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Abstract. We present the first decentralized multi-authority attribute-based signature (DMA-
ABS) scheme, in which no central authority and no trusted setup are required. The proposed DMA-
ABS scheme for general (non-monotone) predicates is fully secure (adaptive-predicate unforgeable
and perfect private) under a standard assumption, the decisional linear (DLIN) assumption, in the
random oracle model. Our DMA-ABS scheme is comparably as efficient as the most efficient ABS
scheme. As a by-product, this paper also presents an adaptively secure DMA functional encryption
(DMA-FE) scheme under the DLIN assumption.

1 Introduction

1.1 Background

Recently a versatile and privacy-enhanced class of digital signatures have been studied as
attribute-based signatures (ABS) [23, 30–32, 39, 40, 42, 43, 48, 54, 59]. A signing (secret) key, skx,
in ABS is parameterized by attribute x, and the verification is executed using public key pk
and predicate (or policy) Υ . A message m along with predicate Υ can be signed by signing key
skx (i.e., signature σ := Sig(skx,m, Υ )), if and only if x satisfies Υ . Signed message (m,Υ, σ) is
verified by using public-key pk and predicate Υ , i.e., Ver(pk,m, Υ, σ) ∈ {0, 1}. The privacy of a
signer in this class of signatures requires that a signature (m,Υ, σ) generated by skx (where x
satisfies Υ ) release no information regarding x except that x satisfies Υ .

There are many applications of ABS such as attribute-based messaging (ABM), attribute-
based authentication, trust-negotiation and leaking secrets (see [43] for more details). For exam-
ple, in a country (say country U), public comments on a new government’s policy on scientific
research are widely requested, especially to a class of people who should be responsible or heavily
related to this topic from academia, government and industries. Comments from this class of
people are requested to be signed (authenticated) to prove that the comments are from such
people. In addition, the privacy of the people who send comments should be ensured. So there
are contradictory requirements on authentication and privacy. The concept of ABS provides a
nice solution to this type of problems. For example, a professor of University A sends a comment
signed through ABS with a predicate such that ((Affiliation = University A OR B OR C) AND (Po-
sition = Professor OR Lecturer)) OR ((Affiliation = Government of Country U) AND (Qualification
= PhD)) OR ((Affiliation = Company X OR Y OR Z) AND (Position = Chief Scientist OR Senior
Manager)). A recipient of this signed comment can confirm that the signer of this comment is
from the class of people, and the privacy is also preserved since there are too many people who
satisfy the predicate and it is hard to identify the actual signer among so many possible signers
due to the privacy condition of ABS.

The basic concept of ABS, however, has a serious problem that only a single authority
exists in a system. Therefore, the single authority should issue to all users their secret keys



(certificates/credentials) associated with all attributes in the system, i.e., all positions of all
organizations (e.g., all positions of Universities A, B and C, Governments of Countries U, V and
W, and Companies X, Y and Z). If the party is corrupted, the system will be totally broken.

To overcome the drawback, the concept of multi-authority (MA-)ABS, was introduced [42,
43, 48], in which there are multiple authorities and each authority is responsible for issuing a
secret key associated with a category or sub-universe of attributes, i.e., a user obtains several
secret keys, each of which is issued by each authority. For example, a professor of university A
obtains a secret key (for the position) from university A, a secret key for the citizenship from
country U, and a secret key for a consultant position from company X, where university A,
country U and company X are individual authorities. An important requirement for MA-ABS is
the security (unforgeability) against collusion attacks. For example, it is required that a professor
of university A, Alice, with a secret key for her position and a student, Bob, with a secret key
for his citizenship of country W cannot collude to forge a signature endorsed by a professor of
university A with the citizenship of country W.

The existing MA-ABS schemes, however, still have a problem that a special central authority
is required in addition to multiple authorities regarding attributes, and if the central authority
is corrupted, the security (unforgeability) of the system will be totally broken. As a typical
example, we show in Appendix A that all MA-ABS schemes in [43] will be totally broken if the
central authority is corrupted.

Any MA-ABS scheme with no central authority, decentralized MA-ABS (DMA-ABS) scheme,
has not been proposed.

Recently, Lewko and Waters [38] presented the first DMA system for attribute-based encryp-
tion (ABE) (but not for ABS). Their scheme, however, still has a problem. It requires a trusted
setup of a parameter, composite number N := p1p2p3 (p1, p2, p3 are primes) and a generator
g1 of secret subgroup Gp1 . That is, there exists a trapdoor, (p1, p2, p3), and the security of the
system will not be guaranteed by the security proof, if the trapdoor is compromised. In other
words, their system requires a trusted setup. A generic conversion method from a composite-
order-group-based system to a prime-order-group-based system has been presented by Lewko
[35] and it may be applicable to the DMA-ABE scheme.

1.2 Our Results

– This paper proposes the first DMA-ABS scheme, which supports general relations, non-
monotone access structures, in which no central authority exists and no global coordination
is required except for the setting of a parameter for a prime order bilinear group and hash
functions. Note that parameters for a prime order bilinear group on supersingular and some
ordinary elliptic curves and specification of hash functions such as the SHA families can be
available from public documents, e.g., ISO and FIPS official documents [33, 25] and [24], or
can be included in the specification of the scheme. That is, no trusted setup is necessary in
the proposed DMA-ABS system.
In the proposed DMA-ABS schemes, every process can be executed in a fully decentralized
manner; any party can become an authority and issue a (piece of a) secret key to a user
without interacting with any other party, and each user obtains a (piece of a) secret key
from the associated authority without interacting with any other party. While enjoying such
fully decentralized processes, the proposed schemes are still secure against collusion attacks.
i.e., multiple pieces issued to a user by different authorities can form a (collusion resistant)
single secret key, composed of the pieces, of the user.
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– This paper also proposes a more general signature scheme, DMA functional signature (FS)
scheme, which supports more general predicates, non-monotone access structures combined
with inner-product relations [47]. The proposed DMA-ABS scheme is a special case of the
DMA-FS scheme, where the underlying inner-product relations are specialized to be two-
dimensional inner-product relations for equality.
Remark: The general relations (non-monotone access structures combined with inner-product
relations [47]) supported by the proposed DMA-FS scheme are: x := (�x1, . . . , �xi) ∈ F

n1+···+ni
q

for verification, and Υ := (M̂, (�v1, . . . , �vi) ∈ F
n1+···+ni
q ) for a secret key. The component-

wise inner-product relations for attribute vector components, e.g., {�xt · �vt = 0 or not
}t∈{1,...,i}, are input to span program M̂ , and x satisfies Υ iff the truth-value vector of
(T(�x1 · �v1 = 0), . . . ,T(�xi · �vi = 0)) is accepted by span program M̂ . If the DMA-FS is spe-
cialized to DMA-ABS, then nt := 2, i.e., �xt := (1, xt) and �vt := (vt,−1), where �xt · �vt = 0 iff
xt = vt.

– This paper proves that the proposed DMA-FS scheme is fully secure (adaptive-predicate
unforgeable and perfect private in the DMA security model) under the DLIN assumption
in the random oracle model. It implies that the proposed DMA-ABS scheme is fully secure
under the DLIN assumption in the random oracle model.

– The efficiency of the DMA-ABS scheme is comparable to those of the existing ABS schemes
(e.g., [43, 48]). See Table 1 in Section 5.5.

– Although the main aim of this paper is to propose the first DMA-ABS scheme, there is a
by-product, a new DMA-FE (or DMA-ABE) scheme, which an adaptively secure DMA-FE
scheme without a trusted setup under the DLIN assumption in the random oracle model.

Our DMA-ABS scheme is considered to be a natural extension of ring signatures [51, 53].
In ring signatures, no central authority and no trusted setup are required and every process
is fully distributed. Our DMA-ABS also requires no central authority and no trusted setup
and every process is fully distributed. In other words, ring signatures are a very special case
of our DMA-ABS where the underlying predicate is just a disjunction and each authority is a
user in a ring. For many applications of ring signatures, our DMA-ABS is more suitable. For
example, in an application to whistle-blowing, an expose document on a financial scandal to a
newspaper company would be better to be endorsed by someone with certain possible positions
and qualifications related to the scandal than by someone in a list of real persons.

1.3 Key Techniques

There are two major requirements for DMA-ABS, (collusion resistant) unforgeability and privacy
in the decentralized multi-authority model. Our target is to construct a DMA-ABS scheme that
is secure (unforgeable and private in the decentralized multi-authority model) under a standard
assumption, the DLIN assumption. It is a challenging task even in the random oracle model.
For some notations hereafter, see Section 1.5.

To realize such a DMA-ABS scheme, we follow several established key ideas; dual pairing
vector spaces (DPVS) [47, 48], Naor’s paradigm (where an encryption counterpart, (2-level)
DMA-ABE scheme, is designed first, and then DMA-ABS is constructed on it), global identifier
gid [19], (random oracle) hashing of gid [38], dual system encryption [58, 38], and the linear
transformation technique to produce (δ�xt, . . .)B∗

t
by using Xt (the master secret key of authority

t) and δG := H(gid) ∈ G [48] (see Section 5.3 for the details). Note that, although our design

3



strategy is based on Naor’s paradigm, this paper directly proves the security of the proposed
DMA-ABS scheme from the DLIN assumption.

A specific central space, V0 (t = 0), played an essential role in the security proof (based on
the dual system encryption technique) of previous ABS and FE schemes in [47, 48]. No such
a central space, however, is allowed in our DMA setting, where only spaces, Vt (t = 1, . . .),
generated by decentralized authorities are available. A crucial part of the key techniques in our
DMA-ABS (and DMA-FE) scheme is to distribute the dual system encryption trick for the
central space in the previous schemes into all the spaces.

More precisely, the secret-key and verification-text (where the negative term case in the
span program, i.e., ρ(i) = ¬(t, �vi), is used, for simplicity of expression) are of the forms of
(�xt, δ�xt, 0nt , 0nt , . . .)B∗

t
and (si�vi, s′i�vi, 0

nt , 0nt , . . .)Bt , respectively. Here, si and s′i are shares from
an access structure with a signature. Subspaces with {si�vi} and {�xt} are used for verification (or
decryption), and subspaces with {s′i�vi} and {δ�xt} are for the distributed dual system encryption
trick. To execute the trick over the subspaces, we develop a new technique, swap and conceptual
change, in which 4-dimensional (in DMA-FS, 2nt-dimensional) hidden subspaces are employed
for semi-functional forms of secret-keys and verification-texts. In the previous dual system en-
cryption tricks [47, 48], the semi-functional form of secret-keys and verification-texts in a central
space V0 (t = 0) played a key role. In our distributed dual system encryption trick, the left
2-dimensional subspaces in the 4-dimensional hidden subspaces are used for a computational
change of secret-keys from DLIN and a conceptual change on key query restrictions. The right
2-dimensional subspaces are swapped with the left ones through a computational change from
DLIN, and these subspaces for all Vt (t = 1, . . .) play the key role in a distributed manner that
corresponds to that of V0 (t = 0) in the previous schemes (see Appendix C.5).

In addition, a new re-randomization technique is developed in this paper to achieve the
privacy of our DMA-ABS, since the re-randomization technique for the privacy in [48] is not
effective in the DMA-ABS setting due to the fully distributed structure (see Section 5.2).

For more details on the techniques in the security proofs of DMA-ABS, see Appendices
C.4–C.6 and D.

1.4 Related Works

1. The mesh signatures [13] are a variation of ring signatures, where the predicate is an access
structure on a list of pairs comprising a message and public key (mi, pki), and a valid mesh
signature can be generated by a person who has enough standard signatures σi on mi, each
valid under pki, to satisfy the given access structure.
A crucial difference between mesh signatures and DMA-ABS is the security against the
collusion of users. In mesh signatures, several users can collude by pooling their signatures
together and create signatures that none of them could produce individually. That is, such
collusion is considered to be legitimate in mesh signatures. In contrast, the security against
collusion attacks is one of the basic requirements in ABS and DMA-ABS.

2. Another related concept is anonymous credentials (ACs) [2, 3, 15, 17, 18, 21]. The notion of
ACs also provides a functionality for users to demonstrate anonymously possession of at-
tributes, but the goals of ACs and (DMA-)ABS differ in several points.
As described in [43], ACs and (DMA-)ABS aim at different goals: ACs target very strong
anonymity even in the registration phase, whereas under less demanding anonymity require-
ments in the registration phase, (DMA-)ABS aims to achieve more expressive functionalities,
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more efficient constructions and new applications. In addition, (DMA-)ABS is a signature
scheme and a simpler primitive compared with ACs. See Appendix B for more details.

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y U← A denotes that y is uniformly selected from
A. We denote the finite field of order q by Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x·�v denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused as the zero
vector in F

n
q for any n. XT denotes the transpose of matrix X. I� and 0� denote the �×� identity

matrix and the � × � zero matrix, respectively. A bold face letter denotes an element of vector
space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉)
denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and
B
∗ := (b∗1, . . . , b∗N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i . For a format

of attribute vectors �n := (d;n1, . . . , nd) that indicates dimensions of vector spaces, �et,j denotes

the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

nt−j︷ ︸︸ ︷
0 · · · 0) ∈ F

nt
q for t = 1, . . . , d and j = 1, . . . , nt. GL(n,Fq)

denotes the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G �= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing groups (q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V, where

ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V × V → GT . (Symbol e is abused as pairing for
G and for V.) The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st

and if e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where
δi,j = 1 if i = j, and 0 otherwise, and e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k �= j,

which can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Gj ,
N−i︷ ︸︸ ︷

0, . . . , 0) where x := (G1, . . . , GN ). We
call φi,j “canonical maps”.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a de-
scription of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can
be constructed by using Gbpg.
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For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see Appendix A.2 in the full

version of [47].

3 General Predicates: Non-Monotone Access Structures with Inner-Product
Relations

3.1 Span Programs and Non-Monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A span program
over Fq is a labeled matrix M̂ := (M,ρ) where M is a (�× r) matrix over Fq and ρ is a labeling
of the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labeled by one literal),
i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}. A span program accepts or rejects an input
by the following criterion. For every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M
consisting of those rows whose labels are set to 1 by the input δ, i.e., either rows labeled by some
pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is
defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or [ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise.
Mδ := (Mj)γ(j)=1, where Mj is the j-th row of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear combination of
the rows of Mδ gives the all one vector �1. (The row vector has the value 1 in each coordinate.) A
span program computes a Boolean function f if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive literals
{p1, . . . , pn}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now introduce a non-
monotone access structure with evaluating map γ by using the inner-product of attribute vectors,
that is employed in the proposed DMA-ABS (and DMA-FS, DMA-FE) scheme.

Definition 4 (Inner-Products of Attribute Vectors and Access Structures). Ut (t = 1,
. . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes, each of which is expressed by a pair
of sub-universe id and nt-dimensional vector, i.e., (t, �v), where t ∈ {1, . . . , d} and �v ∈ F

nt
q \ {�0}.

We now define such an attribute to be a variable p of a span program M̂ := (M,ρ), i.e., p :=
(t, �v). An access structure S is a span program M̂ := (M,ρ) along with variables p := (t, �v), p′ :=
(t′, �v′), . . ., i.e., S := (M,ρ) such that ρ : {1, . . . , �} → {(t, �v), (t′, �v′), . . ., ¬(t, �v),¬(t′, �v′), . . .}.
Let Γ be a set of attributes, i.e., Γ := {(t, �xt) | �xt ∈ F

nt
q \ {�0}, 1 ≤ t ≤ d}, where t runs through

some subset of {1, . . . , d}, not necessarily the whole indices.
When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program M̂ :=

(M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, �vi)] ∧[(t, �xt) ∈ Γ ]
∧[�vi · �xt = 0] or [ρ(i) = ¬(t, �vi)] ∧[(t, �xt) ∈ Γ ] ∧[�vi · �xt �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.

Remark 1 The simplest form of the inner-product relations in the above-mentioned access
structures, that is for ABS and ABE, is a special case when nt = 2 for all t ∈ {1, . . . , d},
and �x := (1, x) and �v := (v,−1). Hence, (t, �xt) := (t, (1, xt)) and (t, �vi) := (t, (vi,−1)), but we
often denote them shortly by (t, xt) and (t, vi). Then, S := (M,ρ) such that ρ : {1, . . . , �} →
{(t, v), (t′, v′), . . . ¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.
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When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program M̂ :=
(M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, vi)] ∧[(t, xt) ∈ Γ ]
∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi �= xt]. Set γ(i) = 0 otherwise.

Remark 2 When a user has multiple attributes in a sub-universe (category) t, we can employ
dimension nt > 2. For instance, a professor (say Alice) in the science faculty of a university
is also a professor in the engineering faculty of this university. If the attribute authority of this
university manages sub-universe t := “faculties of this university”, Alice obtains a secret key for
(t, �xt := (1,−(a + b), ab) ∈ F

3
q) with a := “science” and b := “engineering” from the authority.

When a user verifies a signature for an access structure with a single negative attribute ¬(t,
“science”), the verification text is encoded as ¬(t, �vi := (a2, a, 1)) with a := “science”. Since
�xt ·�vi = 0, Alice cannot make a valid signature for an access structure with the negative attribute
¬(t, “science”). For such a case with nt > 2, see Appendix C.3 with our DMA-FS scheme.

We now construct a secret-sharing scheme for a span program.

Definition 5. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be � × r matrix. Let column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then, s0 := �1 · �fT =∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �fT is the vector of � shares
of the secret s0 and the share si belongs to ρ(i).

2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts Γ , i.e.,
�1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist constants {αi ∈ Fq | i ∈ I}
such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants

{αi} can be computed in time polynomial in the size of matrix M .

4 Decisional Linear (DLIN) Assumption

Definition 6 (DLIN: Decisional Linear Assumption [8]). The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for the DLIN problem
as: AdvDLIN

E (λ) :=
∣∣∣Pr
[
E(1λ, �)→1

∣∣∣ � R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the advantage

AdvDLIN
E (λ) is negligible in λ.

5 Decentralized Multi-Authority Attribute-Based Signatures (DMA-ABS)

5.1 Definitions for DMA-ABS

Definition 7 (Decentralized Multi-Authority ABS : DMA-ABS). A decentralized multi-
authority ABS scheme consists of the following algorithms/protocols.
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GSetup A party runs the algorithm GSetup(1λ) which outputs a global parameter gparam. The
party publishes gparam.

ASetup An attribute authority t (1 ≤ t ≤ d) who wishes to issue attributes runs ASetup(gparam,
t, nt) which outputs an attribute-authority public key apkt and an attribute-authority secret
key askt. The attribute authority t publishes apkt and stores askt.

AttrGen When an attribute authority t issues user gid a secret key associated with an attribute
xt, it runs AttrGen(gparam, t, askt, gid, xt) that outputs an attribute secret key uskgid,(t,xt).
The attribute authority gives uskgid,(t,xt) to the user.

Sig This is a randomized algorithm. A user signs message m with claim-predicate (access struc-
ture) S := (M,ρ), only if there is a set of attributes Γ such that S accepts Γ , the user has
obtained a set of keys {uskgid,(t,xt) | (t, xt) ∈ Γ} from the attribute authorities. Then sig-

nature σ can be generated using Sig(gparam, {apkt, uskgid,(t,xt)}, m, S), where uskgid,(t,xt)
R←

AttrGen(gparam, t, askt, gid, xt).
Ver To verify signature σ on message m with claim-predicate (access structure) S, using a set

of public keys for relevant authorities {apkt}, a user runs Ver(gparam, {apkt},m,S, σ) which
outputs boolean value accept := 1 or reject := 0.

Definition 8 (Perfect Privacy of DMA-ABS). A DMA-ABS scheme is perfectly private,
if, for all gparam

R← GSetup(1λ), for all (askt, apkt)
R← ASetup(gparam, t) (1 ≤ t ≤ d), all

messages m, all attribute sets Γ1 associated with gid1 and Γ2 associated with gid2, all signing
keys {uskt,1

R← AttrGen(gparam, t, askt, gid1, xt,1)}(t,xt,1)∈Γ1
and {uskt,2

R← AttrGen(gparam, t, askt,
gid2, xt,2)}(t,xt,2)∈Γ2

, all access structures S such that S accepts Γ1 and S accepts Γ2, the distribu-
tions Sig(gparam, {apkt, uskt,1 | (t, xt,1) ∈ Γ1},m,S) and Sig(gparam, {apkt, uskt,2 | (t, xt,2) ∈
Γ2},m,S) are equal.

For a DMA-ABS scheme with perfect privacy, we define algorithm AltSig(gparam, {apkt, askt},
m,S) with S and master key askt instead of Γ and {uskgid,(t,xt)}(t,xt)∈Γ : First, generate uskgid,(t,xt)
R← AttrGen(gparam, t, askt, gid, xt) for arbitrary Γ := {(t, xt)} which satisfies S, then σ

R←
Sig(gparam, {apkt, uskgid,(t,xt)},m,S). Return σ.

Let T be the set of authorities. We assume each attribute is assigned to one authority.

Definition 9 (Unforgeability of DMA-ABS). For an adversary, we define AdvDMA-ABS,UF
A (λ)

to be the success probability in the following experiment for any security parameter λ. A DMA-
ABS scheme is existentially unforgeable if the success probability of any polynomial-time adver-
sary is negligible:

1. Run gparam
R← GSetup(1λ) and give gparam to the adversary A. For authorities t ∈ T , run

(askt, apkt)
R← ASetup(gparam) and give {apkt}t∈T to A. Adversary A specifies a set T̃ ⊂ T

of corrupt attribute authorities, and gets {askt}t∈eT .
2. The adversary A is given access to oracles AttrGen and AltSig over S := T \ T̃ .
3. At the end, the adversary outputs (m′,S′, σ′).

Let Γgidi
:= {(t ∈ S, xt)} (i = 1, . . . , νH) queried to the AttrGen oracle with gidi. We say

the adversary succeeds, if (m′,S′) was never queried to the AltSig oracle, S
′ does not accept

Γgidi
with any gidi (i = 1, . . . , νH) queried to the AttrGen oracle, S

′ is specified over S, and
Ver(pk,m′,S′, σ′) = 1.
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Remark 3 The model regarding corrupted authorities in this definition is weaker than that in
[43]. Roughly, the security on this model implies that no adversary A can forge a signature with
a predicate S

′
S unless A issues key queries for ΓS such that S

′
S accepts ΓS , where S

′
S and ΓS are

a predicate and attributes over uncorrupted parties S. On the other hand, the security on the
model in [43] implies that no adversary A can forge a signature with a predicate S

′
S∪ eT unless A

issues key queries for ΓS such that, for some ΓeT , S
′
S∪eT accepts (ΓS ∪ ΓeT ).

5.2 Construction Idea of the Proposed DMA-ABS Scheme

Here we will show some basic idea to construct the proposed DMA-ABS scheme, which is
designed on the DMA-FE scheme (Appendix E.2) through Naor’s paradigm. Note that the
privacy condition is not included in Naor’s paradigm.

Roughly speaking, a secret signing key skΓ with attribute set Γ and a verification text �c with
access structure S (for signature verification) in our DMA-ABS scheme correspond to a secret
decryption key skΓ with Γ and a ciphertext �c with S in the DMA-FE scheme, respectively. No
counterpart of a signature �s∗ in the DMA-ABS exists in the DMA-FE, and the privacy property
for signature �s∗ is also specific in DMA-ABS. Signature �s∗ in DMA-ABS may be interpreted to
be a decryption key specialized to decrypt a ciphertext with access structure S, that is delegated
from secret key skΓ . The algorithms of the proposed DMA-ABS scheme can be described in the
light of such correspondence to the DMA-FE scheme:

GSetup Almost the same as that in the DMA-FE scheme except that a hash function, H2, is
added in gparam. This is used for hashing of message and access structure in the signing and
verification algorithms.

ASetup Almost the same as that in the DMA-FE scheme except that B̂
∗
t is revealed as a public

parameter in our DMA-ABS, while it is secret in the DMA-FE scheme. They are published
in our DMA-ABS for the signature generation procedure Sig to meet the privacy of signers
(for randomization). This is an essential difference between DMA-FE and DMA-ABS.
Since (a part of) B̂

∗
0 is a master secret in [48], other bases {B̂∗t }t>0 can be published. However,

for lack of V0 in our DMA-ABS, modified sub-bases (b̃∗t,ι)ι=1,2 are used in public key {B̂∗t }t>0

in place of sub-bases (b∗t,ι)ι=1,2, and a new security proof technique is required.
AttrGen The same as that in the DMA-FE scheme.
Sig Specific in DMA-ABS. To meet the privacy condition for �s∗, a novel technique is employed

to randomly generate a signature from skΓ and {B̂∗t }(t,xt)∈Γ . In [48], an attribute vector
(1, xt) is encoded on 2-dimensional subspace span〈b∗t,1, b∗t,2〉 for t > 0. Since our DMA-ABS
lacks the space V0, however, the vector is also encoded on another subspace span〈b∗t,3, b∗t,4〉.
To re-randomize both vectors independently using public (b̃∗t,ι, b∗t,2+ι)ι=1,2 is one of key tricks
here.

Ver The signature verification in our DMA-ABS checks whether a signature (or a specific de-
cryption key) �s∗ works as a decryption key to decrypt a verification text (or a ciphertext)
associated with S and H2(m,S).

5.3 Proposed DMA-ABS Scheme

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) = ¬(t, v),
where ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is
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injective for S := (M,ρ) with signature σ = σS. We will show how to relax the restriction in
Appendix F. We refer to Section 1.5 for notations on DPVS, e.g., (x1, . . . , xN )B, (y1, . . . , yN )B∗

for xi, yi ∈ Fq, and �et,j . For matrix X := (χi,j)i,j=1,...,N ∈ F
N×N
q and element v in N -dimensional

V, X(v) denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j} (Definition 2). Similarly, for
matrix (ϑi,j) := (X−1)T, (X−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v). It holds that e(X(x), (X−1)T(y)) =

e(x,y) for any x,y ∈ V.

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), H1 : {0, 1}∗ → G; H2 : {0, 1}∗ → Fq;

return gparam := (paramG, H1, H2).
Remark : Given gparam, the following values can be computed by anyone and shared
by all parties:
G0 := H1(0λ) ∈ G, G1 := H1(0λ−1, 1) ∈ G, G2 := H1(0λ−2, 1, 0) ∈ G, gT := e(G0, G1).

ASetup(gparam, t) : paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 13, paramG),

Xt
U← GL(13,Fq), (ϕ̃t,ι,1, ϕ̃t,ι,2)

U← F
2
q for ι = 1, 2,

bt,ι := Xt((0ι−1, G0, 013−ι)), b∗t,ι := (XT
t )−1((0ι−1, G1, 013−ι)) for ι = 1, . . . , 13,

2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
b̃∗t,1 := (XT

t )−1 (( G2, 0, 08, ϕ̃t,1,1G1, ϕ̃t,1,2G1, 0 )),
2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷

b̃∗t,2 := (XT
t )−1 (( 0, G2, 08, ϕ̃t,2,1G1, ϕ̃t,2,2G1, 0 )),

Bt := (bt,1, . . . , bt,13), B
∗
t := (b∗t,1, . . . , b

∗
t,13), B̂t := (bt,1, . . . , bt,6, bt,13),

B̂
∗
t := (b̃∗t,1, b̃

∗
t,2, b

∗
t,3, . . . , b

∗
t,6, b

∗
t,11, b

∗
t,12),

return askt := Xt, apkt := (paramVt
, B̂t, B̂

∗
t ).

Remark : Let π ∈ Fq s.t. G2 = πG1,

then b̃∗t,1 = (
2︷︸︸︷
π, 0 ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,1,1, ϕ̃t,1,2,

1︷︸︸︷
0 )B∗

t
, b̃∗t,2 = (

2︷︸︸︷
0, π ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,2,1, ϕ̃t,2,2,

1︷︸︸︷
0 )B∗

t
.

AttrGen(gparam, t, askt, gid, xt ∈ Fq) : Ggid := H1(gid), (ϕt,1, ϕt,2)
U← F

2
q ,

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷︸︸︷ 2︷ ︸︸ ︷ 1︷︸︸︷
k∗t := (XT

t )−1 (( G1, xtG1, Ggid, xtGgid, 06, ϕt,1G1, ϕt,2G1, 0 )),
return uskgid,(t,xt) := (gid, (t, xt),k∗t ).

Remark : Let δ ∈ Fq s.t. Ggid = δG1, then k∗t = (

2︷ ︸︸ ︷
(1, xt),

2︷ ︸︸ ︷
δ(1, xt),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ϕt,1, ϕt,2, 0 )B∗

t
.

Sig(gparam, {apkt, uskgid,(t,xt) := (gid, (t, xt),k∗t )}, m, S := (M,ρ)) :
If S := (M,ρ) accepts Γ := {(t, xt) ∈ uskgid,(t,xt)}, then compute I and {αi}i∈I

such that �1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]

∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },
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ψ
U← Fq, ψi := ψ if i ∈ I, ψi := 0 if i �∈ I for i = 1, . . . , �,

for i = 1, . . . , �, ζi
U← Fq, (βi,0), (βi,1)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
Remark : If detM �= 0, the set contains only 0�, i.e., all βi = 0 for i = 1, . . . , �.

s∗i := γi · k∗t + ψi(b∗t,3 + xtb
∗
t,4) +

∑2
ι=1

(
yi,0,ιb̃

∗
t,ι + yi,1,ιb

∗
t,2+ι

)
+ζi

(
b∗t,5 +H2(m,S)b∗t,6

)
+ r∗i ,

where r∗i
U←span〈b∗t,11, b∗t,12〉, and γi, �yi,j := (yi,j,1, yi,j,2) for j = 0, 1, are defined as

if i ∈ I ∧ ρ(i) = (t, vi), γi := αi, �yi,j := βi,j(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt , �yi,j :=
βi,j

vi − yi,j (1, yi,j) where yi,j
U← Fq \ {vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, �yi,j := βi,j(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, �yi,j :=
βi,j

vi − yi,j (1, yi,j) where yi,j
U← Fq \ {vi},

return �s∗ := (s∗1, . . . , s
∗
� ).

Ver(gparam, {apkt}, m, S := (M,ρ), �s∗) : �f
U← F

r
q, �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT,

�f ′ R← F
r
q s.t. �1 · �f ′T = 0, �s′T := (s′1, . . . , s

′
�)

T := M · �f ′T,

for i = 1, . . . , �, θi, θ
′
i, θ
′′
i , ηi

U← Fq,

if ρ(i) = (t, vi),
2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si + θivi, −θi, s′i + θ′ivi, −θ′i, θ′′i (H2(m,S),−1), 06, ηi )Bt ,

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷
if ρ(i) = ¬(t, vi), ci := ( si(vi, −1), s′i(vi, −1), θ′′i (H2(m,S),−1), 06, ηi )Bt ,

cd+1 := gs0T , return 1 if
∏�
i=1 e(ci, s

∗
i ) = cd+1, return 0 otherwise.

[Correctness] If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,	xt)},∏�
i=1 e(ci, s

∗
i ) =

∏
i∈I
(
e(ci,k∗t )γie(ci, b∗3 + xt,ιb

∗
4)
ψ
) ·∏�

i=1

∏2
ι=1 e(ci, b̃

∗
ι )
yi,0,ιe(ci, b∗2+ι)yi,1,ι

=
∏
i∈I g

αi(si+(δ+ψ)s′i)
T ·∏�

i=1 g
πβi,0si+βi,1s

′
i

T = g
P

i∈I αi(si+(δ+ψ)s′i)
T · g

P�
i=1(πβi,0si+βi,1s

′
i)

T

= gs0T , since
∑

i∈I αisi = s0 and
∑

i∈I αis
′
i =

∑�
i=1 βi,0si =

∑�
i=1 βi,1s

′
i = 0.

Comparison with the MA-ABS Scheme in [48] Okamoto-Takashima [48] gave a fully se-
cure (non-decentralized) MA-ABS scheme on the DPVS framework. In their scheme, a signature
(SIG) associated with a policy of size � consists of (�+ 2) components, (s∗0, . . . , s∗�+1), which are
categorized into three roles. The first one, s∗0 ∈ V0 (for t = 0), is for embedding/recovering
a secret, the second, (s∗1, . . . , s∗� ), for secret shares on the policy (access structure), and the
last, s∗�+1 ∈ Vd+1 (for t = d + 1), is for embedding/verifying the hashed value, H2(m,S). The
secret share components, (s∗1, . . . , s∗� ), are 7-dimensional (7 = 2 + 2 + 2 + 1), where the first
2-dimensional part is the real-encoding part (real part, for short) for shared secrets, the second
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the hidden part for semi-functional signatures, the third the signature randomness part, and the
last is the verification text (VT) randomness part.

In the DMA setting, we cannot use special (central) spaces, V0 and Vd+1. Instead, we should
distribute the roles of these spaces into the secret share components, (s∗1, . . . , s∗�). As a result,
these components become 13-dimensional (13 = 6 + 4 + 2 + 1), where the real part (hidden
part, resp.) is expanded to 6-dimensions (4-dimensions, resp.) (see the figure below). The 6-
dimensional real part consists of 2 dimensions to distribute the role of V0, 2 dimensions for secret
shares, and 2 dimensions to distribute the role of Vd+1. We also use additional 2 dimensions in
the hidden part to execute the swapping technique in the security proof.

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
SIG component (t �= 0, d+ 1)

in [48] MA-ABS
: ( real hidden SIG ran. VT ran. ),

6︷ ︸︸ ︷ 4︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
SIG component

in our DMA-ABS
: ( real hidden SIG ran. VT ran. ).

5.4 Security of the Proposed DMA-ABS

Theorem 1. The proposed DMA-ABS scheme is perfectly private.

Theorem 2. The proposed DMA-ABS scheme is unforgeable (adaptive-predicate unforgeable)
under the DLIN assumption in the random oracle model.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, E3-2 and E4, whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvDMA-ABS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
νS∑
h=1

AdvDLIN
E2-h (λ)

+
νH∑
h=1

(
AdvDLIN

E3-h-1
(λ) + AdvDLIN

E3-h-2
(λ)
)

+ AdvDLIN
E4 (λ) + ε,

where E2-h(·) := E2(h, ·), E3-h-1(·) := E3-1(h, ·), E3-h-2(·) := E3-2(h, ·), νS (resp. νH) is the maximum
number of queries to signing oracle (resp. random oracle H1), and ε := ((d+6)νS+(2d+10)νH+
3d+ 11)/q.

The (standard) DLIN assumption is given in Appendix 4. Theorems 1 and 2 are immediately
obtained from Theorems 3 and 4 (in Appendix C.4) on the proposed DMA-FS, whose proofs
are also given in Appendix C.4.

5.5 Performance

In this section, we compare the efficiency and security of the proposed DMA-ABS scheme with
the existing MA-ABS schemes in the standard model (instantiation 2 in [43] and MA-ABS
in [48]) as well as the ABS scheme in the generic group model (instantiation 3 in [43]) as a
benchmark. Since all of these schemes can be implemented over a prime order pairing group,
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the size of a group element can be around the size of Fq (e.g., 256 bits). In Table 1, � and r
represent the size of the underlying access structure matrix M for a predicate, i.e., M ∈ F

�×r
q .

For example, some predicate with 4 AND and 5 OR gates as well as 10 variables may be
expressed by a 10 × 5 matrix, and a predicate with 49 AND and 50 OR gates as well as 100
variables may be expressed by a 100 × 50 matrix (see the appendix of [38]). λ is the security
parameter (e.g., 128).

Table 1. Comparison with the Existing MA-ABS Schemes

MPR10 [43] MPR10 [43] OT11 [48] Proposed
Instantiation 3 Instantiation 2

Signature size
(# of group elts)

� + r + 2 36� + 2r + 9λ + 12 7� + 11 13�

Decentralized × × × X
Model

generic group
model

standard
model

standard
model

random oracle
model

Security full full full full

Authority Corruption Type strong strong weak weak

Assumptions CR hash DLIN DLIN and CR hash DLIN

Predicates monotone monotone non-monotone non-monotone

Sig. size example 1
(� = 10, r = 5, λ = 128)

17 1534 81 130

Sig. size example 2
(� = 100, r = 50, λ = 128)

152 4864 711 1300

6 Concluding Remarks

We presented the first DMA-ABS scheme, in which no central authority and no trusted setup
are required. An adaptively secure DMA-FE scheme with no trusted setup was also presented.

One of the most important remaining problems in this paper is to construct a DMA-ABS (and
DMA-FE) scheme in the standard model (without random oracles). It would be also important
to realize a DMA-ABS (and DMA-FE) scheme with no trusted setup in a stronger authority
corruption model (like that in [43]), and to introduce a revocation mechanism in a DMA-ABS
scheme.
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A Security of MA-ABS Schemes When Central Authority is Corrupted

Three MA-ABS schemes, which are based on single-authority ABS schemes, Schemes 1, 2 and
3, have been presented in Appendix F.1 of [43]. Here, we call them Schemes 1-MA, 2-MA and
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3-MA. In this appendix, we will show that the three MA-ABS schemes are totally broken if the
central authority (called “the signature trustee” in [43]) is corrupted.

In Schemes 1-MA and 2-MA, the role of the central authority is to issue its own signature
verification key (public key) and a CRS for the NIWI protocol. Their attribute-based signature
scheme is based on the OR-proof on attribute authorities’ signatures for attributes or the central
authority’s signature for pseudo-attributes. Therefore, if the central authority is corrupted, or
an attacker can get the signing key (secret key) of the central authority, then the attacker can
forge a signature for any policy and message, as the simulator for the security proof can do.

In Scheme 3-MA, the role of the central authority is to issue a public key including (A0, h0)
and signature verification key TV er, where a0 with A0 = ha0

0 is a secret key of the central
authority, and to issue user uid a token τ := (uid,Kbase,K0, ρ), where ρ is the authority’s
signature on uid||Kbase that is verified by TV er.

In the last paragraph of Appendix F.1, a modification based on the random oracle model
(ROM) is described such that Kbase can be a hash value of uid, i.e., Kbase := R(uid) for some
hash function R or the random oracle. By this modification, the token can be simper under ROM
such that τ := (uid,K0). Note that, however, even in this modification, the central authority
still has a secret key a0, and the secret key plays an essential role for the security.

If the central authority is corrupted, or an attacker can get the secret key, a0, then for any
policy Υ and message m, the attacker can compute Si := (Cgμ)ri (∀i ∈ [�]), Y := (Cgμ)w

(w U← Zp), P1 := h−w1 ·∏�
i=1(A1B

u(i)
1 )Mi1·ri , W := Y 1/a0 , and Pj for j = 2, . . . , t are the same as

the original ones. Here, all the notations follow those in the description of ABS.Sign in page 12
of [43]. The obtained (forged) signature, σ := (Y,W, S1, . . . , S�, P1, . . . , Pt), for (Υ,m) is verified
validly. That is, by getting the secret key of the central authority, the attacker can forge a
signature for any policy and message (even using ROM additionally).

B Anonymous Credentials

The notion of anonymous credentials (ACs) [2, 3, 15, 17, 18, 21] provides a functionality for users
to demonstrate anonymously possession of attributes, but the goals of ACs and (DMA-)ABS
differ in several points.

First of all, (DMA-)ABS is a class of signatures, which are non-interactive primitives and
can be used as transferable digital evidence, while ACs are typically (non-transferable) interac-
tive protocols to prove the possession of credentials. Nevertheless, chosen-message-attack secure
signatures can be employed to construct an interactive protocol by signing a random number
challenge from a verifier, and non-interactive ACs [3] have been proposed. So, we will focus
on the other properties of (DMA-)ABS and ACs rather than the difference in signatures and
interactive protocols. Since AC considers multiple authorities, we will compare DMA-ABS and
AC hereafter.

The first difference between DMA-ABS and ACs is the number of attributes for which an
attribute authority is responsible. In DMA-ABS, each authority can issue credentials (or keys)
to users for an unbounded number of attributes (e.g., q = O(2λ) many attributes, where λ is
the security parameter), and a user reveals only a predicate on the attributes that the user
possesses, rather than the individual attributes themselves. In contrast, an authority in ACs is
typically considered to be responsible for only a single attribute. Therefore, the public key size
increases linearly with the number of attributes in ACs, while the size in DMA-ABS increases
with the number of authorities. Camenisch and Groß [15] introduce an AC system with an
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unbounded number of attributes for an authority, but the admissible predicates are limited to
a single level of disjunctions or conjunctions of attributes, whereas more general predicates are
typically available in our DMA-ABS.

The second difference is the anonymity when a user registers with multiple authorities (or
requests multiple authorities to issue credentials/keys with attributes). In ACs the multiple
registrations of a user cannot be linked to each other, while they can be linked in DMA-ABS
schemes. For example, in this paper a user provides the identity of the user to multiple author-
ities. However, this information in the registration (key-issuing) stage is the only information
that DMA-ABS leaks, and no privacy is revealed after the registration stage, e.g., even collud-
ing authorities cannot identify the user when a user proves some predicate on the credentials in
DMA-ABS. This provides sufficient anonymity in many applications.

As a summary, ACs and (DMA-)ABS aim at different goals: ACs target very strong anonymity
even in the registration phase, whereas under less demanding anonymity requirements in the
registration phase, (DMA-)ABS aims to achieve more expressive functionalities, more efficient
constructions and new applications. In addition, (DMA-)ABS is a signature scheme and a simpler
primitive compared with ACs.

C Decentralized Multi-Authority Functional Signatures

C.1 Definitions of DMA-FS

Definition 10 (Decentralized Multi-Authority FS : DMA-FS). A decentralized multi-
authority FS scheme consists of the following algorithms/protocols.

GSetup,ASetup,AttrGen are the same as those for DMA-ABS in Definition 7.
Sig This is a randomized algorithm. A user signs message m with claim-predicate (access struc-

ture) S := (M,ρ), only if there is a set of attributes Γ such that S accepts Γ , the user has
obtained a set of keys {uskgid,(t,	xt) | (t, �xt) ∈ Γ} from the attribute authorities. Then sig-

nature σ can be generated using Sig(gparam, {apkt, uskgid,(t,	xt)}, m, S), where uskgid,(t,	xt)
R←

AttrGen(gparam, t, askt, gid, �xt).
Ver To verify signature σ on message m with claim-predicate (access structure) S, using a set

of public keys for relevant authorities {apkt}, a user runs Ver(gparam, {apkt},m,S, σ) which
outputs boolean value accept := 1 or reject := 0.

C.2 Security Definition of DMA-FS

The definition of perfect privacy for the decentralized multi-authority FS is essentially the same
as that of the ABS given in [48].

Definition 11 (Perfect Privacy of DMA-FS). A DMA-FS scheme is perfectly private,
if, for all gparam

R← GSetup(1λ), for all (askt, apkt)
R← ASetup(gparam, t) (1 ≤ t ≤ d), all

messages m, all attribute sets Γ1 associated with gid1 and Γ2 associated with gid2, all signing
keys {uskt,1

R← AttrGen(gparam, t, askt, gid1, �xt,1)}(t,	xt,1)∈Γ1
and {uskt,2

R← AttrGen(gparam, t, askt,
gid2, �xt,2)}(t,	xt,2)∈Γ2

, all access structures S such that S accepts Γ1 and S accepts Γ2, the distribu-
tions Sig(gparam, {apkt, uskt,1 | (t, �xt,1) ∈ Γ1},m,S) and Sig(gparam, {apkt, uskt,2 | (t, �xt,2) ∈
Γ2},m,S) are equal.
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For a DMA-FS scheme with perfect privacy, we define algorithm AltSig(gparam, {apkt, askt},
m,S) with S and master key askt instead of Γ and {uskgid,(t,	xt)}(t,	xt)∈Γ : First, generate uskgid,(t,	xt)
R← AttrGen(gparam, t, askt, gid, �xt) for arbitrary Γ := {(t, �xt)} which satisfies S, then σ

R←
Sig(gparam, {apkt, uskgid,(t,	xt)},m,S). Return σ.

We let S the set of authorities. We assume each attribute is assigned to one authority.

Definition 12 (Unforgeability of DMA-FS). For an adversary, we define AdvDMA-FS,UF
A (λ)

to be the success probability in the following experiment for any security parameter λ. A DMA-FS
scheme is existentially unforgeable if the success probability of any polynomial-time adversary is
negligible:

1. Run gparam
R← GSetup(1λ) and give gparam to the adversary A. For authorities t ∈ T , run

(askt, apkt)
R← ASetup(gparam) and give {apkt}t∈T to A. Adversary A specifies a set T ′ ⊂ T

of corrupt attribute authorities, and gets {askt}t∈T ′.
2. The adversary A is given access to oracles AttrGen and AltSig over S := T \ T ′.
3. At the end, the adversary outputs (m′,S′, σ′).

Let Γgidi
:= {(t ∈ S, �xt)} (i = 1, . . . , νH) queried to the AttrGen oracle with gidi. We say

the adversary succeeds if (m′,S′) was never queried to the AltSig oracle, S
′ does not accept

Γgidi
with any gidi (i = 1, . . . , νH), queried to the AttrGen oracle, S

′ is specified over S, and
Ver(pk,m′,S′, σ′) = 1.

C.3 Proposed DMA-FS Scheme

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or ρ(i) = ¬(t, �v),
where ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is
injective for S := (M,ρ) with signature σ = σS. We will show how to relax the restriction in
Appendix F. In the description of the scheme, we assume that input vector �xt := (xt,1, . . . , xt,nt)
is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one by
(1/xt,1) · �xt assuming that xt,1 is non-zero). In addition, we assume that input vector �vi :=
(vi,1, . . . , vi,nt) satisfies that vi,nt �= 0. We refer to Section 1.5 for notations on DPVS, e.g.,
(x1, . . . , xN )B, (y1, . . . , yN )B∗ for xi, yi ∈ Fq, and �et,j . For matrix X := (χi,j)i,j=1,...,N ∈ F

N×N
q

and element v in N -dimensional V, X(v) denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps
{φi,j} (Definition 2). Similarly, for matrix (ϑi,j) := (X−1)T, (X−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v).

It holds that e(X(x), (X−1)T(y)) = e(x,y) for any x,y ∈ V.

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), H1 : {0, 1}∗ → G; H2 : {0, 1}∗ → Fq;

return gparam := (paramG, H1, H2).
Remark : Given gparam, the following values can be computed by anyone and shared
by all parties:
G0 := H1(0λ) ∈ G, G1 := H1(0λ−1, 1) ∈ G, G2 := H1(0λ−2, 1, 0) ∈ G, gT := e(G0, G1).

ASetup(gparam, t) : paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 5nt + 3, paramG),

Xt
U← GL(5nt + 3,Fq),

bt,ι := Xt((0ι−1, G0, 05nt+3−ι)), b∗t,ι := (XT
t )−1((0ι−1, G1, 05nt+3−ι)) for ι = 1, . . . , 5nt + 3,

18



nt︷ ︸︸ ︷ 3nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
b̃∗t,ι := (XT

t )−1 (( 0ι−1, G2, 0nt−ι, 03nt+2, ϕ̃t,ι,1G1, .., ϕ̃t,ι,ntG1, 0 )),

where �̃ϕt,ι := (ϕ̃t,ι,1, . . . , ϕ̃t,ι,nt)
U← F

nt
q , for ι = 1, . . . , nt,

Bt := (bt,1, . . . , bt,5nt+3), B
∗
t := (b∗t,1, . . . , b

∗
t,5nt+3), B̂t := (bt,1, . . . , bt,2nt+2, bt,5nt+3),

B̂
∗
t := (b̃∗t,1, . . . , b̃

∗
t,nt

, b∗t,nt+1, . . . , b
∗
t,2nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+2),

return askt := Xt, apkt := (paramVt
, B̂t, B̂

∗
t ).

Remark : Let π ∈ Fq s.t. G2 = πG1, then b̃∗t,ι = (

nt︷︸︸︷
π�et,ι,

3nt+2︷ ︸︸ ︷
03nt+2,

nt︷︸︸︷
�̃ϕt,ι ,

1︷︸︸︷
0 )B∗

t
for ι = 1, .., nt.

AttrGen(gparam, t, askt, gid, �xt := (xt,1, . . . , xt,nt) ∈ F
nt
q \ {�0} such that xt,1 := 1) :

Ggid := H1(gid), �ϕt := (ϕt,1, . . . , ϕt,nt)
U← F

nt
q ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷
k∗t := (XT

t )−1 (( xt,1G1, .., xt,ntG1, xt,1Ggid, .., xt,ntGgid, 02,
2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

02nt , ϕt,1G1, .., ϕt,ntG1, 0 )),
return uskgid,(t,	xt) := (gid, (t, �xt),k∗t ).

Remark : Let δ ∈ Fq s.t. Ggid = δG1, then k∗t = (

nt︷︸︸︷
�xt ,

nt︷︸︸︷
δ�xt ,

2︷︸︸︷
02 ,

2nt︷︸︸︷
02nt

nt︷︸︸︷
�ϕt , 0 )B∗

t
.

Sig(gparam, {apkt, uskgid,(t,	xt) := (gid, (t, �xt),k∗t )}, m, S := (M,ρ)) :
If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,	xt)}, then compute I and {αi}i∈I

such that �1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]

∨ [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt �= 0] },
ψ

U← Fq, ψi := ψ if i ∈ I, ψi := 0 if i �∈ I for i = 1, . . . , �,

for i = 1, . . . , �, ζi
U← Fq, (βi,0), (βi,1)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
s∗i := γi · k∗t +

∑nt
ι=1

(
yi,0,ιb̃

∗
t,ι + (ψixt,ι+yi,1,ι)b∗t,nt+ι

)
+ζi

(
b∗t,2nt+1 +H2(m,S)b∗t,2nt+2

)
+ r∗i ,

where r∗i
U←span〈b∗t,4nt+3, .., b

∗
t,5nt+2〉, and γi, �yi,j :=(yi,j,1, .., yi,j,nt) for j = 0, 1,

are defined as
if i ∈ I ∧ ρ(i) = (t, �vi), γi := αi, �yi,j

U← {�yi,j | �yi,j · �vi = 0 ∧ yi,j,1 = βi,j},
if i ∈ I ∧ ρ(i) = ¬(t, �vi), γi := αi/(�vi · �xt), �yi,j U← {�yi,j | �yi,j · �vi = βi,j},
if i �∈ I ∧ ρ(i) = (t, �vi), γi := 0, �yi,j

U← {�yi,j | �yi,j · �vi = 0 ∧ yi,j,1 = βi,j},
if i �∈ I ∧ ρ(i) = ¬(t, �vi), γi := 0, �yi,j

U← {�yi,j | �yi,j · �vi = βi,j},
return �s∗ := (s∗1, . . . , s

∗
� ).

Ver(gparam, {apkt}, m, S := (M,ρ), �s∗) :

�f
U← F

r
q, �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT,

19



�f ′ R← F
r
q s.t. �1 · �f ′T = 0, �s′T := (s′1, . . . , s

′
�)

T := M · �f ′T,
for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ F
nt
q \ {�0} such that vi,nt �= 0), θi, θ

′
i, θ
′′
i , ηi

U← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷
ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m,S),−1), 02nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi), θ′′i , ηi
U← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷
ci := ( si�vi, s′i�vi, θ′′i (H2(m,S),−1), 02nt , 0nt , ηi )Bt ,

cd+1 := gs0T , return 1 if
∏�
i=1 e(ci, s

∗
i ) = cd+1, return 0 otherwise.

[Correctness] If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,	xt)},∏�
i=1 e(ci, s

∗
i ) =

∏
i∈I e(ci,k

∗
t )
γi ·∏�

i=1

∏nt
ι=1 e(ci, b̃

∗
ι )
yi,0,ιe(ci, b∗nt+ι)

(ψixt,ι+yi,1,ι)

=
∏
i∈I g

αi(si+(δ+ψ)s′i)
T ·∏�

i=1 g
πβi,0si+βi,1s

′
i

T = g
P

i∈I αi(si+(δ+ψ)s′i)
T · g

P�
i=1(πβi,0si+βi,1s

′
i)

T

= gs0T , since
∑

i∈I αisi = s0 and
∑

i∈I αis
′
i =

∑�
i=1 βi,0si =

∑�
i=1 βi,1s

′
i = 0.

C.4 Security of the Proposed DMA-FS

Theorem 3. The proposed DMA-FS scheme is perfectly private.

Proof. Before starting the proof, we first define function AltSig specified in the proposed DMA-
FS scheme as follows:

AltSig(gparam, {apkt, askt}, m, S)

δ̃
U← Fq, (ξi), (ξ′i)

U← {(ξ1, . . . , ξ�) |
∑�

i=1 ξiMi = �1},
for i = 1, . . . , �,

if ρ(i) = (t, �vi),

then (�zi,0, �zi,1)
U← {(�zi,0, �zi,1) | �zi,0 · �vi = �zi,1 · �vi = 0, zi,0,1 = ξi, zi,1,1 = δ̃ξ′i },

if ρ(i) = ¬(t, �vi),

then (�zi,0, �zi,1)
U← {�zi,0, �zi,1) | �zi,0 · �vi = ξi, �zi,1 · �vi = δ̃ξ′i },

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1)

2nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
s∗i := ( �zi,0, �zi,1, ζi(1, H2(m,S)), 02nt , �σi, 0 )B∗

t
where ζi

U← Fq, �σi
U← F

nt
q ,

return �s∗ := (s∗1, . . . , s
∗
�).

Remark: Theorem 3 implies that AltSig defined above is equivalent to AltSig defined just after
Definition 11, and this justifies the notations.

We now start the proof. This theorem is true if the following statement is true, where AltSig
is defined above:

For all gparam
R← GSetup(1λ), (askt, apkt)

R← ASetup(gparam, t), all messages m, all attribute
sets Γ associated with gid, all signing keys {uskgid,(t,	xt)

R← AttrGen(gparam, t, askt, gid, �xt)}, all
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access structures S such that S accepts Γ := {(t, �xt)}, the distributions of Sig(gparam, {apkt,
uskgid,(t,	xt)}, m, S) and AltSig(gparam, {apkt, askt}, m, S) are equal.

In the proposed DMA-FS scheme, (s∗1, . . . , s∗�)
R← Sig(gparam, {apkt, uskgid,(t,	xt)}, m, S) are

expressed by

s∗i := (�zi,0, �zi,1, ζi(1, H2(m,S)), 02nt , �σi, 0)B∗
t

(i = 1, . . . , �+ 1), where
for 1 ≤ i ≤ �,

if i ∈ I ∧ ρ(i) = (t, �vi), �zi,0 = αi�xt + π�yi,0 �zi,1 = αi(δ + ψ)�xt + �yi,1

where �yi,j
U← {�yi,j | �yi,j · �vi = 0 ∧ yi,j,1 = βi,j} for j = 0, 1,

if i ∈ I ∧ ρ(i) = ¬(t, �vi), �zi,0 = (αi/(�vi · �xt))�xt + π�yi,0,

�zi,1 = (αi/(�vi · �xt))(δ + ψ)�xt + �yi,1,

where �yi,j
U← {�yi,j | �yi,j · �vi = βi,j} for j = 0, 1,

if i �∈ I ∧ ρ(i) = (t, �vi), �zi,0 = π�yi,0, �zi,1 = �yi,1,

where �yi,j
U← {�yi,j | �yi,j · �vi = 0 ∧ yi,j,1 = βi,j} for j = 0, 1,

if i �∈ I ∧ ρ(i) = ¬(t, �vi), �zi,0 = π�yi,0, �zi,1 = �yi,1,

where �yi,j
U← {�yi,j | �yi,j · �vi = βi,j} for j = 0, 1,

Let �α′ := (α′1, . . . , α′�) such that α′i := αi if i ∈ I and α′i := 0 if i �∈ I, and δ̃ := δ+ψ, then it can
be rephrased by

for 1 ≤ i ≤ �,
(�zi,0, �zi,1)

U← {(�zi,0, �zi,1) | �zi,0 · �vi = �zi,1 · �vi = 0

∧ zi,0,1 = α′i + πβi,0, zi,1,1 = δ̃α′i + βi,1} if ρ(i) = (t, �vi),

(�zi,0, �zi,1)
U← {(�zi,0, �zi,1) | �zi,0 · �vi = α′i + πβi,0, �zi,1 · �vi = δ̃α′i + βi,1} if ρ(i) = ¬(t, �vi),

where δ̃ is uniformly and independently distributed in Fq for each signature generation.

On the other hand, (s∗1, . . . , s∗�)
R← AltSig(gparam, {apkt, askt}, m, S) are expressed by

s∗i := (�zi,0, �zi,1, ζi(1, H2(m,S)), 02nt , �σi, 0)B∗
t

where
for i = 1, . . . , �,

(�zi,0, �zi,1)
U← {(�zi,0, �zi,1) | �zi,0 · �vi = �zi,1 · �vi = 0, zi,0,1 = ξi, zi,1,1 = δ̃ξ′i }, if ρ(i) = (t, �vi),

(�zi,0, �zi,1)
U← {�zi,0, �zi,1) | �zi,0 · �vi = ξi, �zi,1 · �vi = δ̃ξ′i }, if ρ(i) = ¬(t, �vi).

For any {α′i} such that
∑�

i=1 α
′
iMi = �1 and π ∈ F

×
q , the distributions of(

(α′1 + πβ1,0, δ̃α
′
1 + β1,1), . . . , (α′� + πβ�,0, δ̃α

′
� + β�,1)

)
s.t. δ̃

U← Fq, (βi,0), (βi,1)
U← {(βi) |

∑�
i=1 βiMi = �0} and

((ξ1, δ̃ξ′1), . . . , (ξ�, δ̃ξ′�))

s.t. δ̃
U← Fq, (ξi), (ξ′i)

U← {(ξi) |
∑�

i=1 ξiMi = �1 },
are equivalent. Therefore, distributions Sig(gparam, {apkt, uskgid,(t,	xt)}, m, S) and AltSig(gparam,
{apkt, askt}, m, S) are equivalent. ��
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Theorem 4. The proposed DMA-FS scheme is unforgeable (adaptive-predicate unforgeable) un-
der the DLIN assumption in the random oracle model.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, E3-2 and E4, whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvDMA-FS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
∑νS

h=1 AdvDLIN
E2-h (λ)

+
∑νH

h=1

(
AdvDLIN

E3-h-1
(λ) + AdvDLIN

E3-h-2
(λ)
)

+ AdvDLIN
E4 (λ) + ε,

where E2-h(·) := E2(h, ·), E3-h-1(·) := E3-1(h, ·), E3-h-2(·) := E3-2(h, ·), νS (resp. νH) is the maximum
number of queries to signing oracle (resp. random oracle H1), and ε := ((d+6)νS+(2d+10)νH+
3d+ 11)/q.

Proof Outline of Theorem 4: As mentioned in Section 5.2, secret signing keys and verification
texts in our DMA-FS are the counterparts of secret decryption keys and ciphertexts in DMA-
FE. Based on this correspondence, we follow the dual system encryption methodology proposed
by Waters [58], at the top level of strategy of the unforgeability proof. Signatures have two
forms, normal and semi-functional, secret keys have three forms, normal, pre-semi-functional
and semi-functional, and verification texts (ciphertexts) have four forms, normal, temporal, pre-
semi-functional and semi-functional (see Table 2). The real system uses only normal forms, and
other forms are used only in a sequence of security games for the security proof. (Additionally,
verification texts have non-functional form. See below.) In addition to verification texts, secret
keys and signatures, a part of public key, b̃∗t,ι, has two forms, normal and semi-functional.

We employ Game 0 through Game 5. In Game 1, the verification text is changed to temporal
form. When at most νS signature queries are issued by an adversary, there are νS game changes
from Game 1 (Game 2-0), Game 2-1 through Game 2-νS . In Game 2-h, the first h (including the
h-th queried) signatures are changed to semi-functional form, while the remaining signatures
are normal.

Then, when at most νH random oracle queries for H1 are issued by an adversary, there are
4νH game changes from Game 2-νS (Game 3-0-4), Game 3-1-1, Game 3-1-2, Game 3-1-3, Game
3-1-4 through Game 3-νH -1, Game 3-νH -2, Game 3-νH -3, Game 3-νH -4.

In Game 3-h-1, the verification text is changed to pre-semi-functional form, and keys for
the first h − 1 random-oracle queried global identities, gid, are semi-functional form, while the
remaining keys are normal. In Game 3-h-2, key for the h-th global identity is changed to pre-
semi-functional form while the remaining keys and the verification text is the same as in Game
3-h-1. In Game 3-h-3, the verification text is changed to semi-functional form while all the
queried keys are the same as in Game 3-h-2. In Game 3-h-4, key for the h-th global identity is
changed to semi-functional form while the remaining keys and the verification text is the same
as in Game 3-h-3. At the end of the Game 3 sequence, in Game 3-νH -4, all the queried keys are
semi-functional forms (and the verification text is semi-functional form). In Game 4, a part of
authority public key, b̃∗t,ι, are changed to semi-functional form. In Game 5, the verification text is
changed to non-functional form since all the queried signatures, keys, and b̃∗t,ι are semi-functional
form. In the final game, advantage of the adversary is at most 1/q.

We summarize these changes in Table 2, where shaded parts indicate the verification text,
keys, signatures, public keys which were changed in a game from the previous game.

As usual, we prove that the advantage gaps between neighboring games are negligible.
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Table 2. Outline of Game Descriptions: In the table, norm., temp., pre-s.f., s.f., and non-f. stand for normal,
temporal, pre-semi-functional, semi-functional, and non-functional, respectively.

chalk. queried signatures queried keys eb∗
t,ι

CT 1 · · · h − 1 h h + 1 · · · νS 1 · · · h − 1 h h + 1 · · · νH

Game 0 norm. norm. norm. norm.

1 temp. norm. norm. norm.

2-1 temp. s.f. norm. norm. norm.

...

2-h temp. s.f. s.f. norm. norm. norm.

...

2-νS temp. s.f. s.f. norm. norm.

3-1-1 pre-s.f. s.f. norm. norm.

3-1-2 pre-s.f. s.f. pre-s.f. norm. norm.

3-1-3 s.f. s.f. pre-s.f. norm. norm.

3-1-4 s.f. s.f. s.f. norm. norm.

...

3-h-1 pre-s.f. s.f. s.f. norm. norm.

3-h-2 pre-s.f. s.f. s.f. pre-s.f. norm. norm.

3-h-3 s.f. s.f. s.f. pre-s.f. norm. norm.

3-h-4 s.f. s.f. s.f. s.f. norm. norm.

...

3-νH -4 s.f. s.f. s.f. s.f. norm.

4 s.f. s.f. s.f. s.f.

5 non-f. s.f. s.f. s.f.

We denote verification text by �c := (c1, . . . , c�), and keys by �k∗ := (k∗t )(t,	xt)∈Γ in this proof
outline. In addition, we ignore a negligible factor in the (informal) descriptions of this proof
outline. For example, we say “A is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible
in security parameter λ.

A normal secret key, �k∗ norm (with attributes (t, �xt)), is expressed by Eq. (2), and a normal
signature, �s∗ norm (with access structure S) is expressed by Eq. (4), which are the correct forms
of the secret key and signatures of the proposed DMA-FS scheme, respectively. Similarly, a
normal verification text (with S), �c norm, is expressed by Eq. (5), and normal form of (a part
of) public key b̃ norm

t,ι is given in Eq. (3). A temporal verification text is expressed by Eq. (6). A
semi-functional signature, �s semi, is expressed by Eq. (7). A pre-semi-functional verification text,
�c pre-semi, is expressed by Eq. (8) and a pre-semi-functional secret key, �k∗ pre-semi, is expressed by
Eq. (9). A semi-functional verification text, �c semi, is expressed by Eq. (10) and a semi-functional
secret key, �k∗ semi, is expressed by Eq. (11). A non-functional verification text, �c non-f , is expressed
by Eq. (13).
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To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β U← {0, 1} of Problem 1. We then show that
the distribution of the secret keys and verification text (in the final step) used by the simulator
is equivalent to those of Game 0 when β = 0 and those of Game 1 when β = 1. That is, the
advantage of Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma 7).
The advantage of Problem 1 is proven to be equivalent to that of the DLIN assumption (Lemma
1).

The advantage gap between Games 2-(h−1) and 2-h is shown to be bounded by the advantage
of Problem 2’, i.e., advantage of the DLIN assumption (Lemmas 8 and 3).

We then show that Game 3-(h− 1)-4 can be conceptually changed to Game 3-h-1 (Lemma
9), by using the fact that parts of bases, (bt,2nt+3, . . . , bt,4nt+2) and (b∗t,2nt+3, . . . , b

∗
t,4nt+2), are

unknown to the adversary. In particular, when h = 1, it means that Game 1 can be conceptually
changed to Game 3-1-1. When h ≥ 2, we notice that normal key and semi-functional verifi-
cation text, (�k∗ norm, �csemi), are equivalent to normal key and pre-semi-functional verification
text, (�k∗ norm, �cpre-semi), except that (0-)shared secret {ri}i=1,...,� with r0 = 0 is used in �cpre-semi

instead of ordinary shared secret {r′′i }i=1,...,� with r′′0
U← Fq for some coefficient vector in �csemi.

This change of coefficient vectors can be done conceptually since zero vector 0nt is used for the
corresponding part in �k∗ norm.

The advantage gap between Games 3-h-1 and 3-h-2 is shown to be bounded by the advantage
of Problem 2, i.e., advantage of the DLIN assumption (Lemmas 10 and 2).

We then show that Game 3-h-2 can be conceptually changed to Game 3-h-3 (Lemma 11),
where we use the fact that all queried keys {(t, �xt)} do not satisfy S that adversary out-
put. Here, we notice that pre-semi-functional key and pre-semi-functional verification text,
(k∗ pre-semi, cpre-semi), are equivalent to pre-semi-functional key and semi-functional challenge ci-
phertext, (k∗ pre-semi, csemi), except that shared secret {r′′i }i=1,...,� with r′′0

U← Fq is used in csemi

instead of {ri}i=1,...,� with r0 = 0 for some coefficient vector in cpre-semi. Therefore, this conceptual
change is proved using Lemma 6.

The advantage gap between Games 3-h-3 and 3-h-4 is similarly shown to be bounded by the
advantage of Problem 3, i.e., advantage of the DLIN assumption (Lemmas 12 and 5).

We then show that the advantage gap between Games 3-νH -4 and 4 is bounded by the
advantage of Problem 2”, i.e., advantage of the DLIN assumption (Lemmas 13 and 4).

We then show that Game 4 can be conceptually changed to Game 5 (Lemma 14) by using the
fact that parts of bases, (bt,3nt+3, . . . , bt,4nt+2) and (b∗t,1, . . . , b∗t,nt

), are unknown to the adversary.
Proof : To prove Theorem 4, we consider the following (νS + 4νH + 4) games. In Game 0, a
part framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0 : Original security game. That is, k
(h)∗
t ∈ uskgidh,(t,	xt), which is a reply to AttrGen

query for the h-th global identity, (gidh, (t, �xt)) with t ∈ S for h = 1, . . . , νH is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t := ( �x

(h)
t , δ(h)�x

(h)
t , 02, 02nt , �ϕ

(h)
t , 0 )B∗

t
,

(2)
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where δ(h) U← Fq, �ϕ
(h)
t

U← F
nt
q , and {b̃∗t,ι}ι=1,...,nt , which is a part of apkt is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
b̃∗t,ι := ( π�et,ι, 0nt , 02, 0nt , 0nt , �̃ϕt,ι, 0 )B∗

t
for ι = 1, . . . , nt,

(3)

where π
U← Fq, �̃ϕt,ι

U← F
nt
q , and {s(h)∗

i }i=1,...,�, which is a reply to the h-th AltSig query for
(m(h),S(h)) with S

(h) := (M,ρ) for h = 1, . . . , νS is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
s

(h)∗
i := ( �w

(h)
i , �w

′(h)
i , ζi(1, H2(m(h),S(h))), 0nt , 0nt , �σi, 0 )B∗

t
,

(4)

where δ̃, ζi
U← Fq, �σi

U← F
nt
q , (ξi), (ξ

′
i)

U← {(ξ1, . . . , ξ�) |
∑�

i=1 ξiMi = �1}, and for i = 1, . . . , �, if

ρ(i) = (t, �vi), then (�w(h)
i , �w

′(h)
i ) U← {(�wi, �w′i) | �wi · �vi = �w′i · �vi = 0, the 1-st coordinate of �wi =

ξi, the 1-st coordinate of �w′i = δ̃ξ′i }, if ρ(i) = ¬(t, �vi), then (�w(h)
i , �w

′(h)
i ) U← {(�wi, �w′i) | �wi · �vi =

ξi, �w′i · �vi = δ̃ξ′i },
and the verification text {ci}i=1,...,�, cd+1, for (m′,S′) with S

′ := (M,ρ), which is used for verifi-
cation of the output of the adversary A at the end of the game is:

if ρ(i) = (t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

ci := ( si �et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m′,S′),−1), 02nt , 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( si �vi, s
′
i�vi, θ

′′
i (H2(m′,S′),−1), 02nt , 0nt , ηi )Bt ,

cd+1 := gs0T ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where �f U← F
r
q,
�f ′ U← {�f ′ ∈ F

r
q | �1 · �f ′T = 0}, s0 := �1 · �fT, si := Mi · �fT, s′i := Mi · �f ′T, θi, θ′i, θ′′i , ηi U←

Fq.

Game 1 : Same as Game 0 except that (a part of) the verification text, {ci}i=1,...,�, for (m′,S′)
with S

′ := (M,ρ), which is used for verification of the output of A at the end of the game is:

if ρ(i) = (t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m′,S′),−1), 0nt , �zi , 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, θ
′′
i (H2(m′,S′),−1), 0nt , �zi , 0nt , ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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where �zi
U← F

nt
q , and the other variables are generated as in Game 0.

Game 2-h (h = 1, . . . , νS): Game 2-0 is Game 1. Game 2-h is the same as Game 2-(h− 1)
except that the reply {s(h)∗

i }i=1,...,� to the h-th AltSig query for (m(h),S(h)) is:
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

s
(h)∗
i := ( �w

(h)
i , �w

′(h)
i , ζi(1, H2(m(h),S(h))), 0nt , �u

(h)
i , �σi, 0 )B∗

t
,

(7)

where �u(h)
i

U← F
nt
q , and the other variables are generated as in Game 2-(h− 1).

Game 3-h-1 (h = 1, . . . , νH) : Game 3-0-4 is Game 2-νS . Same as Game 3-(h− 1)-4 except
that (a part of) the verification text, ci, for (m′,S′) with S

′ := (M,ρ) in the final step:
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷

If ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m′,S′),−1),
2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

(ri�et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi , 0nt , ηi )Bt ,

If ρ(i) = ¬(t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

ci := ( si�vi, s′i�vi, θ
′′
i (H2(m′,S′),−1), ri�vi · Zt, r′i�vi , 0nt , ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where �g U← {�g ∈ F
r
q | �1 · �gT = 0}, �g′ U← F

r
q, ri := Mi · �gT, r′i := Mi · �g′T, Zt U← GL(nt,Fq), ωi, ω′i

U←
Fq, and the other variables are generated as in Game 3-(h− 1)-4.

Game 3-h-2 (h = 1, . . . , νH): Game 3-h-2 is the same as Game 3-h-1 except that the reply
k

(h)∗
t ∈ uskgidh,(t,	xt) to AttrGen query for the h-th global identity gidh with t ∈ S is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t := ( �x

(h)
t , δ(h)�x

(h)
t , 02, τ (h)�x

(h)
t · Ut , 0nt �ϕ

(h)
t , 0 )B∗

t

(9)

where τ (h) U← Fq, Ut := (Z−1
t )T for Zt

U← GL(nt,Fq) used in Eq. (8), and the other variables are
generated as in Game 3-h-1.

Game 3-h-3 (h = 1, . . . , νH) : Same as Game 3-h-2 except that (a part of) the verification
text, ci, for (m′,S′) with S

′ := (M,ρ) in the final step:
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷

if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m′,S′),−1),
2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

( r′′i �et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

ci := ( si�vi, s′i�vi, θ
′′
i (H2(m′,S′),−1), r′′i �vi · Zt, r′i�vi, 0nt , ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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where �g U← F
r
q, r
′′
i := Mi · �gT, and the other variables are generated as in Game 3-h-2.

Game 3-h-4 (h = 1, . . . , νH) : Game 3-h-4 is the same as Game 3-h-3 except that the reply
k

(h)∗
t ∈ uskgidh,(t,	xt) to AttrGen query for the h-th global identity gidh with t ∈ S is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t = ( �x

(h)
t , δ(h)�x

(h)
t , 02, 0nt , τ ′(h)�x(h)

t , �ϕ
(h)
t , 0 )B∗

t

(11)

where τ ′(h) U← Fq, and the other variables are generated as in Game 3-h-3.

Game 4: Game 4 is the same as Game 3-νH -4 except that a part of apkt, {b̃∗t,ι}ι=1,...,nt , for
t ∈ S is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
b̃∗t,ι := ( π�et,ι, 0nt , 02, 0nt , η�et,ι , �̃ϕt,ι, 0 )B∗

t
,

(12)

where η U← Fq, and the other variables are generated as in Game 3-νH -4.

Game 5 : Game 5 is the same as Game 4 except that (a part of) the verification text,
{ci}i=1,...,�, cd+1, for (m′,S′) with S

′ := (M,ρ) in the final step is:

If ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ F
nt
q \ {�0}) (vi,nt �= 0),

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷
ci := ( s̃i �et,1 + θi�vi, s′i�et,1 + θ′i�vi, θ′′i (H2(m′,S′),−1),

2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷
(ri�et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi )Bt ,

If ρ(i) = ¬(t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

ci := ( s̃i �vi, si�vi, θ′′i (H2(m′,S′),−1), ri�vi · Zt, r′i�vi, 0nt , ηi )Bt ,

cd+1 := g
s0
T ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where �f U← F
r
q, s̃i := Mi · �fT and s0

U← Fq. The other variables are generated as in Game 4. Here,
we note that s0 is independent from all the other variables.

Let Adv
(0)
A (λ) be AdvDMA-FS,UF

A (λ) in Game 0, and Adv
(1)
A (λ),Adv

(2-h)
A (λ),Adv

(3-h-1)
A (λ), . . . ,

Adv
(3-h-4)
A (λ),Adv

(4)
A (λ),Adv

(5)
A (λ) be the advantage of A in Game 1, 2-h, 3-h-1, . . . , 3-h-4, 4, 5,

respectively.
It is obtained that Adv

(5)
A (λ) = 1/q by Lemma 15. We will show eight lemmas (Lemmas

7–14) that evaluate the gaps between pairs of Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h)
A (λ) for h = 1, . . . , νS ,

Adv
(3-h-1)
A (λ), . . . ,Adv

(3-h-4)
A (λ) for h = 1, . . . , νH , Adv

(4)
A (λ) and Adv

(5)
A (λ). From these lemmas

and Lemmas 1, 2 and 5, we obtain AdvDMA-FS,UF
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣ +∑νS
h=1

∣∣∣Adv
(2-(h−1))
A (λ)− Adv

(2-h)
A (λ)

∣∣∣+∑νH
h=1

∣∣∣Adv
(3-(h−1)-4)
A (λ)− Adv

(3-h-1)
A (λ)

∣∣∣+
27



∑3
ι=1

∑νH
h=1

∣∣∣Adv
(3-h-ι)
A (λ)− Adv

(3-h-(ι+1))
A (λ)

∣∣∣+∣∣∣Adv
(3-νH -4)
A (λ)− Adv

(4)
A (λ)

∣∣∣+∣∣∣Adv
(4)
A (λ)− Adv

(5)
A (λ)

∣∣∣
+Adv

(5)
A (λ) ≤ AdvP1

B1
(λ) +

∑νS
h=1 AdvP2

B2-h
(λ) +

∑νH
h=1

(
AdvP2

B3-h-1
(λ) + AdvP3

B3-h-1
(λ)
)

+ AdvP2
B4

(λ) +
((d+1)νS+2dνH+2d+1)/q ≤ AdvDLIN

E1 (λ)+
∑νS

h=1 AdvDLIN
E2-h (λ)+

∑νH
h=1

(
AdvDLIN

E3-h-1
(λ) + AdvDLIN

E3-h-2
(λ)
)
+

AdvDLIN
E4 (λ)+ ((d+6)νS +(2d+10)νH +3d+11)/q. This completes the proof of Theorem 4. ��

C.5 Structure of Reductions for Theorem 4

Game 
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Game
0

Game 
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…

~~~~

Problem 1

Game 
2-vS

~~

Problem 2’

DLIN

Game
3-1-2

Game 
3-vH-3

Game 3-0-4

=

…

~~

…

~~~~

Game 
3-vH-2

Game 
3-vH-1

= =

Game 
3-vH-4

==

Game
3-1-4

Game
4

Game
3-1-3

~~ =
Type 2Type 1 Type 3Type 1 Type 2

Problem 2 Problem 3 Problem 2 Problem 3

= =

Problem 2 Problem 2

DLIN

Game
5

Problem 2’’

~~

DLIN

Fig. 1. Structure of Reductions

In Figure 1, an equality between neighboring games indicates that the left-hand game can
be conceptually (information-theoretically) changed to the right-hand game. An approximate
equality between them indicates that the gap between them is upper-bounded by the advantage
of the problem indicated. The information-theoretical changes have three types: Type 1 is a
(conceptual) linear transformation inside a subspace for a verification text with preserving the
secret key and signature coefficients on the subspace, Type 2 is a conceptual coefficients change
from the adversary’s view through the key query limitation in the security definition (Definition
12), and Type 3 is a (conceptual) linear transformation across subspaces. The DLIN Problem is
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defined in Definition 6, and Problems 1, 2, 2’, 2”, 3 are defined in Definitions 13, 14, 15, 16, 17,
respectively.

One highlight in the game description is a combination of Type 2 conceptual change and
computational one by Problem 3, i.e., the transition from Game 3-h-2 to 3-h-3, and to 3-h-4. The
type 2 transformation changes a shared secret {ri}i=1,...,� with r0 = 0 on the first block of the
hidden part, i.e., span〈bt,2nt+3, . . . , bt,3nt+2〉 to a uniformly generated shared secret {ri}i=1,...,�

with r0
U← Fq, which is a local target of the h-th part of the Game 3 sequence. Problem 3 then

swaps the result on the first block of the hidden part of the h-th gid’s secret key to that on the
second block of the hidden part, i.e., span〈b∗t,3nt+3, . . . , b

∗
t,4nt+2〉. This change prepares the next

(h + 1)-st part of the Game 3 sequence, and at the same time, the h-th result remains in the
h-th gid’s secret key, which makes all queried secret keys semi-functional at the end of the Game
3 sequence i.e., a global coordination of the local results.

We have shown that the intractability of (complicated) Problems 1 and 2 (and 2’, 2”) is
reduced to that of the DLIN Problem through several intermediate steps, or intermediate prob-
lems, in [47]. They are indicated in Figure 1 by dotted arrows.

We show that the intractability of Problems 3 is reduced to that of Problem 2 in Lemmas
16 and 17. Problem 1 is used for evaluating the gap between advantages of adversary in Game
0 and 1 (Lemma 7). Problem 2 (resp. 2’, 2”) is used for evaluating the gap between advantages
of adversary in Game 3-h-1 and 3-h-2 (resp. in Game 2-(h− 1) and 2-h, in Game 3-νH -4 and 4)
in Lemma 10 (resp. Lemma 8, Lemma 13). Problem 3 is used for evaluating the gap of those in
Game 3-h-3 and 3-h-4 (Lemma 12). They are indicated in Figure 1 by arrows. The rest of gaps
between games are evaluated without computational assumptions (Lemmas 9, 11 and 14).

C.6 Lemmas for the Proof of Theorem 4

We will show fifteen lemmas for the proof of Theorem 4. The proofs of Lemmas 2 and 5 are
given in Appendix D. Lemma 1 is proven similarly to Lemma 1 in [47], and Lemma 6 is proven
in Appendix C in [47]. We describe random dual orthonormal bases generator Gob below, which
is used as a subroutine in the following problems.

Gob(1λ, �n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), κ, ξ

U← F
×
q ,

for t = 1, . . . , d,
Nt := 5nt + 3 for t = 1, . . . , d, paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (XT

t )−1,

bt,i := κ(χt,i,1, . . . , χt,i,Nt)At = κ
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt),

b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At = ξ
∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗t,1, . . . , b∗t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ, param	n := ({paramVt
}t=1,...,d, gT ),

return (param	n, {Bt,B∗t }t=1,...,d, G0, G1).

We note that gT = e(bt,i, b∗t,i) for t = 1, . . . , d; i = 1, . . . , Nt.

Definition 13 (Problem 1). Problem 1 is to guess β, given
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(param	n, {Bt, B̂∗t , eβ,t,1, et,i}t=1,...,d;i=2,...,2nt)
R← GP1

β (1λ, �n), where

GP1
β (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂
∗
t := (b∗t,1, .., b

∗
t,3nt+2, b

∗
t,4nt+3, .., b

∗
t,5nt+3) for t = 1, .., d,

ω, σ, γt
U← Fq, Zt

U← GL(nt,Fq) for t = 1, .., d,
for t = 1, . . . , d;

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
e0,t,1 := ( 0nt , ω�et,1, 0nt+2, 0nt , 0nt , γt )Bt ,
e1,t,1 := ( 0nt , ω�et,1, 0nt+2, (σ�et,1) · Zt, 0nt , γt )Bt ,

et,i := ωbt,i for i = 2, . . . , nt,

return (param	n, {Bt, B̂∗t , eβ,t,1, et,i}t=1,...,d;i=2,...,nt , G0, G1),

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity
AdvP1

B (λ) :=
∣∣∣Pr
[
B(1λ, �)→1

∣∣∣� R←GP1
0 (1λ,�n)

]
−Pr

[
B(1λ, �)→1

∣∣∣� R←GP1
1 (1λ,�n)

]∣∣∣ .
Lemma 1. For any adversary B, there exist probabilistic machines E, whose running times
are essentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤
AdvDLIN

E (λ) + (d+ 5)/q.

Lemma 1 is proven similarly to Lemma 1 in [47]. ��
Definition 14 (Problem 2). Problem 2 is to guess β, given
(param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , G0, G1, δG1)

R← GP2
β (1λ, �n), where

GP2
β (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂t := (bt,1, .., bt,2nt+2, bt,3nt+3, .., bt,5nt+3) for t = 1, .., d,

δ, τ, ω, σ
U← Fq, Zt

U← GL(nt,Fq), Ut := (Z−1
t )T for t = 1, .., d,

for t = 1, . . . , d; i = 1, . . . , nt;
�δt,i

U← F
nt
q ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 0nt , δ�et,i, 02, 0nt , 0nt , �δt,i, 0 )B∗

t

h∗1,t,i := ( 0nt , δ�et,i, 02, (τ�et,i) · Ut, 0nt , �δt,i, 0 )B∗
t

et,i := ( 0nt , ω�et,i, 02, (σ�et,i) · Zt, 0nt , 0nt , 0 )Bt ,

return (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , G0, G1, δG1),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 13.

Lemma 2. For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤
AdvDLIN

E (λ) + 5/q.
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Lemma 2 is proven similarly to Lemma 2 in [47]. ��
We use two variants of Problem 2, i.e., Problem 2’ and 2”, which have essentially same

structure as that of Problem 2, as well as Problem 2. The security of the problems can be
reduced to that of Problem 2.

Definition 15 (Problem 2’). Problem 2’ is to guess β, given
(param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,2, G0, G1)

R← GP2′
β (1λ, �n), where

GP2′
β (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂t := (bt,1, .., bt,2nt+2, bt,3nt+3, .., bt,5nt+3) for t = 1, .., d,

δ, τ, ω, σ
U← Fq, Zt

U← GL(nt,Fq), Ut := (Z−1
t )T for t = 1, .., d,

for t = 1, . . . , d; i = 1, 2; �e ′1 := ( 1, 0 ), �e ′2 := ( 0, 1 ) ∈ F
2
q ,

�δt,i
U← F

nt
q ,

2nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 02nt , δ�e ′i , 0nt , 0nt , �δt,i, 0 )B∗

t

h∗1,t,i := ( 02nt , δ�e ′i , 0nt , (τ�et,i) · Ut, �δt,i, 0 )B∗
t

et,i := ( 02nt , ω�e ′i , 0nt , (σ�et,i) · Zt, 0nt , 0 )Bt ,

return (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,2, G0, G1),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2’, AdvP2′
B (λ),

is similarly defined as in Definition 13.

Lemma 3. For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2′

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

The proof of Lemma 3 can be reduced to that of Lemma 2. ��
Definition 16 (Problem 2”). Problem 2” is to guess β, given
(param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , G0, G1)

R← GP2′′
β (1λ, �n), where

GP2′′
β (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂t := (bt,1, .., bt,2nt+2, bt,3nt+3, .., bt,5nt+3) for t = 1, .., d,

δ, τ, ω, σ
U← Fq,

for t = 1, . . . , d; i = 1, . . . , nt;
�δt,i

U← F
nt
q ,

nt︷ ︸︸ ︷ 2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( δ�et,i, 02nt+2, 0nt , �δt,i, 0 )B∗

t

h∗1,t,i := ( δ�et,i, 02nt+2, τ�et,i, �δt,i, 0 )B∗
t

et,i := ( ω�et,i, 02nt+2, σ�et,i, 0nt , 0 )Bt ,

return (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , G0, G1),
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for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2′′
B (λ),

is similarly defined as in Definition 13.

Lemma 4. For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2′′

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

The proof of Lemma 4 can be reduced to that of Lemma 2. ��
Definition 17 (Problem 3). Problem 3 is to guess β, given
(param	n, {B̂t,B∗t ,h∗β,t,i, et,i,ι}t=1,...,d;i=1,...,nt;ι=1,2)

R← GP3
β (1λ, �n), where

GP3
β (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂t := (bt,1, .., bt,2nt+2, bt,4nt+3, .., bt,5nt+3) for t = 1, .., d,

τ, τ ′, ωι, ω′ι
U← Fq for ι = 1, 2, Zt

U← GL(nt,Fq), Ut := (Z−1
t )T for t = 1, .., d,

for t = 1, . . . , d; i = 1, . . . , nt; ι = 1, 2;
�δt,i

U← F
nt
q ,

2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 02nt+2, (τ�et,i) · Ut, 0nt , �δt,i, 0 )B∗

t

h∗1,t,i := ( 02nt+2, 0nt , τ ′�et,i, �δt,i, 0 )B∗
t

et,i,ι := ( 02nt+2, (ωι�et,i) · Zt, ω′ι�et,i, 0nt , 0 )Bt ,

return (param	n, {B̂t,B∗t ,h∗β,t,i, et,i,ι}t=1,..,d;i=1,..,nt;ι=1,2, G0, G1),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 3, AdvP3
B (λ), is

similarly defined as in Definition 13.

Lemma 5. For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 6 (Lemma 3 in [47]). For p ∈ Fq, let Cp := {(�x,�v)|�x · �v = p} ⊂ V × V ∗ where
V is n-dimensional vector space F

n
q , and V ∗ its dual. For all (�x,�v) ∈ Cp, for all (�r, �w) ∈

Cp, Pr [�xU = �r ∧ �vZ = �w] = Pr [�xZ = �r ∧ �vU = �w] = 1
/
� Cp, where Z U← GL(n,Fq), U :=

(Z−1)T.

Lemma 7. For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + 2d/q.

Lemma 8. For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1))
A (λ) −

Adv
(2-h)
A (λ)| ≤ AdvP2

B2-h
(λ) + 4/q, where B2-h(·) := B2(h, ·).

Lemma 9. For any adversary A, for any security parameter λ, |Adv
(3-(h−1)-4)
A (λ)−Adv

(3-h-1)
A (λ)| ≤

2d/q.
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Lemma 10. For any adversary A, there exists a probabilistic machine B3-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-1)
A (λ) −

Adv
(3-h-2)
A (λ)| ≤ AdvP2

B3-h-1
(λ), where B3-h-1(·) := B3-1(h, ·).

Lemma 11. For any adversary A, for any security parameter λ, Adv
(3-h-2)
A (λ) = Adv

(3-h-3)
A (λ).

Lemma 12. For any adversary A, there exists a probabilistic machine B3-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-3)
A (λ) −

Adv
(3-h-4)
A (λ)| ≤ AdvP3

B3-h-2
(λ), where B3-h-2(·) := B3-2(h, ·).

Lemma 13. For any adversary A, for any security parameter λ, Adv
(3-νH -4)
A (λ) = Adv

(4)
A (λ).

Lemma 14. For any adversary A, there exists a probabilistic machine B4, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(4)
A (λ)−Adv

(5)
A (λ)|

≤ AdvP2
B4

(λ).

Lemma 15. For any adversary A, Adv
(5)
A (λ) = 1/q.

Proof. Since the value of s0 in cd+1 is independent from all the other variables, the verification
equation,

∏�
i=1 e(ci, s

∗
i ) = cd+1, holds with probability 1/q in Game 5. Hence, Adv

(5)
A (λ) = 1/q.

��

The proofs of Lemma 5 and Lemmas 7–14 are given in Appendix D.

D Proofs of Lemmas 5 and 7–14

D.1 Proof of Lemma 5

Lemma 5. For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Proof. Problem 3 is the hybrid of the following Experiment 3-0, 3-1 and 3-2, i.e., AdvP3
B (λ) =∣∣Pr

[
Exp3-0

B (λ)→ 1
] −Pr

[
Exp3-2

B (λ)→ 1
]∣∣. Therefore, from Lemmas 16, 17 and 2, there exist

probabilistic machines C and E , whose running time are essentially the same as that of B, such
that for any security parameter λ,

AdvP3
B (λ) =

∣∣Pr
[
Exp3-0

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣

≤ ∣∣Pr
[
Exp3-0

B (λ)→ 1
]− Pr

[
Exp3-1

B (λ)→ 1
]∣∣+ ∣∣Pr

[
Exp3-1

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣

≤ AdvP2
C (λ) ≤ AdvDLIN

E (λ) + 5/q.

This completes the proof of Lemma 5. ��
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Definition 18 (Experiment 3-α (α = 0, 1, 2)). We define Exp-3-α instance generator, GExp-3
α (1λ,

�n), where

GExp-3
α (1λ, �n) : (param	n, {Bt,B∗t }t=1,...,d, G0, G1)

R← Gob(1λ, �n),

B̂t := (bt,1, . . . , bt,2nt+2, bt,4nt+3, . . . , bt,5nt+3) for t = 1, . . . , d,

τ, τ ′, ωι, ω′ι
U← Fq for ι = 1, 2, Zt

U← GL(nt,Fq), Ut := (Z−1
t )T for t = 1, . . . , d,

for t = 1, . . . , d; i = 1, . . . , nt; ι = 1, 2;
�δt,i

U← F
nt
q ,

2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 02nt+2, τ�et,i · Ut, 0nt , �δt,i, 0 )B∗

t

h∗1,t,i := ( 02nt+2, τ�et,i · Ut, τ ′�et,i, �δt,i, 0 )B∗
t

h∗2,t,i := ( 02nt+2, 0nt , τ ′�et,i, �δt,i, 0 )B∗
t

et,i,ι := ( 02nt+2, ωι�et,i · Zt, ω′ι�et,i, 0nt , 0 )Bt ,

return (param	n, {B̂t, B̂∗t , {h∗α,t,i, et,i,ι}t=1,...,d;i=1,...,nt;ι=1,2, G0, G1).

For a probabilistic adversary B, we define 3 experiments Exp3-α
B (α = 0, 1, 2) as follows:

1. B is given �
R← GExp-3

α (1λ, �n).
2. Output β′ R← B(1λ, �).

Lemma 16. For any adversary B, for any security parameter λ,
Pr
[
Exp3-0

B (λ)→ 1
]

= Pr
[
Exp3-1

B (λ)→ 1
]
.

Proof. Let θ U← Fq. If we set

dt,3nt+2+i := ( 02nt+2, −θ�et,i · Zt, �et,i, 0nt+1 )Bt ,
d∗t,2nt+2+i := ( 02nt+2, �et,i, θ�et,i · Zt, 0nt+1 )B∗

t
for i = 1, . . . , nt.

Then, Dt := (bt,1, . . . , bt,3nt+2,dt,3nt+3, . . . ,d4nt+2, b4nt+3, . . . , b5nt+3) and D
∗
t := (b∗t,1, . . . , b∗t,2nt+2,

d∗t,2nt+3, . . . ,d
∗
t,3nt+2, b

∗
t,3nt+3, . . . , b

∗
t,5nt+3) are dual orthonormal bases. Moreover, (Dt,D

∗
t ) are

consistent with B̂t. Then,

2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 02nt+2, τ�et,i · Ut, 0nt , δt,i, 0 )B∗

t

= ( 02nt+2, τ�et,i · Ut, τ ′�et,i, δt,i, 0 )D∗
t

et,i,ι := ( 02nt+2, ωι�et,i · Zt, ω′ι�et,i, 0nt , 0 )Bt ,
= ( 02nt+2, ω̃ι�et,i · Zt, ω′ι�et,i, 0nt , 0 )Dt ,

where τ ′ := −θτ and ω̃ι := ωι + θω′ι, which are independently and uniformly distributed since
θ, ωι

U← Fq. That is, the joint distribution for Exp-3-0 and that for Exp-3-1 are equivalent. ��
Lemma 17. For any adversary B, there is a probabilistic machine C, whose running time is es-
sentially the same as that of B, for any security parameter λ,

∣∣Pr
[
Exp3-1

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣

= AdvP2
C (λ).
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Proof. In order to prove Lemma 17, we construct a probabilistic machine C against Problem 2
using a machine B distinguishing the experiment Exp3-1

B from Exp3-2
B as a black box as follows: C

is given a Problem 2 instance, (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,...,d;i=1,...,n, G0, G1, δG1). C sets

et,i,1 := et,i, et,i,2 := η1bt,nt+i + η2et,i for i = 1, . . . , nt, where η1, η2
U← Fq,

Dt := (dt,i)i=1,...,5nt+3

:= (bt,1, . . . , bt,nt , bt,3nt+3, . . . , bt,4nt+2, bt,2nt+1, . . . , bt,3nt+2, bt,nt+1, . . . , bt,2nt , bt,4nt+3, . . . , bt,5nt+3),
D
∗
t := (d∗t,i)i=1,...,5nt+3

:= (b∗t,1, . . . , b
∗
t,nt

, b∗t,3nt+3, . . . , b
∗
t,4nt+2, b

∗
t,2nt+1, . . . , b

∗
t,3nt+2, b

∗
t,nt+1, . . . , b

∗
t,2nt

, b∗t,4nt+3, . . . , b
∗
t,5nt+3),

D̂t := (dt,1, . . . ,dt,2nt+2,dt,4nt+3, . . . ,dt,5nt+3)
= (bt,1, . . . , bt,nt , bt,3nt+3, . . . , bt,4nt+2, bt,2nt+1, bt,2nt+2, bt,4nt+3, . . . , bt,5nt+3),

where C can calculate D̂t and D
∗ from a part of the Problem 2 instance, i.e., (B̂t,B∗t ), while C

cannot calculate a part of basis Dt, i.e., (dt,2nt+3, . . . ,dt,3nt+2), from the Problem 2 instance. C
gives (param	n, {D̂t,D

∗
t ,h
∗
β,t,i, et,i,ι}t=1,...,d;i=1,...,nt;ι=1,2, G0, G1) to B, and receives β′ ∈ {0, 1}. C

then outputs 1− β′.
Then,

nt︷︸︸︷ nt︷ ︸︸ ︷ 2︷︸︸︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 0nt , δ�et,i, 02, 0nt , 0nt , �δt,i, 0 )B∗

t

= ( 0nt , 0nt , 02, 0nt , δ�et,i, �δt,i, 0 )D∗
t
,

h∗1,t,i := ( 0nt , δ�et,i, 02, τ�et,i · Ut, 0nt , �δt,i, 0 )B∗
t

= ( 0nt , 0nt , 02, τ�et,i · Ut, δ�et,i, �δt,i, 0 )D∗
t
,

et,i,1 := ( 0nt , ω�et,i, 02, σ�et,i · Zt, 0nt , 0nt , 0 )Bt

= ( 0nt , 0nt , 02, σ�et,i · Zt, ω�et,i, 0nt , 0 )Dt ,
et,i,2 := ( 0nt , (η1 + η2ω)�et,i, 02, η2σ�et,i · Zt, 0nt , 0nt , 0 )Bt

= ( 0nt , 0nt , 02, η2σ�et,i · Zt, (η1 + η2ω)�et,i, 0nt , 0 )Dt ,

where δ, τ, ω, σ, η1 +η2ω and η2σ are independently and uniformly distributed in Fq (except with

negligible probability) since δ, τ, ω, σ, η1, η2
U← Fq.

That is, the above (param	n, {D̂t,D
∗
t ,h
∗
β,t,i, et,i,ι}t=1,...,d;i=1,...,nt;ι=1,2, G0, G1) has the same dis-

tribution as the output of the generator GExp-3
1 (1λ, �n) (resp.GExp-3

2 (1λ, �n)) when β = 1 (resp.β =
0). This completes the proof of Lemma 17. ��

D.2 Proof of Lemma 7

Lemma 7. For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + 2d/q.

Proof. In order to prove Lemma 7, we construct a probabilistic machine B1 against Problem 1
by using any adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B1 is given Problem 1 instance (param	n, {Bt, B̂∗t , eβ,t,1, et,i}t=1,...,d;i=2,...,nt , G0, G1).
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2. B1 plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, for each authority t ∈ S, B1 sets

Dt := (dt,j)j=1,...,5nt+3 := (bt,1, . . . , bt,nt , bt,n+2, . . . , bt,2nt−1, bt,2nt , bt,2nt+1, . . . , bt,5nt+3),
D
∗
t := (d∗t,j)j=1,...,5nt+3 := (b∗t,1, . . . , b

∗
t,nt

, b∗t,n+2, . . . , b
∗
t,2nt−1, b

∗
t,2nt

, b∗t,2nt+1, . . . , b
∗
t,5nt+3),

D̂t := (dt,1, . . . ,dt,2nt+2,dt,5nt+3),

D̂
∗
t := (d̃∗t,1, . . . , d̃

∗
t,nt

,d∗t,nt+1, . . . ,d
∗
t,2nt+2,d

∗
t,4nt+3, . . . ,d

∗
t,5nt+2),

where π U← Fq, rt,ι
U← span〈b∗t,4nt+3, . . . , b

∗
t,5nt+2〉, d̃∗t,ι := πd∗t,ι + rt,ι for ι = 1, . . . , nt.

B1 does not actually calculate D
∗
t since b∗t,3nt+3, . . . , b

∗
t,4nt+2 are not available in the Prob-

lem 1 instance, but obtains D̂t and D̂
∗
t from Bt and B̂

∗
t in the instance. B1 sets gparam :=

(paramG, H1, H2) using paramG := (q,G,GT , G, e) underlying param	n, and G0, G1, gT con-
tained in the Problem 1 instance, where H1, H2 is modeled as random oracles. B1 then
returns gparam and {apkt := (paramVt

, D̂t, D̂
∗
t )}t∈S to A. B1 prepares a list (H-list) for an-

swers of the random oracle queries, which has data (0λ,⊥, G0) and ((0λ−1, 1),⊥, G1) at the
beginning.

4. When a random oracle query for H1 is issued for a global identity gid, if gid is not queried be-
fore, then a fresh δgid

U← Fq is generated and B1 answers δgidG1 and records data (gid, δgid, δgidG1)
to the H list. Otherwise, B1 obtains δgidG1 from the H-list, and answers it to A.

5. When an AttrGen query is issued for a pair of a global identity and an attribute (gid, (t, �xt))
for t ∈ S, B1 first asks a random oracle H1 query for gid, then obtains the scalar δgid from
the H-list. B1 calculates

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t = ( �xt, δgid�xt, 02nt+2, �ϕgid,t, 0 )D∗

t
,

using �ϕgid,t
U← F

nt
q and D̂

∗
t . B1 answers uskgid,(t,	xt) := (gid, (t, �xt),k∗t ) to A.

6. When an AltSig query is issued by A, B1 answers a correct signature computed by using
{B̂∗t }t=1,...,d given in Problem 1, i.e., normal signature.

7. When B1 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B1 calculates the

verification text (c1, . . . , c�, cd+1) as follows:

ci :=
∑nt

j=1 ci,jbt,j +
∑nt−1

j=1 ci,nt+jet,j+1 + ci,2nteβ,t,1 +
∑2nt+2

j=2nt+1 ci,jbt,j for i = 1, . . . , �,
cd+1 := gs0T ,

where �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, �f ′ R← F
r
q s.t. �1 · �f ′T = 0, �s′T :=

(s′1, . . . , s′�)
T := M · �f ′T, θi, θ′i, θ′′i U← Fq for i = 1, . . . , �, and if ρ(i) = (t, �vi), then �ci := (si�et,1+

θi�vi, s
′
i�et,1 + θ′i�vi, θ

′′
i (H2(m,S),−1)), if ρ(i) = ¬(t, �vi), then �ci := (si�vi, s′i�vi, θ

′′
i (H2(m,S),−1))

for i = 1, . . . , �, and eβ,t,1, {et,j}j=2,...,nt are from the Problem 1 instance. B1 verifies the
signature (m′,S′, �s′∗) using Ver with the above ({ci}i=1,...,�, cd+1), and outputs β′ := 1, if the
verification succeeds, β′ := 0 otherwise.

When β = 0, it is straightforward that the distribution by B1’s simulation is equivalent to that
in Game 0. When β = 1, the distribution by B1’s simulation is equivalent to that in Game 1
except for the case that there exists an i ∈ {1, . . . , �} such that ci,2nt = vi,ntθ

′
i = 0, or there exists

an t ∈ {1, . . . , d} such that (zt,1, . . . , zt,3nt) = �0, i.e., except with probability (� + d)/q ≤ 2d/q
since � ≤ d. ��
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D.3 Proof of Lemma 8

Lemma 8. For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1))
A (λ) −

Adv
(2-h)
A (λ)| ≤ AdvP2

B2-h
(λ) + (d+ 1)/q, where B2-h(·) := B2(h, ·).

Proof. In order to prove Lemma 8, we construct a probabilistic machine B2 against Problem 2’
by using an adversary A in a security game (Game 2-(h− 1) or 2-h) as a black box as follows:

1. B2 is given an integer h and a Problem 2’ instance, (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,2,
G0, G1).

2. B2 plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, B2 provides A public keys gparam as in the proof of Lemma

7 and {apkt := (paramVt
, B̂′t, B̂∗t )}t=S of Game 2-(h − 1) (and 2-h), where π U← Fq, b̃

∗
t,ι :=

πb∗t,ι+r∗t,ι with r∗t,ι
U← span〈b∗t,4nt+3, . . . , b

∗
t,5nt+2〉, B̂

′
t := (bt,1, . . . , bt,2nt+2, bt,5nt+3) and B̂

∗
t :=

(b̃∗t,1, . . . , b̃∗t,nt
, b∗t,nt+1, . . . , b

∗
t,2nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+2) for each authority t ∈ S, that are

obtained from the Problem 2’ instance. The H-list is initialized as in the proof of Lemma 7.
4. When a random oracle query for H1 is issued for the ι-th global identity gid := gidι, B2

answers as follows: When gid is not queried before, then a fresh δgid
U← Fq is generated and

B2 answers δgidG1 to A and records data (gid, δgid, δgidG1) to the H list. When gid is already
queried, B3-1 obtains δgidG1 from the H-list, and answers it to A.

5. When an AttrGen query for the ι-th global identity gid := gidι is issued for a pair of a global
identity and an attribute (gid, (t, �xt)) for t ∈ S, B2 calculates normal key k∗t with Eq. (2),
that is computed using B

∗
t of the Problem 2 instance and δgid as

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( �xt, δgid�xt, 02nt , �ϕgid,t, 0 )B∗

t
,

where �ϕgid,t
U← F

nt
q .

6. When the ι-th AltSig query for (m,S) is issued by A, B2 computes the replied signatures as
follows:
(a) When ι < h, B2 computes a semi-functional signature (s∗1, . . . , s∗� ) for (m,S) as in Eq. (7)

using {B∗t }t=1,...,d in the Problem 2’ instance.
(b) When ι = h, B2 computes signature (s∗1, . . . , s∗�) for (m,S) as follows:

2nt︷ ︸︸ ︷ 2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
s∗i := ( �zi,0, �zi,1, 02nt+2, �σi, 0 )B∗

t

+(χi,1b∗t,2nt+1 + χi,2h
∗
β,t,1) +H2(m,S)(χi,1b∗t,2nt+2 + χi,2h

∗
β,t,2),

where δ̃ U← Fq, �σi
U← F

nt
q , (ξi), (ξ

′
i)

U← {(ξ1, . . . , ξ�) |
∑�

i=1 ξiMi = �1}, and for i = 1, . . . , �,

if ρ(i) = (t, �vi), then (�zi,0, �zi,1)
U← {(�zi,0, �zi,1) | �zi,0 · �vi = �zi,1 · �vi = 0, zi,0,1 = ξi, zi,1,1 =

δ̃ξ′i }, if ρ(i) = ¬(t, �vi), then (�zi,0, �zi,1)
U← {�zi,0, �zi,1) | �zi,0 · �vi = ξi, �zi,1 · �vi = δ̃ξ′i },

χi,j
U← Fq for i = 1, . . . , �; j = 1, 2.

(c) When ι > h, B2 computes a normal signature (s∗1, . . . , s∗�) for (m,S) as in Eq. (4) using
{B∗t }t=1,...,d in the Problem 2’ instance.
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7. When B2 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B2 calculates the

verification text (c1, . . . , c�, cd+1) as follows:

ci :=
∑2nt

j=1 ci,jbt,j +H2(m′,S′)(χ̃i,1bt,2nt+1 + χ̃i,2et,1)− (χ̃i,1bt,2nt+2 + χ̃i,2et,2)
+ηibt,5nt+3 for i = 1, . . . , �,

cd+1 := gs0T ,

where �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, �f ′ R← F
r
q s.t. �1 · �f ′T =

0, �s′T := (s′1, . . . , s′�)
T := M · �f ′T, ηi, θi, θ′i U← Fq for i = 1, . . . , �, and if ρ(i) = (t, �vi), then

�ci := (si�et,1 + θi�vi, s
′
i�et,1 + θ′i�vi) ∈ F

2nt
q , if ρ(i) = ¬(t, �vi), then �ci := (si�vi, s′i�vi) ∈ F

2nt
q for

i = 1, . . . , �, χ̃i,j
U← Fq for i = 1, . . . , �; j = 1, 2, and {et,j}j=1,2 are from the Problem 2’

instance. B2 verifies the signature (m′,S′, �s′∗) using Ver with the above ({ci}i=1,...,�, cd+1),
and outputs β′ := 1, if the verification succeeds, β′ := 0 otherwise.

Claim 1 The distribution of the view of adversary A in the above-mentioned game simulated by
B2 given a Problem 2’ instance with β ∈ {0, 1} is the same as that in Game 2-(h−1) (resp.Game
2-h) if β = 0 (resp.β = 1) except with probability 1/q (resp. d/q).

Proof. We consider the joint distribution of {ci}i=1,...,� generated in step 7 and {s∗i := s
(h)∗
i }i=1,...,�

generated in case (b) of step 6.
ci for i = 1, . . . , � calculated in step 7 in the above simulation are expressed as:

2nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ nt︷︸︸︷ nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷
ci = ( �ci, ωi(H2(m′,S′),−1), 0nt , σi(H2(m′,S′),−1, 0nt−2) · Zt, 0nt , ηi )Bt ,

(14)

where ωi := χ̃i,1 + χ̃i,2ω, σi := χ̃i,2σ, and ω, σ, {Zt}t=1,...,d are defined in Problem 2’ and �ci ∈ F
2nt
q

are defined in step 7 above. Note that ωi, σi are uniformly and independently distributed.
When β = 0, replied signature s∗i generated in case (b) of step 6 is

2nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
s∗i := ( �zi,0, �zi,1, δi(1, H2(m,S)), 02nt , �ϕi, 0 )B∗

t
,

where δi := χi,1 + χi,2δ, and δ is defined in Problem 2’, (�zi,0, �zi,1) ∈ F
2nt
q are defined in case (b)

of step 6 above, and �ϕi
U← F

nt
q . When β = 1, replied signature s∗i generated in case (b) of step 6

is
2nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

s∗i := ( �zi,0, �zi,1, δi(1, H2(m,S)), 0nt , τi(1, H2(m,S), 0nt−2) · Ut, �ϕi, 0 )B∗
t
,

(15)

where δi := χi,1 + χi,2δ, τi := χi,2τ , and δ, τ, {Ut}t=1,...,d are defined in Problem 2’, (�zi,0, �zi,1) ∈
F

2nt
q are defined in case (b) of step 6 above, and �ϕi

U← F
nt
q . Note that δi, τi are uniformly and

independently distributed.
Therefore, when β = 0, the distribution by B2’s simulation is equivalent to that in Game

2-(h − 1) except that σ defined in Problem 2’ is zero, i.e., except with probability 1/q. When
β = 1, since (m′,S′) in Eq. (14) is not equal to (m,S) in Eq. (15), the pair (τi(1, H2(m,S), 0nt−2) ·
Ut, σi(H2(m′,S′),−1, 0nt−2) · Zt) ∈ F

nt
q × F

nt
q is distributed uniformly in F

nt
q × F

nt
q for each t

except with probability d/q by Lemma 6, since ρ̃(·) is injective. Hence, the distribution by B2’s
simulation is equivalent to that in Game 2-h except that with probability d/q. ��
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From Claim 1, when β = 0, except in the event that occurs with probability 1
q , the above

game is the same as Game 2-(h − 1), and when β = 1, except in the event that occurs with
probability d

q , the above game is the same as Game 2-h. Hence, when β = 0 (resp.β = 1), since

the advantage of A in the above game is equal to Pr0 := Pr
[
B2-h(1λ, �)→1

∣∣∣ � R←GP2′
0 (1λ, n)

]
(
resp.Pr1 := Pr

[
B2-h(1λ, �)→1

∣∣∣ � R←GP2′
1 (1λ, n)

])
, Adv

(2-(h−1))
A (λ) ≤ Pr0 + 1

q(
resp.Adv

(2-h)
A (λ) ≤ Pr1 + d

q

)
from Shoup’s difference lemma. Therefore, |Adv

(2-(h−1))
A (λ)−

Adv
(2-h)
A (λ)| ≤ |Pr0 − Pr1|+ 4

q = AdvP2′
B2-h

(λ) + d+1
q . This completes the proof of Lemma 8. ��

D.4 Proof of Lemma 9

Lemma 9. For any adversary A, for any security parameter λ, |Adv
(3-(h−1)-4)
A (λ)−Adv

(3-h-1)
A (λ)| ≤

2d/q.

Proof. Case that h = 1, i.e., proof for |Adv
(2-νS)
A (λ)− Adv

(3-1-1)
A (λ)| ≤ 2d/q :

We consider the joint distribution of {ci}i=1,...,� and {B̂t, B̂∗t }t=1,...,d. In order to prove Lemma
9 in this case, we define new (dual orthonormal) bases (Dt,D

∗
t ) of Vt as follows:

Since �zi ∈ F
nt
q is uniformly distribued and no �zi are �0 except for negligible probability, i.e.,

d/q, vector �χi := (0nt , �zi) · Ft is uniformly distributed in F
2nt
q for Ft

U← GL(2nt,Fq) except for

negligible probability 1/q. Let �ft,i (resp. �f∗t,i) be the i-th row of matrix Ft (resp.
(
F−1
t

)T) for i =

1, . . . , 2nt, i.e., Ft =

⎛
⎜⎝

�ft,1
...

�ft,2n

⎞
⎟⎠ and

(
F−1
t

)T =

⎛
⎜⎝

�f∗t,1
...

�f∗t,2n

⎞
⎟⎠, dt,2nt+2+i := (02nt+2, �f∗t,i, 0

nt+1)Bt and

d∗t,2nt+2+i := (02nt+2, �ft,i, 0nt+1)B∗
t

for i = 1, . . . , 2nt. Then, Dt := (bt,1, . . . , bt,2nt+2,dt,2nt+3, . . . ,
dt,4nt+2, bt,4nt+3, . . . , bt,5nt+3) and D

∗
t := (b∗t,1, . . . , b∗t,2nt+2,d

∗
t,2nt+3, . . . ,d

∗
t,4nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+3)

are dual orthonormal bases.
In Game 2-νS , verification text ci (i = 1, . . . , �) are

for i = 1, . . . , �, ci = (
2nt+2︷︸︸︷· · · ,

2nt︷ ︸︸ ︷
0nt , �zi,

nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

2nt︷︸︸︷
�χi ,

nt+1︷︸︸︷· · · )Dt , (16)

where the coefficients �χi on Dt are obtained from the definitions of �χi and Dt, and �χi ∈ F
2nt
q are

uniformly distributed and independent from all the other variables.
And, since no coefficient vectors �z′i := ((ri�et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi) if ρ(i) = (t, �vi) and

�z′i := (ri�vi · Zt, r′i�vi) if ρ(i) = ¬(t, �vi), where ωi, ω′i
U← Fq, Zt

U← GL(nt,Fq), �g
U← {�g ∈ F

r
q |�1 · �gT =

0}, �g′ U← F
r
q, ri := Mi ·�gT, r′i := Mi ·(�g ′)T are zero except for negligible probability d/q, �χi := �z′i ·Ft

are uniformly distributed in F
2nt
q except for negligible probability d/q. Therefore, in Game 3-1-1,

for the similarly defined dual orthonormal bases (D̃t, D̃
∗
t ), verification text ci (i = 1, . . . , �) are

for i = 1, . . . , �, ci = (
2nt+2︷︸︸︷· · · ,

2nt︷︸︸︷
�z′i ,

nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

2nt︷︸︸︷
�χi ,

nt+1︷︸︸︷· · · )Dt , (17)

where the coefficients �χi on Dt are obtained from the definitions of �χi and Dt, and �χi ∈ F
2nt
q are

uniformly distributed and independent from all the other variables.
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In the light of the adversary’s view, (Dt,D
∗
t ) and (D̃t, D̃

∗
t ) are consistent with authority public

keys apkt := (paramVt
, B̂t, B̂

∗
t ). Moreover, since the RHS of Eq. (16) and that of Eq. (17) are the

same form, the challenge ciphertext {ci}i=1,...,� and cd+1 := gs0T in Game 2-νS can be conceptually
changed to that in Game 3-1-1.
Case that h ≥ 2, i.e., proof for

∣∣∣Adv
(3-(h−1)-4)
A (λ)− Adv

(3-h-1)
A (λ)

∣∣∣ ≤ 2d/q for h ≥ 2 :

To prove Lemma 9 in this case, we will show distribution (param	n, {B̂t, B̂∗t }t∈S ,
{k(j)∗

t }j=1,...,νH ;(t,	xt)∈Γ (j) , {ci}i=1,...,�, cd+1) in Game 3-(h−1)-4 and that in Game 3-h-1 are equiv-
alent. For that purpose, we define new (dual orthonormal) bases (Dt,D

∗
t ) of Vt as follows:

Since no r′′i , ωi are zero except with negligible probability d/q, vectors �χi := ((r′′i �et,1 +
ωi�vi) · Zt) · Ft if ρ(i) = (t, �vi) and �χi := (r′′i �vi · Zt) · Ft if ρ(i) = ¬(t, �vi) are uniformly

distributed in F
nt
q for Ft

U← GL(nt,Fq) except with negligible probability d/q, where ωi
U←

Fq, Zt
U← GL(nt,Fq), �g′′

U← F
r
q, r
′′
i := Mi(�g′′)T. Let �ft,i (resp. �f∗t,i) be the i-th row of matrix

Ft (resp.
(
F−1
t

)T) for i = 1, . . . , n, i.e., Ft =

⎛
⎜⎝
�ft,1
...
�ft,n

⎞
⎟⎠ and

(
F−1
t

)T =

⎛
⎜⎝
�f∗t,1
...
�f∗t,n

⎞
⎟⎠, dt,2nt+2+i :=

(02nt+2, �f∗t,i, 0
2nt+1)Bt and d∗t,2nt+2+i := (02nt+2, �ft,i, 02nt+1)B∗

t
for i = 1, . . . , n. Then, Dt :=

(bt,1, . . . , bt,2nt+2,dt,2nt+3, . . . ,dt,3nt+2, bt,3nt+3, . . . , bt,5nt+3) and D
∗
t := (b∗t,1, . . . , b∗t,2nt+2,d

∗
t,2nt+3,

. . . ,d∗t,3nt+2, b
∗
t,3nt+3, . . . , b

∗
t,5nt+3) are dual orthonormal bases.

Verification text ci (i = 1, . . . , �) in Game 3-(h− 1)-4 is

if ρ(i) = (t, �vi), ci = (
2nt+2︷︸︸︷· · · ,

nt︷ ︸︸ ︷
(r′′i �et,1 + ωi�vi) · Zt,

2nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

nt︷︸︸︷
�χi ,

2nt+1︷︸︸︷· · · )Dt ,

if ρ(i) = ¬(t, �vi), ci = (
2nt+2︷︸︸︷· · · ,

nt︷ ︸︸ ︷
(r′′i �vi) · Zt,

2nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

nt︷︸︸︷
�χi ,

2nt+1︷︸︸︷· · · )Dt , (18)

where the coefficients �χi on Dt are obtained from the definitions of �χi and Dt, and �χi ∈ F
nt
q are

uniformly distributed and independent from all the other variables.
When 1 ≤ j ≤ νH , all the coefficients on span〈b∗t,2nt+3, . . . , b

∗
t,3nt+2〉 of queried key {k(j)∗

t }(t,	xt)∈Γ (j)

for the j-th gidj in Game 3-(h− 1)-4 are zero. Therefore, the keys have the same coefficients on

D
∗
t as on B

∗
t . The same holds for queried signatures {s(j)∗

i }i=1,...,� for j = 1, . . . , νS .
And, no ri, ωi are zero except with negligible probability d/q, vectors �χi := ((ri�et,1 + ωi�vi) ·

Zt)·Ft if ρ(i) = (t, �vi) and �χi := (ri�vi ·Zt)·Ft if ρ(i) = ¬(t, �vi) are uniformly distributed in F
nt
q for

Ft
U← GL(nt,Fq) except with negligible probability d/q, where ωi

U← Fq, Zt
U← GL(nt,Fq), �g

U←
{�g ∈ F

r
q |�1 · �gT = 0}, ri := Mi · �gT. Therefore, in Game 3-h-1, for the similarly defined dual

orthonormal bases (D̃t, D̃
∗
t ), verification text ci (i = 1, . . . , �) in Game 3-(h− 1)-4 is

if ρ(i) = (t, �vi), ci = (
2nt+2︷︸︸︷· · · ,

nt︷ ︸︸ ︷
(ri�et,1 + ωi�vi) · Zt,

2nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

nt︷︸︸︷
�χi ,

2nt+1︷︸︸︷· · · )Dt ,

if ρ(i) = ¬(t, �vi), ci = (
2nt+2︷︸︸︷· · · ,

nt︷ ︸︸ ︷
(ri�vi) · Zt,

2nt+1︷︸︸︷· · · )Bt = (
2nt+2︷︸︸︷· · · ,

nt︷︸︸︷
�χi ,

2nt+1︷︸︸︷· · · )Dt , (19)

where the coefficients �χi on Dt are obtained from the definitions of �χi and Dt, and �χi ∈ F
nt
q are

uniformly distributed and independent from all the other variables.
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In the light of the adversary’s view, both (Dt,D
∗
t ) and (D̃t, D̃

∗
t ) are consistent with public

key apk := (paramVt
, B̂t, B̂

∗
t ). Moreover, since the RHS of Eq. (18) and that of Eq. (19) are the

same form. Therefore, {k(j)∗
t }j=1,...,νH ;(t,	xt)∈Γ (j) , {s(j)∗

i }j=1,...,νS ;i=1,...,� and {ci}i=1,...,� above can
be expressed as keys, signatures, and verification text in two ways, in Game 3-(h− 1)-4 and in
Game 3-h-1. Thus, Game 3-(h− 1)-4 can be conceptually changed to Game 3-h-1. ��

D.5 Proof of Lemma 10

Lemma 10. For any adversary A, there exists a probabilistic machine B3-1, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-1)
A (λ)−

Adv
(3-h-2)
A (λ)| ≤ AdvP2

B3-h-1
(λ), where B3-h-1(·) := B3-1(h, ·).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B3-1 against Problem
2 by using an adversary A in a security game (Game 3-h-1 or 3-h-2) as a black box as follows:

1. B3-1 is given an integer h and a Problem 2 instance, (param	n, {B̂t,B∗t ,h∗β,t,i, et,i}t=1,..,d;i=1,..,nt ,
G0, G1, δG1).

2. B3-1 plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, B3-1 provides A public keys gparam as in the proof of Lemma

7 and {apkt := (paramVt
, B̂′t, B̂∗t )}t∈S of Game 3-h-1 (and 3-h-2), where π

U← Fq, b̃
∗
t,ι :=

πb∗t,ι+r∗t,ι with r∗t,ι
U← span〈b∗t,4nt+3, . . . , b

∗
t,5nt+2〉, B̂

′
t := (bt,1, . . . , bt,2nt+2, bt,5nt+3) and B̂

∗
t :=

(b̃∗t,1, . . . , b̃∗t,nt
, b∗t,nt+1, . . . , b

∗
t,2nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+2) for each authority t ∈ S, that are

obtained from the Problem 2 instance. The H-list is initialized as in the proof of Lemma 7.
4. When a random oracle query for H1 is issued for the ι-th global identity gid := gidι, B3-1

answers as follows:
(a) When ι �= h and gid is not queried before, then a fresh δgid

U← Fq is generated and B3-1

answers δgidG1 to A and records data (gid, δgid, δgidG1) to the H list. When ι �= h and gid
is already queried, B3-1 obtains δgidG1 from the H-list, and answers it to A.

(b) When ι = h, B3-1 answers δG1 in the Problem 2 instance to A and records data
(gid, ⊥, δG1) to the H list.

5. When an AttrGen query for the ι-th global identity gid := gidι is issued for a pair of a global
identity and an attribute (gid, (t, �xt)) for t ∈ S, B3-1 calculates k∗t (∈ uskgid,(t,	xt)) as follows
and then answers uskgid,(t,	xt) to A:
(a) When 1 ≤ ι ≤ h − 1, B3-1 calculates semi-functional key k∗t with Eq. (11) to A, that is

computed using B
∗
t of the Problem 2 instance and δgid as

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( �xt, δgid�xt, 02, 0nt , τ ′gid�xt, �ϕgid,t, 0 )B∗

t
,

where τ ′gid
U← Fq, �ϕgid,t

U← F
nt
q .

(b) When ι = h, B3-1 calculates k
(h)∗
t using B

∗
t and {h∗β,t,j}j=1,..,nt of the Problem 2 instance

as follows:

k
(h)∗
t :=

∑nt
j=1 x

(h)
t,j (b∗t,j + h∗β,t,j).
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(c) When ι ≥ h + 1, B3-1 calculates normal key k∗t with Eq. (2), that is computed using B
∗
t

of the Problem 2 instance and δgid as

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( �xt, δgid�xt, 02, 02nt , �ϕgid,t, 0 )B∗

t
,

where �ϕgid,t
U← F

nt
q .

6. When an AltSig query is issued by A, B3-1 answers a semi-functional signature (Eq. (7))
computed by using {B∗t }t=1,...,d given in the Problem 2 instance.

7. When B3-1 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B3-1 computes (pre-

semi-functional) verification text (c1, . . . , c�, cd+1) given as Eq. (8) as follows:

π′t, μt, g
′
k, μ̃k

U← Fq for t = 1, . . . , d; k = 1, . . . , r − 1;
g′r := −∑r−1

k=1 g
′
k, μ̃r := −∑r−1

k=1 μ̃k, i.e.,
∑r

k=1 g
′
k = 0,

∑r
k=1 μ̃k = 0,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;
ft,j := π′tet,j + μtbt,nt+j , f̃t,k,j := g′ket,j + μ̃kbt,nt+j ,

for i = 1 . . . , �,
if ρ(i) = (t, �vi), (ci,1, . . . , ci,2nt) := (si�et,1 + θi�vi, r

′
i�et,1 + ω′i�vi),

ci :=
∑nt

j=1 ci,jbt,j +
∑nt

j=1 vi,jft,j +
∑r

k=1Mi,kf̃t,k,1

+θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2) +
∑nt

j=1 ci,nt+jbt,3nt+2+j + qi,

if ρ(i) = ¬(t, �vi), (ci,1, . . . , ci,2nt) := (si�vi, r′i�vi),

ci :=
∑nt

j=1 ci,jbt,j +
∑nt

j=1 vi,j
∑r

k=1Mi,kf̃t,k,j + θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2)
+
∑nt

j=1 ci,nt+jbt,3nt+2+j + qi,

cd+1 := gs0T ,

where (Mi,k)i=1,...,�;k=1,...,r := M, �f
U← F

r
q, s0 := �1 · �fT, si := Mi · �fT, �g ′ U← F

r
q, r
′
i := Mi ·

(�g ′)T , θi, θ′′i , ω
′
i,

U← Fq, qi
U← span〈bt,5nt+3〉 and {bt,j}t=1,...,d;j=1,...,2nt+2,3nt+3,...,4nt+2,

{et,j}t=1,...,d;j=1,...,nt are obtained from the Problem 2 instance. B3-1 verifies the signature
(m′,S′, �s′∗) using Ver with the above ({ci}i=1,...,�, cd+1), and β′ := 1 if the verification suc-
ceeds, β′ := 0 otherwise.

Claim 2 The distribution of the view of adversary A in the above-mentioned game simulated by
B3-1 given a Problem 2 instance with β ∈ {0, 1} is the same as that in Game 3-h-1 (resp.Game
3-h-2) if β = 0 (resp.β = 1).

Proof. We consider the joint distribution of {ci}i=1,...,� generated in step 7 and k
(h)∗
t generated

in case (b) of step 5.
ft,j , f̃t,k,j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calculated in step 7 in the above

simulation are expressed as:

πt := π′tσ, θt := π′tω + μt, gk := g′kσ, fk := g′kω + μ̃k,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ 1︷︸︸︷

ft,j = ( 0nt , θt�et,j , 02, (πt�et,j)Zt, 02nt , 0 )Bt ,

f̃t,k,j = ( 0nt , fk�et,j , 02, (gk�et,j)Zt, 02nt , 0 )Bt ,
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where ω, σ, {Zt}t=1,...,d are defined in Problem 2. Note that variables {θt, πt}t=1,...,d are inde-
pendently and uniformly distributed, and {fk, gk}k=1,...,r are independently and uniformly dis-
tributed with only two relations

∑r
k=1 fk = 0 and

∑r
k=1 gk = 0. Therefore, {ci}i=1,...,� are

distributed as in Eq. (8).
When β = 0, secret key k

(h)∗
t generated in case (b) of step 5 is

k
(h)∗
t =

∑nt
j=1 x

(h)
t,j (b∗t,j + h∗β,t,j) = (

2nt︷ ︸︸ ︷
�x

(h)
t , δ�x

(h)
t ,

2︷︸︸︷
02 ,

2nt︷ ︸︸ ︷
02nt ,

nt︷ ︸︸ ︷
�ϕ

(h)
t , 0)B∗

t
with �ϕ

(h)
t

U← F
nt
q .

When β = 1, secret key k
(h)∗
t generated in case (b) of step 5 is

k
(h)∗
t =

∑nt
j=1 x

(h)
t,j (b∗t,j + h∗β,t,j) = (

2nt︷ ︸︸ ︷
�x

(h)
t , δ�x

(h)
t ,

2︷︸︸︷
02 ,

2nt︷ ︸︸ ︷
τ�x

(h)
t · Ut, 0nt ,

nt︷ ︸︸ ︷
�ϕ

(h)
t , 0)B∗

t
with �ϕ

(h)
t

U← F
nt
q .

Therefore, when β = 0, the distribution by B3-1’s simulation is equivalent to that in Game
3-h-1. When β = 1, the distribution by B3-1’s simulation is equivalent to that in Game 3-h-2. ��
From Claim 2, we obtain Lemma 10 in the same manner as in the proof of Lemma 8. ��

D.6 Proof of Lemma 11

Lemma 11. For any adversary A, for any security parameter λ, Adv
(3-h-2)
A (λ) = Adv

(3-h-3)
A (λ).

Proof. Let �w+,<b>
i := (r<b>i �et,1 + ωi�vi) · Zt, �w−,<b>i := r<b>i �vi · Zt, �yt := τ�xt · Ut, where b =

2, 3, τ := τ (h), �xt := �x
(h)
t and r<2>

i is a share of 0, r<3>
i is a share of a secret r0

U← Fq, i.e.,

�g<2> U← {�g ∈ F
r
q | �1 · �gT = 0}, �g<3> U← F

r
q, r

<b>
i := Mi · (�g<b>)T for b = 2, 3; i = 1, . . . , �.

For Game 3-h-2, we will consider the joint distribution of (�w+,<2>
i , �yt) with ρ(i) = (t, �vi) and

that of (�w−,<2>
i , �yt) with ρ(i) = ¬(t, �vi). For Game 3-h-3, we will consider the joint distribution

of (�w+,<3>
i , �yt) with ρ(i) = (t, �vi) and that of (�w−,<3>

i , �yt) with ρ(i) = ¬(t, �vi).
With respect to the joint distribution of these variables, there are five cases for each i ∈

{1, . . . , �}. Note that for any i ∈ {1, . . . , �}, (Zt, Ut) with t := ρ̃(i) is independent from the other
variables since ρ̃ is injective, and that random vectors �g<2> and �g<3> are independent from the
other variables. γ(i) is defined in Definition 3.

1. γ(i) = 1 and [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0].
Then, from Lemma 6, the joint distribution of (�w+,<b>

i , �yt) is uniformly and independently

distributed on Cτr<b>
i

:= {(�w, �y) | �w · �y = τr<b>i } (over Zt
U← GL(nt,Fq)).

2. γ(i) = 1 and [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt �= 0].
Then, from Lemma 6, the joint distribution of (�w−,<b>i , �yt) is uniformly and independently

distributed on C(	vi·	xt)·τr<b>
i

(over Zt
U← GL(nt,Fq)).

3. γ(i) = 0 and [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ] (i.e., �vi · �xt �= 0).
Then, from Lemma 6, the joint distribution of (�w+,<b>

i , �yt) is uniformly and independently

distributed on C(	vi·	xt)·ωi+τr
<b>
i

(over Zt
U← GL(nt,Fq)) where ωi is uniformly and inde-

pendently distributed on Fq. Hence, the joint distribution of (�w+,<b>
i , �yt) is uniformly and

independently distributed over F
2nt
q .
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4. γ(i) = 0 and [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ] (i.e., �vi · �xt = 0).
Then, from Lemma 6, the joint distribution of (�w−,<b>i , �yt) is uniformly and independently

distributed on C0 (over Zt
U← GL(nt,Fq)).

5. [ρ(i) = (t, �vi) ∧ (t, �xt) �∈ Γ ] or [ρ(i) = ¬(t, �vi) ∧ (t, �xt) �∈ Γ ].
Then, the distribution of �w+,<b>

i or �w−,<b>i is uniformly and independently distributed on

F
nt
q (over Zt

U← GL(nt,Fq)).

We then observe the joint distribution (or relation) of {�w+,<b>
i }i=1,...,�, {�w−,<b>i }i=1,...,� and

{�yt}t=1,...,d. Those in cases 3, 4, and 5 are obviously independent from the others. Due to the
restriction of adversaryA’s key queries, �1 �∈ span〈(Mi)γ(i)=1〉. Hence, the distribution of { τr<2>

i |
cases 1 and 2 } is equivalent to that of { τr<3>

i | cases 1 and 2 }, since τr<b>i = τMi ·
(
�g<b>

)T
for b = 2, 3, and the distributions of �g<2> and �g<3> are equivalent except that �1 · (�g<2>

)T = 0
and �1 · (�g<3>

)T is uniformly distributed on Fq.
Thus, the view of adversary A in Game 3-h-2 is equivalent to that in Game 3-h-3. ��

D.7 Proof of Lemma 12

Lemma 12. For any adversary A, there exists a probabilistic machine B3-2, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-3)
A (λ)−

Adv
(3-h-4)
A (λ)| ≤ AdvP3

B3-h-2
(λ), where B3-h-2(·) := B3-2(h, ·).

Proof. In order to prove Lemma 12, we construct a probabilistic machine B3-2 against Problem
3 by using an adversary A in a security game (Game 3-h-3 or Game 3-h-4) as a black box. B3-2

acts in the same way as B3-1 in the proof of Lemma 10 except the following three points:

1. In case (b) of step 4; B3-2 acts in the same way as B3-1 in case (a) of step 4 in the proof of
Lemma 10.

2. In case (b) of step 5; k
(h)∗
t is calculated using B

∗
t and {h∗β,t,j}j=1,..,nt of the Problem 3 instance

as follows:

k
(h)∗
t :=

∑nt
j=1 x

(h)
t,j

(
b∗t,j + δ(h)b∗t,nt+j

+ h∗β,t,j
)
,

where δ(h) := δgidh
.

3. In step 7; when B3-2 receives an output (m′,S′, �s′∗) from A, B3-2 computes (semi-functional)
verification text (c1, . . . , c�, cd+1) given as Eq. (10) as follows:

πt,ι, g̃k,ι
U← Fq for t = 1, . . . , d; k = 1, . . . , r; ι = 1, 2;

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;
ft,j :=

∑2
ι=1 πt,ιet,j,ι, f̃t,k,j :=

∑2
ι=1 g̃k,ιet,j,ι,

for i = 1 . . . , �,
if ρ(i) = (t, �vi), (ci,1, . . . , ci,2nt) := (si�et,1 + θi�vi, s

′
i�et,1 + θ′i�vi),

ci :=
∑2nt

j=1 ci,jbt,j +
∑nt

j=1 vi,jft,j +
∑r

k=1Mi,kf̃t,k,1

+θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2) + qi,

if ρ(i) = ¬(t, �vi), (ci,1, . . . , ci,2nt) := (si�vi, s′i�vi),

ci :=
∑2nt

j=1 ci,jbt,j +
∑nt

j=1 vi,j
∑r

k=1Mi,kf̃t,k,j + θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2) + qi,

cd+1 := gs0T ,
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where (Mi,k)i=1,...,�;k=1,...,r := M, �f
U← F

r
q,
�f ′ U← {�f ′ ∈ F

r
q | �1 · �f ′T = 0}, s0 := �1 · �fT, si :=

Mi · �fT, s′i := Mi · �f ′T, θi, θ′i, θ′′i U← Fq and qi
U← span〈bt,5nt+3〉, and {bt,j}t=1,...,d;j=1,...,2nt+2,

{et,j,ι}t=1,...,d;j=1,...,nt;ι=1,2 are obtained from the Problem 3 instance. B3-2 verifies the sig-
nature (m′,S′, �s′∗) using Ver with the above ({ci}i=1,...,�, cd+1), and outputs β′ := 1 if the
verification succeeds, β′ := 0 otherwise.

Claim 3 The distribution of the view of adversary A in the above-mentioned game simulated by
B3-2 given a Problem 3 instance with β ∈ {0, 1} is the same as that in Game 3-h-3 (resp.Game
3-h-4) if β = 0 (resp.β = 1).

Proof. We consider the joint distribution of {ci}i=1,...,� generated in step 7 and k
(h)
t generated

in case (b) of step 5.
ft,j , f̃t,k,j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calculated in step 7 in the above

simulation are expressed as:

πt :=
∑2

ι=1 πt,ιωι, π′t :=
∑2

ι=1 πt,ιω
′
ι, gk :=

∑2
ι=1 g̃k,ιωι, g′k :=

∑2
ι=1 g̃k,ιω

′
ι,

2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
ft,j = ( 02nt+2, πt�et,j , (π′t�et,j)Zt, 0nt , 0 )Bt ,

f̃t,k,j = ( 02nt+2, gk�et,j , (g′k�et,j)Zt, 0nt , 0 )Bt ,

where ωι, ω′ι, {Zt}t=1,...,d are defined in Problem 3. Note that variables {πt, π′t}t=1,...,d and {gk,
g′k}k=1,...,r are independently and uniformly distributed. Therefore, {ci}i=1,...,� are distributed as
in Eq. (10).

When β = 0, secret key k
(h)∗
t generated in case (b) of step 5 is

k
(h)∗
t =

∑nt
j=1 x

(h)
t,j

(
b∗t,j + δ(h)b∗t,nt+j

+ h∗β,t,j
)

= (

2nt︷ ︸︸ ︷
�x

(h)
t , δ�x

(h)
t ,

2︷︸︸︷
02,

2nt︷ ︸︸ ︷
τ�x

(h)
t · Ut, 0nt ,

nt︷ ︸︸ ︷
�ϕ

(h)
t , 0)B∗

t
with �ϕ

(h)
t

U← F
nt
q .

When β = 1, secret key k
(h)
t generated in case (b) of step 5 is

k
(h)∗
t =

∑nt
j=1 x

(h)
t,j

(
b∗t,j + δ(h)b∗t,nt+j

+ h∗β,t,j
)

= (

2nt︷ ︸︸ ︷
�x

(h)
t , δ�x

(h)
t ,

2︷︸︸︷
02,

nt︷ ︸︸ ︷
0nt , τ ′�x(h)

t ,

nt︷ ︸︸ ︷
�ϕ

(h)
t , 0)B∗

t
with �ϕ

(h)
t

U← F
nt
q .

Therefore, when β = 0, the distribution by B3-2’s simulation is equivalent to that in Game
3-h-3. When β = 1, the distribution by B3-2’s simulation is equivalent to that in Game 3-h-4. ��
From Claim 3, we obtain Lemma 12 in the same manner as in the proof of Lemma 8. ��

D.8 Proof of Lemma 13

Lemma 13. For any adversary A, for any security parameter λ, Adv
(3-νH -4)
A (λ) = Adv

(4)
A (λ).

Proof. In order to prove Lemma 13, we construct a probabilistic machine B4 against Problem
2” by using an adversary A in a security game (Game 3-νH -4 or 4) as a black box as follows:
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1. B4 is given a Problem 2” instance,(param	n, {B̂t,B∗t ,h∗β,t,j , et,j}t=1,..,d;j=1,..,nt , G0, G1).
2. B4 plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, B4 provides A public keys gparam as in the proof of Lemma

7 and sets b̃∗t,ι := h∗β,t,ι for ι = 1, . . . , nt, B̂
′
t := (bt,1, . . . , bt,2nt+2, bt,5nt+3), B̂∗t := (b̃∗t,1, . . . ,

b̃∗t,nt
, b∗t,nt+1, . . . , b

∗
t,2nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+2), {apkt := (paramVt

, B̂′t, B̂∗t )}t∈S for each au-
thority t ∈ S of Game 3-νH -4 (and 4), that are obtained from the Problem 2” instance.

4. When a random oracle query for H1 is issued for the ι-th global identity gid := gidι, B4

answers as follows: When gid is not queried before, then a fresh δgid
U← Fq is generated and

B4 answers δgidG1 to A and records data (gid, δgid, δgidG1) to the H list. When gid is already
queried, B4 obtains δgidG1 from the H-list, and answers it to A.

5. When an AttrGen query for the ι-th global identity gid := gidι is issued for a pair of a global
identity and an attribute (gid, (t, �xt)) for t ∈ S, B4 calculates semi-functional key {k∗t }t∈S
with Eq. (11), that is computed using B

∗
t of the Problem 2” instance and δgid as

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( �xt, δgid�xt, 02, 0nt , τ ′gid�xt, �ϕgid,t, 0 )B∗

t
,

where τ ′gid
U← Fq, �ϕgid,t

U← F
nt
q .

6. When an AltSig query for (m,S) is issued by A, B4 computes a semi-functional signature
(s∗1, . . . , s∗�) for (m,S) as in Eq. (7) using {B∗t }t=1,...,d in the Problem 2” instance.

7. When B4 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B4 calculates a semi-

functional verification text (c1, . . . , c�, cd+1) given in Eq. (10) as follows:

π′t, μt, g
′
k, μ̃k

U← Fq for t = 1, . . . , d; k = 1, . . . , r;
for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;

ft,j := π′tet,j + μtbt,j , f̃t,k,j := g′ket,j + μ̃kbt,j ,

�f ′ U← {�f ′ ∈ F
r
q |�1 · �f ′T = 0}, s′i := Mi · �f ′T for i = 1 . . . , �,

for i = 1 . . . , �,
if ρ(i) = (t, �vi), (ci,1, . . . , ci,2nt) := (s′i�et,1 + θ′i�vi, (r

′′
i �et,1 + ωi�vi) · Zt),

ci :=
∑nt

j=1 vi,jft,j +
∑r

k=1Mi,kf̃t,k,1 +
∑nt

j=1 ci,jbt,nt+j

+θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2) +
∑nt

j=1 ci,nt+jbt,2nt+2+j + qi,

if ρ(i) = ¬(t, �vi), (ci,1, . . . , ci,2nt) := (s′i�vi, r
′′
i �vi · Zt),

ci :=
∑nt

j=1 vi,j
∑r

k=1Mi,kf̃t,k,j +
∑nt

j=1 ci,jbt,nt+j

+θ′′i (H2(m′,S′)bt,2nt+1 − bt,2nt+2) +
∑nt

j=1 ci,nt+jbt,2nt+2+j + qi,

cd+1 := e(
∑r

k=1 f̃1,k,1, b
∗
1,1),

where (Mi,k)i=1,...,�;k=1,...,r := M, �f ′ U← {�f ′ ∈ F
r
q | �1 · �f ′T = 0}, s′i := Mi · �f ′T, �g U← F

r
q, r
′′
i :=

Mi·�gT, θ′i, θ
′′
i , ωi

U← Fq, Zt
U← GL(nt,Fq) and qi

U← span〈bt,5nt+3〉, and {bt,j}t=1,...,d;j=1,...,3nt+2,
and {et,j}t=1,...,d;j=1,...,nt are obtained from the Problem 2” instance. B4 verifies the signature
(m′,S′, �s′∗) using Ver with the above ({ci}i=1,...,�, cd+1), and outputs β′ := 1 if the verification
succeeds, β′ := 0 otherwise.
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Claim 4 The distribution of the view of adversary A in the above-mentioned game simulated by
B4 given a Problem 2” instance with β ∈ {0, 1} is the same as that in Game 3-νH-4 (resp.Game
4) if β = 0 (resp.β = 1).

Proof. We consider the joint distribution of {ci}i=1,...,� generated in step 7 and {b̃∗t,ι}t=1,...,d;ι=1,...,nt

generated in step 3.
ft,j , f̃t,k,j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calculated in the step 7 in the above

simulation are expressed as:

πt := π′tσ, θt := π′tω + μt, gk := g′kσ, fk := g′kω + μ̃k,
nt︷ ︸︸ ︷ 2nt+2︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

ft,j = ( θt�et,j , 02nt+2, πt�et,j , 0nt , 0 )Bt ,

f̃t,k,j = ( fk�et,j , 02nt+2, gk�et,j , 0nt , 0 )Bt ,

where ω, σ are defined in Problem 2”. Note that variables {θt, πt}t=1,...,d and {fk, gk}k=1,...,r are
independently and uniformly distributed. Therefore, {ci}i=1,...,� are distributed as in Eq. (10).

When β = 0, a part of authority public key, b̃∗t,ι, generated in step 3 is

b̃∗t,j = h∗β,t,j = (

nt︷ ︸︸ ︷
δ�et,j ,

3nt+2︷ ︸︸ ︷
03nt+2 ,

nt︷︸︸︷
δt,j , 0)B∗

t
with δ U← Fq, δt,j

U← F
nt
q .

When β = 1, a part of authority public key, b̃∗t,ι, generated in step 3 is

b̃∗t,j = h∗β,t,j = (

nt︷ ︸︸ ︷
δ�et,j ,

2nt+2︷ ︸︸ ︷
02nt+2 ,

nt︷ ︸︸ ︷
τ�et,j ,

nt︷︸︸︷
δt,j , 0)B∗

t
with δ, τ U← Fq, δt,j

U← F
nt
q .

Therefore, when β = 0, the distribution by B4’s simulation is equivalent to that in Game
3-νH -4. When β = 1, the distribution by B4’s simulation is equivalent to that in Game 4. ��

From Claim 4, we obtain Lemma 13 in the same manner as in the proof of Lemma 8. ��

D.9 Proof of Lemma 14

Lemma 14. For any adversary A, there exists a probabilistic machine B4, whose running time is
essentially the same as that of A, such that for any security parameter λ, |Adv

(4)
A (λ)−Adv

(5)
A (λ)|

≤ AdvP2
B4

(λ).

Proof. To prove Lemma 14, we will show distribution (gparam, {B̂t, B̂∗t }t=1,...,d, {s(h)∗
i }h=1,...,νS ;i=1,...,�,

{k(h)∗
t }h=1,...,νH ;(t,	xt)∈Γ (h) , {ci}i=1,...,�) in Game 4 and that in Game 5 are equivalent. For that

purpose, we define new bases Dt of Vt and D
∗
t of V

∗
t as follows: We generate random ξ

U← F
×
q ,

and set

dt,3nt+2+ι := bt,3nt+2+ι − ξbt,ι, d∗t,ι := b∗t,ι + ξb∗t,3nt+2+ι for ι = 1, . . . , nt,
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That is, ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bt,1
...

bt,3nt+2

dt,3nt+3
...

dt,4nt+2

bt,4nt+3
...

bt,5nt+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎝

Int

I2nt+2

−ξInt Int

Int+1

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

bt,1
...
...

bt,5nt+3

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∗t,1
...

d∗t,nt

b∗t,nt+1
...

b∗t,5nt+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎝
Int ξInt

I2nt+2

Int

Int+1

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

b∗t,1
...
...

b∗t,5nt+3

⎞
⎟⎟⎟⎟⎠ .

We set

Dt := (bt,1, . . . , bt,3nt+2,dt,3nt+3, . . . ,dt,4nt+2, bt,4nt+3, . . . , bt,5nt+3),
D
∗
t := (d∗t,1, . . . ,d

∗
t,nt

, b∗t,nt+1, . . . , b
∗
t,5nt+3).

We then easily verify that Dt and D
∗
t are dual orthonormal.

Signatures, keys, a part of authority public keys, and verification text, {s(h)∗
i }h=1,...,νS ;i=1,...,�,

{k(h)∗
t }h=1,...,νH ;(t,	xt)∈Γ (h) , {b̃∗t,ι}t∈S;ι=1,...,nt , {ci}i=1,...,�, in Game 4 are expressed over bases Bt

and B
∗
t as

s
(h)∗
t = (�w(h)

i , �w
′(h)
i , ζi(1, H2(m(h),S(h))), 0nt , �u

(h)
i , �σ

(h)
i , 0)B∗

t

k
(h)∗
t = (�x(h)

t , δ(h)�x
(h)
t , 0nt+2, τ ′(h) �x(h)

t , �ϕ
(h)
t , 0)B∗

t

b̃∗t,ι = (π�et,ι, 02nt+2, η �et,ι, �̃ϕt,ι, 0)B∗
t

ci = ( si �et,1 + θi �vi, s
′
i�et,1 + θ′i�vi, (r′′i �et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi)Bt if ρ(i) = (t, �vi),

ci := ( si �vi, s′i�vi, r
′′
i �vi · Zt, r′i�vi, 0nt , ηi)Bt , if ρ(i) = ¬(t, �vi),

where a part framed by a box indicates coefficients which were changed in expression over bases
Dt and D

∗
t . That is,

s
(h)∗
t = (�w(h)

i , �w
′(h)
i , ζi(1, H2(m(h),S(h))), 0nt , �̃u

(h)

i , �σ
(h)
i , 0)D∗

t

k
(h)∗
t = (�x(h)

t , δ(h)�x
(h)
t , 0nt , τ̃ ′(h) �x(h)

t , �ϕ
(h)
t , 0)D∗

t

b̃∗t,ι = (π�et,ι, 02nt+2, η̃ �et,ι, �̃ϕt,ι, 0)D∗
t

ci = ( s̃i �et,1 + θ̃i �vi, s
′
i�et,1 + θ′i�vi, (r′′i �et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi)Dt if ρ(i) = (t, �vi),

ci := ( s̃i �vi, s′i�vi, r
′′
i �vi · Zt, r′i�vi, 0nt , ηi)Dt if ρ(i) = ¬(t, �vi),
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where

�̃u
(h)

i := �u
(h)
i − ξ �w′(h)i , τ̃ ′(h) := τ ′(h) − ξ, η̃ := η − ξπ, θ̃i := θi + ξω′i,

are uniformly, independently distributed since �u(h)
i

U← F
nt
q , τ

′(h), η, θi
U← Fq, and

s̃i := si + ξr′i,

are a tuple of shared secrets {s̃i}i=1,...,� for access structure M , independent from s0 in cd+1,

which are distributed as in Game 5 since ξ U← F
×
q .

In the light of the adversary’s view, both (Bt,B∗t ) and (Dt,D
∗
t ) are consistent with public

keys, gparam := (paramG, H1, H2) and apkt except for b̃∗t,ι, i.e., (paramVt
, B̂t, B̃

∗
t ), where B̃

∗
t :=

(b∗t,nt+1, . . . , b
∗
t,2nt+2, b

∗
t,4nt+3, . . . , b

∗
t,5nt+2). Therefore, {s(h)∗

i }h=1,...,νS ;i=1,...,�, {k(h)∗
t }h=1,...,νH ;(t,	xt)∈Γ (h) ,

{b̃∗t,ι}t∈S;ι=1,...,nt , {ci}i=1,...,� above can be expressed as signatures, keys, a part of authority pub-
lic keys, and verification text in two ways, in Game 4 over bases (Bt,B∗t ) and in Game 5 over
bases (Dt,D

∗
t ). Thus, Game 4 can be conceptually changed to Game 5. ��

E Decentralized Multi-Authority Functional Encryption

E.1 Definitions of DMA-FE

Definition 19 (Decentralized Multi-Authority FE). A decentralized multi-authority (DMA)
FE scheme consists of the following algorithms. These are randomized algorithms except for Dec.

GSetup A party runs the algorithm GSetup(1λ) which outputs a global parameter gparam. The
party publishes gparam.

ASetup An attribute authority t (1 ≤ t ≤ d) who wishes to issue attributes runs ASetup(gparam,
t, nt) which outputs an attribute-authority public key apkt and an attribute-authority secret
key askt. The attribute authority t publishes apkt and stores askt.

AttrGen When an attribute authority t issues user gid a secret key associated with an attribute
vector �xt, it runs AttrGen(gparam, t, askt, gid, �xt) that outputs an attribute secret key
uskgid,(t,	xt). The attribute authority gives uskgid,(t,	xt) to the user.

Enc To encrypt a message m ∈ GT with an access structure S, using a set of public keys for
relevant authorities {apkt}, a user runs Enc(gparam, {apkt}, m,S) which outputs a ciphertext
ctS.

Dec To decrypt a ciphertext ctS, using a set of public keys for relevant authorities {apkt} and
secret keys corresponding to user gid and attributes {(t, �xt)}, gid runs Dec(gparam, {apkt,
uskgid,(t,	xt)}, ctS) which outputs a message m or a special symbol ⊥.

A DMA-FE scheme should have the following correctness property: for all security param-
eter λ, all attribute sets Γ := {(t, �xt)}, all gid, all messages m and all access structures S,
it holds that m = Dec(gparam, {apkt, uskgid,(t,	xt)}(t,	xt)∈Γ , ctS) with overwhelming probability, if

S accepts Γ , where gparam
R← GSetup(1λ), (apkt, askt)

R← ASetup(gparam, t, nt), uskgid,(t,	xt)
R←

AttrGen(gparam, t, askt, gid, �xt) and ctS

R← Enc(gparam, {apkt},m,S),
We let S the set of authorities. We assume each attribute is assigned to one authority as in

[38], or an attribute is considered to be of the form of (t, �xt).

49



Definition 20 (Adaptive Payload Hiding of DMA-FE). For an adversary, we define
AdvDMA-FE,PH

A (λ) to be the success probability in the following experiment for any security pa-
rameter λ. A DMA-FE scheme is adaptively payload-hiding if the success probability of any
polynomial-time adversary is negligible:

Setup Given 1λ, the challenger gives gparam
R← GSetup(1λ) to adversary A. For each authority

t ∈ S, the challenger runs (askt, apkt)
R← ASetup(gparam, t, nt) and gives {apkt}t∈S to A.

Phase 1 The adversary is allowed to issue a polynomial number of queries, (gid, t, �xt), to
the challenger or oracle AttrGen(gparam, t, askt, ·, ·) for private keys, attribute secret key
uskgid,(t,	xt).

Challenge Let Γgidi
:= {(t, �x)} (i = 1, . . . , ν) queried to the AttrGen oracle with gidi. The

adversary submits two messages m(0),m(1) and an access structure, S := (M,ρ). provided
that the S does not accept any Γgidi

with any gidi (i = 1, . . . , ν). The challenger flips a

random coin b
U← {0, 1}, and computes ct

(b)
S

R← Enc(gparam, {apkt},m(b),S). It gives ct
(b)
S

to
the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, (gid, t, �xt), to
the challenger or oracle AttrGen(gparam, t, askt, ·, ·) for private keys, attribute secret key
uskgid,(t,	xt). provided that S does not accept Γgidi

with any gidi (i = 1, . . . , ν).
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as AdvDMA-FE,PH
A (λ) := Pr[b′ =

b]− 1/2 for any security parameter λ. A DMA-FE scheme is adaptively payload-hiding secure if
all polynomial time adversaries have at most a negligible advantage in the above game.

E.2 Construction

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or ρ(i) = ¬(t, �v),
where ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is
injective for S := (M,ρ) with ciphertext c = cS. We will show how to relax the restriction in
Appendix F. In the description of the scheme, we assume that input vector �xt := (xt,1, . . . , xt,nt)
is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one by
(1/xt,1) · �xt assuming that xt,1 is non-zero). In addition, we assume that input vector �vi :=
(vi,1, . . . , vi,nt) satisfies that vi,nt �= 0. We refer to Section 1.5 for notations on DPVS, e.g.,
(x1, . . . , xN )B, (y1, . . . , yN )B∗ for xi, yi ∈ Fq, and �et,j . For matrix X := (χi,j)i,j=1,...,N ∈ F

N×N
q

and element v in N -dimensional V, X(v) denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps
{φi,j} (Definition 2). Similarly, for matrix (ϑi,j) := (X−1)T, (X−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v).

It holds that e(X(x), (X−1)T(y)) = e(x,y) for any x,y ∈ V.

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), H : {0, 1}∗ → G;

return gparam := (paramG, H).
Remark : Given gparam, the following values can be computed by anyone and shared
by all parties: G0 := H1(0λ) ∈ G, G1 := H1(0λ−1, 1) ∈ G, gT := e(G0, G1),

ASetup(gparam, t, nt) :
paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 5nt + 1, paramG),

Xt
U← GL(5nt + 1,Fq), bt,i := Xt((0i−1, G0, 05nt+1−i)), for i = 1, . . . , 5nt + 1,
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B̂t := (bt,1, . . . , bt,2nt , bt,5nt+1), askt := Xt, apkt := (paramVt
, B̂t),

return (askt, apkt).
AttrGen(gparam, t, askt, gid, �xt := (xt,1, . . . , xt,nt) ∈ F

nt
q \ {�0} such that xt,1 := 1) :

Ggid (= δG1) := H(gid) ∈ G, �ϕt := (ϕt,1, . . . , ϕt,nt)
U← F

nt
q ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷
k∗t := (X−1

t )T (( xt,1G1, .., xt,ntG1, xt,1Ggid, .., xt,ntGgid, 02nt ,

nt︷ ︸︸ ︷ 1︷︸︸︷
ϕt,1G1, .., ϕt,ntG1, 0 )),

return uskgid,(t,	xt) := (gid, (t, �xt),k∗t ).

Remark : Let b∗i := (X−1
t )T((0i−1, G1, 05nt+1−i)) and B

∗
t := (b∗t,1, . . . , b

∗
t,5nt+1).

Then k∗t is represented as k∗t = (

nt︷︸︸︷
�xt ,

nt︷︸︸︷
δ�xt ,

2nt︷︸︸︷
02nt ,

nt︷︸︸︷
�ϕt , 0 )B∗

t
.

Enc(gparam, {apkt}, m, S := (M,ρ)) :

�f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT,

�f ′ R← F
r
q s.t. �1 · �f ′T = 0, �s′T := (s′1, . . . , s

′
�)

T := M · �f ′T, ηi, θi, θ′i U← Fq (i = 1, .., �),
for i = 1, . . . , �,
if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ F

nt
q \ {�0} such that vi,nt �= 0),

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, 02nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si�vi, s′i�vi, 02nt , 0nt , ηi )Bt ,

cd+1 := gs0T m, ctS := (S, c1, . . . , c�, cd+1).
return ctS.

Dec(gparam, {apkt, uskgid,(t,	xt) := (gid, (t, �xt),k∗t )}, ctS := (S, c1, . . . , c�, cd+1)) :
If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,	xt)}, then compute I and {αi}i∈I

such that �1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]

∨ [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt �= 0] },
K :=

∏
i∈I ∧ ρ(i)=(t,	vi)

e(ci,k∗t )
αi ·

∏
i∈I ∧ ρ(i)=¬(t,	vi)

e(ci,k∗t )
αi/(	vi·	xt),

return m′ := cd+1/K.

[Correctness] If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,	xt)},∏
i∈I ∧ ρ(i)=(t,	vi)

e(ci,k∗t )αi ·∏i∈I ∧ ρ(i)=¬(t,	vi)
e(ci,k∗t )αi/(	vi·	xt)

=
∏
i∈I ∧ ρ(i)=(t,	vi)

g
αi(si+δs

′
i)

T

∏
i∈I ∧ ρ(i)=¬(t,	vi)

g
(αi(si+δs

′
i))(	vi·	xt)/(	vi·	xt)

T
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= g
P

i∈I(αisi+δαis
′
i)

T = gs0T , since
∑

i∈I αisi = s0 and
∑

i∈I αis
′
i = 0.

Comparison with the CP-FE Scheme in [47] Okamoto-Takashima [47] gave an adaptively
secure CP-FE scheme on DPVS framework. Ciphertexts (CT) and secret-keys (SK) of the scheme
have two components, one for decryption and one for shared secret recovering. Concretely, the
first corresponds to t = 0, d+1 component, i.e., (c0, cd+1) and k∗0, and the second corresponds to
others, i.e., (c1, . . . , c�) and {k∗t }(t,	xt)∈Γ . CT and SK vector components for t �= 0 have dimension
3nt = nt+nt+nt+1, where the first nt dimension is the real-encoding part (real part, for short)
for CT and SK vectors, the second is the hidden part for semi-functional CT and SK, the third
is the SK randomness part, and the fourth is the CT randomness part.

Our DMA-FE scheme cannot use k∗0 (and then c0) component from the distributed and
decentralized key generation. To meet the correctness and (adaptive) security requirements even
without t = 0 components, both real part and hidden parts are increased to 2nt-dimensional,
respectively, i.e., with 5nt = 2nt + 2nt + nt + 1 inner-structure (see the figure below).

In [47] CP-FE, a scalar ζ in c0, which is independent of the shared secret si in ci (i = 1, . . . , �),
is used for ElGamal-like decryption, however in our decentralized situation, we should use s0
directly for decryption, so in addition to the corresponding shared secret {si}, we add more nt
dimension in the real part to embed another shared secret {s′i} with the share s′0 = 0.

Moreover, the dual system security proof in [47] is accomplished using the hidden part in c0

and k∗0. Instead of it, we require more nt dimension in the hidden part in each vector component
ct and k∗t with t �= 0 to change each queried key (in the security game) to semi-functional form
sequentially i.e., without affecting to the other queried keys.

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
CT & SK vector (t �= 0) in [47] CP-FE : ( real hidden SK ran. CT ran. ),

2nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
CT & SK vector (t �= 0) in our DMA-FE : ( real hidden SK ran. CT ran. ).

E.3 Security of the Proposed DMA-FE

Theorem 5. The proposed DMA-FE scheme is adaptively payload-hiding against chosen plain-
text attacks under the DLIN assumption in the random oracle model.

For any adversary A, there exist probabilistic machines E1, E2 and E3, whose running times
are essentially the same as that of A, such that for any security parameter λ,

AdvDMA-FE,PH
A (λ) ≤ AdvDLIN

E1 (λ) +
∑ν

h=1

(
AdvDLIN

E2,h
(λ) + AdvDLIN

E3,h
(λ)
)

+ ε,

where E2,h(·) := E2(h, ·), E3,h(·) := E3(h, ·), ν is the maximum number of queries to random
oracle H and ε := ((2d+ 10)ν + 2d+ 5)/q.

E.4 Proof Outline of Theorem 5

At the top level strategy of the security proof, an extended form of the dual system encryption by
Waters [58] is employed, where ciphertexts and secret keys have three forms, normal, pre-semi-
functional and semi-functional. The real system uses only normal ciphertexts and normal secret
keys, and pre-semi-functional and semi-functional forms of ciphertexts and keys are used only
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in a sequence of security games for the security proof. (Additionally, ciphertexts have temporal
and non-functional forms. See below.)

We employ Game 0 through Game 3. In Game 1, the challenge ciphertext is changed to
temporal 0 form. When at most ν random oracle queries are issued by an adversary, there are
4ν game changes from Game 1 (Game 2-0-4), Game 2-1-1, Game 2-1-2, Game 2-1-3, Game 2-1-4
through Game 2-ν-1, Game 2-ν-2, Game 2-ν-3, Game 2-ν-4.

In Game 2-h-1, the challenge ciphertext is changed to pre-semi-functional form, and keys
for the first h − 1 random oracle queried global identities, gid, are semi-functional form, while
the remaining keys are normal. In Game 2-h-2, key for the h-th global identity is changed to
pre-semi-functional form while the remaining keys and the challenge ciphertext is the same as in
Game 2-h-1. In Game 2-h-3, the challenge ciphertext is changed to semi-functional form while all
the queried keys are the same as in Game 2-h-2. In Game 2-h-4, key for the h-th global identity
is changed to semi-functional form while the remaining keys and the challenge ciphertext is the
same as in Game 2-h-3. At the end of the Game 2 sequence, in Game 2-ν-4, all the queried
keys are semi-functional forms (and the challenge ciphertext is semi-functional form), which
allows the next conceptual change to Game 3. In Game 3, the challenge ciphertext is changed
to non-functional form (while all the queried keys are semi-functional form). In the final game,
advantage of the adversary is zero.

Table 3. Outline of Game Descriptions

challenge queried keys

ciphertext 1 · · · h − 1 h h + 1 · · · ν

Game 0 normal normal

1 temporal normal

2-1-1 pre-semi. normal

2-1-2 pre-semi. pre-semi. normal

2-1-3 semi-func. pre-semi. normal

2-1-4 semi-func. semi-func. normal

...

2-h-1 pre-semi. semi-func. normal

2-h-2 pre-semi. semi-func. pre-semi. normal

2-h-3 semi-func. semi-func. pre-semi. normal

2-h-4 semi-func. semi-func. semi-func. normal

...

2-ν-4 semi-func. semi-func. semi-func.

3 non-func. semi-func.

We summarize these changes in Table 3, where shaded parts indicate the challenge ciphertext
or queried key(s) which were changed in a game from the previous game.

As usual, we prove that the advantage gaps between neighboring games are negligible.
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For ctS := (S, c1, . . . , c�, cd+1), we focus on �c := (c1, . . . , c�), and ignore the other part of
ctS, i.e., (S, cd+1), (and call (c1, . . . , c�) ciphertext) in this proof outline. In addition, we ignore
a negligible factor in the (informal) descriptions of this proof outline. For example, we say “A
is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible in security parameter λ.

A normal secret key, �k∗ norm (with attributes (t, �xt)), is the correct form of the secret key
of the proposed DMA-FE scheme, and is expressed by Eq. (20). Similarly, a normal ciphertext
(with access structure S), �c norm, is expressed by Eq. (21). A temporal ciphertext is expressed
by Eq. (22). A pre-semi-functional ciphertext, �c pre-semi, is expressed by Eq. (23) and a pre-semi-
functional secret key, �k∗ pre-semi, is expressed by Eq. (24). A semi-functional ciphertext, �c semi,
is expressed by Eq. (25) and a semi-functional secret key, �k∗ semi, is expressed by Eq. (26). An
non-functional ciphertext, �c non-f , is expressed by Eq. (27).

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β U← {0, 1} of Problem 1. We then show that
the distribution of the secret keys and challenge ciphertext replied by the simulator is equivalent
to those of Game 0 when β = 0 and those of Game 1 when β = 1. That is, the advantage
of Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma 18). The
advantage of Problem 1 is proven to be equivalent to that of the DLIN assumption (Lemma 1).

We then show that Game 2-(h− 1)-4 can be conceptually changed to Game 2-h-1 (Lemma
19), by using the fact that parts of bases, (bt,2nt+1, . . . , bt,4nt) and (b∗t,2nt+1, . . . , b

∗
t,4nt

), are un-
known to the adversary. In particular, when h = 1, it means that Game 1 can be conceptually
changed to Game 2-1-1. When h ≥ 2, we notice that normal key and semi-functional chal-
lenge ciphertext, (�k∗ norm, �csemi), are equivalent to normal key and pre-semi-functional challenge
ciphertext, (�k∗ norm, �cpre-semi), except that (0-)shared secret {ri}i=1,...,� with r0 = 0 is used in

�cpre-semi instead of ordinary shared secret {r′′i }i=1,...,� with r′′0
U← Fq for some coefficient vector

in �csemi. This change of coefficient vectors can be done conceptually since zero vector 0n is used
for the corresponding part in �k∗ norm.

The advantage gap between Games 2-h-1 and 2-h-2 is shown to be bounded by the advantage
of Problem 2 (precisely, a slightly modified Problem 2 with the total dimensions 5nt + 1, not
5nt + 3 for each t), i.e., advantage of the DLIN assumption (Lemmas 20 and 2).

We then show that Game 2-h-2 can be conceptually changed to Game 2-h-3 (Lemma 21),
where we use the fact that all queried keys {(t, �xt)} do not satisfy the challenge S. Here, we notice
that pre-semi-functional key and pre-semi-functional challenge ciphertext, (k∗ pre-semi, cpre-semi),
are equivalent to pre-semi-functional key and semi-functional challenge ciphertext, (k∗ pre-semi, csemi),
except that shared secret {r′′i }i=1,...,� with r′′0

U← Fq is used in csemi instead of {ri}i=1,...,� with
r0 = 0 for some coefficient vector in cpre-semi. Therefore, this conceptual change is proved using
Lemma 6.

The advantage gap between Games 2-h-3 and 2-h-4 is similarly shown to be bounded by the
advantage of Problem 3, i.e., advantage of the DLIN assumption (Lemmas 22 and 5).

We then show that Game 2-ν-4 can be conceptually changed to Game 3 (Lemma 23) by using
the fact that parts of bases, (b3n+1, . . . , b4n) and (b∗1, . . . , b∗n), are unknown to the adversary.

Game 0 : Original security game. That is, the reply to an AttrGen query k
(h)∗
t ∈ uskgidh,(t,	xt) to

an AttrGen query for (gidh, (t, �xt)) with t ∈ S, and the challenge ciphertext for (m(0),m(1),S :=
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(M,ρ)) are:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t := ( �xt, δ(h)�xt, 02nt , �ϕ

(h)
t , 0 )B∗

t

(20)

for i = 1, . . . , �,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = (t, �vi), ci := ( si �et,1 + θi�vi, s
′
i�et,1 + θ′i�vi, 02nt , 0nt , ηi )Bt ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷
if ρ(i) = ¬(t, �vi), ci := ( si �vi, s′i�vi, 02nt , 0nt , ηi )Bt ,

cd+1 := g
s0
T m(b),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

where �f U← F
r
q,
�f ′ R← {�f ′ ∈ F

r
q | �1· �f ′T = 0}, s0 := �1· �fT, si := Mi · �fT, s′i := Mi · �f ′T, θi, θ′i, ηi, δ(h) U←

Fq and �ϕ
(h)
t

U← F
nt
q .

Game 1 : Same as Game 0 except that the challenge ciphertext, ci, cd+1, are:

for i = 1, . . . , �,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, zi�et,1 , 0nt , 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, zi�et,1 , 0nt , 0nt , ηi )Bt ,

cd+1 := gs0T m
(b),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

where zi
U← Fq, and the other variables are generated as in Game 0.

Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-4 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-4 except that the challenge ciphertext, ci, cd+1, are:

for i = 1, . . . , �,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷

if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi,
2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

(ri�et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi , 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, ri�vi · Zt, r′i�vi , 0nt , ηi )Bt ,

cd+1 := gs0T m
(b),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)
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where �g U← {�g ∈ F
r
q | �1 ·�gT = 0}, �g′ U← F

r
q, ri := Mi ·�gT, r′i := Mi ·�g′T, Zt U← GL(nt,Fq), ωi, ω

′
i

U←
Fq, and the other variables are generated as in Game 2-(h− 1)-4.

Game 2-h-2 (h = 1, . . . , ν): Game 2-h-2 is the same as Game 2-h-1 except that the reply
k

(h)∗
t ∈ uskgidh,(t,	xt) to an AttrGen query for the h-th global identity gidh (and t ∈ S) is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t := ( �xt, δ(h)�xt, τ (h)�xt · Ut , 0nt �ϕ

(h)
t , 0 )B∗

t

(24)

where τ (h) U← Fq, Ut := (Z−1
t )T for Zt

U← GL(nt,Fq) used in Eq. (23), and the other variables
are generated as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except that the challenge
ciphertext, ci, cd+1, are:

for i = 1, . . . , �,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷

if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi,
2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

( r′′i �et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, r′′i �vi · Zt, r′i�vi, 0nt , ηi )Bt ,

cd+1 := gs0T m
(b),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

where �g U← F
r
q, r
′′
i := Mi · �gT, and the other variables are generated as in Game 2-h-2.

Game 2-h-4 (h = 1, . . . , ν) : Game 2-h-4 is the same as Game 2-h-3 except that the reply
k

(h)∗
t ∈ uskgidh,(t,	xt) to an AttrGen query for the h-th global identity gidh (and t ∈ S) is:

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k

(h)∗
t = ( �xt, δ(h)�xt, 0nt , τ ′(h)�xt , �ϕ

(h)
t , 0 )B∗

t

(26)
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where τ ′(h) U← Fq, and the other variables are generated as in Game 2-h-3.

Game 3 : Game 3 is the same as Game 2-ν-4 except that the challenge ciphertext, ci, cd+1 are:

for i = 1, . . . , �,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷

if ρ(i) = (t, �vi), ci := ( s̃i �et,1 + θi�vi, s′i�et,1 + θ′i�vi,
2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

(ri�et,1 + ωi�vi) · Zt, r′i�et,1 + ω′i�vi, 0nt , ηi )Bt ,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷︸︸︷ 1︷︸︸︷

if ρ(i) = ¬(t, �vi), ci := ( s̃i �vi, s′i�vi, ri�vi · Zt, r′i�vi, 0nt , ηi )Bt ,

cd+1 := g
s0
T m(b),

where �f
U← F

r
q, s̃i := Mi · �fT and s0

U← Fq. The other variables are generated as in Game 2-ν-4.
Here, we note that s0 is independent from all the other variables.

Let Adv
(0)
A (λ) be AdvDMA-FE,PH

A (λ) in Game 0, and Adv
(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ),

Adv
(3)
A (λ) be the advantage of A in Game 1, 2-h-1, . . . , 2-h-4, 3, respectively.
It is obtained that Adv

(3)
A (λ) = 0 by Lemma 24. We will show five lemmas (Lemmas 18-23)

that evaluate the gaps between pairs of Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ) for

h = 1, . . . , ν, and Adv
(3)
A (λ). From these lemmas and Lemmas 1, 2 and 5, we obtain

AdvDMA-FE,PH
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν
h=1

∣∣∣Adv
(2-(h−1)-4)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣
+
∑3

ι=1

∑ν
h=1

∣∣∣Adv
(2-h-ι)
A (λ)− Adv

(2-h-(ι+1))
A (λ)

∣∣∣+ ∣∣∣Adv
(2-ν-4)
A (λ)− Adv

(3)
A (λ)

∣∣∣+Adv
(3)
A (λ)≤ AdvP1

B1
(λ)+∑ν

h=1 AdvP2
B2,h

(λ)+
∑ν

h=1 AdvP3
B3,h

(λ)+(2dν+2d)/q ≤ AdvDLIN
E1 (λ)+

∑ν
h=1

(
AdvDLIN

E2,h
(λ) + AdvDLIN

E3,h
(λ)
)
+

((2d+ 10)ν + 2d+ 5)/q. This completes the proof of Theorem 5. ��
Lemma 18. For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + 2d/q.

Lemma 19. For any adversary A, for any security parameter λ, |Adv
(2-(h−1)-4)
A (λ)−Adv

(2-h-1)
A (λ)|

≤ 2d/q.

Lemma 20. For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-h-2)
A (λ)| ≤ AdvP2

B2,h
(λ), where B2,h(·) := B2(h, ·).

Lemma 21. For any adversary A, for any security parameter λ, Adv
(2-h-2)
A (λ) = Adv

(2-h-3)
A (λ).

Lemma 22. For any adversary A, there exists a probabilistic machine B3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-3)
A (λ) −

Adv
(2-h-4)
A (λ)| ≤ AdvP3

B3,h
(λ), where B3,h(·) := B3(h, ·).
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Lemma 23. For any adversary A, for any security parameter λ, Adv
(2-ν-4)
A (λ) = Adv

(3)
A (λ).

Lemma 24. For any adversary A, Adv
(3)
A (λ) = 0.

The proofs of Lemmas 18–23 are given in the full version of this paper.

F How to Relax the Restriction that ρ̃ Is Injective

The following technique can be also applied to DMA-FS (and DMA-ABS).

F.1 Generalized Version of Lemma 6

Let V is n-dimensional vector space F
n
q , and V ∗ its dual. For �p := (p1, . . . , ps) ∈ F

s
q , let

C	p :=
{

(�x,�v1, . . . , �vs)
∣∣∣∣�x �= �0, �x · �vi = pi for i = 1, . . . , s
{�vi}i=1,...,s are linearly independent over Fq,

}
⊂ V × (V ∗)s.

Lemma 25 (Lemma 23 in [47]). For all �p such that C	p �= ∅, for all (�x,�v1, . . . , �vs) ∈ C	p, and
(�r, �w1, . . . , �ws) ∈ C	p,

Pr
Z

U← GL(n,Fq),

[�xU = �r ∧ �viZ = �wi for i = 1, . . . , s] =
1
� C	p

,

where U := (Z−1)T.

F.2 The Modified DMA-FE Scheme

We assume that ϕ ∈ N is given in the system. For any access structure S := (M,ρ) for ciphertext
in the DMA-FE scheme, ϕ ≥ maxdt=1 #{i | ρ̃(i) = t}. (In the proposed DMA-FE scheme in
Section E.2, we assume that ϕ := 1.)

We will show how to modify the DMA-FE scheme to allow ϕ > 1 with preserving the security
of the DMA-FE scheme in Section E.2.

1. As for ASetup, given (gparam, t, nt), execute ASetup(gparam, t, n′t) such that n′t := nt +ϕ.
2. As for AttrGen, given (gparam, t, askt, gid, �xt) execute the same procedure as AttrGen except

that:
2n′

t︷ ︸︸ ︷ 2n′
t︷ ︸︸ ︷ n′

t︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( �xt, 0ϕ, δ�xt, 0ϕ 02n′

t , �ϕt, 0 )B∗
t

3. As for Enc, given (pk, m, S := (M,ρ)), execute the same procedure as Enc except that:

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ F
nt
q ) ηi, θi, θ

′
i, τi, τ

′
i

U← Fq,

n′
t︷ ︸︸ ︷ n′

t︷ ︸︸ ︷ 2n′
t︷︸︸︷ n′

t︷︸︸︷ 1︷︸︸︷
ci := ( si�et,1 + θi�vi, 0κ−1, τi, 0ϕ−κ, s′i�et,1 + θ′i�vi, 0

κ−1, τ ′i , 0
ϕ−κ, 02n′

t , 0n
′
t , ηi )Bt

if ρ(i) = ¬(t, �vi), ηi, τi, τ
′
i

U← Fq,

n′
t︷ ︸︸ ︷ n′

t︷ ︸︸ ︷ 2n′
t︷︸︸︷ n′

t︷︸︸︷ 1︷︸︸︷
ci := ( si�vi, 0κ−1, τi, 0ϕ−κ, s′i�vi, 0

κ−1, τ ′i , 0
ϕ−κ, 03n′

t , 02n′
t , ηi )Bt ,

where i is the κ-th index such that ρ̃(i) = t, i.e., ρ̃(i) = t and �{j < i | ρ̃(j) = t} = κ− 1.
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F.3 Security

We can prove the security of the modified DMA-FE scheme in a manner similar to that of
Theorem 5 except that Problem 2 is changed to Modified Problem 2, Lemma 20 is changed,
where B2,h’s simulation is executed on Modified Problem 2, Game 2-h-1 is changed to Modified
Game 2-h-1.

Here we only show the essence of the change by using Modified Game 2-h-1. The Modified
Game 2-h-1 is the same as Game 2-h-1 except that Zt

U← GL(n′t,Fq), Ut := (Z−1
t )T for t =

1, . . . , d, where for each t there is a set It := {iκ | ρ̃(iκ) = t, 1 ≤ κ ≤ ϕ}}, and for κ = 1, . . . , ϕ,
the framed parts of Eq. (23) are changed to

�wκ := ((ri�et,1 + ωi�vi, 0κ−1, ξi, 0ϕ−κ) · Zt, r′i�et,1 + ω′i�vi, 0
κ−1, ξ′i, 0

ϕ−κ),
�wκ := ((ri�vi, 0κ−1, ξi, 0ϕ−κ) · Zt, r′i�vi, 0

κ−1, ξ′i, 0
ϕ−κ),

where ξi, ξ′i
U← Fq.

By using Modified Problem 2, for ρ(iκ) = (t, �v), B2,h can simulate ciphertexts, ciκ := (· · · ,
�wκ, · · · )Bt or ciκ := (· · · , �wκ, · · · )Bt . By applying Lemma 25, we can prove Lemma 21 in a manner
similar to the proof of Lemma 21.
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