
A new remote data integrity checking scheme for cloud storage
Yan Xiangtao1*, Li Yifa1

1 Information engineering university, Zhengzhou, China
taoexcellent@163.com

AbstractAbstractAbstractAbstract: Cloud storage services enable user to enjoy high-capacity and high-quality storage with
less overhead, but it also brings many potential threats, for example, data integrality, data
availability and so on. In this paper, we propose a new remote integrality and availability checking
scheme for cloud storage. This new scheme can check mass file's integrality and availability with
less storage, computation and communication resource. The new scheme also supports data
dynamic update, public verifiability and privacy preserving.

KeyKeyKeyKeyWordsWordsWordsWords:cloud storage; data security; data integrality

1111 IntroductionIntroductionIntroductionIntroduction

Advances in networking technology and increase in the need for computing resources have
prompted many organizations to outsource their storage needs[1].This new storage model is
commonly referred to as cloud storage, which has the same characteristics as cloud computing in
terms of agility, scalability, elasticity. Now, there are many well know cloud storage service, for
example, Microsoft's Azure storage service, Amazon's S3, Google Cloud Storage and so on.
Cloud storage service has many advantages[2]. With this service, users do not need to install

physical storage devices in their own data-center or offices. They can get a myriad of virtual
storage resources that might not be affordable just from a common Web browser, and don't need a
complete understanding of the infrastructure. In addition, the storage maintenance tasks, such as
backup, data replication, and purchasing additional storage devices are offloaded to the
responsibility of a service provider, allowing organizations to focus on their core business. It
seems that the only thing users have to do is to pay for this service ,which is always very cheap.
While the benefits of using a cloud storage are clear, it introduces significant security and

privacy risks. In cloud storage, the data is uploaded to the cloud without leaving a copy in their
local computers. This feature means that the control of the data has exceeded user's own physical
worlds. To advance the adoption of cloud storage, proactive measures must be taken to ensure data
security in this new environment. In fact, it seems that one of the biggest hurdle is concern over
the integrity of data[1][2].
In order to solve remote integrity checking problem in cloud storage, a lot of works have been

done[3,4,5,6,7,8,9,10,11,12,13,14], focusing on various conditions of application and attempting
to achieve different goals. Ateniese et al.[4][8] define the "provable data possession"(PDP) model
for ensuring possession of files on un-trusted storages. Their scheme utilizes the RSA-based
homomorphic authenticators for auditing outsourced data and suggests randomly sampling a few
blocks of the file. However, the schemes of Ateniese et al. have to set a prior bound on the number
of audits and doesn't support public audit ability. Juels et al.[5] describe a "proof of
retrievability"(POR) model and give a more rigorous proof of their scheme.Their scheme use

* This work is supported by NSF 8632009aa012201 and the project of Modern Communications Laboratory(No.
9140C1103040902).

app:ds: dynamic update

spot-checking and error-correcting codes to ensure both "possession" and "retrievability" of
remote data files. But these operations make the number of challenges is a fixed prior, prevent any
efficient extension to support updates and public audit ability. Erway et al.[10] was the first to
propose dynamic PDP scheme.They developed a skip lists based method to enable provable data
possession with dynamic support. however, the efficiency of their scheme remains in question. In
[11],Wang et al. provided a dynamic architecture for public checking. The challenge-response
protocol in their paper can both determine the data correctness and locate possible errors. However,
the inefficient performance greatly affects the practical application of their scheme.
while all above schemes provide methods for assurance on the correctness of remotely stored

data, none of them integrate efficient checking, dynamic update, public verifiability and privacy
preserving for data storage in cloud.That is the problem we are going to tackle in this paper.
The rest of the paper is organized as follows. Section 2 introduce the architecture of the scheme,

design goals and the adversary mode. Section 3 provide the detailed description of our scheme.
The security analysis and performance evaluation is given in the section 4. Finally, section 5
conclude the remark of the whole paper.

2222 Architecture,Architecture,Architecture,Architecture, DesignDesignDesignDesign GoalsGoalsGoalsGoals andandandand AdversaryAdversaryAdversaryAdversary ModelModelModelModel

2.12.12.12.1 ArchitectureArchitectureArchitectureArchitecture ofofofof thethethethe schemeschemeschemescheme

Here, we use a basic architecture which is partly as the same as[1]. At its core, the architecture
consist of three parties:a data owner (DO), that creates data and processes it in some way before it
is sent to the cloud; a data auditor (DA), that checks whether the data in the cloud has been
tampered with; a cloud storage service provider (CSSP), that provides cloud storage service to the
cloud user.
To use the integrity checking function, DO should begin by downloading a application that

consists of a data processor and a data verifier. Upon its first execution, DO generates a key, which
is used to check integrity of its data, support public verifiability and privacy preserving. DA is a
third party auditor, whom is authorized by DO to verify the integrity of cloud data on demand
without retrieving a copy of the whole data. Whenever DO wants to upload data to the cloud, the
data processor is invoked. It computes some integrity-checking value, which is used to check the
integrity of the remote data, then sent the data to the cloud. Whenever DO(or DA) wants to verify
the integrity of her data, the data verifier is invoked. It interacts with CSSP and ascertains the
integrity of the data.
The architecture of the scheme is illustrated in Figure 1. In addition, it is important that all the

core components should be either open-source or verified by the third trusted party for security.

2.22.22.22.2 DesignDesignDesignDesign GoalsGoalsGoalsGoals

(1) Integrity checking: the proposed scheme should correctly check the remote data integrity in
cloud storage without a copy of the data in local.
(2)Security analysis: give a security analysis of the proposed scheme, which shows that it is

secure against the un-trusted server and adversary described below.

(3)Privacy preserving, public verifiability and dynamic data operation support: The design
should be as efficient as possible to ensure the seamless integration of privacy preserving, public
verifiability and dynamic data operation.
(4)efficiency: The theoretical results should demonstrate that our protocol is efficient.

Figure 1：architecture of the scheme

2.32.32.32.3 ThreatThreatThreatThreat ModelModelModelModel

In our scheme, we assume that the security threats come from two different sources, CSSP and
malicious adversary. On the one hand, the malicious adversary may have knew all the details of
the scheme, can quietly pollute the original data files by modifying or introducing its own
fraudulent data to prevent the original data from being retrieved by the DO. On the other hand, the
CSSP is self-interested, un-trusted. It may hide the data corruptions caused by server hacks or
Byzantine failures to maintain reputation. Moreover, wo also assume that all the communication
channels between each other is security and the key stored locally on DO or DA is secret from the
CSSP and adversary.

3333 TheTheTheThe ProposedProposedProposedProposed SchemeSchemeSchemeScheme

In this section, we describe our integrity checking scheme, in which the verifier stores only a
single cryptographic key and a precompute value, irrespective of the size of the file it seeks to
verify, as well as a small amount of some dynamic state. Firstly, we present the definitions for the
necessary expressions. Secondly, a basic integrity checking scheme is proposed for single file.
Then, we extent our basic scheme to support batch files checking. Finally, we describe the
integrity checking in privacy preserving, public verifiability and some dynamic states.

3.13.13.13.1 definitiondefinitiondefinitiondefinition ofofofof expressionexpressionexpressionexpression

),(lmPad :This function is invoked by the DO before upload. It cuts the data file m into many

blocks. The length of each block is l . If the last block is short than l ,fill with 0 for padding.

),()1(skpkKeyGen l → :This is a probabilistic algorithm run by the DO to generate keys. It

takes as input a security parameter l1 (l-bits), and outputs a public key pk and a secret key sk .

With given parameter l1 , it randomly chooses two distinct large prime numbers p and q ,such

that 1|2 −qp . LetG be the 2p order cyclic subgroup of qZ . Assume that g is the generator of G .

Then, it randomly Chooses two nonzero integers e and d , de ≠ . qpk = is public to

everyone ,while),,,(pgdesk = is kept secret by the verifies.

))(),((),(21 mfmfskmlueGenCheckVa → :This function is used by the DO to generate a checking

value, which is used for verify the response from the CSSP for future. For the data file

nmmm L1= , computes:

∑
==
n

i
i

ime
gmf 1)(1
∑
=

−

=
n

i
i

i pmie
gmf 1

1

)(2
chalskChallenge →)(:This is a probabilistic procedure run by the verifiers(DO or DA) to create

a challenge for the CSSP. It takes as input secret key sk , and outputs a challenge value chal .With

given),,,(pgdesk = , the function picks two random numbers, 1r and s, computes chal :

),(2
1 dppqrexgchal s ++==

)(),(mychalpkesponseGenR → :This function is used by the server CSSP to generate a response

to a challenge value chal . Given data file),,(1 nmmm L= , the CSSP computes :

∑
==
n

i
i

imx
sgmy 1)()(

},{))(),(),(,(21 falsetruemymfmfskVerify → :This function is used by the verifiers(DO or DA) to

check the validity of the response. The verifiers compute srmfmf)))()(((1
21 , if

srmfmf)))()(((1
21 =)(my , output " true ", otherwise output " false ".

3.23.23.23.2 ourourourour integrityintegrityintegrityintegrity checkingcheckingcheckingchecking schemeschemeschemescheme

3.2.13.2.13.2.13.2.1 basicbasicbasicbasic schemeschemeschemescheme

Assume that DO want to upload the file m to the cloud and check the integrity latter. The

security parameter is noted as l. Then, our basic scheme can be constructed in two phases, SetupSetupSetupSetup
and check.check.check.check.

SetupSetupSetupSetup: As initialization, DO generates the public key pair),(skpk by executing

),()1(skpkKeyGen l → , sends pk to the CSSP and keeps sk secret. Once DO wants to upload

file m, they invokes the function),(lmPad to cut file m into a ordered collection of l isometric

blocks, assume the result is nmmmm L21= . Then, they computes the checking-value

))(),((21 mfmf of m by using),(skmlueGenCheckVa , which is secretly kept in local.

Check:Check:Check:Check: The verifiers (DO or DA) use chalskChallenge →)(to generate the challenge value

chal , send it to the CSSP. Once the CSSP get the challenge value chal , they invoke
),(chalpkesponseGenR to generate response value)(my . After receiving the corresponding

response value)(my , the verifiers check the response by invoking))(),(),(,(21 mymfmfskVerify .

If the output is true , then we believe that the file m is stored correctly in the remote servers, also
we believe not.

3.2.23.2.23.2.23.2.2 batchbatchbatchbatch ofofofof filesfilesfilesfiles checkingcheckingcheckingchecking schemeschemeschemescheme

The integrity checking scheme of batch of files is extend over the basic scheme. Assume that

we have to check files which is a finite ordered at one time, for example },,,{ 21 hMMMM L= ,

for each },,2,1{ hi L∈ , the file iM can be padded into il blocks, that is:

himmmM
iiliii ≤≤= 1,21 L . Denoted that the checking value of file iM is()(1 iMf ,)(2 iMf),

which is computed before upload, the blocks of all checking files is ∑
=

=
h

i
ilH

1

. Then the check

process is operate as blow:
The challenge value is generated as the same as the basic scheme. When the CSSP receive the

challenge value chal form verifiers, they compute the response like that:

∑ ∑
= =

∑
−

=

=
h

i

il

j
ij

j

i

k
kl

mxx
sgMY 1 1

1

1

)()(.

Once the verifiers receive the the response)(MY , they consider that whether

sr
leh

i
i

eh

i
i

i

j
j

i

j
jl

i

j
jl

MfMfMY)))(()(()(1

1

1

1

1

1

1

1
2

1
1

∑
=

−

=

∑
−

=
∑
−

= +

==
∏∏ is equal to)(MY . If not, they believe that

the files they have checked is not correct now.

3.33.33.33.3 dynamicdynamicdynamicdynamic updateupdateupdateupdate

In practical scenarios, the client may frequently perform block-level operations on the data
files.The most general forms of these operations we consider in this paper are modification,
appending.

BlockBlockBlockBlock modificationmodificationmodificationmodification: Assume that DO wants to modify the i-th block im of her file m. Denote

the modified data block by *
im and the corresponding modified checking value by)(1 mf update ,

)(2 mf update . Then, DO modify the checking value like this:

i
i

i
i memeupdate ggmfmf /)()(

*

11 =

i
i

i
i pmiepmieupdate ggmfmf

1*1

/)()(22

−−

=

BlockBlockBlockBlock appending:appending:appending:appending:Assume that DO wants to append the block *m to her file nmmm L1= .

Then, DO modify the checking value like this:
*1

)()(11
meupdate n

gmfmf
+

=

*)1(
22)()(pmenupdate n

gmfmf +=

3.43.43.43.4 PublicPublicPublicPublic VerificationVerificationVerificationVerification andandandand PrivacyPrivacyPrivacyPrivacy PreservingPreservingPreservingPreserving

For public verification, the DO generate the keys),(skpk and the corresponding checking value

of files for DA, which is processed as the same as itself. Then DA use these value to make the
checking scheme as above. In addition, because the challenge value chal is chosen randomly and

the response value)(y m or)(Y m will not leak the information of the files(for the difficulty of

the discrete logarithm). So, we believe that our scheme can support public verification and privacy
preserving.

4444 SecuritySecuritySecuritySecurity andandandand EfficiencyEfficiencyEfficiencyEfficiency AnalysisAnalysisAnalysisAnalysis

In this section, we present a analysis of the security and the efficiency of our proposed scheme.
Our security analysis focuses on the adversary model define in section 2. The evaluation of
efficiency is presented via comparison with other scheme.

4.14.14.14.1 securitysecuritysecuritysecurity analysisanalysisanalysisanalysis

Generally, the checking scheme is secure if there exists no polynomial-time algorithms that can

cheat the verifier with non-negligible probability. All our proofs are derived on the probabilistic
base with probability assurance.

TheoremTheoremTheoremTheorem 1111: For file nmmm L1= , if the problem of discrete logarithm and big-integer

factorization is difficult, then our schemes can guarantee the correctness of checking with

probability
q
1
, while q is the public key.

Proof :
For basic scheme, when DO or DA check the response)(my , they process like this:

srsrpqmiemespmxmxs mfmfggggmy
n

i
i

in

i
i

in

i
i

in

i
i

i

)))()((())(()()()(111

1

1

2

11
21

mod
====

∑∑∑∑
=

−

===

From the expression of above, we can know that if the file is correctly stored, the response from
the honest CSSP can pass the checking scheme. If there is some wrong on the storage or the
response value is forked by the CSSP, for general, we denote the wrong response as a random

value)(* my , then, in the checking process, if it can pass the checking scheme, that mean:

srmfmfmy)))()((()(1
21

* =

For 1r , s are chosen randomly, anybody except verifies can not get the value from the challenge

response chal (the difficulty of discrete logarithm and big-integer factorization).We know that the

probability of expression above is
q
1 .

For the batch checking scheme, the proof is the same as above, it is omitted for short. ＃

4.24.24.24.2 PerformancePerformancePerformancePerformance AnalysisAnalysisAnalysisAnalysis

In this section, we consider the communication, storge and computation costs of our scheme. The
detail description of the results is demonstrated in figure 2:

scheme

parameters

Computation Comm storage

Public

Verification

Privacy

Preserving

Dynamic

operation

Our scheme O(log n) O(1) O(1) Yes Yes

No insert

No delete

Ateniese[2] O(1) O(1) O(1) Yes Yes

Append

only

Erway[5] O(log n) O(log n) O(1) No Yes All support

Wang Qian[6] O(log n) O(log n) O(1) Yes No All support

Figure 2: efficiency comparison for a file consisting of n blocks

5555 ConclusionConclusionConclusionConclusion

In this paper, we investigated the problem of data integrity in cloud data storage. To solute this
problem, we proposed an effective and flexible challenge/response scheme with public
verification, privacy preserving and dynamic data support. According to the analysis of security
and efficiency, we believe that our scheme is amenable to real-world application. The data owners
can have a strong evidence that their data in cloud is stored correctly by using the protocols we
proposed.

ReferencesReferencesReferencesReferences
[1] S. Kamara, K. Lauter. Cryptographic Cloud Storage[A].Lecture Notes in Computer Science.

Financial Cryptography and Data Security[C].Berlin:Springer,2010:136-149.
[2] L.M. Kaufman.Data Security in the World of cloud computing[J].Security & Privacy, IEEE,

2009,7:61-64.
[3] M. Einar, N. Maithili, T. Gene. Authentication and integrity in outsourced databases[J]. ACM

Transactions On Storage. 2006,2(2):107-138.
[4] G. Ateniese, R. Burns, R. Curtmola, et al. Provable data possession at untrusted stores[A].

Proceedings of CCS 2007[C]. Alexan-dria, VA, USA, 2007.598-609.
[5] A. Juels, B. Kaliski. Pors: proofs of retrievability for large files[A]. Proceedings of CCS 2007

[C]. Alexandria, VA, USA, 2007. 584-597.
[6] H. Shacham, B. Waters. Compact proofs of retrievability[A].Proceedings of ASIACRYPT

2008[C]. Melbourne, Australia, 2008.90-107.
[7] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, et al. Efficient Remote Data Possession

Checking in Critical Information Infrastructures. IEEE Trans. Knowledge and Data Eng.,
2008.1034-1038.

[8] G. Ateniese, R.D. Pietro, L.V. Mancini, et al. Scalable and efficient provable data possession
[A]. Proceedings of the 4th international conference on security and privacy in
Communication networks[C]. Istanbul, Turkey:ACM, 2008.

[9] C. Wang, Q. Wang, K. Ren, et al.. Ensuring data storage security in cloud computing[A]
Proceedings of IW QoS 2009[C], Charleston, South Carolina, USA, 2009.

[10] C. Erway, A. Kupcu, C. Papamanthou, et al. Dynamic provable data possession [EB/OL]
Cryptology ePrint Archive, Report 2008/432, 2008.

[11] Q. Wang, C. Wang, J. Li, et al. Enabling public verifiability and data dynamics for storage
security in cloud computing[J]. Lecture Notes in Computer Science, 2009, Volume 5789/
2009:355-370.

[12] K.D. Bowers, A. Juels, A. Oprea. Proofs of retrievability: Theory and implementation.[A] In:
Proc. of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, Co-Located
with the 16th ACM Computer and Communications Security Conf., CCS 2009. New York:
Association for Computing Machinery, 2009. 43−54.

[13] S. Kamara, K. Lauter.Cryptographic Cloud Storage[A].Lecture Notes in Computer Science.
Financial Cryptography and Data Security[C].Berlin:Springer,2010:136-149.

[14] Z. Hao, N. Yu. A multiple-replica remote data possession checking protocol with public
verifiability[A]. Proc. Second Int'1 Data, Privacy and E-Commerce Symp. (ISDPE '10),2010.

http://www.springerlink.com/content/0302-9743/

	1Introduction
	2Architecture,DesignGoalsandAdversaryModel
	2.1Architectureofthescheme
	2.2DesignGoals
	2.3ThreatModel

	3TheProposedScheme
	3.1definitionofexpression
	3.2ourintegritycheckingscheme
	3.2.1basicscheme
	3.2.2batchoffilescheckingscheme

	3.3dynamicupdate
	3.4PublicVerificationandPrivacyPreserving

	4SecurityandEfficiencyAnalysis
	4.1securityanalysis
	4.2PerformanceAnalysis

	5Conclusion

