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Abstract. A signcryption scheme is secure only if it satisfies both the confidentiality and the unforge-
ability properties. All the ID based signcryption schemes presented in the standard model till now
do not have either the confidentiality or the unforgeability or both of these properties. Cryptanalysis
of some of the schemes have been proposed already. In this work, we present the security attacks on
‘Secure ID based signcryption in the standard model’ proposed by Li-Takagi and ‘Further improve-
ment of an identity-based signcryption scheme in the standard model’ by Li et al. and the flaws in
the proof of security of ‘Efficient ID based signcryption in the standard model’ proposed by Li et al.,
which are the recently proposed ID based signcryption schemes in the standard model. We also present
the cryptanalysis of ‘Construction of identity based signcryption schemes’ proposed by Pandey-Barua
and the cryptanalysis of ‘Identity-Based Signcryption from Identity-Based Cryptography’ proposed by
Lee-Seo-Lee. These schemes present the methods of constructing an ID based signcryption scheme in
the random oracle model from an ID based signature scheme and an ID based encryption scheme. Since
none of the existing schemes in the standard model are found to be provably secure, we analyse the
security of signcryption schemes got by directly combining an ID based signature scheme and an ID
based encryption scheme in the standard model.
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1 Introduction

The aim of signcryption is to provide simultaneously, the confidentiality property of encryption and au-
thentication and non-repudiation properties of signature, with a cost significantly lower than the cost of
performing encryption and signature separately. The reduction in the computational cost makes a signcryp-
tion scheme more practical to be implemented in the areas like e-commerce and authenticated email. Zheng
[25] introduced this notion in 1997.

Shamir [17] introduced the notion of ID based cryptography suggesting the use of an user’s identity such
as his email address or telephone number as his public key. Malone-Lee [14] proposed the first ID based
signcryption scheme and he proved its security in the random oracle model. Many ID based signcryption
schemes were proposed after [14] in the random oracle model including [3], [5], [13], [4], [1].

In 2009, Yu et al. [22] proposed the first ID based signcryption scheme in the standard model. But it
was shown to be insecure by [18], [24] and [23]. Many such schemes [[22], [21], [6], [23]] were proposed after
this, which were later shown to be insecure. The security notions claimed by various ID based signcryption
schemes in the standard model and the type of cryptanalysis of those schemes that were proposed are tabu-
lated in Table 1.

This paper is organized as follows. First, we present the cryptanalysis of Secure identity-based signcryption
in the standard model proposed by Li et al. [12]. Then, we analyze the inconsistencies in the proof of security
of Efficient identity-based signcryption in the standard model by Li et al. [11] and the cryptanalysis of
Further improvement of an identity-based signcryption scheme in the standard model by Li et al. [10]. We
then present the cryptanalysis of Pandey et al.’s Construction of identity based signcryption schemes [15]



and the cryptanalysis of Identity-Based Signcryption from Identity-Based Cryptography proposed by Lee et
al. [8]. Finally, we present our analysis on the security of signcryption schemes got by various methods of
direct combination of an IBE and an IBS in the standard model.

Table 1. Existing ID based signcryption schemes in the standard model and their cryptanalysis

Scheme Confidentiality Unforgeability Cryptanalysis Type of Attack

Yu et al. [22] IND-CCA2 SUF-CMA Wang et al. [18], Zhang et al. [24] IND-CCA2 insecure

Zhang [23] IND-CCA2 and SUF-CMA insecure

Yanli et al. [21] IND-CCA2 EUF-CMA Wang et al. [19] IND-CCA2 and EUF-CMA insecure

Jin et al. [6] IND-CCA2 EUF-CMA Li et al. [9] IND-CCA2 and EUF-CMA insecure

Zhang [23] IND-CCA2 SUF-CMA Li et al. [12] IND-CCA2 insecure

Li et al. [12] IND-CCA2 EUF-CMA Ours IND-CCA2 and EUF-CMA insecure

Li et al. [11] IND-CCA2 EUF-CMA Ours IND-CCA2 (not provably secure)

Li et al. [10] IND-CCA2 EUF-CMA Ours IND-CCA2 and EUF-CMA insecure

IND-CCA2 - Indistinguishability under Adaptive Chosen Ciphertext Attack
EUF-CMA - Existential Unforgeability under Chosen Message Attack

SUF-CMA - Strong Existential Unforgeability under Chosen Message Attack

2 Cryptanalysis of Li et al.’s Scheme[12]

As mentioned in Table 1, Li et al. [12] have shown that the signcryption scheme proposed by Zhang [23]
is IND-CCA2 insecure and proposed a new scheme that they claimed it to be existentially unforgeable and
IND-CCA2 secure. But, here we show that [12] has neither the IND-CCA2 property nor the EUF-CMA
property.

2.1 Review of Li et al.’s Scheme [12]

Setup

Given a security parameter, the PKG chooses groups G and GT of prime order p, a generator g of G and a
bilinear map ê: G × G → GT . The PKG chooses a secret key α ∈ Zp randomly and computes g1 = gα and
chooses g2, h ∈ G randomly. The PKG chooses random values u′,m′ ∈ G and vectors U = (ui),M = (mi) of
length nu and nm respectively, whose elements are chosen at random from G. There are two hash functions
defined as H1 : {0, 1}∗ → Z∗p and H2 : G→ {0, 1}nm . The PKG publishes the system parameters params =
{G,GT , ê, g, g1, g2, h, u′, U,m′,M,H1, H2} and keeps the master secret key gα2 to itself.

Extract

Let u be a nu bit string representing an identity and u[i] be the ith bit of u. Define Ωu ⊆ {1, 2, ..., nu} to
be the set of indices i such that u[i] = 1. To construct the private key du of the identity u, PKG chooses



ru ∈ Zp randomly and computes

du = (du1, du2) = (gα2 (u′
∏
i∈Ωu

ui)
ru , gru)

Let uA be the nu bit string representing Alice’s identity and uB be the nu bit string representing Bob’s
identity. Let ΩA ⊆ {1, 2, ..., nu} be the set of indices i such that uA[i] = 1. So, the private key of Alice is

dA = (dA1, dA2) = (gα2 (u′
∏
i∈ΩA

ui)
rA , grA)

And, the private key of Bob is

dB = (dB1, dB2) = (gα2 (u′
∏
i∈ΩB

ui)
rB , grB )

where ΩB ⊆ {1, 2, ..., nu} be the set of indices i such that uB [i] = 1.

Signcrypt

To send a message m ∈ GT to Bob, Alice follows the steps below.

– Choose r, s ∈ Zp randomly.

– Compute σ1 = m · ê(g1, g2)r.

– Compute σ2 = gr.

– Compute σ3 = (u′
∏
i∈ΩB

ui)
r.

– Compute σ4 = dA2.

– Compute t = H1(σ1, σ2, σ4, u
′∏

i∈ΩA
ui, u

′∏
i∈ΩB

ui).

– Compute mh = H2(gths).

– Compute σ5 = dA1(m′
∏
j∈Mh

mj)
r, where Mh ⊆ {1, 2, ..., nm} denotes the set of indices j such that

mh[j] = 1.

– Compute σ6 = s.

The ciphertext is σ = 〈σ1, σ2, σ3, σ4, σ5, σ6〉.

Unsigncrypt

When receiving σ = 〈σ1, σ2, σ3, σ4, σ5, σ6〉, Bob follows the steps below.

– Compute t = H1(σ1, σ2, σ4, u
′∏

i∈ΩA
ui, u

′∏
i∈ΩB

ui).

– Compute mh = H2(gthσ6).

– Let Mh ⊆ {1, 2, ..., nm} denotes the set of indices j such that mh[j] = 1.

– Check if the following equation holds:

ê(σ5, g)
?
= ê(g1, g2) ê(u′

∏
i∈ΩA

ui, σ4) ê(m′
∏
j∈Mh

mj , σ2) (1)

If Eq.(1) holds, return

m = σ1
ê(dB2, σ3)

ê(dB1, σ2)

Otherwise, the ciphertext is not valid and return ⊥.



2.2 Attack on existential unforgeability

Let A be an adversary. On receiving the public parameters, A can generate a forgery by making use of the
Signcrypt oracle as demonstrated below.

– Let IDA be the identity for which A is going to generate the forgery.
– A queries the Signcrypt oracle for the signcryption of m from IDA to IDB (OSigncrypt(m, IDA, IDB)).
– Let σ = (σ1, σ2, σ3, σ4, σ5, σ6) be the output of the signcrypt oracle.
– Now, A generates σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4 , σ
∗
5 , σ
∗
6) where σ∗3 ∈R G and σ∗i = σi, for i = 1, 2, 4, 5, 6.

– Here, σ∗ is a valid forgery by A since it is a signcryption of some message m∗ (not known to A) from
IDA to IDB which is not the output of the signcrypt oracle.

Thus, we have shown that A can generate a valid forgery by querying the signcrypt oracle once and hence
[12] is not existentially unforgeable.

Correctness of the attack

We now show that σ∗ is indeed a valid signcryption of some message m∗ from IDA to IDB .

During the Unsigncrypt of σ∗,

– t∗ = H1(σ∗1 , σ
∗
2 , σ
∗
4 , u
′∏

i∈ΩA
ui, u

′∏
i∈ΩB

ui) = H1(σ1, σ2, σ4, u
′∏

i∈ΩA
ui, u

′∏
i∈ΩB

ui) = t,
where t is the value generated during the execution of OSigncrypt(m, IDA, IDB).

– mh
∗ = H2(gt

∗
hσ
∗
6 ) = H2(gthσ6) = mh, as in OSigncrypt(m, IDA, IDB).

– Therefore the test

ê(σ∗5 , g)
?
= ê(g1, g2) ê(u′

∏
i∈ΩA

ui, σ
∗
4) ê(m′

∏
j∈Mh

mj , σ
∗
2) (2)

is identical to the test for validity of σ = 〈σ1, σ2, σ3, σ4, σ5, σ6〉,

ê(σ5, g)
?
= ê(g1, g2) ê(u′

∏
i∈ΩA

ui, σ4) ê(m′
∏
j∈Mh

mj , σ2)

and hence equation (2) will hold true.

Thus it is clear that σ∗ is a valid forgery of some message m∗ from IDA to IDB .

2.3 Attack on Confidentiality

Let us assume A to be an adversary to the signcryption scheme and C be the challenger providing training
to A. We now show here, an attack on the confidentiality property of the signcryption scheme by using the
Unsigncrypt oracle. The attack is described below.

– Let (m0,m1) be two equal length messages chosen by A and given to C during the challenge phase.
– Let σ = 〈σ1, σ2, σ3, σ4, σ5, σ6〉 be the challenge signcryption generated by C by querying the Signcrypt

oracle as OSigncrypt(mb, IDA, IDB) with b ∈R {0, 1}. This σ is given to A as challenge ciphertext.
– Now, A generates σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , σ∗6〉 where σ∗3 = σ3 β with β ∈R G and σ∗i = σi for i =

1, 2, 4, 5, 6.
– Now, A queries the Unsigncrypt oracle with σ∗ as input i.e. OUnsigncrypt(σ

∗, IDA, IDB). This query is
legal since σ∗ 6= σ i.e the σ∗ queried to the Unsigncrypt oracle is different from the challenge ciphertext
σ.

– Since σ∗ is valid (as shown in the correctness of the unforgeability attack), the unsigncrypt oracle returns
m∗ = mb ê(dB2, β) to A as proved in Lemma 1.



– Now, A queries the signcrypt oracle with some message m and sender as IDB and receiver as IDA

i.e. OSigncrypt(m, IDB , IDA) → σ′ to get the value dB2 (since by definition of signcrypt algorithm, in
σ′ = 〈σ′1, σ′2, σ′3, σ′4, σ′5, σ′6〉, σ′4 will be dB2).

– Now, A can get mb from m∗ as mb =
m∗

ê(dB2, β)
. Here, A knows m∗, dB2 and β generated by C.

– Thus, A can find the exact mb of σ (the challenge ciphertext).

Lemma 1. Let σ = 〈σ1, σ2, σ3, σ4, σ5, σ6〉 be the output of the Signcrypt algorithm in [12] for a message m,
from a sender with identity IDA to a receiver with identity IDB. Let σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , σ∗6〉 be another
signcryption from the same sender IDA to the same receiver IDB, with σ∗i = σi for i = 1, 2, 4, 5, 6 and
σ∗3 = σ3 β, where β ∈R G. Then, σ∗ is valid and the message signcrypted by σ∗ is m∗ where m∗ = m ê(dB2, β).

Proof. When σ∗ is given as input to the Unsigncrypt algorithm, equation (1) will hold good since σ∗1 = σ1,
σ∗2 = σ2, σ∗4 = σ4, σ∗5 = σ5 and since mh of σ and σ∗ are the same (∵ σ∗6 = σ6), as explained in the
correctness of the attack on the existential unforgeability property of [12].

Hence, the Unsigncrypt of σ∗ returns m∗, where

m∗ = σ∗1
ê(dB2, σ

∗
3)

ê(dB1, σ∗2)

= σ1
ê(dB2, σ3 β)

ê(dB1, σ2)
(∵ σ∗1 = σ1, σ

∗
2 = σ2, σ

∗
3 = σ3 β)

= σ1
ê(dB2,

(
u′
∏
i∈ΩB

ui
)r
β)

ê(dB1, gr)

=
[m (ê(g1, g2))

r
]
[
ê(grB ,

(
u′
∏
i∈ΩB

ui
)r
β)
]

ê(gα2
(
u′
∏
i∈ΩB

ui
)rB

, gr)

=
m (ê(g1, g2))

r [
ê(grB ,

(
u′
∏
i∈ΩB

ui
)r

) ê(grB , β)
]

ê(g2, gα)r ê(
(
u′
∏
i∈ΩB

ui
)rB

, g)r

=
m (ê(g1, g2))

r [
ê(g,

(
u′
∏
i∈ΩB

ui
)rB

)r ê(dB2, β)
]

ê(g2, g1)r ê(
(
u′
∏
i∈ΩB

ui
)rB

, g)r

= m ê(dB2, β)

Thus, σ∗ is valid signcryption of m∗ from a sender with identity IDA to a receiver with identity IDB , where
m∗ = mê(dB2, β).

3 Analysis of Inconsistencies in the proof of ‘Efficient Identity-Based
Signcryption in the Standard Model’ scheme proposed by Li et al. [11]

In 2011, Li et al. [11] have proposed a signcryption scheme in the ID based setting. This scheme is shown to
be secure in the standard model. Here, we show that the proof given for the scheme in [11] has some flaws.

3.1 Review of the scheme

This section reviews Li et al.’s Efficient Identity-Based Signcryption in the Standard Model [11].

Setup

Given a security parameter k, the PKG chooses two multiplicative cyclic groups G and GT of prime order p,
a generator g of G and a bilinear map ê: G×G→ GT . The PKG chooses α,w ∈ G randomly and computes
z = ê(α, g). The PKG chooses random values u′, v′ ∈ G and vectors U = (ui), V = (vi) of length nid and
nm respectively, whose elements are chosen at random from G. There are two hash functions defined as



H1 : G → Z∗p and H2 : {0, 1}∗ → {0, 1}nm . There is a secure one time symmetric key encryption scheme
SE = (E,D) with key space κ = GT . There are another two hash functions defined as H3 : {0, 1}nid → G
and H4 : {0, 1}nm → G.

H3(id) = u′
nid∏
i=1

uidii H4(π) = v′
nm∏
i=1

vπi
i

These are the kind of functions that are used to construct IBE scheme by Waters [20], where π is the
output of the hash H2 with length nm. The PKG publishes the system parameters

params = {G,GT , ê, g, w, z, u′, U, v′, V,H1, H2, H3, H4, SE}

and keeps the master secret key α to itself.

Extract

To construct the private key skid of the identity id, PKG chooses s ∈ Z∗p randomly and computes

skid = (sk1, sk2, sk3) = (α ·H3(id)s, gs, ws)

Let idA be Alice’s identity and idB be Bob’s identity. The private key of Alice is,

skA = (skA1, skA2, skA3) = (α ·H3(idA)sA , gsA , wsA)

The private key of Bob is

skB = (skB1, skB2, skB3) = (α ·H3(idB)sB , gsB , wsB )

Signcrypt

To send a message m ∈ GT to Bob, Alice follows the steps below.

– Choose r ∈ Z∗p randomly.
– Compute c1 = gr.
– Compute t = H1(c1).
– Set c2 = skA2.
– Compute K = zr

– Compute c3 = EK(m).
– Compute c4 = (H3(idB) · wt)r.
– Compute π = H2(c1, c2, c3, c4).
– Compute c5 = skA1H4(π)r c4

The ciphertext is c = (c1, c2, c3, c4, c5).

Unsigncrypt

When receiving c = (c1, c2, c3, c4, c5), Bob follows the steps below.

– Compute π = H2(c1, c2, c3, c4) and t = H1(c1).
– Check if the following equation holds:

ê(c5, g)
?
= z · ê(H3(idA), c2) · ê(H4(π) ·H3(idB) · wt, c1) (3)

If Eq.(3) holds, compute

K =
ê(c1, skB1 · sktB3)

ê(c4, skB2)

and message is calculated as m = DK(c3). Otherwise, the ciphertext is not valid and return ⊥.



3.2 Analysis of the inconsistencies in the security proof

The flaws in the proof of IND-CCA2 property are

– According to the definition of the Signcrypt protocol, the signcryption c = (c1, c2, c3, c4, c5) on any
message from a sender idA to any receiver will always have the same c2 = skA2. But in the simulation
of the Signcrypt oracle, a Signcrypt query will output a different c2 = gri , ri ∈R Z∗p each time when the
oracle is invoked with idA as sender, for which J(idA) = 0 mod Zfu , where fu = 4lu and lu is the length
of any identity.

– Also, the signcryption c = (c1, c2, c3, c4, c5) from idA to idB satisfies that (g,H3(idB), c1, c4) is a valid
Diffie-Hellman tuple i.e it always passes the following test,

ê(c4, g)
?
= ê(c1, H3(idB)wt) (4)

where t = H1(c1).
But, the values c′1 and c′4 in the output of the Signcryption oracle c′ = (c′1, c

′
2, c
′
3, c
′
4, c
′
5) will be simulated

as follows.

c′1 = skB2

c′4 = gr. skB1. sk
t
B3

This c′ fails to satisfy Eq. 4 for any sender with identity idA and receiver with identity idB , having
J(idA) = 0 mod Zfu and J(idB) 6= 0 mod Zfu as shown below.

ê(c′4, g) = ê(gr skB1 sk
t
B3, g)

= ê(gr, g) ê(αH3(idB)s, g) ê(wst, g)

= ê(gr, g) ê(α, g) ê(H3(idB)s, g) ê(wst, g)

= ê(gr, g) ê(α, g) ê(H3(idB), gs) ê(wt, gs)

= ê(gr, g) ê(α, g) ê(H3(idB)wt, gs)

ê(c′4, g) = ê(gr, g) ê(α, g) ê(H3(idB)wt, c′1)

ê(c′4, g) 6= ê(c′1, H3(idB)wt)

Here, the probability for α = g−r is negligible.

These make the simulation imperfect i.e the simulation is different from the real protocol.

Here, for the challenge phase to succeed without aborting, J(id∗A) 6= 0 mod Zfu and J(id∗B) = 0 mod Zfu .
But, during the Phase 2 of training the adversary, the Signcrypt oracle will abort for all queries with receiver
identity as id∗B . And also, for the Signcrypt queries with sender identity as id∗B and receiver identity as id∗A,
the difference in the simulation from the real protocol can be easily distinguished by the adversary.

4 Cryptanalysis of the improved Identity based Signcryption scheme in the
Standard Model by Li et al. [10]

In this section, we review the scheme proposed by Li et al. [10] and then show its security weaknesses.

4.1 Review of the scheme

Setup

Given a security parameter, the PKG chooses groups G and GT of prime order p, a generator g of G,
and a bilinear map ê : G × G → GT . The PKG chooses α, µ, v ∈ G randomly and computes z = ê(α, g).
Additionally, the PKG chooses random values u0,m0 ∈ G and vectors U = (ui),M = (mi) of length nu and
nm, respectively, whose elements are chosen at random from G. We also need a hash function H1 : G→ Z∗p
and a secure one-time symmetric key encryption scheme (E,D) with key space κ = GT . The PKG publishes
system parameters params = {G,GT , ê, g, µ, v, z, u0, U,m0,M,H1, E,D} and keeps the master secret α to
itself.



Extract

Let u be a nu bit string representing an identity and u[i] be the ith bit of u. Define Ωu ⊆ {1, ...., nu} to be
the set of indices i such that u[i] = 1. To construct the private key du of the identity u. The PKG chooses
ru ∈ Zp randomly and computes

du = (du1, du2) = (gα2 (u0
∏
i∈Ωu

ui)
ru , gru)

Let uA be the nu bit string representing Alice’s identity and uB be the nu bit string representing Bob’s
identity. Let ΩA ⊆ {1, 2, ..., nu} be the set of indices i such that uA[i] = 1. So, the private key of Alice is

dA = (dA1, dA2) = (gα2 (u0
∏
i∈ΩA

ui)
rA , grA)

And, the private key of Bob is

dB = (dB1, dB2) = (gα2 (u0
∏
i∈ΩB

ui)
rB , grB )

where ΩB ⊆ {1, 2, ..., nu} be the set of indices i such that uB [i] = 1.

Signcrypt

To send a message to Bob, Alice follows the following steps. Let M ⊆ {1, ...., nm} is the set of indices j such
that m[j] = 1, where m[j] is the jth bit of m.

– Choose r ∈ Z∗p randomly and compute σ1 = gr

– Compute t = H1(σ1)

– Compute σ2 = (u0
∏
i∈ΩB

ui)
r

– Compute σ3 = (µtv)r

– Compute V = dA1(m0

∏
j∈M mj)

r

– Compute X = dA2

– Compute K = zr

– Compute σ4 = EK(V ||X||m)

The ciphertext is σ = (σ1, σ2, σ3, σ4).

Unsigncrypt

When receiving σ = (σ1, σ2, σ3, σ4), Bob follows the following steps.

– Compute

K =
ê(dB1, σ1)

ê(dB2, σ2)
=
ê(α(u0

∏
i∈ΩB

ui)
rB , σ1)

ê(grB , σ2)

– Compute V ||X||m = DK(σ4)

– Verify if the following equation holds.

ê(V, g)
?
= z ê(u0

∏
i∈ΩA

ui, X) ê(m0

∏
j∈M

mj , σ1)

If the above equation holds, then Bob accepts the message. Otherwise Bob returns ⊥.



4.2 Flaws in the scheme

1. The component σ3 of the ciphertext σ is not verified of its consistency in the Unsigncrypt phase. In this
case, an adversary in the EUF-CMA game, can produce a valid forgery through the following steps.
– The adversary makes a Signcrypt query for any 〈IDA, IDB ,m〉 tuple and gets σ′ = (σ′1, σ

′
2, σ
′
3, σ
′
4)

as the output of the query, which is a valid signcryption on m by IDA for IDB .
– Now, the adversary can produce a valid forgery σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4), where σ∗3 is randomly chosen

from Z∗p − {σ′3} and σ∗1 = σ′1, σ
∗
2 = σ′2, σ

∗
4 = σ′4.

– This σ∗ is a valid signcryption on m by IDA and with IDB as the receiver.
Also, an adversary in the IND-CCA2 game can distinguish the challenge ciphertext whether it is the
signcryption of m∗0 or m∗1 through the following steps (which are similar to the steps above).
– The adversary after getting the challenge ciphertext σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4), queries the Unsigncrypt

oracle with 〈σ′, ID∗A, ID∗B〉 as input, where σ′ = (σ′1, σ
′
2, σ
′
3, σ
′
4), with σ′3 randomly chosen from

Z∗p − {σ∗3} and σ′1 = σ∗1 , σ
′
2 = σ∗2 , σ

′
4 = σ∗4 .

– The output of the Unsigncrypt oracle for this query reveals m∗β to the adversary, from which it can
output β ∈ {0, 1} successfully with probability 1.

2. Now, we consider the security of the scheme [10] including the following verification step in the Unsign-
crypt oracle.

ê(σ3, g)
?
= ê(µt

′
v, σ1) (5)

where t′ = H1(σ1).
When this verification step is included, the scheme becomes secure against the security game proposed
in Step 1. But the simulation of the Signcrypt oracle provided by [10] becomes inconsistent with respect
to this verification step, making the scheme provably insecure.

3. When we analyze this scheme further, we find out that even if proper signcrypt and unsigncrypt oracles
were provided, the security of this scheme is susceptible to the EUF-CMA security game, which is
described below.
– The adversaryA queries the tuple 〈IDA, IDB ,m〉 to the signcrypt oracle and gets σ′ = (σ′1, σ

′
2, σ
′
3, σ
′
4)

as output.
– A also queries the extract oracle for the secret keys of IDB , IDC . These two extract queries are legal,

since the forgery to be produced by A is with IDA as sender. And hence, A can query for the secret
key of any identity other than IDA.

– Now, having the secret key of IDB , A can find the key K used in the one-time symmetric key
encryption algorithm, by following the first step of the Unsigncrypt algorithm of [10].

– By using this K, A can find the components V,X,m obtained during the generation of σ′ by per-
forming DK(σ′4).

– A can now generate a valid signcryption on m by IDA with IDC as the receiver by encrypting

V,X,m with a different key K ′ =
ê(dC1, σ1)

ê(dC2, σ2)
.

– Thus, A outputs a valid forgery σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4), where σ∗1 = σ′1, σ

∗
2 = σ′2, σ

∗
3 = σ′3, σ

∗
4 =

EK′(V ||X||m).
4. The real-world insecurity of the scheme which is captured by the above security game is explained below.

In this scheme, IDB and IDC can collude to convert a valid signcryption from IDA to IDB to a valid
signcryption from IDA to IDC without solving any hard problem.
– IDA creates a signcryption σ = (σ1, σ2, σ3, σ4) on message m and sends it to the intended receiver
IDB .

– IDB finds the key K used in the one-time symmetric key encryption scheme E, during the generation
of σ, by performing the first step of the unsigncrypt algorithm of [10].

– Now, using K, IDB can get V,X,m that are obtained during the generation of σ by performing
DK(σ4).

– When IDB passes these values 〈V,X,m〉 to IDC , IDC can compute K ′ =
ê(dC1, σ1)

ê(dC2, σ2)
.

– Then σ′4 = EK′(V ||X||m) can be computed by IDC .
– Now σ′ = (σ′1, σ

′
2, σ
′
3, σ
′
4) is a valid signcryption on m by IDA with IDC as the intended receiver,

where σ′1 = σ1, σ
′
2 = σ2, σ

′
3 = σ3.



Thus any two users (receivers) can collude to transform a signcryption on a message by a sender for one
receiver to a valid signcryption for another receiver on the same message, without the knowledge of the
sender or the sender’s secret key.

Thus, we show that the scheme proposed in [10] is insecure.

5 Cryptanalysis of Pandey et al.’s signcryption scheme [15]

Here, we review Construction of ID based signcryption schemes proposed by Pandey et al. [15].

Setup(SecParam)

Let H1 : {0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2 , H3 : {0, 1}∗ → {0, 1}l1 be secure hash functions. The
public parameters, Params, consist of (ParamsIBE , ParamsIBS , H1, H2, H3) and the master secret key
msk is (mskIBE ,mskIBS).

Key Generation(ID)

Let skIBE ← KeyGenIBE(ID) and skIBS ← KeyGenIBS(ID). The private key corresponding to identity
ID will be (skIBE , skIBS).

Signcryption(m, IDRec, IDSen, skIDSen
, Params)

1. Choose r randomly from R.
2. Let c′ ← ENC.SIBE(r, IDRec, ParamsIBE).
3. Compute h1 = H1(r, c′, IDSen).
4. Compute h2 = H2(m, c′, h1, IDRec, IDSen).
5. Compute c = H3(h1, IDSen)⊕m.
6. Let skIDSen

= (skIDSen
IBE, skIDRec

IBS) and let
(m, s)← SIG.SIBS(m, skIDSen

IBS, ParamsIBS).
7. Compute d = h2 ⊕ s.

The cipher-text will be C ≡ (c′, c, d).

Here, SIBE is an identity based encryption that is IND-CCA2 secure and SIBS is an identity based signature
that is existentially unforgeable against chosen message attacks.

Designcryption(C, IDRec, IDSen, Params)

1. Let skIDRec
= (skIDRecIBE , skIDRecIBS).

Let r′ ← DEC.SIBE(c′, skIDRecIBE , ParamsIBE).
2. Compute h′1 = H1(r′, c′, IDSen).
3. Compute m′ = H3(h′1, IDSen)⊕ c.
4. Compute h′2 = H2(m′, c′, h′1, IDSen, IDRec).
5. Compute s′ = h′2 ⊕ d.
6. Let x← V ER.SIBS(m′, s′, IDSen, ParamsIBS).

– If above step is correctly verified, then V ER.SIBS(., ..., .) returns m′, else ⊥.
7. Return x.

5.1 Attack on Unforgeability

In this section we show that the scheme proposed in [15] does not provide the unforgeability property. During
the unforgeability game, the adversary A can generate a valid forgery (which is a signcryption of message m
with sender as IDA and receiver as IDB) by making use of the Signcryption and Key Generation oracles as
shown below.



– Let IDA, IDB , IDD be three identities.
– A queries the private key of IDD to the Key Generation oracle. This query is legal since IDD is the

identity of neither the sender nor the receiver, involved in the forgery which is going to be produced.
– A also queries the signcryption of a message m from IDA to IDD to the Signcryption oracle.
– Let C be the signcryption of m output by the Signcryption oracle.
– Now, A designcrypts C ≡ (c′1, c1, d1), since it knows the private key of IDD, by performing the following

steps.
1. r1 ← DEC.SIBE(c′1, skIDBIBE , ParamsIBE).
2. h1 = H1(r1, c

′
1, IDA).

3. m = H3(h1, IDA)⊕ c1.
4. h2 = H2(m, c′1, h1, IDA, IDD).
5. s1 = h2 ⊕ d1.

– We now show how A can produce the signcryption of m from IDA to IDB , without knowing the secret
key of IDA. This will prove the ability of A to produce forgery.

– The only step where the secret key of IDA is involved in generating the signcryption is the Step 6 of the
Signcryption algorithm where one should compute (m, s)← SIG.SIBS(m, skIDA

IBS, ParamsIBS).
– However, the value of s1 obtained in Step 5 of the Designcryption of 〈C, IDA, IDD〉 shown above is

precisely the value of SIG.SIBS(m, skIDA
IBS, ParamsIBS).

– That is, s∗ = s1 = SIG.SIBS(m, skIDA
IBS, ParamsIBS).

– Thus, s∗ can be obtained by A without even knowing the secret key of IDA.
– Now A has no problems in executing the steps of Signcryption(m, IDB , IDA, skIDA

, Params).
Specifically,
1. r is chosen randomly from R
2. c′2 ← ENC.SIBE(r, IDB , params)
3. h∗1 = H1(r, c′2, IDA)
4. h∗2 = H2(m, c′2, h

∗
1, IDB , IDA)

5. c2 = m⊕H3(h∗1, IDA)
6. d2 = s∗ ⊕ h∗2 = s1 ⊕ h∗2

– Now, A submits C∗ ≡ (c′2, c2, d2), which is a valid forgery of message m from IDA to IDB .

Thus, [15] is not outsider secure since a valid forgery is produced without involving the private key of the
sender or the receiver.

6 Cryptanalysis of Lee et al.’s signcryption scheme [8]

Lee et al. [8] improved Pandey et al.’s signcryption scheme [15] and claimed to achieve additional security
notions, ciphertext anonymity and ciphertext authentication along with the message confidentiality and sig-
nature non-repudiation properties claimed by [15]. But here we show that the signcryption scheme proposed
by Lee et al. [8] is not even IND-CPA secure.

6.1 Review of the scheme

Notation

Let H1 : {0, 1}l1 → {0, 1}l2 and H2 : {0, 1}l3 → {0, 1}l4 are hash functions. We assume that e1 is the
bit-length of outputs of EIBE , let e2 be the bit-length of an identity and let l4 be the bit-length of signature
s where l1 = l2 + e1 + e2 and l3 = 2l2 + e2. Moreover, we assume that paramIBE

⋂
paramIBS = Φ.

Construction

This IBSC scheme is based on the ordinary IBE and IBS schemes.

– Setup(1k)→ (mskIBE , paramIBE , mskIBS , paramIBS , H1, H2): Given a security parameter 1k, output
(mskIBE , paramIBE , mskIBS , paramIBS , H1, H2) where the master secret key is msk = (mskIBE ,
mskIBS), the global parameter is param = (paramIBE , paramIBS , H1, H2).



– KeyGen(msk, ID) → SKID: Given master secret key msk and an identity ID, output the private key
SKID for ID. The private key is computed as follows:
1. SKIBE.ID ← KeyGenIBE(ID);
2. SKIBS.ID ← KeyGenIBS(ID);
3. SKID = (SKIBE.ID, SKIBS.ID).

– Signcryption(m, IDS , IDR, SKIDS
) → C : Given a message m, a sender’s identity IDS , a recipient’s

identity IDR, and a sender’s private key SKIDS
, output a ciphertext C = (c1, c2, d). The computation

is as follows:
1. r ← {0, 1}l2 ;
2. c1 ← EIBE((r||IDS), IDR);
3. t1 ← H1(r||c1||IDS);
4. t2 ← H2(m||t1||IDR);
5. c2 = t1 ⊕m;
6. s← SIBS((m||IDR), SKIBS.IDS

);
7. d = t2 ⊕ s.

– Designcryption(C, IDR, SKIDR
) → m or ⊥: Given a ciphertext C, a recipient’s identity IDR, and a

recipient’s private key SKIDR
, output a message m or ⊥ indicating an error. The computation is as

follows:
1. r||IDS = DIBE(c1, SKIBE.IDR

);
2. t1 ← H1(r||c1||IDS);
3. m = t1 ⊕ c2;
4. t2 ← H2(m||t1||IDR);
5. s = t2 ⊕ d;
6. m or ⊥ = VIBS((m||IDR), s, IDS).

6.2 Attack on message confidentiality

The authors have claimed that the scheme proposed in [8] is IND-IBSC-CCA secure. But here we show that
it is IND-IBSC-CPA insecure as follows.

– During the IND-CPA game, the adversary A randomly chooses two messages, say m∗0 and m∗1, sender
identity ID∗S and receiver identity ID∗R and gives them to the challenger.

– The challenger randomly chooses β ∈R {0, 1} and gives C∗ ← Signcryption(mβ , ID
∗
S , ID

∗
R) to A.

– Now, A can find out whether C∗ = (c∗1, c
∗
2, d
∗) is a valid signcryption of m∗0 or m∗1 as shown below.

• A initially guesses mβ to be m∗0 and hence calculates t∗1 = c∗2 ⊕m∗0. Thus, the value of t∗1 is got by
A without the knowledge of the secret key of the receiver SKIBE.IDR

.
• Still assuming that mβ = m∗0, A calculates t∗2 as t∗2 = H2(m∗0||t∗1||ID∗R).
• Now, s∗ can be got by A as s∗ = d∗ ⊕ t∗2.
• The guess that mβ = m∗0 can be validated by the verification algorithm of the underlying signature

scheme IBS i.e VIBS((m∗0, ||ID∗R), s∗, ID∗S).
• If VIBS((m∗0, ||ID∗R), s∗, ID∗S) returns V alid, then C∗ is a valid signcryption on m∗0 and hence the

guess made by A is correct i.e mβ = m∗0.
Otherwise, mβ = m∗1, since C∗ is a valid signcryption of either m∗0 or m∗1.

Thus, the adversary A can always distinguish whether the challenge signcryption C∗ is a valid signcryption
on m∗0 or m∗1, proving that the signcryption scheme in [8] is not even IND-IBSC-CPA secure.

6.3 Absence of Ciphertext anonymity

Lee et al. [8] have also claimed that the signcryption scheme proposed by them has the property of ciphertext
anonymity. But during ANON-IBSC-CCA game defined by [8], the adversary can always distinguish the
sender and receiver identities as shown below.

1. After training phase 1, during the ANON-IBSC-CCA game, the adversary A produces a message m∗

along with two distinct sender identities (IDS0, IDS1) and two distinct receiver identities (IDR0, IDR1)
to the challenger.



2. The challenger now chooses two bits a, b ∈R {0, 1} and computes the challenge ciphertext C∗ = 〈c∗1, c∗2, d∗〉
which is a signcryption on the message m∗ with the sender identity as IDSa and receiver identity as
IDRb and returns C∗ to A.

3. Now, A can obtain t∗1 that would have been obtained during the generation of the challenge ciphertext
C∗ as t∗1 = c∗2 ⊕m∗.

4. Having obtained the values of t∗1 and m∗, A guesses the receiver identity IDRb to be IDR0 and calculates
t′2 = H2(m∗||t∗1||IDR0).

5. A then calculates s′ = d∗ ⊕ t′2. Note that the values t′2 and s′ got here are based on the guess that the
receiver identity is IDR0. Hence, only if b = 0, t∗2 would be t′2 and s∗ would be s′.

6. The adversary A can now verify its guess regarding the receiver identity and identify the sender identity
from the following steps.
– If VIBS((m||IDR0), s′, IDS0) returns m∗, then the sender identity is IDS0 and the receiver identity

is IDR0 i.e a = 0 and b = 0 respectively.
– Else,
• If VIBS((m||IDR0), s′, IDS1) returns m∗, then the sender identity is IDS1 and the receiver iden-

tity is IDR0 i.e a = 1 and b = 0. respectively.
• Else, A outputs the receiver identity to be IDB1 i.e b = 1. In order to find the sender identity, A

repeats this process from Step 4, with the receiver identity as IDR1. Now, the t′2 and s′ got here
are respectively equal to t∗2 and s∗ got during the generation of the challenge ciphertext C∗. So,
* If VIBS((m||IDR1), s′, IDS0) returns m∗, then the sender identity is IDS0 i.e a = 0.
* Else, the sender identity is IDS1 i.e a = 1.

Thus, the identities of the sender and the receiver can always be distinguished by the adversary during the
ANON-IBSC-CCA game, after the challenge ciphertext is given to it, refuting the claim of the authors of [8]
that the signcryption scheme proposed in [8] provides ciphertext anonymity.

6.4 Attack on unforgeability

In the AUTH-IBSC-CMA security game, the adversary A can produce a valid forgery C∗ on message m with
sender and receiver identities as ID∗S and ID∗R respectively, as follows.

– Initially, A obtains a valid signature s on the message m by ID∗S with ID∗R as the intended receiver,
through the following steps.
• A makes a signcryption query to the challenger with 〈m, ID∗S , ID∗R〉 as input. The challenger returns

the output of the signcryption oracle C = 〈c1, c2, d〉 to A.
• From this valid signcryption C on m got from the signcryption query mentioned above, A can find

the value of t1 that is obtained during the execution of this signcryption query as t1 = c2 ⊕m.
• A then can calculate the value of t2 obtained during the same signcryption query as t2 ← H2(m||t1||ID∗R).
• Now, A can obtain s as s = d⊕ t2.
• Thus the adversary A could obtain s which is a valid signature on the message m intended for

the receiver ID∗R, without the knowledge of the secret key of the sender involved in generating the
signature i.e SKIBS.ID∗S

.
– Now, with the value of s, A can produce another valid signcryption on the message m with the sender

and receiver identities as ID∗S and ID∗R respectively as shown below.
– A randomly chooses r ← {0, 1}l2 and calculates c∗1 ← EIBE((r||ID∗S), ID∗R).
– A then calculates t∗1 and t∗2 as t∗1 ← H1(r||c1||ID∗S) and t∗2 ← H2(m||t∗1||ID∗R).
– Now, A computes c∗2 = t∗1⊕m and d∗ = t∗2⊕s, where s is the valid signature got from the steps explained

above.
– The tuple 〈c∗1, c∗2, d∗〉 is output as forgery by the adversary A.

Note that, C∗ = 〈c∗1, c∗2, d∗〉 is not the output of any signcryption oracle. However, C∗ is signcryption on
m from ID∗S to ID∗R. That is, from a valid signcryption on m from ID∗S to ID∗R, we are able to generate
another valid signcryption on m from ID∗S to ID∗R. This is similar to the attack of strong unforgeability
in the signature scheme. As the definition of unforgeability in [8] does not prevent this scenario, our attack
becomes a valid one.



7 Security of Direct Combination of IBE and IBS

Now, all the ID based signcryption schemes proposed in the standard model are not provably secure. This
has motivated us to analyse the security of getting a provably secure scheme by the direct combination of
an ID based signature scheme and an ID based encryption scheme both in the standard model.

The design of a strongly unforgeable IND-CCA2 secure signcryption scheme can be attempted by com-
bining a strongly unforgeable ID based signature scheme and an IND-CCA2 secure ID based encryption
scheme based on three approaches.

– Sign then Encrypt
– Encrypt then Sign
– Sign and Encrypt (done in parallel)

Insider security is an important property of signcryption schemes, which ensures that a scheme offers
confidentiality even if the private key of the sender is compromised. Similarly the unforgeability property is
preserved even if the private key of the receiver is compromised. This is the strongest notion of security for
signcryption primitive.

Let SignskA(m, IDA)→ 〈σ,m〉 and V erifyIDA
(σ,m)→ V alid/Invalid form a strongly unforgeable sig-

nature scheme and let EncryptIDB
(m) → C and DecryptskB (C, IDB) → m/⊥ form an IND-CCA2 secure

encryption scheme, where IDA and IDB are the identities of sender and receiver respectively.

7.1 Encrypt then sign approach

Signcrypt(m, IDA, IDB) = (EncryptIDB
(m||IDA)→ C, SignskA(C||IDB , IDA)→ 〈σ,C〉).

The tuple ∆ = 〈σ,C〉 is the output of the resulting Signcrypt algorithm.

Unsigncrypt(∆, IDA, IDB) = (V erifyIDA
(σ,C, IDB)→ V alid/Invalid,

if V alid perform (DecryptskB (C, IDB)→ m/⊥)).
The m/⊥ obtained is the output of the Unsigncrypt algorithm.

Security

During the proof of the IND-CCA2 property of the above signcryption scheme, the adversary A sends
〈m0,m1〉 to the challenger C after phase 1 of training.
Then, C randomly chooses β ∈R {0, 1} and performs Signcrypt(m∗β , IDA, IDB) = ∆∗ and sends ∆∗ to A.
Note that A has access to the secret key skA of the sender for the scheme to satisfy insider security. Now,
the adversary finds whether β is 0 or 1 as follows.

– A generates ∆′ = 〈C∗, σ′〉, where σ′ = SignskA(C∗||IDB , IDA). Note that σ′ 6= σ∗ with high probability
since Sign is a probabilistic algorithm.

– Now, ∆ is a valid signcryption and can be queried to the Unsigncrypt oracle. This query is legal since
∆′ 6= ∆.

– The unsigncryption query returns m∗β to the adversary.

Thus, the adversary directly gets message that is signcrypted in the challenge ciphertext without having any
knowledge about the secret key of the receiver, making the signcryption scheme IND-CCA2 insecure.

7.2 Sign and Encrypt approach

In this approach the Sign and Encrypt algorithms are run simultaneously to produce the signcryption of the
message. So, no parameters are shared between these two algorithms.



Signcrypt(m, IDA, IDB) = (SignskA(m||IDB , IDA)→ σ, EncryptIDB
(m||IDA)→ C).

The tuple ∆ = 〈σ,C〉 is the output of the resulting Signcrypt algorithm.

Unsigncrypt(∆, IDA, IDB) = (DecryptskB (C, IDB)→ m/⊥, and if m is returned, V erifyIDA
(m, IDB)→

V alid/Invalid).
The m obtained is the output of the Unsigncrypt algorithm, if V alid is returned.

Security

In the proof of the IND-CCA2 property of the above signcryption scheme, after phase 1 of training, the
adversary is given the challenge signcryption ∆∗, where ∆∗ is the signcryption of m∗β . Here, the adversary
can always differentiate between m∗0 and m∗1 as follows.

– The adversary takes the component σ∗.
– It then performs V erify(σ∗,m∗0, IDA, IDB) .
– If the above step returns V alid, then β = 0, otherwise β = 1.

This makes the signcryption scheme IND-CCA2 insecure.

In the unforgeability game, the adversary produces a forgery as follows.

– The adversary queries 〈m, IDA, IDB〉 to the Signcrypt oracle and gets ∆ = 〈σ,C〉.
– Now, it runs EncryptIDB

(m) again, where m is a message that has already been queried to the Signcrypt
oracle.

– Being a randomized algorithm, EncryptIDB
(m) produces a different encryption C ′ on the same message

and intended for the same receiver IDB .
– This C ′ when combined with σ from the output of the Signcrypt query, gives another valid signcryption
∆′ = 〈σ,C ′〉 on the message m.

This ∆′ is a valid forgery since ∆′ 6= ∆, making the signcryption scheme SUF-CMA insecure.

Thus, the resulting signcryption scheme is not outsider secure, since the secret key of the sender(receiver)
is not involved in the IND-CCA2(SUF-CMA) game.

7.3 Sign then encrypt approach

Signcrypt(m, IDA, IDB) = (SignskA(m||IDB , IDA)→ σ, then EncryptIDB
(σ||m||IDA)→ C).

The tuple ∆ = 〈C〉 is the output of the resulting Signcrypt algorithm.

Unsigncrypt(∆, IDA, IDB) = (DecryptskB (C, IDB)→ 〈σ||m〉/⊥, if⊥ is not returned, V erifyIDA
(σ,m, IDB)→

V alid/Invalid).
The m obtained is the output of the Unsigncrypt algorithm, if V alid is returned.

Security

The above signcryption scheme is strongly unforgeable with insider security, because even if the secret key
of the receiver skB is compromised, A cannot generate another valid signcryption of m due to the strong
unforgeability property of the underlying signature scheme SignskA(m||IDB , IDA).

Also, the confidentiality of the resulting signcryption scheme Signcrypt(m, IDA, IDB)→ ∆ can be reduced
directly to the confidentiality of the underlying encryption scheme, since the output ∆ = 〈C〉 is just the
output of EncryptIDB

(σ||m||IDA). Since the encryption scheme used is IND-CCA2 secure, the signcryption
scheme is also IND-CCA2 secure.

In Table 2, we present the level of security of the signcryption schemes that can be achieved by the three
methods mentioned above.



Table 2. Security of signcryption schemes got by the direct combination of IBE and IBS

Approach Confidentiality (IND-CCA2) Unforgeability (SUF-CMA)

Sign then Encrypt Yes Yes

Encrypt then Sign No Yes

Sign and Encrypt No No

7.4 Scheme obtained by Direct Combination

From Table 2, we can find that a signcryption scheme obtained by a direct combination of a signature
and an encryption scheme is SUF-CMA and IND-CCA2 secure only when a strongly unforgeable signature
scheme and an IND-CCA2 secure encryption scheme are combined by Sign then Encrypt approach. The
most efficient ID based signature scheme without random oracles is the one proposed by Paterson et al. [16].
But it is only EUF-CMA secure. To make it strongly unforgeable, we apply the transformation suggested
by Boneh et al. [2]. And we take the IND-CCA2 secure ID based encryption scheme in the standard model
proposed by Kiltz-Vahlis [7]. Using these as basic building blocks, let us conceptually formulate a scheme
which we refer as scheme π. The scheme π is obtained by combining these schemes in a direct way as follows.

Signcrypt

Setup

Choose groups G and GT of prime order p. Let g be the generator of group G. And the bilinear pairing
e : G × G → GT is admissible. Choose g2, gu, gα ∈R G and compute z = ê(g, gα). Also pick α ∈R Z∗p.
Compute g1 = gα. Then pick elements u′,m′ ∈R G and vectors U = (ui),M = (mi) of length nu and nm
respectively. The elements of these vectors are randomly picked from G. There are two cryptographic hash
functions H1 : {0, 1}nm+nu+2|p| → Z∗p and H2 : G→ {0, 1}l, where l is large enough that the hash functions
are collision resistant. Let TCR : G→ Z∗p be a target collision-resistant hash function and SE = (E,D) be
a symmetric encryption scheme with key-space κ = GT .

Extract

For an identity u represented by a string of bits of length nu, define Ωu ⊆ {1, ..., nu} as the set of indices
i for which u[i] = 1. The secret key of a user is

〈(du1, du2), (du3, du4, du5)〉 = 〈(gα2 (u′
∏
i∈Ωu

ui)
ru , gru), (gα(u′

∏
i∈Ωu

ui)
s, g−s, gsu)〉

where s, ru ←R Z∗p. (du1, du2) form the signing key and (du3, du4, du5) form the decryption key.

Sign

The signing key of the sender IDA is

〈du1, du2〉 = 〈gα2 (u′
∏
i∈Ωu

ui)
ru , gru〉

σ1 = dA2



σ2 = grm , where rm ∈R Z∗p

ht = H1(M ||IDB ||σ1||σ2), where M is the message for which signcryption is produced and IDB is the
identity of the receiver of the ciphertext

β = H2(ghthrs), where rs ∈ Z∗p

σ3 = dA1(m′
∏
j∈βmj)

rm , where β ⊆ {1, 2, ..., l} be the set of indices i such that β[i] = 1

The signature is σ′ = 〈σ1, σ2, σ3, rs〉.

Encrypt

This algorithm receives 〈σ′,M, IDA, IDB〉 from the Sign algorithm.

σ4 = gr, where r ∈R Z∗p

t = TCR(σ4);σ5 = ((u′
∏
i∈ΩB

ui)g
t
u)r, where ΩB ⊆ {1, ..., nB} is the set of indices i with IDB [i] = 1

K = zr;σ6 = EK(M ||σ′||IDA)

The signcryption produced is σ = 〈σ4, σ5, σ6〉.

Unsigncrypt

On receiving σ = 〈σ4, σ5, σ6〉, the Unsigncrypt algorithm performs the following two algorithms.

Decrypt

The decryption key for the receiver IDB is

〈du3, du4, du5〉 = 〈gα(u′
∏
i∈Ωu

ui)
s, g−s, gsu〉

t = TCR(σ4)

K = ê(σ4, dB3.d
t
B5) ê(σ5, dB4)

(M ||σ′||IDA) = DK(σ6)

Return M if σ′ satisfies the following V erify algorithm.

Verify

Parsing σ′ = 〈σ1, σ2, σ3, rs〉, calculate ht = H(M ||IDA||σ1||σ2) and then β = ghthrs . Then the following
check is performed.

ê(σ3, g)
?
= ê(g1, g2) ê(u′

∏
i∈ΩA

ui, σ1) ê(m′
∏
j∈β

mj , σ2)

where ΩA ⊆ {1, ..., nA} is the set of indices i with IDA[i] = 1.

Efficiency

The signcryption scheme proposed in the previous section π is strongly unforgeable and IND-CCA2 secure.
π performs computations as described in Table 3.



Table 3. Computational Complexity of π

Scheme Secret key size Ciphertext size #pairings #exponentiations

Signcrypt, Unsigncrypt Signcrypt, Unsigncrypt

π (Direct combination) 5|p| 2|p| + nm 0(+1), 5(+1) 8, 3

The numbers shown in the brackets indicate the values that can be precomputed before the algorithm begins
(and they remain same for all runs of the protocol)

We may refer π as a scheme obtained by naive or straightforward combination of an encryption scheme
and a signature scheme because the secret key of π is nothing but component-wise concatenation of the secret
key of the schemes in [16] and [7] and the Sign/Encrypt and Decrypt/Verify algorithms are independent and
sequential.

8 Conclusion

Thus, all the ID based signcryption schemes proposed in the standard model are not provably secure. And,
by analyzing the various types of direct combination, we conclude that a strongly unforgeable, IND-CCA2
secure ID based signcryption scheme in the standard model can be obtained through direct combination of
an IBE and an IBS only by the Sign then Encrypt approach. But the scheme obtained through this approach
is not efficient. Other than the approaches used for direct combination, obtaining an efficient provably secure
ID based signcryption scheme in the standard model still remains an open problem.
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