S3 + 2S4 x6 + x3 + 1
29 −S0 + 2S4 x6 + x5 + 1
30 S0 − 2S1 + 2S3 x6 + x4 + x2 + x+ 1
31 −S0 − 2S1 + 2S2 − 2S4 x6 + x5 + x3 + x2 + 1

Table 4: Λ(a, βj) for τ = 9 — Part I
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j Λ(a, βj) mj

32 S0 − 2S3 + 2S4 x6 + x4 + x3 + x+ 1
33 −S0 − 2S2 x6 + x5 + x4 + x2 + 1
34 S0 − 2S3 − 2S4 x6 + x+ 1
35 S0 + 2S3 + 2S4 x6 + x3 + 1
36 S0 − 2S1 − 2S2 + 2S3 + 2S4 x3 + x+ 1
37 −S0 + 2S4 x6 + x5 + x2 + x+ 1
38 −S0 − 2S2 x6 + x5 + x4 + x+ 1
39 S0 − 2S2 + 2S3 x6 + x4 + x2 + x+ 1
40 S0 − 2S1 − 2S3 x6 + x+ 1
41 −S0 − 2S4 x6 + x5 + x4 + x+ 1
42 −S0 + 2S1 + 2S2 + 2S4 x2 + x+ 1
43 −S0 + 2S4 x6 + x5 + 1
44 −S0 + 2S4 x6 + x5 + x2 + x+ 1
45 S0 − 2S1 − 2S2 − 2S3 + 2S4 x3 + x2 + 1
46 −S0 + 2S2 x6 + x5 + 1
47 −S0 + 2S1 − 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
48 −S0 − 2S1 x6 + x5 + x4 + x2 + 1
49 S0 + 2S2 + 2S3 x6 + x3 + 1
50 −S0 + 2S2 x6 + x5 + x2 + x+ 1
51 S0 − 2S1 + 2S3 x6 + x4 + x2 + x+ 1
52 −S0 − 2S2 x6 + x5 + x4 + x+ 1
53 −S0 + 2S2 x6 + x5 + 1
54 S0 − 2S1 + 2S2 − 2S3 − 2S4 x3 + x2 + 1
55 −S0 − 2S1 − 2S2 + 2S4 x6 + x5 + x3 + x2 + 1
56 S0 + 2S1 + 2S3 x6 + x3 + 1
57 S0 + 2S3 − 2S4 x6 + x4 + x2 + x+ 1
58 −S0 + 2S1 x6 + x5 + 1
59 −S0 − 2S1 + 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
60 S0 − 2S2 + 2S3 x6 + x4 + x2 + x+ 1
61 −S0 + 2S1 − 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
62 −S0 − 2S1 − 2S2 + 2S4 x6 + x5 + x3 + x2 + 1

Table 5: Λ(a, βj) for τ = 9 — Part II
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mb 9Λ(a, b) o(b)
x+ 1 18T1(ga)− 12T1(ga ◦D3) + 4T1(ga ◦D9) + 5 1
x2 + x+ 1 18T1(ga)− 6T1(ga ◦D3)− 2T1(ga ◦D9) + 5 3
x3 + x+ 1 −6T1(ga) + 8T1(ga ◦D3) + 1 7
x3 + x2 + 1 −6T1(ga)− 4T1(ga ◦D3) + 4T1(ga ◦D9)− 3 7
x6 + x3 + 1 6T1(ga) + 4T1(ga ◦D3) + 5 9
x6 + x4 + x2 + x+ 1 −6T1(ga) + 8T1(ga ◦D3) + 1 21
x6 + x5 + x4 + x2 + 1 −6T1(ga) + 2T1(ga ◦D3)− 2T1(ga ◦D9)− 3 21
x6 + x+ 1 −6T1(ga)− 4T1(ga ◦D3) + 4T1(ga ◦D9)− 3 63
x6 + x5 + 1 6T1(ga)− 2T1(ga ◦D3)− 2T1(ga ◦D9) + 1 63
x6 + x4 + x3 + x+ 1 6T1(ga)− 8T1(ga ◦D3) + 4T1(ga ◦D9) + 1 63
x6 + x5 + x2 + x+ 1 6T1(ga)− 2T1(ga ◦D3)− 2T1(ga ◦D9) + 1 63
x6 + x5 + x4 + x+ 1 −6T1(ga) + 2T1(ga ◦D3)− 2T1(ga ◦D9)− 3 63
x6 + x5 + x3 + x2 + 1 −6T1(ga) + 2T1(ga ◦D3)− 2T1(ga ◦D9)− 3 63

Table 6: Λ(a, βj) for τ = 9 — Subfield case

(j) If the minimal polynomial of b is x6 + x5 + x4 + x + 1, then 9Λ(a, b) = −6T1(ga) +
2T1(ga ◦D3)− 2T1(ga ◦D9)− 3.

(k) If the minimal polynomial of b is x6 + x5 + x3 + x2 + 1, then 9Λ(a, b) = −6T1(ga) +
2T1(ga ◦D3)− 2T1(ga ◦D9)− 3.

5.2.5 The case τ = 11

To conclude this subsection, we give a few results for τ = 11, the next suitable value for τ . In this
case, t = 10 and m ≡ 5 (mod 10). In particular, t < 2m as soon as m 6= 5. Furthermore, if fa,b
is hyper-bent, then its dual is fa,b32. Listing all possible characterizations would not be of high
interest, hence we chose to only present results valid when the coefficients ar are not restricted to
a strict subfield of F2m .

The finite field F1024 is represented as F2 [x]/(C10(x)) where C10(x) = x10 + x6 + x5 + x3 +
x2 + x+ 1 is the 10-th Conway polynomial. We denote the class of x modulo C10(x) by β; this is
a primitive element of F1024 . The characterizations valid for ar ∈ F2m are summarized in the
following theorem.

Theorem 5.6. Let τ = 11 and m ≡ 5 (mod 10).

1. If b = 1, then 11Λ(a, 1) = 4T1(ga ◦D11)− 22T1(ga)− 9.

2. If b is a 3-rd root of unity, a 341-th root of unity with minimal polynomial x10 +x9 +x8 +x3 +
x2 + x+ 1, or a primitive element with minimal polynomial x10 + x9 + x8 + x4 + x3 + x2 + 1
or x10 + x9 + x8 + x6 + x5 + x+ 1, then 11Λ(a, b) = −2T1(ga ◦D11)− 1.

6 Conclusion
In this note, we have extended previous characterizations of hyper-bentness by Charpin and
Gong, Mesnager, and Wang et al., to much wider classes of Boolean functions, giving as well
more insight on the tools and restrictions involved in these approaches. A challenging question is
to prove that the families of Boolean function considered in this note actually contain hyper-bent
functions. Such results are quite rare and usually involve highbrow results, e.g. results from
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algebraic curves theory. The case of monomial functions with the Dillon exponent is a much
celebrated theorem of Lachaud and Wolfmann [12, Theorem 3.4]. The case of binomial functions
with the Dillon exponent and an additional trace term over F4 has been treated by Mesnager [15],
that of binomial functions with the Dillon exponent and an additional trace term over F16 has
been treated by Wang et al. [19, 18].
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