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Abstract

Cryptography relies on the secrecy of keys. Measures of information, and thus secrecy, are called entropy.
Previous work does not formally assess the cryptographically appropriate entropy of secret keys.

This report defines several new forms of entropy appropriate for cryptographic situations. This report defines
statistical inference methods appropriate for assessing cryptographic entropy.

Contents

1 Introduction 5
1.1 Further Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Roles of Entropy in Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Entropy Source Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Entropy Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Overview of this Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Probability Models 14
2.1 Formal Definition of Probability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Equivalence, Isomorphism and Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Examples of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Singular, Uniform, and Deterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Independent (Identically Distributed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Hidden Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Unrestricted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Combining and Transforming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Applied Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Unions of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Vacuous Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Hulls and Composite Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 Products of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Models with Extra Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Measurable and Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Metric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Non-Categorical and Poisson Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

∗Certicom Research



Formally Assessing Cryptographic Entropy CONTENTS

3 Entropy Parameters 30
3.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Renyi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Generating Series of a Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.5 Working Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Modifications of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Applied Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Contingent Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Contingent Applied Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Filtered Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Sample-Dependent Entropy Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Sample-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Applied Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Contingent Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Statistical Inference 42
4.1 Inference functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Point-valued inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Set-valued inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Grading-valued inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Inference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Set-Valued Inference From Grading-Valued Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Maximally Graded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Threshold Graded and Confidence Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Example Gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 Generalized Typicality and Adjusted Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.4 Calibrated Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.5 Agreeability Gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.6 Bayesian Grading and Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Parameter Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.1 Distributions to Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Infima Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Sample Statistics 52
5.1 Induced Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Induced Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Model-Neutral Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Sample Statistics for the Independent Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.3 Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.4 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Statistics for the Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.1 Markov Frequency Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.2 Maximum Likelihood Markov Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.3 Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.4 Maximal Likelihood Min-Entropy Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

§CONTENTS Page 2 of 98



Formally Assessing Cryptographic Entropy CONTENTS

6 Examples 59
6.1 Toy Example in Independent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Simplified Description of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 Maximal Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.3 Threshold Inclusive Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.4 Threshold Balanced Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.5 Maximal Adjusted Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.6 Threshold Adjusted Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.7 Frequency Statistic Induced Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.8 Partition Statistic Induced Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.9 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.10 Working Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.11 Applied Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.12 Contingent Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.13 Filtered Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.14 Sample Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.15 Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.16 Applied Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.17 Contingent Eventuated Min-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Polling Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Inclusive Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.3 Balanced Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.4 Adjusted Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.5 Frequency Statistic Induced Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Low Sample Sizes in the Independent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 Maximal Likelihood Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Maximal Inclusive Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.3 Maximal Balanced Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.4 Frequency Statistic Induced Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.5 Partition Statistic Induced Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Toy Examples in the Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.1 Maximum Likelihood Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Inclusive Typicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Dice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.1 The Uniform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.2 The Independent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5.3 The Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Toy Model for a Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Models Based on Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Optimization Methods 88
A.1 Karush-Kuhn-Tucker Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 Optimizing Non-Smooth and Non-Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Model Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.4 Optimizations for the Independent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Modeling 91
B.1 Relaxation Approach to Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.2 Restrictive Approach to Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

§CONTENTS Page 3 of 98



Formally Assessing Cryptographic Entropy CONTENTS

C Hypothesis Testing 93
C.1 Non-Comparative Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.2 Comparative Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D Game-Theoretic Analysis 95

E Estimation Theory 97

§CONTENTS Page 4 of 98



Formally Assessing Cryptographic Entropy

1 Introduction

Cryptography’s aim is to enable correspondents to communicate securely in the presence of an adversary. The
correspondents generally need an advantage over the adversary to secure communication. This advantage almost
always includes one or more keys known to at least one of the correspondents but unknown to the adversary.
These keys are called secret (or private) keys. Most cryptographic protocols rely on such secret keys because if the
adversary knew the secret key(s), then the adversary would know as much as the correspondents and could undermine
the security of the protocol.

Secrecy of the keys corresponds to the lack of information that the adversary knows about the keys. Information
is measured in entropy. So, the keys must have some amount of secret entropy. In general, the type of entropy
appropriate for cryptography is min-entropy, which measures the difficulty of guessing the information (see §3.1.1,
[X9.82], or [Lub96]).1 In certain situations, other types of entropy are appropriate for cryptography, such as working
entropy (see §3.1.5) and contingent entropy (see §3.2.2).

The entropy needed for secret keys is obtained from a source. Sources that have been used or proposed for
obtaining cryptographic entropy include a ring oscillator, a noisy diode, mouse movements, variances in disk read
times, or even system process resource usages. Generally, one or more samples are obtained from one or more sources.
In many cryptographic systems, these samples are accumulated, using a deterministic process, into something called
an entropy pool. An entropy pool may be a concatenation of all the values accumulated, but generally, due to
memory restrictions, some compression process is applied. The compression process may be as simple as a group
addition, or may involve a cryptographic hash function, or may involve randomness extraction. At some point, a
value called a seed is extracted from this pool in order to generate a secret key. Key generation often involves a
pseudorandom number generator, which takes as input the seed. All the processing from the source samples to the
secret key is deterministic and cannot be deemed to add any entropy, because the deterministic algorithms in a
cryptographic system cannot be kept sufficiently secret and because it can be difficult to assess the entropy of an
algorithm.

This report formalizes the situation in which the probability distribution of the source is not known exactly.
Indeed, it is often unrealistic to assume an exact probability distribution for a given a source. Instead, it is assumed
that the source adheres to a probability model, which means that its probability distribution belongs to some
known set of probability distributions. By enlarging the assumed set of possible distributions, the assumptions
about the source may become more realistic. Given a probability model, statistical inference is applied to assess
the cryptographic entropy provided by the source. In particular, samples from the source are observed, and then
inferences about the unknown probability distribution can be made. Statistical inference generally infers a subset of
the probability distributions within the probability model that best fit the observed sample. The entropy depends
on the probability distribution, so inferences made about the probability distribution can be used to make inferences
about the entropy. In general, inferences take the form of sets, so for cryptographic applications, prudence dictates
to infer the least value of entropy among the inferred set of entropies.

1.1 Further Motivation

This section gives further motivation of how entropy is used and generated in cryptography.

1.1.1 Roles of Entropy in Cryptography

This subsection gives some examples of the role that entropy assessment might play in typical cryptographic appli-
cations.

1.1.1.1 Seeding Pseudorandom Number Generators A cryptographic system should typically use a well-
seeded and well-designed deterministic pseudorandom number generator to generate random numbers, especially
keys. The initial seed provides the cryptographic entropy to the numbers generated.

A well-designed pseudorandom number generator should ensure that the numbers generated

1Shannon entropy, another type of entropy often used in communication theory, measures the compressibility of information, which is
not relevant for avoiding cryptographic attacks on keys (see §3.1.2 or [MvOV97]).
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Formally Assessing Cryptographic Entropy 1.1 Further Motivation

• appear as indistinguishable from uniform as needed,

• cannot feasibly be used to recover the internal state of the pseudorandom number generator,

• cannot feasibly be used, together with internal state of the pseudorandom number generator, to determine past
internal states. This is called backtracking resistance [NIST 800-90].

These are among the goals of the pseudorandom number generators defined in [NIST 800-90], which, in one case,
seem to be met under certain assumptions [BG07].

Remark 1.1. Backtracking resistance can also be necessary for the forward secrecy of key agreement schemes.

Remark 1.2. Unclear responsibility for the proper seeding of pseudorandom number generators can result in major problems.
Suppose a manufacturer of cryptographic software implements a pseudorandom number generator but does not provide a
source of entropy. If the manufacturer sets the seed to a default value, and if the user of the software mistakenly generates
“random” values using this default seed, unwittingly believing that the random number generator includes a source of entropy,
then the outputs of the pseudorandom number generator should be considered to have zero entropy.

If a formal assessment of entropy had been done in this example, then this severe failure would have been prevented.

Initial seeding is often done in a fairly ideal setting such as at a manufacturing site. This should enable very
thorough entropy assessment.

1.1.1.2 Runtime Refreshment of Pseudorandom Number Generators If the internal state of a deter-
ministic pseudorandom number generator is somehow revealed to an adversary, then all its future outputs can be
determined by the adversary, unless the pseudorandom number generator is refreshed with new entropy.

The property obtained by frequent refreshing is called prediction resistance in [NIST 800-90] (wherein refreshing
is called reseeding). Barak and Halevi [BH05] call this property forward security.

The entropy needed for forward security generally must be obtained during operation in the field. In many cases,
entropy in the field should be regarded as scarce. For this reason, entropy assessment is appropriate.

Entropy assessment on the sources that will be used in the field can be done both ahead of time before deployment,
and also done during operation in the field.

Remark 1.3. It has been pointed out in [JJSH98, BH05], that runtime entropy assessment can risk leaking information to the
adversary. As far as possible, such leakage should be incorporated into the entropy assessment, by considering contingent
entropy. See §6.1.12 for a simplified example.

1.1.1.3 Prospective and Retrospective Assessment A sample from a source can be used to infer something
about its distribution. In some cases, the sample is just discarded, and the inference about the source is used to
assess its future ability to generate entropy. This approach is prospective assessment. Prospective assessment is
most easily handled when the probability model is such that future samples from the source will be independent and
identically distributed.

In other cases, the sample is also used for some cryptographic application, such as forming some of the input
used to derive a secret key. Reasons for using the observed sample, rather than discarding it, include that entropy
is believed to be so scarce that is not affordable to discard it, and that the probability model does not assume
independence of future sample values. In this case, the assessment is retrospective.

Remark 1.4. Retrospective assessment can leak information to an adversary, so contingent entropy must be assessed in this
case, as noted in Remark 1.3.

In complex systems, entropy assessment may be a mixture of both prospective and retrospective assessment.

1.1.1.4 Computationally-Secure and Information-Theoretic Keys Most keys deployed in cryptography
are used repeatedly. Observation of a sufficient usage of the key, assuming unlimited computation, provides enough
information to determine the key, which could then be used to compromise its subsequent use.
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For example, in many forms of public-key cryptography, a public key determines uniquely its corresponding
private key. As another example, consider a typical stream cipher, which generates a one-time pad from a fixed
length key. (An example of a stream cipher is the Advanced Encryption Standard used in counter mode, abbreviated
as AES-CTR). Suppose that the one-time pad is used to encrypt a message, part of which is known to the adversary
and part of which is unknown. If the adversary knows enough of the message (sufficiently more than the fixed-length
key), then, given unlimited computation, the adversary could determine the key and then decipher the whole message
(by employing the stream cipher and key in the same way as do the intended correspondents).

By contrast, some cryptographic protocols offer information-theoretic security. Shannon’s one-time pad is the
most famous example. These protocols attempt to resist an adversary with unlimited computational power. To
achieve this, they often require a very large cryptographic key, which in many cases needs to be nearly uniform. This
requirement often makes these protocols impractical.

Keys whose continued security rely on computational assumptions generally have the property of confirmability.
An adversary who has the candidate key can confirm the key’s correctness by observing the actual use of key. This
means that what one considers as the entropy of key must account for an adversary who will exhaustively search for
keys. The notion of working entropy from §3.1.5 can account for this.

1.1.1.5 Full and Partial Entropy Keys Some types of computational-security keys, such as public keys, permit
purely computational attacks which are strictly faster than exhaustive search of all possible values of the keys.

For example, discrete logarithm keys, such as those used in Diffie-Hellman key agreement or ElGamal signatures,
may be positive integers less than some prime q. Algorithms, such as Pollard’s rho algorithm, can compute the
private key in about

√
q steps. Schnorr [Sch01] gives strong evidence that, if the private key is chosen from a random

set of size
√

q (which allows for exhaustive search of
√

q steps), no significant improvement of generic algorithms,
such as Pollard rho, can be any faster than about

√
q steps. In other words, discrete logarithm private keys seem

only to require about half as much entropy as the bit length.
For other types of computational-security keys, such as symmetric encryption keys, the best known computational

attacks have cost similar to exhaustive search. For example, consider the block cipher defined in the Advanced
Encryption Standard with a key size of 128 bits, abbreviated as AES-128. The best known attacks on AES-128
exhaustively search each possible key, requiring, on average, one half of 2128 evaluations of AES. Accordingly, AES-
128 is generally claimed to provide 128 bits of security. But providing 128 bits of security seems to require that
the key be (almost) uniform, meaning that it has (almost) 128 bits of entropy. Claims of 128-bit security for a
128-bit-key block cipher have created an enormous incentive to generate the key as close to uniform as possible.
Creating a nearly uniform distribution by transforming the samples of a highly non-uniform distribution may be
rather difficult or costly, because the techniques to produce near uniformity often require some pre-existing source
of uniformity, and also because these techniques tend to discard much of the entropy from the non-uniform source.

As an alternative, suppose that AES-128 was used with keys having only 100 bits of entropy. In this case, at
most 100 bits of security would be provided. Some chance exists that such keys could be weak. But this would seem
unlikely if the keys were selected pseudorandomly, such as by the output of a hash. If 100 bits of security provides
adequate protection, then the burden of producing a uniform key is lifted, and one can concentrate on providing
adequate entropy.

Although the alternative approach above does not offer the same claim of 128-bit security as does the conventional
approach, if the entropy is assessed more accurately in the alternative approach, then the alternative may offer more
security than a conventional approach. If a conventional approach aims for uniformity at the cost of underestimating
entropy, then it would provide less than the claimed 128 bits of security.

Even in the case of block cipher, entropy is more important than uniformity.

1.1.1.6 Third Party Evaluation When a first party supplies a cryptographic product to a second party, the
second party values a third party evaluation, such as [FIPS 140-1], of the cryptographic product. Third party
evaluations of entropy have some difficulties:

• Proper entropy assessment requires direct access to the sources. Typically, cryptographic products have not
provided direct access to entropy sources. A resulting difficulty is the first party taking extra steps to provide the
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third party direct access to the entropy source, without compromising the overall security of the cryptographic
product.

• The first party has an incentive to supply the output of a deterministic pseudorandom number generator as
the claimed source. To a third-party evaluator, the effect of this would be that the source appears to adhere
to a uniform distribution.

1.1.1.7 Organization-Level and User-Level Entropy An organization may wish to provide its members with
secret keys for encryption purposes, but to retain a backup copy of the secret keys. In this case, the organization
might use a deterministic pseudorandom number generator to generate all member secret keys. The organization
may need to be quite sure about the security of the secret keys, so would likely invest considerable resources into
using sufficient entropy for the seed.

Some cryptographic applications, such as personal privacy and non-repudiation, require that a user’s secret key
be truly secret to the user. In this case, some entropy for the user’s secret key must be generated on the user’s local
system.

1.1.1.8 Passwords User-remembered passwords are values that a user must recall and enter into a device, usually
to authenticate access to certain privileged information. Such passwords are typically too short to contain enough
entropy to be used as a cryptographic secret key in the sense of being able to render exhaustive search infeasible.
This shortness is partially based on the belief that users will not remember high-entropy passwords.

Because of low password entropy, any data value which would allow off-line confirmation of password guesses,
such as the hash of a password or a simple challenge-response transcript, should be kept private. If these values were
public, an off-line exhaustive search could be mounted. Password-authenticated key agreement schemes, such as
SPEKE, are designed to avoid such off-line attacks. (The restriction on the exposing of user-remembered passwords
to off-line guessing attacks applies to both user-selected and system-generated passwords.)

Despite such usage restrictions, passwords still need some entropy in order to avoid on-line guessing attacks,
where an attacker can confirm password guesses on-line. To thwart on-line password attacks, usually a limit on the
number of failed password attempts is enforced.

Formally, the notion of working entropy, see §3.1.5, can be used to reconcile the differing levels of entropy
between passwords and cryptographic secret keys in a more complex system. Working entropy is defined in terms of
a parameter called workload quantifying the number of guesses at the secret that adversary can confirm. If off-line
confirmation of passwords is stopped, then the effect is that an adversary trying to guess the password is restricted
to a low workload. Other cryptographic secrets, such as public keys, usually are such that the adversary’s workload
is only limited by the amount of computation that the adversary can perform.

So, in a complex system, the working entropy of all the secrets can be targeted above some minimum level,
say 30 bits, which represents a probability of 2−30 of the adversary compromising the system. Some cryptographic
secrets, including most conventional cryptographic keys, are exposed to off-line attacks so should may have their
working entropy assessed at high workload, say of 98 bits. (Uniform 128-bit keys have 30 bits of working entropy at
a workload of 98 bits.) Other cryptographic secrets, such as passwords, may be protected in such a way to limit the
adversary’s workload, for example to 3 bits (for example by limiting a maximum number of failed password attempts
to 7). In this case, passwords may undergo entropy assessment, and perhaps some stringent restrictions, assuming
some probability model for passwords, such that a working entropy of 30 bits can be obtained (at a 3 bit workload).

1.1.2 Entropy Source Examples

This report concerns the assessment of cryptographic entropy sources. For the sake of concreteness, some examples
of entropy sources, upon which the techniques of this report could be applied, are briefly discussed.

1.1.2.1 Operating System Processes For software to have an entropy source, one common practice is to
examine the set of processes running on the operating system. In complex systems where multiple processes share
processor time, it might be hoped that system information, such as the list of processes along with amount of
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processor time each has used, contains some entropy. For example, some processes may need to write to a hard disk,
and disk seek times are known to vary depending on where data is located on the hard disk and upon other factors.

An advantage of such entropy sources is the lack of special hardware or user action.

1.1.2.2 Environmental Conditions Some systems have inputs which could be used as an entropy source. For
example, a microphone can monitor the sound in the local environment.

An advantage of such an entropy source is the lack of special hardware or user action. A possible disadvantage
is any adversary close enough may also have partial access to, or control over, the entropy source.

1.1.2.3 User Inputs A user often supplies inputs to system, such as mouse movements or keyboard strokes.
These inputs may be used as an entropy source. The inputs used for entropy may be gathered incidentally through
normal use, or through a formal procedure where the user is requested to enter inputs with the instruction to produce
something random.

In addition to treating user inputs as an entropy source, a system often relies directly on a user to provide a
secret value, in form of a user-selected password, as in §1.1.1.8.

Passwords still require entropy, so entropy assessment of user-selected passwords is still warranted.
System-generated passwords generally apply a deterministic function to the output of the random number gener-

ator. The deterministic function transforms the random value to a more user-friendly format, such as alphanumeric.
The result is still a password which needs some entropy, but in this case, the source of entropy could be some other
entropy source instead of user input. The entropy still needs assessment.

1.1.2.4 Coin Flipping Perhaps the archetypal entropy source is the coin flip. A coin is thrown by a person into
the air, with some rotation about an axis passing nearly through a diameter of the coin. The coin is either allowed
to land on some surface or to be caught in the hand. The result is either heads or tails, determined by which side is
facing up.

Coin flips are often modeled such that each result is independent of all previous results. Furthermore, for a typical
coin, it is often modeled that heads and tails are equally likely. A sequence of coin flips can be converted to a bit
string by converting each result of head to a 1 and each tail to 0. In this simple model, the resulting bit string is
uniformly distributed among all bit strings of the given length.

More skeptical models may be formulated. Firstly, it may be noted that a dishonest coin flipper could potentially
cheat in certain ways. For example, the cheater may not rotate the coin on the correct axis, but rather an axis at
45◦ to the plane of the coin, which may cause the coin to appear to rotate, but always maintain one side closest to a
particular direction in space. For another example, a skilled cheater may be able to toss the coin with a given speed
and rotation (of proper type) such that either the coin can be caught with an intended side up, or perhaps land on
a surface with higher probability of landing on an intended side.

If one considers that cheating is possible, then one should also consider the possibility that an honest coin flipper
may inadvertently introduce bias into the coin flips. Indeed, in a cryptographic application relying only on coin flips
for entropy, a user may need to flip a coin at least 128 times. As the user becomes tired of repeated flips, the user
may start to become repetitive and perhaps suffer from such bias.

To account for this, one could formulate a more pessimistic probability model for the coin flipping, and then do
some statistical analysis comparing the pessimistic model with the actual sample of coin flips.

1.1.2.5 Dice Dice, usually as cubes with numbers marked on the faces, have long been used in games of chance.
Provided that adequate procedures are used in the rolling, the number that ends up at the top of the die, when its
motion has ceased, is believed to at least be independent of previous events.

On the one hand, the roll of a die, once it is released, seems governed mainly by the deterministic laws of
mechanics; and so it may seem that all the randomness is supplied by the hand that rolled the die. On the other
hand, it seems apparent that the rollers of dice cannot control the results of the die rolls;2 and so, it would seem
that the rolling process itself contributes to randomness.

2For example, otherwise, many games of chance would be adversely affected. That such games of chance still seem to work suggests
that most people cannot control the roll of a die, which suggests that some butterfly effect is occurring.
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The following explanation may account for this discrepancy. Each collision of the die with the ground causes it
to bounce. Because the die is tumbling as it bounces, some of the rotational energy of the die may be converted into
translational energy of the die, or vice versa. This conversion depends very much on the orientation of the die as
it impacts the surface upon which it rolls. With each bounce, the resulting translational energy affects the amount
of time before the next bounce. The amount of time between bounces affects the amount of rotation of the die,
and therefore its orientation. This may mean that a small difference in orientation at one bounce results in a large
difference in orientation at the next bounce. It may be that a butterfly effect applies. Each bounce may magnify
the effect of orientation and rotation, so that the outcome of the die roll, as determined by the final orientation of
the die, depends on the extremely fine details in the initial orientation and motion of the die. Such processes are
known as chaotic processes. Although technically deterministic, chaotic physical processes are hard to predict, partly
because it is too difficult to obtain the necessary precision on the initial conditions to determine the final condition.

Rolling dice may be a practical way to seed a random number generator that will be used to generate organizational
level secret keys. Rolling dice may be fairly impractical for user-level secret keys, and is infeasible for runtime sources
of entropy.

1.1.2.6 Ring Oscillator Ring oscillators have been studied as sources of entropy. See, for example, Sunar,
Martin and Stinson [SMS07] or Baudet, Lubicz, Micolod, and Tassiaux [BLMT11].

Ring oscillators are essentially odd cycles of delayed not-gates. Whereas even cycles of delayed not gates can
be used for memory storage, ring oscillators tend to oscillate between 0 and 1 (low and high voltage) at a rate
proportional to the number of gates in the oscillator.

Since the average oscillation rate can be calculated from the number of gates and general environmental factors,
such as temperature, it is only the variations in the oscillation that should be regarded as the entropy source.

Ring oscillators are not always available in general purpose computer systems. But they can be included in
custom hardware, or even in field programmable gate arrays (FPGA).

Remark 1.5. Neither [SMS07] nor [BLMT11] explicitly use the approach of this report.

1.1.2.7 Radioactive Decay Some smoke detectors use the radioactive element americium which emits alpha
particles. The same method could perhaps be used as a cryptographic entropy source, such as for the generation of
organization-level secret keys.

1.1.2.8 Hypothetical Muon Meter For the purposes of hypothetical discussion, consider an entropy source in
the form a muon3 meter. The muon meter provides a 32-bit measurement of the speed of each muon passing through
the device. On average, one muon passes through the detector per minute. Because of the underlying physics of
muons, this entropy source may be viewed as providing a very robust entropy source, whose rate of entropy cannot
be reduced by an adversary. 4

This hypothetical source illustrates the task of assessing entropy. Consider the following situation. A crypto-
graphic module testing lab receives a vendor submission of such a muon-based source. The lab accepts the general
theory supplied by the vendor that each muon 32-bit speed measurement is an independent random variable with
some stationary probability distribution. The lab spends about one work day to obtain 1024 speed measurements
from the submitted muon detector. All speed measurements are distinct except for a single pair with the same speed.

This hypothetical example is treated formally in §6.3. For a simplified analysis, consider the following. Artificially
assume that the muon speed measurements are uniformly distributed within some fixed, but unknown, subset of all

3A muon is an elementary particle in the standard model of physics. Essentially, it is heavier version of an electron. Muons are a
form of ionizing radiation, so are easily detectable, and were discovered even before the neutron. Muons are deemed difficult to produce
artificially, but do occur naturally on Earth, originating from background cosmic rays (high energy protons) colliding with atoms in the
atmosphere. They travel near light speed. Because of their speed and mass, they are highly penetrating, and are detectable through
hundreds of meters of rock. Muons are fairly frequent at ground level

4This entropy source may succumb to an attack if an adversary surrounds it by other muon detectors, in which case it may be able
to obtain similar speed measurements of all muons passing through the entropy source. However, this is meant only as a hypothetical
example.
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possible 32-bit speed measurements. Even more simplistically, further assume just three hypotheses:5 that this
subset has size 210, 230 or 220. In the first hypothesis of a 210-uniform distribution, one would have actually expected
many more repetitions than just one. In the second hypothesis of a 230-uniform distribution, one would not have
expected repetitions. In the third hypothesis of a 220-uniform distribution, one expects about one repetition after 210

samples. Therefore, the third hypothesis seems, at least intuitively, to be most consistent with the sample collected.

Remark 1.6. In the formal view of this report, what this simplistic analysis has done is: assume a formal probability model,
although an artificial one; gather a sample; use a sample statistic (§5), namely the a number of repeated elements in the sample
sequence; make a statistical inference (§4), using maximum likelihood inference as induced by the chosen sample statistic. The
resulting inference is that the distribution with 220 possible values is the most likely of the three distributions in the model.
In this case, the inference gives a single maximal distribution, so the inferred entropy can be computed directly from this. See
§6.3.5.1 for a more detailed treatment.

1.1.2.9 Quantum Particle Measurement The theory of quantum mechanics implies that quantum parti-
cles, such as photons or electrons, can exist in a superposition of states under which measurement causes a wave
function collapse. The theory states that wave function collapse is a fully random process independent of all past
events in the universe. Under this theory, an entropy source derived from such wave function collapse would be
totally unpredictable no matter what expense the adversary took to predict the source, a property highly useful for
cryptography.6

Jennewein et al. [JAW+00] devised such a device using an attenuated light source, a beam splitter and two single
photon detectors.

1.2 Previous Work

Past publications do not seem to assess cryptographic entropy with adequate formal justification. This subsection
gives a brief survey of the most relevant past results.

1.2.1 Hypothesis Testing

Much past work on the assessment of randomness in cryptography, such as [FIPS 140-1] and [Mau90], has taken the
form of hypothesis testing. Hypothesis testing fails to assess cryptographic entropy in several respects:

1. Zero-entropy values can be contrived that pass given hypothesis tests, such as taking the output of secure stream
cipher or pseudorandom number generator (say one defined in [NIST 800-90]). If contrived zero-entropy values
can pass hypothesis tests, then it is possible that zero-entropy, or insufficient-entropy, values can accidentally
be generated that pass tests.

2. The outcome of a hypothesis test is binary: it is either a pass or a fail, not a quantity of formally assessed
entropy.

3. In the formal framework of this report, conventional hypothesis testing of cryptographic random number gener-
ators usually consists of using statistical inference in the uniform probability model of §2.3.1. The assumption
of the uniform model is problematic because of the following.

(a) It is generally a too strong and unrealistic assumption, which does not attempt to model any realistic
deviations from uniformity.

(b) It is subject to the tying effect Remark 5.7 which requires the use of sample statistics to overcome tie-
breaking effects. Poorly-chosen sample statistics rely on poorly-formulated assumptions about potential
divergences from a uniform distribution.

5Each of the three hypotheses is an instance of the subuniform probability model discussed in §2.3.1, but taking all three together can
be considered as a restriction of the independent probability model in §2.3.2.

6The process used to amplify the measurement of the quantum event into macroscopic information potentially leaks information.
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(c) It is a singular model (§2.3.1), admitting only one probability distribution, so that inferring the distribu-
tion, and hence the entropy, is trivial. Once the uniform assumption has been made, all that can really
be done is to assess the plausibility of the assumed entropy.

Some developers of “true” random number generators have relied on hypothesis testing in the following way. They
build an entropy source with some tunable parameter. For certain values of the tunable parameter, the source
may fail the hypothesis tests. For other values of the tunable parameter, the source may pass the hypothesis. The
developers tune the parameters such that the entropy source has desirable properties (perhaps efficiency) and such
that it passes the hypothesis tests. The entropy of such an entropy source has not been formally assessed.

Although hypothesis testing in cryptography has mainly been applied to the uniform model, it can be applied to
any model, and as such can serve purposes other than entropy assessment. Hypothesis testing is further discussed
in an appendix to this report §C.

1.2.2 Randomness Extraction

Other past works in cryptography, such as [JJSH98], have studied how to extract almost uniformly random bit strings
from random but biased bit strings. This process is called randomness extraction (though uniformity extraction would
have been a more appropriate term).

Randomness extraction does not solve the problem of assessing entropy. In fact, randomness extraction can only
sensibly be applied after entropy assessment, since randomness extraction takes as input values with a sufficient
amount of entropy.

In the general framework of this report, the entropy obtained after randomness extraction is defined as applied
entropy §3.2.1. In systems that apply randomness extraction in an effort to obtain uniformity, entropy can still
be assessed even under assumed probability models that are insufficient for the randomness extraction to produce
uniformity.

1.2.3 Entropy Assessment

The following previous works comment on entropy assessment.

1.2.3.1 ANSI X9.82-2 The ANSI accredited standards committee X9’s working group F1 recognized the need
for entropy assessment. Working group F1 began draft American National Standard (ANS) X9.82-2 [X9.82] that
covers entropy sources. The author was a member of the working group F1 during this time, although not an editor
of ANSI X9.82-2. The content of [X9.82] varied considerably as it was edited and as the working group discussed it.

No versions of ANS X9.82-2 formalized a notion of a probability model which is a feature of this report (§2).
Instead drafts of ANS X9.82-2 mention specific probability models. One draft mentions the hidden Markov model
(see §2.3.4 for a description of this model), but this was later removed. Later drafts restrict the probability model
to the independent identically distributed model (see §2.3.2 in this report).

Statistical inference is used in various drafts ANSI X9.82-2. For example, maximum likelihood estimates, with
a requirement on large sample size, is used. Hypothesis testing is also used, based on somewhat arbitrary sample
statistics, to test the hypothesis of the independent (and identically distributed) probability model.

The ANS X9.82-2 targets not only developers of entropy sources but also third party assessors, such as crypto-
graphic module testing laboratories, who have generally reported results as pass or fail.

1.2.3.2 Barak and Halevi Barak and Halevi [BH05] state:

... entropy estimation in general is an inherently impossible task.

The context in which they claim impossibility of entropy estimation may not be the same as the context in which
[X9.82] and this report attempt to assess entropy. Nonetheless, the strength of their statement seems to contradict
at least the beliefs of the X9F1 working group.

However, even in Barak and Halevi’s model [BH05], the entropy source is just assumed to have a minimum
amount of entropy. This seems to be an entropy estimate of some form. Indeed, they also suggest a
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very low static estimate for the entropy (e.g. such as 1/2 entropy bit per sample [bit]),

which seems inconsistent with their previous statement about the inherent impossibility.

1.3 Overview of this Report

1.3.1 Contributions

The main contributions of this report are:

• formalization of probability models for application to cryptography,

• several new forms of entropy appropriate for cryptography,

• statistical inference methods appropriate for assessing cryptography entropy in a general setting, and

• an entropy assessment paradigm making clear the assumptions upon which the assessment depends.

1.3.2 Organization

The subsequent sections cover the following topics:

• Section 2 gives formal definitions and examples of probability models.

• Section 3 gives formal definitions of cryptographic entropy.

• Section 4 gives formal definitions and examples of general statistical inference.

• Section 5 gives formal definitions and examples of sample statistics and the resulting induced inference.

• Section 6 provides some examples of assessing entropy.

• Appendix A discusses various results from optimization theory which may be applicable to inference methods.

• Appendix B discusses briefly some approaches to formulating a suitable probability model.

• Appendix C discusses the special case of hypothesis testing.

• Appendix D discusses the case where the adversary can influence the probability distribution.

• Appendix E discusses estimation theory, a method to assess any given inference method.

Remark 1.7. Throughout this report are scattered various remarks, such as this one. Generally these remarks are tangential
to the main topic, or may refer to concepts outside the current scope, or to concepts later in this report.
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2 Probability Models

Shannon founded information theory, including cryptography, on probabilities. Per Shannon’s theory, in this report,
the adversary’s lack of information is described in terms of probabilities. This report further tackles the dilemma that
the cryptographer does not necessarily know these probabilities. So, the cryptographer makes formal assumptions
about the probabilities, in the form of a probability model, which is defined in this section.

Once the probability model is assumed and a sample from the source is observed, statistical inference, see §4, can
be used to assess of cryptographic entropy, see §3, provided by the source.

Many different probability models can be formulated under the notion of this report. Statistical inference depends
on choice of probability model. Because the formal entropy assessment in this report is stated with respect to a
probability model, the formal assessment of entropy includes the full description of the probability model. Re-
iterating, an assessment of entropy is not formal unless it specifies a formal probability model.

A formal entropy assessment is only as appropriate as the probability model is appropriate for the given entropy
source.

Remark 2.1. In this report, probabilities are used to measure an adversary’s pre-existing lack of knowledge about a value
which the adversary wishes to guess. An adversary may acquire extra knowledge about a specific value, which leads to the
modifications of the entropy defined in §3.2, such as contingent entropy from §3.2.2 which accounts for an adversary having
extra information about the outcome of a probabilistic event. Conversely, the cryptographer may have more knowledge than
the adversary regarding a specific source sample, in which case eventuated entropy from §3.3.2 can be used to account for an
adversary having less information about the probabilistic event than the cryptographer has.

2.1 Formal Definition of Probability Models

A probability space Π and a sample space X are sets. In cryptographic contexts, X is usually finite but Π is often
uncountably infinite. The sample space X will be assumed to be finite, unless otherwise noted. An element p ∈ Π is
called a probability distribution, or just a distribution, for short. An element of x ∈ X is called a sample. A probability
function for Π and X is a function

P : Π × X → [0, 1] : (p, x) 7→ Pp(x), (2.1)

where [0, 1] is the interval of real numbers between 0 and 1 inclusive; and the function P is such that for all p ∈ Π,
the following summation equation holds:

∑

x∈X

Pp(x) = 1. (2.2)

A probability model is a triple (Π, X, P ), where Π is a probability space, X is a sample space, and P is a probability
function.

Remark 2.2. For given p ∈ Π, write Pp for the function such that Pp : X → [0, 1] : x 7→ Pp(x). When clear from context, the
function Pp may also be called a probability function.

Remark 2.3. For the task of assessing entropy, probability theory notions of an event and a random variable do not play a
significant role, for the following reasons.

• An event corresponds to a subset of X, and a probability distribution defines the probability of an event. If X is discrete,
and E ⊆ X, then the probability of the event, under distribution p, is

P

x∈E Pp(x), using this report’s formalism for a
probability model. Because only discrete sample spaces are relevant to cryptography, the notion of an event is derivable
from the formal definition of a probability model, and is thus redundant.

Usually entropy depends on the probability of a single sample, not the probability of an event. The notion of an event
is incorporated into the definitions of certain kinds of entropy, such as eventuated entropy from §3.3.2, but the formal
definition of probability can be stated without reference to the notion of an event.

• A random variable is a variable taking values in the sample space X, with probabilities given by a given probability
distribution p. If X is discrete, then notions such as the expected value of random variables can be expressed as
P

x∈X Pp(x)x using this report’s formalism of a probability model. Because only discrete sample spaces are relevant to
cryptography, the notion of a random variable is derivable from the formal definition of a probability model, and is thus
redundant.
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Usually entropy depends on the probability of a single sample, not on the expected value of a random variable. Indeed,
generally the values of samples have no bearing on the entropy.

A possible role for the notion of random variables is in non-categorical probability models, see §2.5.3, where the sample
values have structure that is useful in making statistical inference by way of sample statistics §5.

Remark 2.4. In cryptography, the notation P (x) is often used for the probability of an event X occurring. In the notation of
this report, a subscript p has been added to reflect the fact that the probability distribution p is an unknown variable.

Remark 2.5. In cryptography, the adversary is also modeled. Three relations between the adversary and the distribution to
be inferred are:

1. The adversary does not know the distribution p.

2. The adversary knows distribution p.

3. The adversary chooses the distribution p ∈ Π.

The three levels grant the adversaries successively more power.

Remark 2.6. This report mainly focuses on the second level adversarial model, where the adversary knows p, because this
model is the most important and realistic.

Remark 2.7. The first level adversary, which is more optimistic for the cryptographer than the second level, can be treated
formally as an instance of the second level if the adversary’s lack of knowledge about the distributions in the first level can be
formulated in terms of probability. This would result in a new model at the second level, in which the distributions formally
model the distributions of the first level, combined with a distribution on the distributions. See Remark 2.61 for an example.

Remark 2.8. In contrast to the adversary, the cryptographer does not know p, but instead tries to infer p. So, the adversary
actually has more power than the cryptographer. This may be realistic if the adversary has more access to the entropy source
and can spend more effort on better statistical inference.

Remark 2.9. Over and above knowing the distribution p, an adversary may also be able to learn some information about a
sample x drawn from the distribution from p. This can be accounted by using contingent entropy §3.2.2.

Remark 2.10. The third level adversary from Remark 2.5 is discussed briefly in §D. In this case, the probability model is not
controlled by the adversary, only the probability distribution. However, in the formalism of choosing a probability model, the
model should be chosen to encompass all the possible distributions which the adversary may be able to invoke. The formalism
need not give the adversary influence over x, which the adversary can already influence by influencing p.

Remark 2.11. Cryptography deals with finite or discrete sample spaces X. Nevertheless, sometimes it is useful to consider
continuous sample spaces X, such as a precursor model which gets subjected to a discretizing transformation. Working in the
continuous model may actually simplify statistical inference, because the discretizing transformation may be discontinuous
and non-smooth, making it awkward to optimize (optimization arises in the statistical inference process).

Remark 2.12. When X is a continuous space, equipped with a measure µ, then (2.2) is replaced by

Z

X

Ppdµ = 1, (2.3)

and furthermore, the range of the probability function is extended as follows:

P : Π × X → [0,∞] : (p, x) 7→ Pp(x), (2.4)

so now Pp(x) can exceed one. In this case, the function Pp : X → [0,∞] : x 7→ Pp(x) is called a probability density function.

Remark 2.13. In greater generality, X need not have a pre-existing measure. Instead, let M(X) be the collection of all measures
on X. Then the model is defined by some function

P : Π → M(X) : p 7→ µp, (2.5)
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with the condition:
Z

X

dµp = 1. (2.6)

In the previous example, µp = Ppµ held. In the case of a finite or countably infinite set X, then the measure µp can be defined
from the usual probability function Pp via

µp(Y ) =

Z

Y

dµp =
X

y∈Y

Pp(y). (2.7)

2.2 Equivalence, Isomorphism and Restriction

If (Π, X, P ) is a probability model then two probability distributions p, q ∈ Π are equivalent in the model (Π, X, P )
if Pp(x) = Pq(x) for all x ∈ X , which can be written p ≡ q.

Given two probability models (Π, X, P ) and (Θ, Y, Q), the models are isomorphic if there exists functions β :
Π → Θ and γ : Θ → Π and a bijective function b : X → Y such that for all (p, x) ∈ Π × X it is true that
Pp(x) = Qβ(p)(b(x)) and for all (q, y) ∈ Π × Y it is true that Qq(y) = Pγ(q)(b

−1(y)). If one simply relabels the
elements of probability space and the sample space, one obtains an isomorphic model.

Remark 2.14. Entropy, see §3, of a probability distribution p is invariant under isomorphism. Therefore, strictly speaking, from
a cryptographic perspective, it suffices to consider probability models only up to isomorphism. That said, certain probability
models may include the possibility of numeric relationship between components of x, in which case, an arbitrary isomorphism
would render this relationship arbitrary, and possibly more difficult to process, and in particular, to make inferences about.

Henceforth, models will be considered only up to isomorphism, unless otherwise noted.

Remark 2.15. If (Π,X, P ) is probability model and z ∈ X is such that Pp(z) = 0 for all p ∈ Π, then z is said to be non-

occurring. Otherwise z will be said to be occurring. Modifications of models by addition or removal of non-occurring sample
values may be considered weakly isomorphic.

Given two probability models (Π, X, P ) and (Θ, Y, Q), the latter is a restriction of the former if Y = X and
Θ ⊂ Π and, for all p ∈ Θ and x ∈ Y , it is true that Qp(x) = Pp(x). Conversely, (Π, X, P ) is a relaxation of (Θ, Y, Q).
Similarly, (Θ, Y, Q) is more restrictive than (Π, X, P ), and (Π, X, P ) is less restrictive than (Θ, Y, Q).

If (Π, X, P ) is a probability model, and p ∈ Π and x, y ∈ X and Pp(x) = Pp(y), then x and y are said to be
equiprobable at distribution p.

Remark 2.16. Equiprobable distributions have equal typicality, §4.4.2.

If x and y are equiprobable at all p ∈ Π, then x and y are said to be equilikely in the model.

Remark 2.17. All non-occurring sample values are equilikely.

Remark 2.18. Likelihood functions are defined in §4.4.1. Equilikely sample values x and y have the same likelihood functions:
Lx = Ly.

2.3 Examples of Models

Statistical inference can be conducted over any probability model. For the sake of concreteness, some example models
are given in this section.

2.3.1 Singular, Uniform, and Deterministic

A probability model (Π, X, P ) is singular if |Π| = 1, so that probability space contains just a single distribution. A
singular model is the most restrictive model possible, with the exception of a degenerate model which has an empty
probability space, so |Π| = 0.

An example of a singular probability model is the uniform probability model where Pp(x) = 1/|X | for all x. More
generally, any model isomorphic to the uniform model is also called a uniform model. Also, given any finite set X ,
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there is a uniform model on X , which will be written as u(X). Up to isomorphism, the uniform model is determined
by the cardinality of X , so this uniform model may be referred to as the |X |-uniform model. For example, the
6-uniform model implies a uniform model with |X | = 6, a model sometimes assumed for a single roll of a cubic die.

When clear from context, uniform is applied to distributions, not just models. Specifically, for any probability
model (Π, X, P ), a distribution p ∈ Π is the uniform distribution if Pp(x) = 1/|X | for all x ∈ X . If (Π, X, P ) contains
a uniform distribution, then it is a relaxation of the uniform model u(X).

Remark 2.19. The uniform distribution p is generally the most cryptographically secure probability distribution on the sample
space, because it has the maximum possible min-entropy, log2 |X| (see §3.1.1), of all distributions on the space X, and because
it is usable as one-time pad.

Another important example of a singular probability model is a deterministic model. In this case, Π = {p} and
there is some x0 ∈ X , such that Pp(x0) = 1 and Pp(x) = 0 if x 6= x0.

As with the term uniform, when clear from context, the term deterministic applies to individual probability
distributions, not just models. Specifically, if (Π, X, P ) is a model, p ∈ Π, and Pp(X) = {0, 1}, then p is a deterministic
distribution. If p is deterministic and Pp(x) = 1, then the notation p = px will sometimes be used, i.e., Ppx

(x) = 1
and Ppx

(y) = 0 for y 6= x.

Remark 2.20. A deterministic distribution is the least cryptographically secure distribution, because a deterministic distribu-
tion has zero min-entropy, see §3.1.1, which means that an adversary knowing the distribution can guess the sample value.

Remark 2.21. For a given probability model, it is worth being well aware of the set of deterministic distributions that it
contains, since when one obtains a sample value x such that the deterministic distribution on x belongs to the model, inferring
that the distribution could be deterministic is very compelling. Sample x and deterministic distribution px are as perfect a fit
between a sample and distribution as can be. In this case, a prudent inference method infers an entropy of zero.

Remark 2.22. A pseudo-deterministic model is a model that contains a deterministic distribution px for each x ∈ X. Inference
in a pseudo-deterministic model can be problematic, because, given sample x, the distribution px is the best inference, which
is deterministic and has zero entropy. Any inference method that includes px among the inferred set of distributions to be
made from x, and takes the minimum min-entropy of the inferred distributions as the inferred entropy, gives an inferred
min-entropy of zero. So, a prudent inference method infers zero entropy, no matter what sample is observed, if the assumed
model is pseudo-deterministic.

Remark 2.23. A fatalistic model on a sample space X is the most restricted pseudo-deterministic model: Π = {px : x ∈ X},
with Ppx(x) = 1 and Ppx(y) = 0 for y 6= x. The fatalistic model is also the least restricted model in which all distributions
have zero min-entropy.

The fatalistic model is more pessimistic than a deterministic model, or any other of its proper restrictions, because the
fatalistic model cannot be rejected by hypothesis testing. For example, if a deterministic model with Π = {px} is wrong, then
it is possible that a sample obtained can be y with y 6= x, in which case the model will be seen to have been wrong. The
fatalistic model, even if incorrect, does not admit such rejection.

The fatalistic model is more pessimistic than any of its proper relaxations, even though these models are also pseudo-
deterministic, because no inference method, even an overly optimistic, imprudent method, can sensibly infer a positive value
for the entropy.

Assuming a fatalistic model is assuming an omniscient adversary, such as fate, without granting the cryptographer any
foresight about the source.

Assuming some model that is not fatalistic can be empirically justified if, upon scrutiny by a real adversary, the adversary
gains no advantage, unless the adversary conceals this advantage. A formal justification for a non-fatalistic model for an
entropy source is successful hypothesis testing of an alternative non-fatalistic model. A more intuitive justification of a non-
fatalistic model for a source would be that the source has uses wider than just for cryptography and that the prediction of
the source would confer some advantage that nobody seems able to obtain.

Remark 2.24. Intermediate to uniform and deterministic models are a family of singular probability models called subuniform

models. For integers m, N with 1 6 m 6 N , a (m, N)-subuniform model is such that |X| = N , and Pp(x) ∈ {0, 1/m} for all
x ∈ X, which implies that Pp is nonzero on a subset of cardinality m, and that it is constant on this subset. The N-uniform
model is the (N, N)-subuniform model. The deterministic model is the (1, N)-subuniform model.
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Similarly, subuniform distributions are distributions p in any probability model (Π, X, P ) such that Pp(X) = {Pp(x) : x ∈
X} = {0, 1/m}, for some integer m.

Remark 2.25. Singular models, especially the uniform model, have been used in hypothesis testing, as in [FIPS 140-1].
Statistical inference, see §4, is the process of inferring something about p from a given value of x. In a singular model,

only one value of p is possible. The inference to be made in a singular model therefore takes the form of a pass or fail, or
perhaps some grading of the fit between an observed sample x and the model’s single distribution.

Singular models are generally inappropriate for assessing cryptographic entropy, because they generally already assume a
value of the entropy and because the limited form of the inference (pass or fail).

Remark 2.26. Even if the uniform model is plausible for some source, such as the entropy source devised by Jennewein et al.

[JAW+00], and even if hypothesis testing is one’s only goal (say, for some reason, one is not trying to formally assess entropy),
then the uniform model is still somewhat unsuitable in a formal sense, as is discussed below.

An unsuitably of the uniform model, in a formal sense, is that the uniform model requires the use of sample statistics,
see §5, to overcome the tying effect in uniform distributions, see Remark 5.7. As such, sample statistics, when applied to
hypothesis testing, are essentially trying to detect the possibility that the hypothesis is false. In other words, the sample
statistic is testing if some other hypothesis is more realistic. But sample statistics do not formally state what the alternative
hypothesis is.

This report therefore proposes an alternative approach to modeling and hypothesis testing, which is outlined in §6.5, §B
and §C.

2.3.2 Independent (Identically Distributed)

Another probability model is the (m, N)-independent (identically distributed) model:

Π =
{

p = (p0, . . . , pm−1) : pi ∈ [0, 1],
∑

pi = 1
}

= [0, 1]m1 (2.8)

X = {x = (x0, . . . , xN−1) : xi ∈ {0, 1, . . . , m − 1}} = NN
m (2.9)

Pp(x) =

N−1
∏

i=0

pxi
. (2.10)

In the abbreviated notations given above: [0, 1] means the interval of real numbers between 0 and 1, inclusive; Nm

means {0, 1, . . . , m− 1}; Sm means the set of m-tuples with entries in S; and Sm
1 means the subset of Sm such that

the sum of the entries in the m-tuple is one.
The parameter m is called the width, and the parameter N is called the length. A distribution in (m, N) may be

referred to as an independent distribution on the sample space NN
m.

In this model, the parts xi of x are restricted to be individual random variables with identical and independent
distributions. There is no restriction, however, on the common distribution.

Remark 2.27. The (m,N)-independent model is a relaxation of the mN -uniform model because taking p = (1/m, . . . , 1/m)
causes Pp(x) = 1/mN for all x ∈ X.

Remark 2.28. In reference to this model, the distribution p may sometimes be called a probability vector, and x called a
sample vector.

Remark 2.29. The (2, N)-independent probability model may be an appropriate way to model a coin tossed N times if the
coin’s probabilities of landing heads or tails are independent and stable.

Remark 2.30. The independent model is also a relaxation of the deterministic model in the following sense. Fix some i ∈
{0, . . . , m − 1}. If pi = 1, then Pp(x) = 1 if x = (i, i, . . . , i) and otherwise Pp(x) = 0. These are the only deterministic
distributions in the independent model.

Remark 2.31. For N > 2, the independent model is not pseudo-deterministic.

Remark 2.32. The (m − 1, N) independent model is a restriction, up to isomorphism, of the (m, N) independent model.
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Remark 2.33. Given the (m,N)-independent model, it is natural to consider the following function f : X → [0, 1]m defined
by the relation f(x)i = |{j : xj = i}|/N . This is the frequency function, and it is easily seen to be the maximum likelihood
inference (§4.3.1 and §4.4.1) p̂(x) for x.

Also, Pp(x) is a function of f(x), so if f(x) = f(y), then x and y are equilikely. Furthermore, x and y are equilikely only
if f(x) = f(y).

The number of different values that f takes is
`

m+N−1
m

´

= (m+N−1)!
m!(N−1)!

. For m ≫ N , this number is approximately mN−1

(N−1)!
,

so the average size of an equilikely class is about (N−1)!
m

. For N ≫ m, the number of values that f takes is approximately
Nm

m!
, so the average size of an equilikely class is about m!mN

Nm .

Remark 2.34. Randomness (uniformity) extraction is a known method in cryptography, an example of which follows. Suppose
that (Π, X, P ) is an (m, N)-independent model and that f is the frequency function defined above. Define a function g : X → Z
as follows: g(x) is the index of x amongst the list of y with f(y) = f(x), with the list being sorted lexicographically. Let
e(x) = (f(x), g(x)), and let Y = [0, 1]m × Z. Then e : X → Y is an injection. Define a probability model (Π, Y, Q) such that
Qp(e(x)) = Pp(x) for all x ∈ X. The probability model (Π, Y, Q) is partially subuniform in the following sense: for a fixed
f ∈ [0, 1]m, the set {Qp(f, g) : g ∈ Z} contains zero and has cardinality at most two. As such, what one can do is extract the
value g(x) from x, and essentially ensure that it appears to abide by the uniform model, of a size that may be calculated from
x using multinomial coefficients. During the process, considerable valuable entropy contained in x may be lost because the
function g is not injective, with the gain in uniformity usually being a theoretical goal. Entropy is often more important than
uniformity, and in some systems, entropy is too scarce to sacrifice.

Remark 2.35. Uniformity extraction can be more generally viewed as taking advantage of the presence of equilikely sample
values. Given a sample value x, one may know that, in the assumed probability model, that x is equilikely with some number
of other sample values. It follows that the index of x among this set of equilikely values has a uniform distribution.

Remark 2.36. A relaxation (Π′, X, P ′) of the independent model (Π, X, P ) can be formed by taking Π′ = Π × ΣX where
ΣX is the set of all permutations of X. Then let P ′

(p,s)(x) = Pp(s(x)). This relaxation allows an arbitrary structure on the
sample space, where the structure is the division of each sample in X into a sequence of elements. The distributions which
are independently and identically distributed with respect to some arbitrary sequential structure assigned to the elements of
X belong to this relaxed model. Let us call this model the structureless independent model.

This relaxed model has many equivalent distributions. For example, if t is any permutation of the set Nm and is adapted
to X by application to each entry, and adapted to Π by re-ordering of the entries, then (p, s) ≡ (t(p), t ◦ s). It may be that for
almost all of the space Π′, the latter equivalences determine the entire equivalence classes, since the function P ′

(p,s) determines
(p, s) up to the transformation by t as described above, but there are exceptions. For example, if p corresponds the uniform
distribution on Nm, then (p, s) ≡ (p, t) for any permutation s and t of X.

This structureless independent model is pseudo-deterministic, so inference of non-zero entropy in this model is infeasible.
However, a (common) product (as in §2.4.5) of structureless independent models may not be pseudo-deterministic, allowing
distributions with non-zero entropy to be inferred.

2.3.3 Markov

Another probability model commonly considered is the (m, N) Markov model. The sample space is X = NN
m, which

is the same as in the (m, N) independent model. The probability space Π has elements that are pairs p = (v, M),
consisting of v : {0, 1, . . . , m− 1} → [0, 1] whose values sum to one, and M : {0, 1, . . . , m− 1}2 → [0, 1] whose values,
when summed with any fixed first argument, total to one. More compactly, Π = [0, 1]m1 × ([0, 1]m1 )m. The functions
v and M can be viewed as a vector and a matrix, respectively. Then

Pp(x0, . . . , xN−1) = v(x0)M(x0, x1)M(x1, x2) . . . M(xN−2, xN−1). (2.11)

This allows xi+1 to depend on xi according to the matrix M . As in the independent model, the parameter m will
be called the width and the parameter N will be called the length.

Remark 2.37. The (m − 1, N) Markov model is a restriction, up to isomorphism, of the (m,N) Markov model.

Remark 2.38. The (m, N) Markov model is, up to isomorphism, a relaxation of the (m, N) independent model. Distributions
(v, M) ∈ Π such that all the rows of M are identical to v give rise to distribution equivalent to a distribution in the (m, N)
independent model with p = v.
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Remark 2.39. When N = 2, the Markov model is isomorphic to the unrestricted model, see §2.3.5, on its sample space, which
means that all possible distributions, up to equivalence, are allowed.

Remark 2.40. The deterministic distributions in the Markov model’s probability space are those that take constant values x
such that x has the form u(vw)yv ∈ X, where y is a non-negative integer, where ab indicates concatenation of sequences,
and where the sequence uvw has no repeated elements. Such a sequence may be visualized as a ρ, an image familiar to most
cryptographers, in which the subsequence u corresponds to the tail of the ρ and the subsequence vw corresponds to the cycle.

Remark 2.41. In the (2, 4) Markov model, the distributions (0, 1, 0, 0) and (0, 0, 1, 0) are equilikely. More generally, in the
(2, N) Markov model, define a function f : X → Z3, such that

f(x) =

 

x0,

N−1
X

i=0

xi,

N−2
X

i=0

|xi − xi+1|
!

. (2.12)

If f(x) = f(y), then x and y are equilikely. A function with the same property for the (m, N) Markov model is given in §5.5.

Remark 2.42. Any source may be viewed as a measurement of a physical process. The elements of a sequence sample in the
Markov model may represent individual measurements, such as those taken over time intervals, ideally regular time intervals.
In reality, it is generally impossible to measure all the parameters of a physical system that determine its future outcome.
For example, the Heisenberg Uncertainty Principle seems to imply this. So the Markov model is not very realistic in that one
measurement is not entirely dependent on the previous. Nevertheless, one may hope that, for certain sources, the other true
dependencies are effectively predicted by a random variable as provided by the Markov model.

Remark 2.43. The Markov model is not invariant under reversal of the elements in the sample sequence. More formally, the
Markov model has no automorphism whose action on the sample consists of reversing the order of the elements in the sequence.
More intuitively, the irreversibility of the Markov model can account for cause-and-effect-under-a-rule between consecutive
elements of the sequence.

Remark 2.44. Perhaps some type of source is reversible in the sense that the distribution of a source of this type always adheres
to some reversible Markov distribution. If the reversibility of that type of source can be firmly established (perhaps by using
the inference methods of this report), then a source of that type can modelled by a restriction of the Markov model in which
only reversible distributions are included in the probability space. Making such a restriction may perhaps improve the quality
of infernce that can be made about the source, and perhaps even raise the inferred entropy.

The fact that many physical laws of motion are invariant under time-reversal may make the reversibility of some sources
at least plausible. For example, suppose the sequence elements are obtained from some closed physical process under equal
time intervals. If the physical process has no significant external influences, then it may justifiably be deemed as reversible.

Large physical systems are subject the laws of thermodynamics, which include the effect of thermodynamic entropy of a
closed system increasing with time. In other words, large closed systems are generally not reversible. At a lower level, the
increasing nature of thermodynamic entropy is only a statistical effect, with the underlying physical laws being reversible,
but very sensitive and thus chaotic. The chaotic nature means the laws, even if deterministic will result in large changes in
the system from minute differences in the initial conditions. The increase in thermodynamic entropy is a statistical effect
in the sense that these chaotic effects tend to create a disorganized system, and if even the system is large, its macroscopic
parameters will tend to average values of the parameters. For example, organized motion, in the form of kinetic energy will
become disorganized motion in the form of thermal energy.

So, the only source that might be well-modelled by a reversible restriction of the Markov model are very small, closed
physical systems, whose parameters can be measure without signficance of the influence of the system.

Remark 2.45. For an example of the irreversibility of the Markov model, consider the (2, 3) Markov model (Π, X, P ) and the
distribution p = (v, M) with v = (1, 0) and M = ( 0 1

0 1 ). This is a deterministic distribution, always taking sample value
x = (0, 1, 1), since Pp(x) = 1.

For x′ = (1, 1, 0), the reverse of x, and every distribution p′ = (v′, M ′) ∈ Π the probability Pp′(x′) 6 1
4
, because

Pp′(x′) = v′
1M

′
1,1M

′
1,0 = v′

1M
′
1,1(1 − M ′

1,1) 6 ( 1
4
− ( 1

2
− M ′

1,1)
2). Therefore, no automorphism of the model can preserve the

probablities under the reversal transformation.

Remark 2.46. Certain distributions p = (v, M) in the (m, N) Markov model (Π, X, P ) may be reversible in the sense that there
exists a reverse distribution p′ = (v′, M ′) ∈ Π in the model, which is any distribution p′ with the property that Pp(x) = Pp′(x′)
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all sample x ∈ X, using the notation x′ to mean the reverse sequence of x. In words, the probability of each sample under
distribution p is the same as the probability of its reverse sample x′ under the reverse distribution.

As shown in Remark 2.43, some Markov distributions are not reversible, but some7 are reversible, such as the following
distributions.

• If N 6 1, then distributions in the (m, N) Markov model are trivially reversible. In particular, all samples are their own
reverse, so all distributions are their own reverse too.

• As noted in Remark 2.39, at length N = 2, the Markov model is isomorphic to the unrestricted model on the same sample
space. Consequently, it includes every distribution, up to equivalence, and, in particular, a distribution equivalent the
reverse distribution. Concretely, if N = 2, then the reverse of p = (v, M) is given by p′ = (vM, ∆(vM)−1M t∆(v)),
using the following notations: vM indicates the row by matrix multiplcation; M t indicates matrix transposition; ∆(v)
indicates diagonal matrix whose diagonal entries are given by the row vector v; M t∆(v) indicates the matrix product
of the matrices ∆(v) and M t; ∆(vM)−1 indicates the matrix inverse of diagonal ∆(vM), with an entry 0−1 represented
by ∞; ∆(vM)−1M t∆(v) indicates matrix multiplication of the matrices ∆(vM)−1 and M t∆(v), with the convention
that any ∞ times zero is permitted to represent any value (with the final result subject only the constraints required
by the Markov model, namely that the row entries are non-negative and sum to one).

• If the transition matrix M is a permutation matrix, then a reverse distribution p′ = (vMN−1, M−1), which holds for all
v allowed by the model.

• If v represents the uniform distribution, meaning that v = (1/m, . . . , 1/m) and x0 is uniformly distributed; and if the
transpose M t of the transition matrix M is such that p′ = (v, M t) ∈ Π, in other words, the columns of the matrix M
also sum to one; then p′ is the reverse distribution of p = (v, M).

• If (v, M) is such that vMN−1 = v and the matrix M ′ = ∆(v)−1M t∆(v) is such that its row sums are one, then (v, M ′)
is the reverse of distribution (v, M).

To be completed.

Remark 2.47. An alternative view of the Markov model is to place the elements of the sample sequence on a directed path.
Each directed edge in the path represents on a condition on the joint distribution of the vertices in the directed edge. The
condition is the same for each directed edge.

Specifically, the pair of elements (xi, xi+1) has a certain joint distribution. Because the Markov model is length 2 is
unrestricted, the distributed (xi, xi+1) can be described as a distribution pi = (v, M) in the (m, 2) Markov model. The
condition for the whole sequence x to have distribution in the (m, N) Markov model is that each distribution p0, . . . , pN−2

can be described with as (m, 2) Markov distribution with the same transition matrix M .

2.3.4 Hidden Markov

The (h, m, N) hidden Markov model may be thought of as being built on top of a Markov model. The sample space
is X = NN

m, as in the (m, N) independent model. The probability space Π has elements p that are triples (v, M, Q)
of functions:

v : {0, 1, . . . , h − 1} → [0, 1],

M : {0, 1, . . . , h − 1}2 → [0, 1],

Q : {0, 1, . . . , h − 1} × {0, 1, . . . , m − 1} → [0, 1],

(2.13)

such that the output values of v sum to one, and such that, for each fixed value of the first input, the output values
of M sum to one, and likewise for Q. In abbreviated notation, Π = [0, 1]h1 × ([0, 1]h1 )h × ([0, 1]m1 )h.

As in the independent model, the parameter m will be called the width and the parameter N will be called the
length. The parameter h will be called the height.

An auxiliary set S, consisting of hidden states, is defined as the same set as the sample space in the (h, N)
independent model, so S = NN

h . The probability function is defined as:

Pp(x) =
∑

s∈S

v(s0)Q(s0, x0)
N−1
∏

i=1

M(si−1, si)Q(si, xi) (2.14)

7The Markov model are extensively and thoroughly studied in probability theory (independently of the formalisms of the report),
so presumability the condition of reversibility is well-understood and characterized. Accordingly, if the reader has good reason to be
interested in reversible Markov distributions, the previous body of work on Markov models should be consulted.
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Remark 2.48. The hidden states are distributed according to a Markov model. Each sample component is distributed from a
component of the hidden state, essentially by taking one step in a different Markov model but modified so that initial state of
the modified model is determined by the hidden state.

Remark 2.49. The (h, m, N) hidden Markov model is a restriction of the (h′, m′, N) hidden Markov model if h′ > h and
m′ > m.

Remark 2.50. If m > h, then the (h, m,N) hidden Markov model is a relaxation of the (h, N) Markov model.

Remark 2.51. The deterministic distributions in the (h, m, N) hidden Markov model are those that have non-zero probability
at just one value x of the form x = u(vw)yv ∈ X (where ab indicates concatenation of sequences a and b, and ay represents y
repetitions of a), and uvw is a sequence of length at most h.

Remark 2.52. If h > N , then the (h, m, N) hidden Markov model is pseudo-deterministic.

The number of terms in the sum (2.14) is hN , which may be too many for practical computations, even for
modestly small values of h and N . However, Pp(x) can be computed efficiently, by an algorithm known as the
forward-backward algorithm, or forward-Viterbi algorithm.

A main idea of this forward algorithm is to use matrix multiplication. Let M also denote the h × h matrix
naturally corresponding to the function M . Let V be an h × h matrix which is a diagonal matrix whose entry in
position (s0, s0) is given by v(s0), for 0 6 s0 6 h− 1. Similarly, let Qi be another diagonal h× h matrix whose entry
in position (si, si) is given by Q(si, xi), for 0 6 si 6 h − 1. Then compute the matrix product

P = V Q0MQ1M . . . MQN−1. (2.15)

The sum of all of its entries gives Pp(x). This formulation is generally more efficient than (2.14), because each matrix
multiplication uses about h3 multiplications, so the total number of multiplications is at most roughly Nh3 instead
of the NhN which would be used in the literal formulation of (2.14).

Remark 2.53. The general Viterbi algorithm also takes x and computes the hidden state s of highest probability on the
condition of resulting in x. The Baum-Welch algorithm [BPSW70] uses the Viterbi algorithm to infer, from x, the maximal
likelihood estimate for the parameters (v, M, Q).

2.3.5 Unrestricted

The unrestricted model is defined as follows. Identify each probability distribution p with its probability function
Pp. (Recall, p and q are equivalent distributions if and only if Pp = Pq, so this identification characterizes p up to
isomorphism.) For a finite set X , define the unrestricted model U(X) = (Π, X, P ) on X , by setting Π to be the set
of all legal probability functions on X .

Remark 2.54. The (m, 1) independent probability model is an unrestricted probability model. Similarly, the (m, 2) Markov
model is also an unrestricted model.

Remark 2.55. An artificial restriction of the unrestricted model (Π,X, P ) is to restrict the probability space to a subset Π′

of those distributions p whose min-entropy, §3.1.1, is at least some desired threshold. More generally, such a restriction can
be applied to any given model. From the perspective of this report, this restricted model is assuming what a cryptographer
wishes. This wishful model may describe a goal of a cryptographic system, but does not genuinely describe an actual source,
or even adversary’s lack of knowledge about a source.

In the approach of this report, starting from a given model (Π, X, P ), the choice of p is beyond the cryptographer’s control.
In particular, no action of the cryptographer, even given information about a sample value x, can force p to some subset Π′.
The cryptographer may be able to take advantage of properties of the observed sample x, and these can be accounted for in
the modified definitions of entropy from §3.2, but they still do not change p.

2.4 Combining and Transforming Models

This section gives examples of transforming and combining models.
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2.4.1 Applied Models

Let f : X → Y be a function from sample space X to sample space Y . Given the probability model (Π, X, P ), the
function f creates an applied model (Π, Y, Q) given by

Qp(y) =
∑

x:f(x)=y

Pp(x). (2.16)

A special case is when f is a permutation of X to itself. In this case, the resulting model is a permuted model.

Remark 2.56. A hidden Markov model can be viewed as a restriction of an applied model derived from a Markov model as
follows. Specifically, the (h, m, N) hidden Markov model is an applied model derived from a subset of the (hm, N +1) Markov
model. In the Markov model, the sample space consists of sequences of pairs ((s0, x−1), (s1, x0), . . . , (sN , xN−1)). The applied
function sends this sample to (x0, . . . , xN−1). The values sj correspond to the hidden states of the hidden Markov model. A
Markov distribution (v, M) can be chosen to give the resulting applied distribution for each distribution in the hidden Markov
model. (Some Markov distributions will give a distribution that is not contained in the hidden Markov model.)

Remark 2.57. Remark 2.56 may suggest an approach to making inferences in the hidden Markov model by making inferences
in a Markov model. Some potential difficulties with such an approach are:

• The parameters of the Markov model may be much larger,

• The observed samples from which one wants to make an inference are the result of a function applied to the actual
samples,

• The probability space is actually a restriction of the Markov model distribution. This restriction must be accounted for
in making an appropriate inference.

Remark 2.58. The (m,N) Markov model may also be viewed as an applied model derived from a restriction of the (m(m+1), N)
independent model. Consider the samples in the independent model to be a sequence (g0, . . . , gN−1) where each entry gi is a
function gi : {−1, 0, . . . , m − 1} → {0, 1, . . . , m − 1}. The applied function f is:

f(g0, . . . , gN−1) = (x0, . . . , xN−1) (2.17)

where x0 = g0(−1) and xj = gj(xj−1) for j > 1. If the entries gi in the independent model are selected as functions distributed
in a way consistent with the Markov distribution (v, M), then the f(g0, . . . , gN−1) has the distribution equivalent to that given
by the Markov distribution.

2.4.2 Unions of Models

If (Π, X, P ) and (Θ, X, Q) are models with a common sample space, then a left union of their models is the model
(Π ∪ Θ, X, R) with:

Rp(x) =

{

Pp(x) if p ∈ Π,

Qp(x) if p 6∈ Π.
(2.18)

Left unions are non-commutative: they are sensitive to the order of the two models over which the left union is
applied. When the two models are consistent on the intersections of their probability spaces, their left union is same
regardless of the order.

The disjoint union of an indexed family of sets Si for i ∈ I is defined as

⊎

i∈I

Si = {(i, si) : i ∈ I, si ∈ Si}. (2.19)

Given an indexed family of models, (Πi, X, P i) with a common sample space and an index set I, their disjoint union
is the model (

⊎

i∈I Πi, X, Q), where

Q(i,p) = P i(p, x). (2.20)
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Remark 2.59. As an example, take any model (Π, X, P ) with X finite. One can take the family of models which are per-
mutations of this model. So, the indices are the |X|! permutation of the set X. The disjoint union of these models is the
dispermuted model derived from the original model (Π, X, P ). The structureless independent model from Remark 2.36 is an
example of a dispermuted model.

Suppose that one has one has a source whose samples are derived from some unobservable samples of an underlying source.
Suppose that the underlying source is known with certainty to adhere to a given model. The observed samples are derived from
the underlying unobserved samples by a measurement process, which is known to be deterministic and lossless. This derivation
process is otherwise completely unknown to the cryptographer, but may be known to the adversary. The dispermuted model
describes these circumstances.

If the original model has any deterministic distributions, then the resulting dispermuted model is pseudo-deterministic.
For example, the dispermuted model derived from the independent model is pseudo-deterministic.

2.4.3 Vacuous Extensions

If (Π, X, P ) is a probability model, and X ⊂ Y , then the vacuous extension of model to Y is the model (Π, Y, Q)
such that:

Qp(y) =

{

Pp(y) if y ∈ X

0 if y 6∈ X.
(2.21)

Vacuous extensions together with disjoint unions allow the mixture of models with different sample space sizes.

2.4.4 Hulls and Composite Models

Given a family of distributions, and a distribution on the family, one can formulate the weighted mean of the family
of distributions. Precisely, if (Π, X, P ) and (Θ, Π, Q) are models such that all q ∈ Θ are discrete in the sense the
set supp(q) = {p : Qq(p) > 0} is countable, then a model (Θ, X, R), the hull model, can be defined with probability
function R:

Rr(x) =
∑

p∈Π

Qr(p)Pp(x). (2.22)

The distribution r can be thought of as a distribution on X under probability function R acting like the weighted
mean of the distributions p in Π. When necessary to distinguish the role of distribution r in the hull model (Θ, X, R)
from the role of r in the model (Θ, Π, Q), the hull model distribution can be written as r̄ and referred to as the mean
distribution.

Remark 2.60. If (Θ, Π, Q) admits non-discrete distributions, then the probability function Q is replaced by a probability
measure, and the hull model can defined using an integral, provided that the function p 7→ Pp(x) is integrable under measure
q ∈ Θ.

Remark 2.61. Remark 2.7 referred to converting a first level adversary, who does not know the distribution, into an adversary
who does know the distribution. Formalizing this conversion requires formulation of what the adversary does not know about
the distribution in the first level model. So, a second level probability model on the first level probability space is what is
needed in the formalism. The resulting model on the sample space at the second level can be achieved using the hull of models.

Remark 2.62. For a specific example of the conversion in Remark 2.61, suppose that the first level model is the (2, N)-
independent model. The probability vectors (p0, p1) ∈ Π are characterized by the value of p1 ∈ [0, 1]. If the adversary does
not know p1 – in the formal sense that, from the adversary’s perspective p1 is uniformly distributed in the interval [0, 1] – then
this lack of knowledge can be formalized into a model at the second level, in which the adversary knows the distribution. In
this case, because a single distribution for p1 was assumed, namely the uniform distribution on the interval [0, 1], the model
at the second level is a singular model. (If a family of distributions for p1 had been assumed, then the second level model
would have been non-singular.)

Formally, the first level model (Π,X, P ) is the (2, N) independent model, while the second model (Θ, Π,Q) is a singular,
continuous model (a continuous version of the uniform model). Because this second model is singular, it has just a single
distribution, which will be written here as p̄. The resulting hull model is (Θ, X, R) = ({p̄}, {0, 1}N , R) for R defined as follows.
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The sum from (2.22) must be replaced by an integral, because p̄ is continuous, not discrete. Using p1 to represent elements of
Π, the formula for R is given by the integral

Rp̄(x) =

Z 1

0

pW
1 (1 − p1)

N−W dp1, (2.23)

where W is the sum of the entries of x, its Hamming weight. This integral evaluates to Qp̄(x) = 1
N+1

1

(N
W)

, which can be

proven using integration by parts.
In the model (Θ,X, R), the adversary’s best strategy is to guess x = (0, 0, . . . ) or x = (1, 1, . . . , 1). The min-entropy of

the distribution is log2(N + 1), which is rather low compared with the bit length N of x.
The fact this model is singular means that it may be rather unrealistic. If however, the evidence of this singular model is

very strong for the given source, then it should be deemed to provide low entropy.

The composite model derived from model (Π, X, P ) and model (Θ, Π, Q) is defined as model (Θ, Π × X, S) with
probability function:

Sr(p, x) = Qr(p)Pp(x). (2.24)

The hull model may be obtained from the composite model as an applied model, using the function f : Π × X →
X : (p, x) 7→ x. When necessary to distinguish the role of distribution r in the composite model (Θ, Π × X, R) from
the role of r in the model (Θ, Π, Q), the composite model distribution can be written as r̂ and referred to as the
composite distribution.

2.4.5 Products of Models, Multiple Sources, and Repeated Sampling

Given two probability models with a common probability space, (Π, X, P ) and (Π, Y, Q), their product probability
model can be formed as (Π, X, P ) × (Π, Y, Q) = (Π, X × Y, R) defined by

Rp(x, y) = Pp(x)Qp(y). (2.25)

Iterating such a product, as in a power, starting from the unrestricted model, allows the (m, N) independent proba-
bility model to be expressed as U(Nm)N , where Nm = {0, 1, 2, . . . , m − 1}.
Remark 2.63. In many applications of probability, multiple samples are obtained from a single source with a fixed distribution.
(These are known as Bernoulli trials.) Formally, the distribution of the multiple samples, when taken as whole, is a distribution
contained the appropriate independent model.

At the level the probability models, it may be that the distribution of the single samples is not fully known, but is still
assumed to conform a probability model. In this case, the probability model for the multiple samples, taken as a whole, if
these samples are independent, is given by the product model.

For example, suppose that a cryptographic source is built from a ring oscillator. Further, suppose that individual runs,
starting from system boot, of the ring oscillator, are governed by a hidden Markov model. Finally, suppose that the separate
runs, starting at system re-boot, are independent and identically distributed. To formally model this, the overall model for
the ring oscillator can be taken to be the power of the hidden Markov model assumed for the single-run.

Remark 2.64. The assumption of independent and identical distributions is natural be make implicitly. For example, the
assessment of of whole production line of sources, based on one, or just a few, product instance implicitly assumes independence
across product instances. In the view of this report, such assumptions of independence should be made explicit by incorporation
into the overall probability model, using a notion of products of models. The advantage of explicit assumptions is that they
can be more easily contemplated, noticed, tested, and if needed, corrected.

Remark 2.65. In cryptographic applications, where one mainly cares about min-entropy, then it can be noted that the min-
entropy of p in the product model is the sum of its min-entropy in the underlying models.

A different type of product of models is as follows: the product of (Π, X, P ) with (Θ, Y, Q) is the model (Π ×
Θ, X × Y, R) where R(p,q)(x, y) = Pp(x)Qq(y). To distinguish this product from the previous, one can call this
product the mixed product, and call the previous product the common product.
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Generally, inference over a mixed product of models is equivalent to doing inference in each model separately.
By comparison, inference over a common product, because it is a more restrictive model, cannot be so separated. In
particular, mixed products do not lead to stronger inferences, where as common products do.

Remark 2.66. In cryptographic applications, to derive a key, one may often attempt to use multiple different sources. If
one models these sources as independent and unrelated, then one can use the mixed product model to jointly model these
independent sources.

Remark 2.67. When two models have a common probability space, then both the common and mixed product are definable.
The common product will be a restriction of mixed product, and the mixed product will be a relaxation of the common
product.

Remark 2.68. The mixed product is actually a common product of the models (Π × Θ, X, P ′) and (Π × Θ, Y, Q′), where
P ′

p,q(x) = Pp(x) and Q′
p,q(y) = Qq(y). These two models in the common product are equivalent to the original two in the

mixed product.

Remark 2.69. The mixed product of pseudo-deterministic models will be pseudo-deterministic, whereas their common product
may not be.

2.5 Models with Extra Structure

In the general definition of a probability model (Π, X, P ), the probability space Π and sample space X are treated
as sets with no structure. In non-cryptographic applications it is often convenient or desirable to equip Π or X
with some additional structure. Even if such additional structure does not have immediate application to entropy
assessment, it may be useful in the process of establishing evidence for a given probability model. To that end, such
structures are discussed briefly in this subsection.

2.5.1 Measurable Models, Bayesian Models and Prior Probabilities

Sometimes a measure µ on the probability space arises naturally and is useful for cryptography. This measure can
then be considered as a supplementary component of the probability model. Sometimes measures defined on various
subsets of Π, such as on lower dimension slices are also natural and useful.

For the independent probability model, the Markov model and the hidden Markov model, the probability spaces
are defined as intersections of a real hypercube with certain hyperplanes. Therefore, one possible family of measures
can be built on these probability spaces and the associated Euclidean metric.

More generally, since most models considered in this report are defined over a finite sample space, then probability
distributions can be regarded as probability vectors, with the probability space can be mapped to a subset of
R|X| (with equivalent distributions mapped to the same point). This parametrization of Π is called the intrinsic
parametrization.

Remark 2.70. Intrinsic metrics and measures available on the parametrization R|X| can be induced onto the probability space
Π without any theoretical difficulty.

Finally, one may want to normalize the measure µ so that µ(Π) = 1. Then the measure µ may be thought of as
defining probabilities on the probability distributions. These probabilities of probabilities are often used in Bayesian
inference, in which case they are sometimes called the prior probabilities.

Remark 2.71. For a probability model (Π,X, P ) that is a restriction of model (Σ, X, Q), which also has an associated measure
µ, then it may be possible to induce a measure on Π ⊆ Σ. This induced measure can then be normalized so to give a total of
one, taken over the whole set Π.

Remark 2.72. For a probability model (Π, X, P ) that is a restriction of model (Σ, X, Q), then one may also define a measure µ
on (Σ, X, Q), such that µ(S) = 0 if S is disjoint from Π. In other words, the measure µ on (Σ, X, Q) is imposing a restriction
to the model (Π, X, P ).
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Remark 2.73. A possible objection to measures, and more specifically prior probabilities, is that prior probabilities must be
assumed. However, any probability model must be assumed. Indeed, assuming prior probabilities, as illustrated above, is a
generalization of assuming a specific probability model.

Remark 2.74. A probability model with associated prior probabilities, that is, a quadruple (Π, X, P, µ) where µ is a measure
on Π such that µ(Π) = 1, can sometimes be converted into a singular probability model (Σ, X, Q) as follows, by taking the
hull model from §2.4.4.

Explicitly, the probability space Σ is singular with a single element σ, and the probability function is computed as follows

Qσ(x) =

Z

Π

Lxdµ, (2.26)

where Lx is the function defined on Π such that, for p ∈ Π, it holds that Lx(p) = Pp(x). For this to be well-defined at x, the
function Lx must be measurable and integrable over Π. In this view, the original probability distributions may be viewed as
hidden states associated with the singular model (Σ, X, Q), much like the hidden states in the hidden Markov model.

Remark 2.75. The probability space of the unrestricted model U(X) can be parametrized in a measure-scaling way by elements
of the unit hypercube of dimension |X|−1. (In terms of a metric, the probability space U(X) is a simplex, so no metric-scaling
transformation can map it to a hypercube.) Mapping the probability space to a hypercube may be a convenient transformation
for heuristic algorithms, even if measure-preservation is not a goal. Other probability models, including the independent model
and Markov model, have probability spaces which are spanned by subspaces similar to the unrestricted model.

For example, if X = {0, 1}t = {(x0, . . . , xt−1) : xi ∈ {0, 1}} and U(X) = (Π, X, P ), then Π with the natural measure can

be mapped to H = [0, 1]
St−1

j=0{0,1}j

= {(u(), u(0), u(1), . . . , u(1, 1, . . . , 1
| {z }

t−1

)) : uy ∈ [0, 1]} while scaling measure, as follows. Use the

notation x ⊕ u for x ∈ {0, 1} and u ∈ [0, 1] to mean u if x = 0 and 1 − u if x = 1. Let π : H → Π be defined such that:

Pπ(u(),u(0),... )(x) =

t−1
Y

j=0

xj ⊕ u(x0,...,xj−1). (2.27)

For another example, suppose that X = {0, 1, . . . , d} and the unrestricted model is U(X) = (Π, X, P ). Let H = [0, 1]d =
{(u1, . . . , ud) : ui ∈ [0, 1]}. Define π : H → Π, by:

Pπ(u1,...,um)(x) = (1 − u1/x
x )

d
Y

y=x+1

u1/y
y , (2.28)

with the convention that (1 − u
1/0
0 ) = 1.

2.5.2 Metric Models

One can associate a metric with a probability model: so that some probability distributions may be then viewed as
closer to each other than others.

Remark 2.76. In some cases, a metric on a space can be used to build a measure on the space. So a metric model can be
converted into a measurable model.

Remark 2.77. This report allows models in which Π is infinite, even a continuum (for the example, the independent model).
The statistical inference methods used to assess entropy in this report produce an optimization problem defined over the
probability space Π.

Optimization methods over continua generally make use of some parametrization of the infinite set. Such a parametrization
generally implies a metric. Furthermore, optimization methods over continua generally make use of gradients, which are defined
with respect to a metric. For the task optimization to work, the parametrization, and metric, are somewhat arbitrary, and
serve mainly as a tool to find the optimum. Nevertheless, it may be that a more natural parametrization, such as the intrinsic
parametrization from Remark 2.70, serves well for the purposes of optimization.
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Sometimes one wants a metric on the probability space for purposes other than just applying optimization
methods. In particular, previous work in cryptography, such as [Lub96], has used the following metric, often known
as statistical distance:

d(p, q) = 1
2

∑

x∈X

|Pp(x) − Pq(x)|. (2.29)

This metric gives the maximum probability for any algorithm to correctly guess whether a single sample x originates
from probability distribution p or q. In previous work on cryptography, this has been used as a measure of some
candidate distribution p, used say for a cryptographic key, and closeness to an ideal distribution q, say a uniform
distribution. The idea is that an adversary of unlimited computational power will not be able to distinguish from p
and q, except with probability bounded by the statistical distance. In most cases, the application of this notion is to
take some source of biased entropy and produce from it a distribution p that is close to some ideal q.

The metric (2.29) can be regarded as based on an L1 norm with respect to the intrinsic parametrization, see
Remark 2.70. Other previous work, such as [BH05] in cryptography has considered a metric based on L∞ norm,
which can be written as

d∞(p, q) = max
x∈X

|Pp(x) − Pq(x)|. (2.30)

2.5.3 Non-Categorical and Poisson Models

Most of the example models above (uniform, independent, Markov and hidden Markov) would be called category
data models because the only structure of the sample values x upon which the probability model depends is the
division of x into a sequence of components whose values have no significance, in the sense of isomorphism of models.
In particular, although the components in the above models were stated in terms of numerical values, the models
themselves make no assertions about any numerical relations. Just to be clear, an individual distribution may treat
the numerical values differently, but the model as a whole does not. In other words, the models have automorphisms
permuting the orders of the numerical values of the components (and also the order of the components in the case
of the independent and uniform models).

In category data models, it makes no sense to perform arithmetic operations on the numerical values of the
categories. In non-categorical models, such as heights of people, operations such as expected (average) values of
sample for a given distribution make sense. Much of statistics is devoted to such non-category models. For example,
the central limit theorem suggests that in, say, the independent model, the average of the sample components has a
distribution that approaches a normal curve. However, in a category data model, such an average makes little sense.

An informal reason to focus in cryptography on category data models is that entropy of a source is more important
than the structure of the sample values. It is not numerical relations between components of the sample that are
important, but rather the entropy of the distribution. As such, numerical patterns may be irrelevant to the main
cryptographic goal of assessing entropy. More precisely, rather than attempting to find a numerical pattern, for
example, a trend towards linear growth in a sequence of sample values, which may be of tremendous importance
in non-cryptographic studies. In cryptography, it may be better to assume a Markov model, to accommodate the
possibility of a evolving pattern, for the purposes of assessing entropy. So, in cryptography, it is important to recognize
patterns, as indicators of lower entropy, but whether the patterns have numerical significance has no impact

Nevertheless, certain cryptographic sources may be reasonably expected to have components that have numerical
values and relationships. By incorporating such numerical relations directly into the probability models, one may be
able to make better inferences. Therefore, despite the consideration above, one may still want to use non-category
data models in cryptography.

Remark 2.78. Just as an example, suppose that Π = R and that X = {0, 1, 2}N and that Pp(x) = 1 if xi = ⌊1+ sin(pi)⌋ for all
i, and otherwise Pp(x) = 0. As motivation, suppose that a (poorly designed) ring oscillator follows such a probability model.

Remark 2.79. In the model from Remark 2.78, all distributions are deterministic. The most sensible inference (§4) ought to,
given x, return the one distribution p with non-zero probability on x. (Given only partial information, say y, about x, then
one might infer a set of distributions which have non-zero probability on the possible x for the given y.)

Because each distribution is deterministic, the entropy is zero. Formally, such a source provides no security at all in this
model.
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Given a first level adversary, see Remark 2.7, some entropy might be found in the choice of p, which, before generation of
x, is unknown not only the cryptographer but also to the adversary. Therefore, there may be some security. But in this case,
to formally attribute min-entropy, one must assign probabilities to each probability distribution. This may be an example of
where one wants a measure on the probability space.

2.5.3.1 Poisson Models The Poisson probability model is the model (Π, X, P ) in which the probability space
is Π = [0,∞) (the set of non-negative real numbers), the sample space is X = Z>0 = {0, 1, 2, 3, . . .} (the set of
non-negative integers), and the probability function is given by the formula:

Pp(x) =
e−ppx

x!
. (2.31)

Each individual distribution in a Poisson model is called a Poisson distribution. Poisson distributions are well-studied
distributions in probability theory. Poisson distributions have the property that the sum of two independent random
variables with Poisson distributions p and q gives another random variable with Poisson distribution p + q. The
numerical values of the samples in the Poisson model cannot be permuted in an automorphism of the model, so the
model is a non-category-data model.

A closely related model is the Poisson process model. This model has probability space Π = [0,∞) as in the
Poisson model, and sample space X ′ consisting of the countable subsets of real numbers. The uncountable size of
the sample space makes this a continuous model, so it does not have a probability function, but rather a probability
measure. To each distribution q there is associated a measure µq on the space X ′. The cryptographically relevant
properties of this measure are as follows.

• For any interval [a, b], define a function

ca,b : X ′ → X : x 7→ |x ∩ [a, b]|, (2.32)

where X = Z>0, as in the Poisson model. The function ca,b is called the count function because it measures
how many of the values resulting the Poisson process land in the given interval. Then ca,b can be used to define
a discrete model, where, for x ∈ X , the probability function is defined as

Pq(x) = µq(c
−1
a,b(x)), (2.33)

and so is the measure of the set of all those x′ ∈ X ′ with count x. The Poisson process model is such that for
q ∈ Π, a distribution in the Poisson process model, the resulting distribution is a Poisson distribution on X .
Moreover, it is the Poisson distribution with p = q(b − a).

• For any two disjoint intervals [a, b] and [c, d], the two resulting Poisson distributions obtained from the two
corresponding count functions are independent of each other, in the sense of a common product from §2.4.5.

A Poisson process model can be used to model radioactive decay sources, for example. Similar models may perhaps
be appropriate for various sources used in cryptography.
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3 Entropy Parameters

A probability parameter, or distribution parameter, or just parameter when clear from context, on a probability
model8 (Π, X, P ) is a function r : Π → R. The set R can be called the parameter space, and the elements of R can
be called parameter values, or when clear from context, just parameters.

A sample-dependent parameter on a probability model is a function f : Π×X → R. The set R will also be called
a parameter space.

Remark 3.1. In general applications of statistics, a parameter of the probability distribution may be some particularly impor-
tant unknown quantity figuring in some random process. The important quantity may need to be separated from some less
important components of the probability distribution, in which case the parameter may be called a signal, and the remaining
contribution to the probability distribution may be called the noise. For a specific example, consider a poll of voters. The
signal may be the proportion of the total population’s voting preferences, and the noise may be the method used to select the
sample poll and the inaccuracy of the poll responses.

In cryptography, certain parameters are crucially important. Unlike typical applications of statistical inference,
the focus of cryptography is not on the nature of some unknown quantity nominally related to the sample space, but
rather on the probability distribution itself. More precisely, rather than being able to make some useful assertions
about the nature of the random variable modeled by x, the goal in cryptography is for p to be such that making
predictions about x is difficult.

So, the cryptographically relevant parameters of p are measures of how difficult p makes predicting x. Generally,
such a measure quantifies the amount of information that the adversary lacks about x. Measures of information are
called entropy. Several different types of entropy are discussed below.

3.1 Entropy

This section defines various types of entropy.

3.1.1 Min-Entropy

In cryptography, the parameter of main interest is min-entropy. For a probability model (Π, X, P ), and given a
probability distribution p ∈ Π, the min-entropy of p is defined to be

H∞(p) = − log2 max
x

Pp(x) = min
x

(− log2 Pp(x)). (3.1)

The units of min-entropy are called bits.

Remark 3.2. An adversary who knows p, and wants to guess x, should guess the value of x for which Pp(x) is maximal.

Remark 3.3. The 2N -uniform (see §2.3.1) distribution p has N bits of min-entropy.

Remark 3.4. If H∞(p) = u in the model (Π,X, P ), and H∞(p) = v in the model (Π, Y, Q), then H∞(p) = u+ v in the product
model (Π, X × Y, P × Q) from §2.4.5.

Remark 3.5. In the (m, N) independent model, a distribution p = (p0, . . . , pm−1) has min-entropy H∞(p) = −N log2(maxm−1
j=0 (pj)).

Remark 3.6. In the (m, N) Markov model, a distribution p = (v, M) has min-entropy

H∞(p) = − log2

0

B

@
v ⊙ M ⊙ M ⊙ · · · ⊙ M

| {z }

N−1 copies of M

⊙u,

1

C

A
(3.2)

8See §2
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where: ⊙ is defined just like normal matrix multiplication except that instead of computing the dot products of rows with
columns by summing the pairwise products of the elements, one takes the maximum of the pairwise products9; and u is the
vector with all entries equal to one.

This formula may be viewed as a special case of the Viterbi algorithm. The naive approach would have been to compute
Pp(x) for all mN possible values of x and compute the maximum. Formula (3.2) can be computed with cost proportional to
at most m2N or m3 log2(N).

Remark 3.7. The fact that, for any finite set of non-negative real numbers {a, b, . . . , c}, the maximum is expressible as a limit:
max(a, b, . . . , c) = limr→∞

r
√

ar + br + · · · + cr, allows the modified matrix multiplication ⊙ from Remark 3.6 to expressed
using conventional matrix multiplication and a limit by the formula:

H∞(p) = − log2 lim
r→∞

r
p

vr(Mr)N−1u, (3.3)

where, for a vector or matrix A, the notation Ar means the corresponding vector or matrix with all entries raising to the
power of r.

Remark 3.8. Under composition of distributions (2.24), min-entropy obeys the inequality

H∞(r̂) > H∞(r) + max
p

H∞(p), (3.4)

using the notation from §2.4.4.

3.1.2 Shannon Entropy

Although Shannon entropy is not suitable for formally assessing cryptographic entropy, it appears often in previous
work, such as means to characterize a uniform distribution. The definition of Shannon entropy is included in this
section and its unsuitability as a form of cryptographic entropy is explained.

For a probability model (Π, X, P ), and given a probability distribution p ∈ Π, the Shannon entropy of p is defined
to be

H1(p) = −
∑

x∈X

Pp(x) log2 Pp(x). (3.5)

Remark 3.9. Many references in cryptography refer to Shannon entropy, but do not mention min-entropy.

Remark 3.10. The 2N -uniform distribution p has N bits of Shannon entropy. More generally, a distribution p on X is uniform
if and only if it has log2 |X| bits of Shannon entropy.

Remark 3.11. For any distribution p, the inequality H1(p) > H∞(p) holds. The equality H1(p) = H∞(p) holds if and only if
p is a subuniform distribution (Remark 2.24) on the set X.

Remark 3.12. Suppose that |X| = 2m + 1 and for some x0 ∈ X, the probability distribution p is such that Pp(x0) = 1/2 and
Pp(y) = 1/2m+1 for y 6= x0. Then H1(p) = 1 + m/2, but H∞(p) = 1, which illustrates the cryptographic unsuitability of
Shannon entropy for rating non-uniform distributions.

Remark 3.13. Suppose that X = {0, 1, . . . , 2128 − 1}, that Pp(0) = 2−7, and that Pp(x) = 1−2−7

2128−1
for x 6= 0. Then H∞(p) = 7,

but H1(p) ≈ 127.066. So, the distribution p has one bit less of Shannon entropy less than the uniform distribution on X. If
a key were generated from this distribution, an adversary would have probability 2−7 of determining the key by deriving it
from x = 0. If about 27 keys are generated independently under this distribution, then the probability is about 0.63 that one
of the keys will derived from x = 0.

Remark 3.14. Suppose that X = {0, 1, . . . , 2128−1}, that Pp(0) = 2−15, and that Pp(x) = 1−2−15

2128−1
for x 6= 0. Then H∞(p) = 15,

but H1(p) ≈ 127.997. So, the distribution p has 0.003 bits less of Shannon entropy less than the uniform distribution on X. If
a key were generated from this distribution, an adversary would have probability 2−15 of determining the key by deriving it
from x = 0. If about 215 keys are generated independently under this, then the probability is about 1 − e−1 ≈ 0.63 that one
of the keys will derived from x = 0.

9For example, ( 3 2 1 ) ⊙
“

3
5
7

”

= 10.
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Remark 3.15. From an adversary’s perspective it may seem relevant to calculate the expected number of guesses needed to
determine the sample value. The distribution in Remark 3.12 has fairly high expected value for the number of guesses. But
this high expected value does not reflect the risk to the user of choosing a weak value. A better notion is working entropy
(§3.1.5).

Remark 3.16. If H1(p) = u in the model (Π, X, P ) and H1(p) = v in the model (Π, Y, Q), then H1(p) = u + v in the product
model (Π, X × Y, P × Q). So, like min-entropy, Shannon entropy is multiplicative.

Remark 3.17. Shannon entropy is useful for non-cryptographic parts of information theory, as in the following examples.

• Shannon entropy measures how compressible a sequence of values x distributed according to p is. (In other words,
taking a probability distribution in the independent model.) The idea is to encode x using approximately − log2 Pp(x)
bits, which can be realized using a method such as arithmetic encoding.

• Shannon entropy is useful to measure the error rate that can be detected or corrected with error correcting codes.

Remark 3.18. Shannon entropy is preserved under composition of distributions (2.24) in the sense that

H1(r̂) = H1(r) +
X

p

Qr(p)H1(p), (3.6)

using the notation from §2.4.4.

3.1.3 Renyi Entropy

A common generalization to min-entropy and Shannon entropy is Renyi entropy [Rén60]. For a probability model
(Π, X, P ), given a probability distribution p ∈ Π, and a real number t > 0 with t 6= 1, the Renyi entropy at order t
for probability distribution p is defined to be

Ht(p) =
1

1 − t
log2

∑

x∈X

P t
p(x). (3.7)

As t → 1, Renyi entropy approaches Shannon entropy. As t → ∞, Renyi entropy approaches min-entropy. Therefore
min-entropy and Shannon entropy can be considered as special cases of Renyi entropy, of orders ∞ and 1, respectively.
Renyi entropy is known to be a decreasing function of t. In particular, min-entropy is always at most Shannon entropy.

Remark 3.19. As t → 0, Renyi entropy tends to log2 |{x : Pp(x) 6= 0}|, sometimes called the Hartley entropy.

Remark 3.20. Sometimes the term Renyi entropy refers just to H2, i.e., Renyi entropy of order two. This is sometimes known
as the collision entropy because it is related to the rate at which the distribution, when taken over two samples, repeats.

Remark 3.21. If Ht(p) = u in the model (Π,X, P ) and Ht(p) = v in the model (Π, Y, Q), then Ht(p) = u + v in the product
model (Π, X × Y, P × Q).

Remark 3.22. Although, as noted above, Renyi entropy decreases with t, bounds within a factor exist in the other direction,
with the bound 1

2
H2 6 H∞ being of some interest to cryptography.

3.1.4 Generating Series of a Distribution

If (Π, X, P ) is a probability model and X is a finite or countable set, the distributive generating series for distribution
p is given by:

D(p; z) =
∑

x∈X

z− log2(Pp(x)). (3.8)

The series D(p; z) may be viewed as a function of z or as an element of the ring of Hahn series Z[[zR]], whose elements
have the form

∑

w∈W awzw, where W is a well-ordered subset of the non-negative reals, and a is an arbitrary function
from W to non-zero integers.
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The expression D(p; z) on the left side of (3.8) does not refer explicitly to the probability function P . When it
is necessary to distinguish such series for different probability models, a subscript can be used as DP (p; z).

The condition that
∑

x∈X Pp(x) = 1 implies that D(p;− 1
2 ) = 1. The distributive generating series determines

Renyi entropy of order t 6= 1 via

Ht(p) =
1

1 − t
log2 D(p, 2−t). (3.9)

Conversely, the Renyi entropies Ht(p) as a function of t determine the distributive generating series D(p; z) as a
function of z.

In a mixed product of two models, as in §2.4.5, a distribution has the form (p, q) where p and q are distributions
in the models over which the product is taken. In this case:

D((p, q); z) = D(p; z)D(q; z). (3.10)

In a common product, a single distribution p is associated with different probability functions, P , Q and R in the
notation of §2.4.5, and

DR(p; z) = DP (p; z)DQ(p; z). (3.11)

Given a distribution p which is known to be an unknown permutation of a common N th power of another unknown
base distribution p from a base model, then taking the N th root of the distributive series of the powered distribution,
which can be done using the binomial theorem in the Hahn series formula, the distributive series of the base can be
determined.

Remark 3.23. Suppose that the cryptographer somehow knows with certainty that a source is governed by a model (Π,X, P )
that is some permutation of the (3, 2) independent model for some fixed but unknown permutation. Further suppose that the
cryptographer is able to obtain many independent samples from the model (Π, X, P ) and thereby to infer with fairly strong
confidence that the distribution p describing the source satisfies:

x Pp(x)

00 0.112
01 0.1089
02 0.1155
10 0.1155
11 0.1056
12 0.1056
20 0.112
21 0.1225
22 0.1024

(3.12)

to some approximation. The distributive series for p in the presumed model is then:

D(p, z) = z3.28771 + 2z3.24332 + z3.19892 + 2z3.15843 + 2z3.11404 + z3.02915 . (3.13)

The min-entropy is given by the lowest exponent of the formal terms, which is 3.02915.
A more general question is to determine the distribution p. Because the probability model (Π, X, P ) is a permutation of

the (3, 2) independent model, DP (p, z) = DR(p, z)2, where (Π, {0, 1, 2}, R) is the (3, 1) independent model, which is actually
the unrestricted model on {0, 1, 2}. So, DR(p, z) =

p

D(p, z).
Because, R is associated with the (3, 1) independent model, it holds that DR(p, z) = zα + zβ + zγ for some α, β, and γ.

By looking at the symbolic expansion of DR(p, z)2, it can be seen that the values α, β, and γ, can be determined by halving
the exponents of the terms with coefficient 1 in (3.13).

p

D(p, z) = z1.64386 + z1.59946 + z1.51457. (3.14)

This implies that that p is some permutation of p = (0.35, 0.33, 0.32).
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The permutation π relating the given model to the (3, 2) independent model with distribution p given above, in the sense
that Pp(x) = Qp(π(x)), where Q is the probability function of the unpermuted (3, 2) independent model, is:

x π(x)

00 20
01 11
02 01
10 10
11 12
12 12
20 02
21 00
22 22

(3.15)

The utility of fully determining π and p may be for something like uniformity extraction.

Remark 3.24. In examples more complicated than Remark 3.23, the step of computing a root of series can be solved by a more
general method, such as using the binomial theorem. To illustrate, a method using the binomial theorem is applied to the
previous example, as follows:

p

D(p, z) = z
3.02915

2 (1 + 2z0.0848889 + 2z0.129283 + z0.169778 + 2z0.214172 + z0.258566)1/2

= z1.51457
∞
X

n=0

 

1/2

n

!

(2z0.0848889 + 2z0.129283 + z0.169778 + 2z0.214172 + z0.258566)n

= z1.51457(1 +
1

2
(2z0.0848889 + 2z0.129283 + . . . ) + . . . )

= z1.51457 + z1.59946 + z1.64386 ,

(3.16)

where the . . . above would all cancel by virtue of the input series D(p, z) already being a perfect square. A practical
implementation would use some criteria for determining which terms would cancel, so the infinite series provided by the
binomial theorem need not be computed in its entirety.

3.1.5 Working Entropy

Another generalization of min-entropy is working entropy defined by

H(w)(p) = min
xj



− log2

⌊2w⌋
∑

j=1

Pp(xj)



 , (3.17)

where the minimum is taken over arbitrary sequences xj of distinct values, and, as a convention, Pp(x) = 0 if x 6∈ X ,
which allows the sum to be well-defined for all w. (Unlike earlier notation in this report, the index j in xj above
here does not refer to the jth entry in a sample vector x but rather to the jth sample vector in a sequence of sample
values.) The variable w is the workload and is measured in bits. Min-entropy is working entropy at workload of zero
bits.

Remark 3.25. Bonneau [Bon12], in the context of password entropy, cites a report of Boztas [Boz99] for a metric that is closely
related to the definition of working entropy. The attacker is limited to β guesses, and the top β probabilities are summed to
give a β-success-rate. Working entropy is the logarithm of this success rate.

The variables w and β are related by β = 2w, so the workload in the working entropy is the logarithm of the variable β in
the Boztas–Bonneau definition.

Working entropy is most relevant in the situation where an adversary can observe cryptographic values of a nature
that the permit the efficient determination of the correctness of a guessed value of the secret x. Determination of
the secret x may allow the adversary to determine other secrets. In these situations, working entropy can be used to
measure the entropy of the secret x. If the adversary has the resource to determine the correctness of 2w guesses at
the secret x, then the working entropy at workload w is an appropriate measure of entropy for the secret x.
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Remark 3.26. One example of this situation arises in typical forms of public key cryptography in which at most one private
key x corresponds to a given public key, and furthermore, in which it is computationally efficient to test the correspondence
between the private and public keys. In this case, once the adversary sees the public key, the adversary can use the public key
to efficiently determine the correctness of a guess at the private key.

Remark 3.27. Another example of this situation arises in symmetric-key encryption, where x is the symmetric key, and
the adversary knows, or can reasonably guess, some portion of plaintext, and then sees the corresponding portion of the
ciphertext. If the length of the known portion of the plaintext is sufficiently long, then the adversary can efficiently determine
the correctness of guesses at the secret.

Remark 3.28. A uniform distribution over a set of size 2h has working entropy h−w bits at a workload of w 6 h bits for each
positive integer 2w . At workloads of w > h, the working entropy is zero.

Remark 3.29. For any distribution p on a finite (or countable) sample space, H(∞)(p) = 0, so working entropy is zero at infinite
workload.

Remark 3.30. For a finite sample space H(H0(p))(p) = 0. So, working entropy is zero at a workload equal to the Hartley
entropy.

Remark 3.31. Working entropy is a non-increasing function of w.

Remark 3.32. Consider a bit string x of length 128 with the following nearly uniform distribution. The probability that

x = 0128 is 2−80, and the probability of any other given value of x is 1−2−80

2128−1
. This distribution has min-entropy of only 80 bits,

which is 48 bits less than the min-entropy of the uniform distribution on the same sample space. At a workload of 48 bits, the
working entropy of this distribution is about 79 bits, which is only one about bit less than that of the uniform distribution.
So, the effect of aberrant spikes in a probability distribution on working entropy is reduced at high workloads.

Remark 3.33. Working entropy, as defined in (3.17), is not a continuous function of w. The following variant is more continuous
as a function of w, by adding an extra term to the sum, as follows.

H ′
(w)(p) = min

xj

− log2

0

@(2w − ⌊2w⌋) Pp(x⌊2w⌋+1) +

⌊2w⌋
X

j=1

Pp(xj)

1

A . (3.18)

Remark 3.34. A remarkable property of Renyi entropies is additivity over (products of) independent distributions (Remarks 3.4
and 3.21. Analogously, one can ask if

H
(Π,X×Y,P×Q)

(v+w)
(p) / H

(Π,X,P )

(v)
(p) + H

(Π,Y,Q)

(w)
(p)? (3.19)

It is conjectured here that an inequality of such a nature holds.

Remark 3.35. If a bound in the opposite direction to the bound in (3.19) also holds, then assessing the working entropy of
multiple independent sources might be feasible.

3.2 Modifications of Entropy

This section describes some modified versions of entropy, which are useful to address certain realistic cryptographic
circumstances.

3.2.1 Applied Entropy

In some cryptographic applications, there is a function f : X → Y such that, given a sample value x, only the value
f(x) is used as a key. In this case, the adversary need merely guess f(x). If f(x) is easier to guess than x, then high
min-entropy of x does not suffice for security for f(x).
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For example the function f could be: a key derivation function, a hash function, a debiasing function, a uniformity
extractor, part of an entropy pooling function, or just a formal way to leave some of the sample x available for other
use.

A function f : X → Y and a probability model (Π, X, P ) induce the applied model (Π, Y, Q), see §2.4.1 where

Qp(y) =
∑

x:f(x)=y

Pp(x). (3.20)

The applied entropy of p in the model (Π, X, P ) under the function f is the entropy of p in the applied model
(Π, Y, Q). One can consider applied min-entropy or applied working entropy. The applied min-entropy works out to
be:

Hf(∞)(p) = − log2 max
y∈Y

∑

x:f(x)=y

Pp(x). (3.21)

Remark 3.36. Cachin [Cac97] introduced the notion of smooth entropy. This notion blends the notions of entropy and ran-
domness (uniformity) extraction. In the terminology of this report, Cachin considers each function f : X → Y for each
size of Y , and forms the applied model. Moreover, each applied model is equipped with a metric on the probability space.
The smooth entropy is parametrized by some distance value, a smoothness bound in the metrics. The smooth entropy of p
at distance d, is the highest entropy of a uniform distribution that is within distance d of an applied distribution obtained
from p. Smooth entropy expresses the potential amount of uniform entropy that can be extracted from a source randomness
(uniformity) extraction.

In the view of this report, the adversary knows the entropy extraction algorithm. Therefore, the adversary’s ability to
guess the applied value is still best described by the applied entropy, not the smooth entropy.

3.2.2 Contingent Entropy

In many cryptographic applications, given a sample value x, there exists some function g such that z = g(x) is
revealed to the adversary. This section defines contingent entropy to address this situation.

Remark 3.37. As an example, suppose that x is modeled by a Markov model, and that a nonce value, such as the initialization
vector in the cipher-block chaining mode, is derived from x and sent in the clear. If the nonce does not reveal the whole of
x, then it may still be possible to use x to derive a key. Contingent min-entropy measures the upper possible limit of how
securely this can be done.

Remark 3.38. One may also assume that there is some side-channel leaking information about x, allowing the adversary to
learn g(x).

First some preliminaries are given. Two functions g : X → Z and f : X → Y are said to be supplementary if the
function g × f : X → Z × Y : x 7→ (g(x), f(x)) is injective.

Remark 3.39. The intuition is that f(x) provides at least all the information about x that g(x) fails to provide.

The contingent entropy of the distribution p in the model (Π, X, P ) under the condition that the adversary learns
g(x) is the infimum of the applied entropy of p in the applied models (Π, Y, Q) over all f supplementary to g. One
can consider contingent min-entropy or contingent working entropy.

A function f supplementary to g that seems to minimize entropy (of most types) is the following. Assume that
X is sorted in manner such that Pp is a non-increasing function in the order. Let f(x) be the index of x in the set
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g−1(g(x)). This supplementary f induces a model where p has min-entropy:

H∞|g(p) = Hf(∞)(p)

= − log2 max
y∈Y

∑

x:f(x)=y

Pp(x)

= − log2

∑

x:f(x)=1

Pp(x)

= − log2

∑

z∈Z

∑

x:(g×f)(x)=(z,1)

Pp(x)

= − log2

∑

z∈Z

max
x:g(x)=z

Pp(x).

(3.22)

Henceforth, (3.22) will be as taken the definition of contingent min-entropy.

Remark 3.40. Contingent min-entropy coincides with the average min-entropy of Dodis, Ostrovsky, Reyzin and Smith [DORS08].

Remark 3.41. An alternative explanation for (3.22) is that whatever z turns out to be, the adversary will choose the most
likely x corresponding to that z. So, the sum of maxima represents, over the choice of x, is the probability of the adversary
being successful.

Remark 3.42. Equations (3.22) with (3.21) differ essentially only in that the maximization and summation operator have been
swapped.

Remark 3.43. Some cryptographic applications, such as public-key cryptography, reveal an injective function f of the private
key, such as the public key. A similar situation often occurs in symmetric-key cryptography too. For example, when a known
message longer than the secret symmetric key is encrypted.

Information-theoretically, the public key determines the private key, and thus leaks all the information. The contingent
entropy of the key is zero. Fortunately, zero contingent entropy does not mean zero security because the leakage functions in
this case are seem to be one-way functions. It can be said that the private key retains computational contingent min-entropy.

This report does not focus at all computational entropy. This report deliberately focuses on the task of ensuring sufficient
information-theoretic entropy from noise source, so the entropy can be injected into keys, and the keys can be secret. The
scope of this report is not intended extend further into the keys as they are used.

Such a division scope can be inforamlly justified by the belief that cryptographic algorithms in which the keys are used
are secure. For example, the belief that the function from the the private key to the public key is a one-way function.

Ultimately, the security depends on the combination, but a good heuristic for security may be to analyze the key generation
and the key application separately.

Remark 3.44. A definition generalizing information-theoretic and computational contingent entropy may be formulated as
follows. As above, let g be the leakage function, and let f be a function be supplememtary to g. Fix a computational cost
threshold t. Define the t-limited contingent entropy as the infimum of the f applied entropy over all f of computational cost
at most t. As t increases, the t-limited contingent entropy either stays the same or decreases (it does not increase). Three
different levels for t may be of interest:

• Set t = ∞. This would be called information-theoretic contingent entropy.

• Set t such that computations of cost t would be infeasible for an adversary. If t = 2s, then s can be called the security

level. Conventionally, this would be called computational contingent entropy.

• Set t much lower, such as to the computational cost of verifying that a guess at key matches the observation (such as a
public key, or a plaintext-ciphertext pair). Call this quick contingent entropy. (One may further qualify quick contingent
entropy by considering only the best known cost, instead of the best possible cost, which may be unknown.)

Quick contingent entropy is a simple precursor quantity useful for measuring the security of keys before they get used. It is
convenient if it simplifies the assessment of entropy by avoiding the consideration of complicated algorithms. Ultimately, once
keys are used, in more protocols, their security is limited by computational contingent entropy.
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3.2.3 Contingent Applied Min-Entropy

Let f : X → Y and g : X → Z be functions. Let (Π, X, P ) be a probability model. Suppose that an adversary will
learn z = g(x) and that only f(x) will be used in the generation of a key. The contingent applied min-entropy of
p ∈ Π, under f and g, is defined to be:

Hf(∞)|g(p) = − log2

∑

z∈Z

max
y∈Y

∑

x∈f−1(y)∩g−1(z)

Pp(x). (3.23)

To generalize (3.23) from min-entropy to working entropy of workload w, let the maximization operator be indexed
over ⌊2w⌋-element subsets y of Y . An alternative formula for contingent applied min-entropy is as follows:

Hf(∞)|g(p) = − log2 max
α:Z→Y

∑

x:α(g(x))=f(x)

Pp(x). (3.24)

The function α represents the following strategy of an adversary: given z = g(x), guess that f(x) = α(z). The
sum in (3.24) is the probability that the adversary guesses f(x) correctly from z = g(x). The entropy is then the
negative base two logarithm of highest success probability of any adversary. The alternative formula equals the
original because:

max
α:Z→Y

∑

x:α(g(x))=f(x)

Pp(x) = max
α:Z→Y

∑

z∈Z

∑

x∈g−1(z)∩f−1(α(z))

Pp(x)

=
∑

z∈Z

max
y∈Y

∑

x∈g−1(z)∩f−1(y)

Pp(x).
(3.25)

3.2.4 Filtered Entropy

Suppose that (Π, X, P ) is a probability model; and suppose that Y ⊂ X is a subset of the sample space. Suppose
that a sample x is drawn from some distribution p ∈ Π. If x 6∈ Y then x is rejected. Otherwise x is accepted. If
0 6=

∑

y∈Y Pp(y), then the result is the Y -filtered probability model (Π, Y, Q) as defined by

Qp(y) =
Pp(y)

∑

z∈Y Pp(z)
. (3.26)

The Y -filtered entropy of p is the entropy of p in the filtered model. Explicitly, the filtered min-entropy of distribution
p is

(

min
y∈Y

− log2 Pp(y)

)

+ log2





∑

y∈Y

Pp(y)



 . (3.27)

Remark 3.45. From an implementation perspective, filtered entropy fails to account for the cost of rejecting values of the
source, and it fails to account for the fact that, with some probability, rejection may occur, in which case no entropy is
provided. Arguably, the source could be sampled repeatedly until it is not rejected. This assumes that independent identically
distributed samples could be obtained. The rate at which entropy is provided would depend on the rate of rejection. Filtered
entropy does not depend on the rejection rate.

3.3 Sample-Dependent Entropy Parameters

Sample-dependent parameters are distinct from the previous parameters in that they vary with the sample value.
For a probability model (Π, X, P ), a sample-dependent parameter is a function of the form

r : Π × X → R. (3.28)

Sample-dependent parameters can be useful in cryptography when one is assessing the entropy of a value x which is
to be used. In other words, in retrospective entropy assessment, sample-dependent parameters may be important.

Remark 3.46. Each of the grading functions from §4 could also be considered as sample-dependent parameters, but these are
not necessarily related to entropy.
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3.3.1 Sample-Entropy (Information Content or Self-Information)

One sample-dependent parameter is the probability function P . It has parameter space R = [0, 1]. This sample-
dependent parameter does not have the same units as other entropy parameters, but transforming the parameter by
applying a logarithm, to obtain the parameter I = − log2 ◦P defined by

I(p, x) = − log2(Pp(x)), (3.29)

with the convention that − log2(0) = ∞, yields a sample-dependent parameter with the same units as other notions
of entropy. Previous names for this sample-dependent parameter are information content and self-information. This
report shall use the alternative name sample-entropy, emphasizing that it is a type of entropy dependent on the
sample.

Remark 3.47. The min-entropy of distribution p is the minimum of the sample entropy I(p, x) over all x ∈ X. Explicitly:

H∞(p) = min
x∈X

I(p, x). (3.30)

In particular, sample-entropy is always at least min-entropy: I(p, x) > H∞(p).

Remark 3.48. The Shannon entropy H1(p) of the distribution p is the expected value of I(p, x) for random x ∈ X, distributed
according to distribution p. Explicitly:

H1(p) =
X

x∈X

Pp(x)I(p, x). (3.31)

Remark 3.49. sample-entropy is additive over independent distributions in the following sense. Suppose that (Π, X, P ) and
(Π, Y, Q) are models, and that (Π, X × Y, R) is their common product. Then I(p, (x, y)) = I(p, x) + I(p, y). (In a mixed
product, the additivity would be expressed as I((p, q), (x, y)) = I(p, x) + I(q, y).)

In prospective entropy assessment, sample-entropy cannot be used, because one does not know the sample x, so
one cannot compute the sample-entropy. Therefore, the use of sample-entropy is only applicable in retrospective
assessment. In some cryptographic applications, entropy may be so scarce that one may wish to rely on sample-
entropy rather than just min-entropy.

Remark 3.50. The sample-entropy of a bit string can be greater than its length, whereas this is not true for min-entropy or
Shannon entropy. More generally, sample-entropy can exceed the min-entropy of the uniform distribution.

Remark 3.51. On the one hand, the fact that the sample-entropy can exceed the min-entropy of the uniform distribution makes
sample-entropy inappropriate for cryptographic applications, because an adversary can always guess the value of x using a
uniform distribution. On the other hand, when the adversary knows that the distribution is non-uniform, a uniform guess at
x is not the adversary’s optimal strategy; so it can still be argued that sample-entropy is meaningful.

Since in this report, the adversary will be assumed to know the inference method of cryptographer, it follows that if the
cryptographer is likely to rely on retrospective assessments of sample-entropy that exceed the maximum possible min-entropy,
the adversary will be able to predict and choose an alternative strategy.

Remark 3.52. In probability models with sufficiently many probability distributions, the distributions p inferred from the
sample x, will generally be such that x is relatively likely under the inferred distribution p. In this case, the inferred sample-
entropy might not exceed the min-entropy of the uniform distribution on the sample space. When making inferences with
these models, the difficulties from Remarks 3.50 and 3.51 will not often arise.

Remark 3.53. A general way to view the adversary in the contexts above is as follows. Assume that the adversary knows
the distribution p of the sample x. The adversary can adopt some probabilistic strategy to guess x, which will described by
another distribution. The adversary’s expected success rate is p · q, thinking of p and q as probability vectors of dimension
|X|. Write qx (resp. px) for the probability that distribution q (resp. p) assigns to x. Write q = dx for the distribution q such
that qx = 1 and qy = 0 for y 6= x.

Let z maximize pz. The min-entropy of p is thus − log2 pz. Four strategies for the adversary and their expected success
rates are given below.
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1. Given p, the optimal strategy chooses q = dz. Then the adversary’s expected success rate is p · dz = pz. The negative
base-two logarithm of the success rate with this strategy is the min-entropy of p.

2. If the adversary chooses q = dx, for some other x, then the expected success rate is p ·dx = px. In particular, the negative
base two logarithm of the expected success rate of strategy q = dx is the sample-entropy of x under the distribution p.

3. If the adversary chooses q as the uniform distribution on X, then p · q = 1/|X|. The negative base two logarithm of the
expected success rate is then log2 |X|.

4. If the adversary chooses q = p, then the negative base two logarithm of the expected success rate is the Renyi entropy
of order two of the distribution p.

In the event that the sample actually takes the value x, then the adversary’s actual success rate is different from the expected
success rate. In particular, the strategy q = dx has success rate one. But, if nothing about x is leaked, then the adversary has
no information with which to determine this particular strategy.

Remark 3.54. Another potential pitfall of using sample-entropy is that that in distributions p where Pp takes distinct values
for every x, the sample-entropy determines x. In this case, if the sample entropy is somehow leaked to an adversary, then the
adversary learns x. To avoid a contingent entropy of zero, the sample-entropy must not be leaked.

3.3.2 Eventuated Min-Entropy

Let (Π, X, P ) be a probability model. Let E ⊆ X . Suppose that the event x ∈ E has occurred. Then the eventuated
min-entropy associated with E is a sample-dependent parameter given by

H∞‖E(p, x) = − log2 max
x′∈E

Pp(x
′), (3.32)

for x ∈ E. For x 6∈ E, this parameter’s value does not matter, so it can artificially be set to ∞.

Remark 3.55. The event E in eventuated entropy would generally relate to a partial observation of the sample. For example,
if the model is an (m,N) Markov model, and inference is being based on observation of only about N/2 entries of the sample
sequence x, then the event E is the set of all x matching the observation initial subsequence.

Remark 3.56. Eventuated entropy is intermediate between min-entropy and sample-entropy. It would be used when the
assessment is intermediate between prospective and retrospective.

Remark 3.57. Eventuated min-entropy can be viewed as the sum of filtered min-entropy and applied sample-entropy. More
explicitly, given f and y = f(x), the eventuated min-entropy is the sum of the Y = f−1(y) filtered min-entropy and the sample
entropy of the f(x) in the f -applied probability model.

Remark 3.58. Eventuated min-entropy, like min-entropy and sample-entropy, is additive over independent distributions.

3.3.3 Applied Eventuated Min-Entropy

Let (Π, X, P ) be a probability model. Let E ⊆ X . Suppose that the event x ∈ E has occurred. Let f : X → Y be
a function, such that only f(x) will be used, say, as part of secret key. Then the applied eventuated min-entropy of
f(x) associated with E and f is a sample-dependent parameter given by

Hf(∞)‖E(p, x) = − log2 max
y∈f(E)

∑

x′∈f−1(y)

Pp(x
′), (3.33)

for x ∈ E. For x 6∈ E, this parameter’s value does not matter, so can be artificially set to ∞.
Applied eventuated min-entropy is the eventuated min-entropy of the event y ∈ f(E) in the f -applied model.
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3.3.4 Contingent Eventuated Min-Entropy

Let (Π, X, P ) be a probability model. Let E ⊆ X . Suppose that the event x ∈ E has occurred. Let g : X → Z be a
function, such that g(x) will be learned by an adversary. Then the contingent eventuated min-entropy of x associated
with E under leakage of g(x) is a sample-dependent parameter given, for x ∈ E, by

H∞|g‖E(p, x) = min
f :X→Y

Hf(∞)‖E(p, x), (3.34)

where f ranges over all function supplementary to g (see §3.2.2). For x 6∈ E, this parameter’s value does not matter,
so can be artificially set to ∞.
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4 Statistical Inference

Formally assessing cryptographic entropy involves making a statistical inference, which is defined in this section. In
statistical inference: the probability model is given; a sample is observed; and then something about the distribution
is inferred. So, the known input variables to an inference problem are the model (Π, X, P ) and a sample x ∈ X . The
unknown variable is the distribution p. In cryptography, it is mainly important to infer something about the certain
parameters of the distribution p, specifically the entropy parameters defined in §3.

For an inference to be reasonable, the general idea is to infer, from an observed sample x, a set of distributions
p from the given probability model that meet some set of criteria for consistency between p and x. In cryptographic
applications, when inferring an entropy parameter from the set of inferred distributions, it is prudent to take the
least entropy parameter of the inferred distributions.

Remark 4.1. Inference necessarily involves guessing, because x generally gives incomplete information about p. There may be
many different distributions p ∈ Π consistent with x in the sense that Pp(x) 6= 0, and it is not strictly possible to know which
of these p is the correct. So inference is imperfect.

Remark 4.2. Because of the intrinsic imperfection and incompleteness of inference, an inference method can at best be rea-
sonable, not perfect. Reasonable is perhaps definable, but it will not be formally defined it in this report. Instead, examples
of some inference method are given. This report contends that these methods are generally reasonable.

Remark 4.3. In this report, the view is taken that, to be reasonable, an inference method must at least be well-defined on
all, or a very large class, of probability models. In this section, inference methods are generic in the sense that they are
defined in terms of an arbitrary discrete probability model. Furthermore, a reasonable inference method should not just be
well-defined, but should also agree with intuition on simple models. The inference methods defined in this section are all based
solely on comparing probabilities, and should therefore be reasonable as inference methods, and also appropriate for use in
cryptography.

Remark 4.4. The generic inference methods defined in this section are invariant under isomorphism of models. For some
models, the generic inference methods are ineffective, essentially because the model has too many isomorphisms. To address
this situation, sample statistics, see §5, can be used. Sample statistics induce another model, generally with fewer isomorphisms,
upon the generic inference methods can be applied more effectively.

4.1 Inference functions

An inference function for (Π, X, P ) is a function that takes input of X and outputs some assertion about the unknown
distribution p. In this report, three types of direct assertions about p are considered. Later, it will be discussed how
such inferences about p may be converted into inferences about the cryptographically important parameters of p.

4.1.1 Point-valued inferences

An inference function i for model (Π, X, P ) is point-valued if it is a function of the form i : X → Π. That is, to each
sample value x it assigns a probability distribution, which can be called the inferred distribution.

4.1.2 Set-valued inferences

Let (Π, X, P ) be a probability model. Let [Π] be the set of all subsets of Π. An inference function for model (Π, X, P )
is set-valued if it is a function of the form i : X → [Π]. That is, to each sample value x it assigns a set of distributions,
which is called the inferred set of distributions, or the set of inferred distributions.

Remark 4.5. Generally, set-valued inference functions should respect equivalence of distributions: if p ∈ i(x) and p ≡ q, then
q ∈ i(x). Otherwise, the set-valued inference functions should be deemed unreasonable.

Remark 4.6. In this report, several specific set-valued inference functions will be considered.
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Remark 4.7. Often, the inferred sets contain just a single distribution. In such cases, the set-valued inference acts like point-
valued inference. Sometimes a sample value x ∈ X has an inferred set containing many distributions, even infinitely many.
For such a sample, a set-valued inference function is unable to prefer one distribution over the other in the inferred set. For
cryptographic applications, the most cautious choice of distribution can be inferred, as described in §4.5.2.

Remark 4.8. The inferred set is sometimes empty.

4.1.3 Grading-valued inferences

A grading on the model (Π, X, P ) is a function g : Π → [0,∞), meaning a non-negative real-valued function on the
probability space. The set of gradings can be written Γ(Π).

A strict grading is a function g : Π → [0, 1]; so a strict grading takes value at most one. Usually, the gradings
considered in this paper will be strict gradings. The set of strict gradings can be written [0, 1]Π.

A binary grading is function g : Π → {0, 1}; so a binary grading is a strict grading taking only integer values.
The set of binary gradings can be written {0, 1}Π. A binary grading can be regarded as equivalent to a subset of Π
by the relation g ≡ g−1(1).

A grading-valued inference function for model (Π, X, P ) is a function of the form i : X → Γ(Π); so i assigns
each sample value x a grading g = i(x) of all probability distributions in the probability space Π. The intention
of a grading-valued inference function is that a higher value of the inferred grading is intended to indicate better
consistency of the sample value x the distribution p.

Remark 4.9. Generally, grading-valued inference functions should respect equivalence of distributions: if g = i(x) is an inferred
grading function and p ≡ q, then g(p) = g(q).

If i(x) = g, then g(p) is called the grade of p at x. In strict notation, the grade is i(x)(p), but to avoid the double
argument, the notations i(x, p) or even ix(p) may be used when clear from context. So, a grading-valued inference
function may be thought of as a bivariate function i : X × Π → [0,∞). With a slight re-use of terminology, such a
bivariate function will also be called a general grading function. So, a grading-valued inference function determines
a general grading function, and vice versa.

Remark 4.10. For a fixed probability distribution p and a grading-valued inference function i, a function ip : X → [0, 1] : x 7→
i(x, p) can be defined. So, if i(x) = g, then ip(x) = g(p).

Remark 4.11. Unlike probability functions, there is no requirement that the grading function g : Π → [0, 1] sums to one over
Π, in the sense that

P

p∈Π g(p) = 1 if, say, Π is finite. Indeed, in general, for infinite probability spaces (for which no measure
has been assigned), such summation to one is not even a well-formulated requirement. If Π is equipped with a measure, it
may be convenient for g to be a measurable function, ideally whose total integral over Π is finite.

Remark 4.12. The output of a grading-valued inference function for a probability model with infinite probability space describes
an infinite amount of information (but will typically be described with a finite formula). For the purposes of cryptography, what
is needed is a single estimate of entropy, a single real number, or perhaps even just a single bit: a decision to accept or reject.
As such, grading-valued inference functions seem not to be immediately usable for cryptographic applications. Nevertheless,
other inferences may be derived from grading-valued inference functions. For example, graded set-valued inferences are derived
from grading-valued inferences. So, it will turn out that grading-valued inference functions can serve as intermediate steps in
cryptographic applications.

4.1.3.1 Expectation of General Gradings It can be informative to consider the expected value of a general
grading function g : X × Π → [0,∞), at a given probability distribution. Precisely, this is defined as

Eg(p) =
∑

x

g(x, p)Pp(x). (4.1)

The value Eg(p) gives a way to calibrate a grading value g(x, p), especially if p has been inferred from x using the
grading g. If g(x, p) is many magnitudes lower than Eg(p), then one may even infer that the probability model itself
is not accurate.
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Remark 4.13. For the likelihood grading, §4.4.1, EgL
(p) =

P

x Pp(x)2. For the uniform distribution, and more generally,
distributions with high min-entropy, this value can be quite low. In fact, taking the negative logarithm of the expected
likelihood grading gives − log2(EgL

(p)) = H2(p), the Renyi entropy of order two. The Renyi entropy of order two is known to
be at most twice min-entropy. So, for high entropy sources, the expected likelihood can be quite small.

Remark 4.14. For typicality grading, §4.4.2,

Egk
(p) =

X

x

gk(x, p)Pp(x)

=
X

Pp(y)<Pp(x)

Pp(y)Pp(x) + k
X

Pp(y)=Pp(x)

Pp(y)Pp(x)

=
1

2

0

@

X

Pp(y)<Pp(x)

Pp(y)Pp(x) +
X

Pp(y)>Pp(x)

Pp(y)Pp(x) + 2k
X

Pp(y)=Pp(x)

Pp(y)Pp(x)

1

A

=
1

2

0

@

X

x,y

Pp(y)Pp(x) + (2k − 1)
X

Pp(y)=Pp(x)

Pp(y)Pp(x)

1

A

=
1

2

0

@

 

X

x

Pp(x)

!2

+ (2k − 1)
X

Pp(y)=Pp(x)

Pp(x)2

1

A

= 1
2

+ (k − 1
2
)
X

x

Pp(x)2Qp(x),

(4.2)

where Qp(x) is the number of y such that Pp(x) = Pp(x).
Therefore, the expected value of the balanced typicality is exactly one half. Inclusive typicality averages to more than one

half, and exclusive to less. If Pp takes distinct values for all x, then the expected inclusive and exclusive typicality differ from
one half by the expected value of the likelihood grading. If p is a uniform distribution, then the expected value of inclusive
typicality is one: indeed inclusive typicality is one: all values of x are equally typical. Conversely, the expected value of
exclusive typicality is zero for a uniform distribution p.

Therefore, inclusive and balanced typicality are inherently calibrated in the sense that, no matter what p is, the expected
typicality is at least one half. Furthermore, if x is such that g1(x) ≪ 1

2
or g1/2(x) ≪ 1

2
for probability distributions p in the

probability model, then one can infer from x that perhaps the probability model is not valid.

Remark 4.15. The expected value of all generalized typicalities, see §4.4.3, are 1
2
.

Remark 4.16. The expected value of the Bayesian grading §4.4.6 is

EB(p) =
1

R

Π
Lxdµ

X

x∈X

Pp(x)2, (4.3)

and is a scaled version of the expected value of the likelihood grading.

4.2 Inference Methods

An inference method is a function that takes a probability model (Π, X, P ) and outputs an inference function for
(Π, X, P ). An inference method is point-valued if all inference functions it produces are point-valued. Similarly, an
inference method is set-valued if it only outputs set-valued inference functions, and grading-valued if it only output
grading-valued inference functions.

Remark 4.17. A grading-valued inference method I is a function to functions to functions: on input of a probability model
(Π, X, P ), the inference method I outputs a grading-valued inference function i, which, in turn, is a function with domain X
and range of functions from Π to [0, 1].

A grading-valued inference function for the probability model (Π, X, P ) has an associated general grading function
g : X × Π → [0, 1]. Any function that maps a model to such a general grading function on the model is called a
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general grading method. Each grading-valued inference method defines a general grading method, and each general
grading method defines a grading-valued inference method.

4.3 Set-Valued Inference From Grading-Valued Inferences

In this section, two ways to derive a set-valued inference method from a grading-valued inference method are given.
Collectively, such methods graded inference methods are called in this report.

4.3.1 Maximally Graded

Suppose that g is a general grading on model (Π, X, P ), associated with a grading-valued inference function ig. The
maximally graded inference associated with grading g is a set-valued inference imax g function defined as follows:

imax g(x) = {p : g(x, q) 6 g(x, p)∀q ∈ Π} . (4.4)

Graded inference imax g may be thought of as derived from g or from ig.

Remark 4.18. In some cases g is discontinuous and as such a maximum p may not exist. In these cases, an alternative
definition may sometimes be available. Consider the supremum of gradings values at x, written sx = supp∈Π g(x, p). Define
sets Sǫ = {p : g(x, p) > sx − ǫ} ⊆ Π, which are nested according to the size ǫ.

As a matter of convenience, define the following. Let S̄ǫ be the closure of Sǫ in some natural topology on Π. If isup g(x) =
T

ǫ>0 S̄ǫ is non-empty (which is true if Π is given a compact topology), it may serve as a suitable substitute for an empty set
imax g(x), even if values of g(x, p) < sx for p ∈ isup g(x).

In cryptographic applications, it is in entropy parameters, not the distributions themselves, that are most important.
If the parameters are continuous then the definition of isup g(x) above will provide the desired answer for the parameters.
For discontinuous parameters isup g(x) may not be what is desired. In this case, isup g(x) should be thought of, not as the
intersection of the chain of sets of S̄ǫ, but rather as the limit of the chain of sets Sǫ. This enables us to consider limits of
parameters on Sǫ, which may differ from the value of parameters on the intersection.

Remark 4.19. In many cases, the inferred set imax g(x) is a single element (singleton) set. In this case, the inference is much
like a point-valued inference function. However, there are often some values of x for which several, possibly infinitely many,
different distributions p attain the maximal value.

If G is a general grading method or IG is grading-valued inference method, then it is possible to derive a set-valued
inference method Imax G using the inference functions above.

Remark 4.20. Maximally graded inferences are model-dependent in the sense that definition (4.4) includes Π. A potential
consequence of this model-dependence is that the maximally graded inference in the restriction (Θ, X, P ) of the model (Π, X, P ),
may not have a given relation with the maximally graded inference in the model (Π, X, P ).

4.3.2 Threshold Graded and Confidence Levels

Suppose that g is a general grading on a model (Π, X, P ). Let t ∈ [0, 1] and call this value the threshold level. The
threshold graded inference function ig>t is a set-valued inference function defined by

ig>t(x) = {p : g(x, p) > t}. (4.5)

If t > u, then ig>t(x) ⊆ ig>u(x), so the sets obtained are shrinking or stable in size as a function of the threshold.
A high threshold may lead to a narrow, perhaps even empty, inference, while a low threshold may lead to a broad
inference.

The value c = 1 − t may sometimes be called the confidence level of the inference. As confidence increases, the
breadth of the inference may increase (or stay stable). This reflects the intuitive notion that one can generally make
the sacrifice of broadening the inference set in order to gain a more confidence in the inference. Gradings are best
subjected to a threshold when the distribution of the grading, for fixed p and varying x, has some resemblance to the
uniform distribution on [0, 1], because then the confidence level has more meaning. In the following sections, some
gradings will have such a property, and others will not.
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Remark 4.21. Threshold graded inferences are not model-dependent in the sense of Remark 4.20 provided that the grading is
not model-dependent. In particular, if the iΘ(x) is threshold graded inference in the model (Θ,X, P ) that is a restriction of
the model (Π,X, P ), and iΠ(x) is the threshold graded inference in the model (Π,X, P ), then

iΘ(x) = Θ ∩ iΘ(x). (4.6)

When using such a threshold graded inference and taking the infima of parameters, as in §4.5.2, then restriction of the model
cannot decrease the inferred parameter, and relaxing model cannot increase the inferred parameter.

Remark 4.22. As noted in Remark 2.5, it may sometimes be possible that an adversary can influence the choice of p in
Π. If an adversary has such power over p, then a maximally graded inference has little value. For appropriate gradings, a
high-confidence threshold grading would still have some value.

4.4 Example Gradings

In this section, some generic and reasonable grading methods are given.

4.4.1 Likelihood

The likelihood grading gL is defined by
gL(x, p) = Pp(x). (4.7)

For convenience, the associated inference function may also be written as Lx = igL
(x) in this report. Therefore

Lx(p) = Pp(x).
The term likelihood, instead of probability, is used here to avoid thinking that Lx has the properties of a probability

function. For example, summing (or integrating) the values of Lx over all probability distributions is not guaranteed
to yield 1.

Remark 4.23. For likelihood, an exception will be made here about the general grading’s name. Since the general grading is
also the probability function, the grading will be the likelihood grading to avoid confusion with the probability function in its
usual role.

Remark 4.24. Likelihood is, of course, a well-known and fundamental notion in statistical inference.

4.4.2 Typicality

For a given inclusivity level k ∈ [0, 1], define the typicality grading gk as follows:

gk(x, p) =





∑

y:Pp(y)<Pp(x)

Pp(y)



+ k





∑

y:Pp(y)=Pp(x)

Pp(y)



 . (4.8)

In this report, the only k that will be considered are k ∈ {0, 1
2 , 1}, which give rise to exclusive, balanced and inclusive

typicality, respectively.

Remark 4.25. Inclusive typicality g1(x, p) is the probability that a random sample y is at most as probable as x. Exclusive
typicality g0(x, p) can also be defined as the probability that a random sample y is less probable than x. Balanced typicality
is the average of inclusive and exclusive typicality, in other words, it is half-way between inclusive and exclusive.

Remark 4.26. Typicality, unlike likelihood, when used for inference, attempts to capture the notion of how a sample compares
in probability to other samples under the same probability distribution. This notion was used in the intuitive reasoning for
the loose inference in §1.1.2.8, where it was argued that 210-uniform was not to be inferred, because more repetitions would
have been expected in the sample.

Remark 4.27. For a fixed distribution p, ranking sample values x by typicality or likelihood gives the same ranking. For fixed
x, and varying p, the rankings induced by typicality may differ from those by likelihood.
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Remark 4.28. When p is a uniform distribution on X, then typicality is constant for all x, and takes on the value k, the
inclusivity. When p is an almost uniform distribution on X, then for the most probable x, it takes value approximately
1 − (1 − k)/|X|. For k < 1, this will be larger than the typicality at the uniform distribution.

Remark 4.29. When p is subuniform on X, then

gk(x, p) =

(

k if Pp(x) > 0

0 if Pp(x) = 0.
(4.9)

As such, in models that admit subuniform distributions, any inference based on typicality treats them equally. This effect
may be summarized as: subuniform distribution have tied typicality. This is called the tying effect in this report.

Some models may admit distributions with higher typicality than all subuniform distributions, in which case some useful
inferences can be made. In some cases, sample statistics (§5) may serve as tiebreakers between subuniform distributions.

Remark 4.30. Inclusive typicality is always at least as large as likelihood:

g1(x, p) > gL(x, p), (4.10)

but balanced and inclusive typicality could be less. Similarly, 1 − g0(x, p) > gL(x, p). A stronger fact is that the gap between
exclusive and inclusive typicality is always at least the likelihood.

g1(x, p) − g0(x, p) > gL(x, p). (4.11)

Remark 4.31. The notion of typicality is based on well-known notions in statistics of significance level, p-value (also known
as percentile or quantile, depending on the units) and cumulative probability function. The general notion of significance level

refers to a value of the p-value. The general notion of p-value is a sample statistic (see §5) that has a uniform distribution on
[0, 1], at least under the null hypothesis.

A p-value statistic may be formed for continuous distributions by taking a cumulative probability function with respect to
some function f defined on the sample space. Any choice of function f yields a p-value. So, the p-value of x is the probability
that f(y) 6 f(x), for y drawn from the same distribution. A common use of p-values occurs when the distribution is a normal
distribution and the function f is the identity, then p-value is related to the Gauss error function.

In cryptographic applications, distributions are typically discrete, so achieving a proper p-value uniformly distributed in
[0, 1] cannot be strictly guaranteed. Typicality only approaches a uniform distribution.

In cryptographic applications, the parameters of interest, entropy and so on, depend primarily on the distribution, not on
specific properties of the structure of x. Typicality is the cumulative probability with respect to the probability function.

Remark 4.32. Typicality ranks the sample space by probability. Such a ranking is often implicit in rankings of popularity,
such as sales charts and election results.

Remark 4.33. For an almost uniform distribution (with no equal probabilities), the distribution typicality is almost uniformly
distributed in [0, 1], much like a p-value.

Remark 4.34. Randomized typicality g?(x, p) is a random variable defined with the same equation (4.8) as typicality, except
that the variable k is selected uniformly at random from the interval [0, 1]. If the distribution of p is fixed, and x has the
probability distribution given by p, then g?(x, p) is uniformly distributed in [0, 1].

Remark 4.35. The notion of typicality adapts the notion of significance level towards the task of assessing min-entropy, in that
it ranks the samples according to their probabilities.

4.4.3 Generalized Typicality and Adjusted Likelihood

Let σ : [−1, 1] → [−1, 1] be an odd, non-decreasing function.

Remark 4.36. Odd means that σ(−x) = −σ(x) and non-decreasing means that if x < y then σ(x) 6 σ(y).

Remark 4.37. Write σ(x) = xf(x2), where f : [0, 1] → [0,∞) as a function such that for x > 0, it holds that f(x) < 1/
√

x.
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Generalized typicality is parametrized by the function σ. Generalized typicality parametrized by σ is called
σ-typicality and is defined by

tσ(x, p) = 1
2

(

1 +
∑

y

Pp(y)σ (Pp(x) − Pp(y)) .

)

. (4.12)

This is a generalization of balanced typicality in the following senses.

1. Putting σ(x) = x/|x| for x 6= 0 and σ(0) = 0, which is to say, putting σ(x) equal to the sign of x, then
σ-typicality is balanced typicality.

2. For any σ meeting the stated conditions, σ-typicality is bounded, like balanced typicality, such that tσ(x, p) ∈
[0, 1] for all x and p. (This is due to the values of σ belonging to [−1, 1].)

3. The expected value (see §4.1.3.1) of σ-typicality is 1/2, just like balanced typicality. (This is due to σ being
an odd function.)

Remark 4.38. When p is subuniform on X, then

tσ(x, p) =

(

1
2

if Pp(x) > 0
1
2
− σ(Pp(y))

2
if Pp(x) = 0 and Pp(y) > 0.

(4.13)

As such, in models that admit subuniform distributions, any inference based on generalized typicality treats all subuniform
distributions equally. In such cases, sample statistics (§5) may serve as tiebreakers.

Remark 4.39. For threshold-graded inference at confidence levels of 1
2

or higher, all subuniform distributions in the model
must be considered, because of the upper case in (4.13).

Remark 4.40. For threshold-graded inference at confidence levels strictly higher than 1
2
, given sample x, some subuniform

distributions p in which Pp(x) = 0 may be inferred, because of the lower case of (4.13). Call this an aberrant inference.
Aberrant inferences can be viewed as a strong discrepancy with the likelihood grading.

Balanced typicality does not exhibit aberrant inferences because the σ is the sign function, which causes the lower term
to be zero in the lower case of (4.13).

Despite aberrant inferences, generalized typicality can still be useful for assessing entropy. For example, at a given
confidence level, only those subuniform distributions among those allowed within the probability model, with a support of a
given size but not containing the given sample x will be inferred.

If the infimum entropy is always attained at an aberrantly inferred subuniform distribution, then at least the inferred
entropy decreases with confidence level, decreasing to 0 as the confidence level approaches 1.

Remark 4.41. Generalized typicality sheds some light on a potential difficulty of balanced typicality: its discontinuity. The
discontinuity is made clearly attributable to the discontinuity of the sign function σ when viewed of as a case of generalized
typicality.

Balanced typicality has the disadvantage of being discontinuous, which can make bounding and optimizing balanced
typicality difficult. This disadvantage can perhaps be overcome by using the observation that balanced typicality is
σ-typicality with σ equal to the sign function. The idea is then to use an alternative σ function, which is continuous,
or even smooth, but still similar enough the sign function to so that the resulting σ-typicality inherits the desired
properties of balanced typicality.

The simplest continuous form of generalized typicality is given by the choice σ1(x) = x. In this case, formula (4.12)
simplifies to:

tσ1(x, p) = 1
2

(

1 + Pp(x) −
∑

y

Pp(y)2

)

. (4.14)

As a function of x, with p fixed, the varying term in the sum, 1
2Pp(x), is a scaling of the likelihood grading. When p

varies, the term
∑

y Pp(y)2 varies, but independently of x. This special case of generalized typicality will be called
adjusted likelihood.
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Remark 4.42. Adjusted likelihood can be related to order-two Renyi entropy by tσ1(x, p) = 1
2

“

1 + Lx(p) − 2−H2(p)
”

.

Remark 4.43. Adjusted likelihood, and other generalized typicalities, can, for certain distributions p, even distributions mod-
erately distant from uniform distributions, be very close to 1

2
, for two reasons. First, both the likelihood and adjustment terms

can be quite small even for quite non-uniform distribution. Second, the difference between the likelihood and the adjustment
term can very small. Calculations done with such typicalities may require considerably high degrees of precision.

Adjusted likelihood may also be expressed as

tσ1(x, p) = 1
2





5
4 −

(

Pp(x) − 1
2

)2 −
∑

y 6=x

Pp(y)2



 (4.15)

which is an affine transformation of the square of the Euclidean distance (as would be natural to define in the
unrestricted model) between the distribution p and the pseudo-distribution hx that has probability 1/2 of taking
value x, and probability 0 otherwise. So, tσ1(x, p) = 5

8 − 1
2‖hx − p‖2.

Two other families of σ, generalizing σ1, seem reasonable to consider.

1. Let σ1/m(x) = m
√

x for m odd. At m = 1, the function is σ1(x) = x, which gives the adjusted likelihood, as
already seen. Taking m → ∞, these functions approach the sign function. These functions σ1/m are continuous,
but have infinite slope at 0, which may make some optimization algorithms difficult.

2. Let

σm(x) = x

m−1
∑

n=0

(−1/2

n

)

(x2 − 1)n, (4.16)

for integers m > 1. At m = 1, the function is σ1(x) = x (and is the same as σ1(x) above). As m → ∞, the
functions approach the sign function.

Remark 4.44. The series (4.16) comes the from the Taylor series expansion of 1/
√

x at x = 1, and using polynomial prefixes
of these series as a function f(x) and defining σ = xf(x2).

Remark 4.45. The function σ2(x) = x
2
(3 − x2). The function σ3(x) = x

8
(15 − 10x2 + 3x4). Also, σ′

m(0) = O(
√

m) seems to

hold, with 2
p

m/π seeming to be a good approximation.

In generalized typicality, summation over all y results in some symmetry. For example, taking the polynomials σm

above, we can write:

tσm
(x, p) =

m−1
∑

n=0

Qn(p)Pp(x)n, (4.17)

where Qn(p) is a symmetric polynomial evaluated at all of the variables Pp(y) (for each possible value of y). Expressing
Qn(p) as a polynomial of symmetric polynomials, such as elementary symmetric polynomials, may give a sum with
fewer terms than there are values of y, and as such, may make calculating with and optimizing σ-typicality easier.

Remark 4.46. In the independent model, Qn(p) can also be expressed as a related symmetric function of the components of
the p vector.

4.4.4 Calibrated Typicality

Generalized typicality tσ may have a tendency to be too close to 1
2 , and as such be not too useful for establishing

confidence levels. For a grading to be most meaningful in the sense of confidence levels, the distribution of the
grading should be somehow nearly uniform on the interval [0, 1]. More precisely, for each fixed p, the distribution
g(x, p) should be almost uniform.

Balanced typicality and generalized typicality approach such uniformity mainly in the sense that g has expected
value 1

2 and g is value within [0, 1]. Another measure of closeness to uniformity that could be used is the variance.
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The variance of the uniform variable in [0, 1] is 1
12 . So given a grading g with expectation 1

2 and variance v, one
could apply a linear transformation to get another grading g′ = 1

2 + 1√
12v

(g − 1
2 ), with expectation 1

2 and variance
1
12 . A potential problem with g′ is that it might have value outside the range [0, 1], in which confidence levels make
little sense (a negative confidence level or confidence level higher than 1 makes little sense).

An alternative calibration method is as follows. Let κ : [0, 1] → [0, 1] be another odd function. Then κ-calibrated
σ-typicality is defined to be:

tσ,κ(x, p) = 1
2

(

1 + κ

(

∑

y

Pp(y)σ(Pp(x) − Pp(y))

))

. (4.18)

Balanced typicality is the special case of calibrate typicality in which κ is the identity function and σ is the sign
function.

4.4.5 Agreeability Gradings

The notion of statistical distance from (2.29), which has sometimes been used in cryptography, can be adapted to
act like a grading. Let px be the deterministic distribution, in the unrestricted model, that takes on sample value x
with probability one, and thereby all other values with probability zero. One could define the agreeability grading
as

ga(x, p) = 1 − d(px, p), (4.19)

but such an agreeability grading simplifies to

ga(x, p) = Pp(x), (4.20)

which is just the likelihood grading.
One could use other distance metrics, such as those based on the Euclidean metric (L2 norm), as defined on the

natural parametrization of the unrestricted model, In fact, adjusted likelihood is already related to such a metric.
One could also use a distance based on the L∞ norm to define an agreeability rating.

4.4.6 Bayesian Grading and Posterior Probabilities

The Bayesian grading Bx : Π → [0,∞] can be defined when the probability space Π is equipped with a measure µ,
and the likelihood grading Lx is measurable and integrable with respect to this measure. It is defined as:

Bx =
Lx

∫

Π Lxdµ
. (4.21)

Also write Bx(p) = B(x, p), where convenient.

Remark 4.47. The Bayesian grading is based on Bayes’ law for conditional probabilities. Elaborating the probability notation
slightly (to a notation so commonly used in much previous work that formal definitions will be omitted in this report), Bayes’
law states that the conditional probability is P (A|B) = P (A ∩ B)/P (B). This implies that P (B|A) = P (A|B)P (B)/P (A).
For the problem at hand, the conditional probability, P (p|x), of the hypothesis p given the evidence x is wanted. This is
given by the formula P (p|x) = P (x|p)P (p)/P (x). The factor P (x|p) = Pp(x) = Lx(p), by definition. The factor P (x) is the
marginal probability of x over all possible distributions p, using the associated prior probabilities, which is the integral in the
denominator of (4.21). The factor P (p) is set to 1 in (4.21) because it is really covered by the measure µ itself. In other
words, when integrating the function Bx over the measure, the measure provides the contribution of P (p), that is, the prior
probabilities.

Remark 4.48. Define ν = Bxµ as another measure on Π with the definition ν(S) =
R

S
Bxdµ for any subset S ⊆ Π. In fact,

this resulting measure satisfies ν(Π) = 1, so actually ν can be used to define probabilities of the probabilities distribution.
These are known as the posterior probabilities.
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4.5 Parameter Inference

Cryptographers are primarily interested in inference about the entropy parameters.

4.5.1 Converting Distribution Inference from Parameter Inferences

If i is an inference function for a model (Π, X, P ) and r : Π → R is a parameter on the model, then it is sometimes
possible to define an indirect inference function for R, which is a function from X to assertions about R. The
definition depends on the nature of the inference function, as given below.

4.5.1.1 Point-valued For a point-valued inference function i : X → Π, the naturally parameter induced inference
function for R is defined as j : X → R : x → r(i(x)).

4.5.1.2 Set-valued For a set-valued inference function i mapping X to subsets of Π, the naturally parameter
induced inference function j for R maps X to subsets of R in the following manner. For T ⊆ Π, define r(T ) = {r(p) :
p ∈ T } and define j(x) = r(i(x)).

4.5.1.3 Grading-valued For a grading-valued inference function i mapping X to functions from Π to [0, 1], then
there is no naturally induced inference function for R, unless further information is available. If the probability space
is equipped with an appropriate measure, define the Bayesian parameter induced inference function j : R → [0, 1], as
follows. For y ∈ R, let j(y) be the average value of i over the subset r−1(y) of the probability space Π. The function
j is only defined where the sets r−1(y) are measurable and where i is measurable on this set.

4.5.2 Narrowing Set-Valued Entropy Inferences to a Point-Valued by Infima

Often, a narrower inference is desired than provided by a set-valued naturally parameter induced inference. In this
case, one may want to apply a further function to the parameter inference j(x). For example, if the parameter space
R is an ordered set, then one can take the minimal (or infimum) value of r on the set j(x).

In cryptography, one wants to be prudent, so taking a minimum, or infimum, value of min-entropy over a set of
reasonably inferred possible probability distributions is best.

Remark 4.49. By contrast, when statistical inference is applied to the natural sciences, prudence may indicate the opposite:
when narrowing a wide inference one may should opt for the inferred distribution(s) with the highest entropy. Both cases
use the concept of assuming the worst case. In natural sciences, the worst case is the most unpredictable distribution, but in
cryptography the worst case for the generator of a key, the worst case is the most predictable distribution.

This discrepancy may formally result dangers of using conventional statistics to assess cryptographic entropy. In conven-
tional statistics, the models (and sample statistics) may be restrcted in a way a that has little effect if the restriction mainly
removes distributions of low entropy that the worst-case-narrowing of inference described above would never infer. Indeed, it
may be the case that in natural sciences, models are pre-selected in this manner, so that any formal narrowing of inference is
unnecessary.

On the other hand, one does not want to waste entropy when it is scarce, so one needs to strike a balance. To
this end, one may want to isolate conceptually the stage where one might underestimate entropy, specifically to this
stage. In particular, if the inferred set of entropies includes both large and small values, perhaps application of a
second inference method is appropriate.

Remark 4.50. In the case of a Bayesian parameter induced inference function j where the parameter space R is also equipped
with a measure, then one can take the weighted average of parameter values in the parameter space R using the function j as
the weighting.

In general averaging is risky in cryptography because adversaries are not restricted to average behavior, so this method is
not recommended for estimating min-entropy in cryptography.
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5 Sample Statistics

A sample statistic, or just a statistic, on a probability model (Π, X, P ) is a function s : X → S, where S is some
set called the statistic space. A statistic method is a function from probability models to statistics on these models.
More precisely, a sample statistic refers to function s : X → S, only when it is used to make an induced inference as
defined in §5.2.

A reason to make induced inferences with sample statistics is that, sometimes, the tying effect from Remark 4.29
causes the methods of §4, if applied directly, to yield unsatisfactory inferences.

Remark 5.1. An inference function §4.1 and a sample statistic are both functions with a domain being the sample space. An
inference function can therefore be used as a sample statistic, see Remark 5.8.

Remark 5.2. A induced inference using a sample statistic, which is well-known in cryptography, is the runs test. A uniform
model is hypothesized for some purported random bit string. The number of runs, which is the sample statistic, is computed
for the string. This number is compared to the distribution of the number of runs for a uniformly random bit string. If the
number of runs is too low or too high, the uniform model is rejected. Although this is an instance of hypothesis testing, sample
statistics can be also be used in entropy assessment.

5.1 Induced Model

A statistic s defines an induced probability model (Π, S, Q) as follows:

Qp(t) =
∑

s(x)=t

Pp(x). (5.1)

Two sample statistics for a given probability model may be regarded as equivalent if their induced probability models
are equivalent.

Remark 5.3. The model induced by a sample statistic is the same as the applied model from §3.2.1. A distinction is being
made between the two concepts because sample statistics are only used to help make inferences, whereas the applied model
treats which values are going to be used as a source of entropy.

Strictly speaking, the choice of sample statistic s is essentially arbitrary. But we will argue that, depending on
the purpose, some sample statistics are preferable to others.

Remark 5.4. Any statistic s on a singular probability model induces another singular probability model. However, a uniform
initial singular model does not necessarily induce a uniform model. The resulting lack of uniformity can be regarded as a
means whereby one can make some inferences more easily.

Remark 5.5. Any surjective statistic s on an unrestricted probability model U(X) induces another model that is isomorphic
to an unrestricted probability model U(S), since any probability distribution on S can be induced from some probability
distribution on X. If s is not surjective, then the induced model is effectively the unrestricted model on the image of s
extended so that the elements of S outside the image of s always have probability zero.

5.2 Induced Inference

Given a statistic s on (Π, X, P ) and an inference method I, we define an (statistic) induced inference function j = jI,s

for (Π, X, P ) by defining
jI,s(x) = I(Π, S, Q)(s(x)). (5.2)

Recalling that I(Π, S, Q) is an inference function for (Π, S, Q), it is therefore a function from S to assertions about
p ∈ Π. We will sometimes say that this inference is based on the statistic s. (Given a statistic method and an
inference method, one can similarly define a (statistic) induced inference method.)

Remark 5.6. The function jI,s is an inference function for (Π,X, P ) but not for the induced probability model (Π, S, Q).
Also, the inference method I will generally produce an inference function I(Π,X, P ) for (Π, X, P ) which is different from the
inference function jI,s for (Π, X, P ).
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Remark 5.7. In models admitting subuniform distributions, some conceptually important gradings, such as typicality, treat
all subuniform distributions equally, resulting in a tying effect. Sample statistics can be used as a tiebreaker in such models.

Remark 5.8. Strictly speaking, an inference function may itself be viewed as a sample statistic, because these categories of
functions share the common domain of the sample space X. We will usually regard inference functions and sample statistics
as entirely distinct entities because of their different purposes. Despite this distinction, the same functions can be useful as
both inference functions and sample statistics.

Generally, given two inference methods I and J and a probability model (Π, X, P ) one can define an inference function
jI,J(Π,X,P ), where the inference function J(Π, X, P ) serves the role of the sample statistic. Doing this effectively defines an
inference-induced inference method JI , which on input (Π, X, P ) returns the inference function jI,J(Π,X,P ).

Specifically, for some models, using a maximal likelihood inference function may be a useful sample statistic.

Remark 5.9. For each x ∈ X, an artificial statistic is the function sx : X → {0, 1} such that sx(x) = 1 and sx(y) = 0 for
y 6= x. The sx induced inclusive typicality of x equals the likelihood of x if the likelihood is less than 1

2
. The induced inclusive

likelihood for y 6= x is 1. So, if hypothesis testing is being done, there exist arbitrary statistics that can accept any model
based on any observation. And there also exist statistics that can be used to reject any model, unless the model has a very
high maximum likelihood for each sample value, meaning that it approaches pseudo-determinism and must have low inferred
min-entropy.

5.3 Model-Neutral Statistics

The approach in this report for formally assessing cryptographic entropy tries to make the probability model the
only assumption. The approach then presumes of the validity of the assumed probability model, but avoids making
further assumptions. Unfortunately, inference encounters some difficulties in this context, such as the tying effect.
Sample statistics may be useful to overcome these difficulties.

The probability model may have been obtained from hard-won inference and extensive effort. The assessment
process, therefore, should attempt not to discard the gains made in the determination of the probability model. To
this end, this section describes criteria for a sample statistic to be consistent with the probability model.

Remark 5.10. For hypothesis testing, the very probability model is in question, so it may be less important to use sample
statistics that are consistent with the model. Nevertheless, the approach in this report is to formulate alternative hypothesis
models, and then use sample statistics that are consistent with these alternative models.

Firstly, some concepts are introduced. A bijection from the sample space to itself will be called a sample trans-
formation. A sample transformation z : X → X is said to be neutral for model (Π, X, P ), if for all p ∈ Π and all
x ∈ X , the condition Pp(x) = Pp(z(x)) holds.

Remark 5.11. A neutral transformation z describes an isomorphism from the model to itself in which the isomorphism acts as
the identity on the distributions.

Remark 5.12. Some natural neutral transformations for the independent model are those that permute the positions of entries
in the sample vector x.

Remark 5.13. The set of neutral transformations for the independent model is the set of functions that permute the preimages
of the frequency statistic (§5.4.2).

A transformation z : X → X is said to be invariant for a model if, for all p ∈ Π and x, y ∈ X , if Pp(x) = Pp(y),
then Pp(z(x)) = Pp(z(y)).

Remark 5.14. Any neutral transformation is also an invariant transformation.

Remark 5.15. Some natural non-neutral invariant transformations for the independent model are those that permute the values
of entries in the sample vector x.

The set of neutral transformations and the set of invariant transformations are implied by the probability model.

§5 SAMPLE STATISTICS Page 53 of 98



Formally Assessing Cryptographic Entropy 5.4 Sample Statistics for the Independent Probability Model

Because the probability model is an assumption, the set of neutral transformations and the set of invariant transfor-
mation are implied assumptions.

A sample statistic s is model-neutral if for all neutral transformations z : X → X , all p ∈ Π, and all x ∈ X , it
holds that Qp(s(x)) = Qp(s(z(x)) where Qp is the induced probability function.

Remark 5.16. A statistic s is model-neutral if s(x) = s(z(x)) for all x and all neutral transformations z. In this case, we say
the statistic is strongly model-neutral.

A sample statistic s is model-invariant if, for all invariant transformations z : X → X , all p ∈ Π, and all x, y ∈ X ,
if Qp(s(x)) = Qp(s(y)), then Qp(s(f(x)) = Qp(s(f(y))).

Model-neutral and model-invariant sample statistics are attempts to not contradict the assumptions made in the
probability model. By making induced inferences based on model-neutral or model-invariant sample statistics, one is
not interfering too much with the assumptions that have been made, neither doubting them nor strengthening them.

Remark 5.17. Given any statistic s : X → S for a model (Π, X, P ), a model-neutral statistic ŝ : X → Ŝ can be derived from s
as follows. Let Ŝ be the set of multisets with elements in S. Let

ŝ(x) = {s(z(x)) : z ∈ Z(Π, X, P )}, (5.3)

where Z(Π, X, P ) is the set of neutral transformations of the model.

Remark 5.18. Sample statistic methods can include inference methods, as already noted in Remark 5.8. The gradings of
likelihood typicality and generalized typicality can act as strongly model-neutral sample statistics. Likewise, the maximally
graded and threshold graded inferences associated with these gradings are strongly model-neutral as sample statistics.

Remark 5.19. In the uniform model, all transformations are neutral and invariant. Consequently, the model-neutral and
model-invariant statistics are precisely those which induce a uniform distribution. So, model-neutral and model-invariant
statistics in the uniform case cannot be used as tiebreakers and cannot overcome the tying effect.

5.4 Sample Statistics for the Independent Probability Model

For the task of estimating the min-entropy in the uniform or independent model, the following statistics seem
as though they may be appropriate, given their natural relation to the estimate of min-entropy that one gets by
examining the frequencies of the sample.

5.4.1 Identity

Strictly speaking, the identity function itself is a sample statistic. We call this the identity statistic, but inference
based on the identity statistic is the same as direct inference.

5.4.2 Frequency

The frequency statistic is straightforward:

f : {0, 1, . . . , m − 1}N → {0, 1, . . . , N}m, (5.4)

such that
f(x)i = |{k : xk = i}|; (5.5)

so f(x)i = j is the number of k such that xk = i is j. Here, the entries of f(x) are indexed starting from 0.

Remark 5.20. For example, if (m, N) = (3, 4) then f(0, 2, 2, 2) = (1, 0, 3). To see this, note that x = (0, 2, 2, 2) and f(x)0 = 1
because that set of k such that xk = 0 is simply the value k = 1 (if x is indexed starting from 1).

The frequency statistic is also related to the probability function of the independent model by the following
formula:

Pp(x) = pf(x), (5.6)

§5 SAMPLE STATISTICS Page 54 of 98



Formally Assessing Cryptographic Entropy 5.4 Sample Statistics for the Independent Probability Model

where the notation ab for vectors a and b of equal length, such as p and f(x) which both have length m, means
∏

abi

i , where the product ranges over the set of indices of the vectors.

Remark 5.21. It follows from (5.6) that a sample transformation z is neutral for the independent model if and only if it satisfies
f(x) = f(z(x)) for all x. Hence Remark 5.13.

Remark 5.22. It follow from (5.6) that a sample transformation z is invariant for the independent model if and only if
f(z(x)) = f(z(y)) for all x, y such that f(x) = f(y).

Remark 5.23. The maximal likelihood inference p̂(x) from x is related to this statistic by simple division p̂(x) = f(x)/N .

The induced probability model has a probability function which can be written as:

Qp(v) =

(

N

v

)

pv, (5.7)

using the same vector exponentiation notation as in (5.6), and the multinomial notation
(

N
v

)

= N !
Q

vi!
, where the

product in the denominator again ranges over the set of indices of the vector.

Remark 5.24. For fixed x, the probability function Qp is proportional to Pp. Consequently, the likelihood functions are
proportional, and will give to rise to the same inferences under maximal likelihood inference.

Remark 5.25. The typicality grading will differ more because the factor
`

N
f(x)

´

can change the ordering of the probabilities.

Remark 5.26. The frequency sample statistic is model-neutral, because any neutral transformation z preserves the value of
f(x), and the induced probability function is determined by f(x) as in (5.7).

Remark 5.27. The frequency sample statistic is model-invariant, because Qp(f(x)) = Qp(f(y)) for all p, if and only if,
f(x) = f(y).

5.4.3 Partition

Another sample statistic for the independent model is the partition statistic φ where φ(x) is f(x) resorted in non-
ascending order.

Remark 5.28. For example, if (m, N) = (3, 4), then φ(0, 2, 2, 2) = (3, 1, 0). For another example with the same (m, N), we
have φ(0, 0, 2, 2) = (2, 2, 0).

The partition statistic is also a statistic on the probability model induced by the frequency statistic. Thus we say
that φ is a coarser statistic than f , or that φ is a coarsening of f . Let ξ be the sorting function, so that φ = ξ ◦ f .

The probability distribution induced by the partition statistic has a sample space which is the set of partitions
of N of length m (or at most length m, if we ignore entries of value 0.) For the partition θ, the induced probability
distribution has

Qp(θ) =

(

N

θ

)

∑

v:ξ(v)=θ

pv =

(

N

θ

)

mθ(p), (5.8)

where mθ is the monomial symmetric function, in the notation used by Macdonald [Mac95].

Remark 5.29. If z is neutral for the independent model, then by Remark 5.21, f(x) = f(z(x)). It follows that φ(x) = ξ(f(x)) =
ξ(f(z(x)) = φ(z(x)). Therefore, Qp(x) = Qp(z(x)), so φ is a model-neutral statistic.

5.4.4 Mode

A another nontrivial statistic we consider is the mode statistic µ, which the maximal entry in the frequency vector (so
first in the partition vector). For an example of the mode statistic, consider again (m, N) = (3, 4) and x = (0, 2, 2, 2).
Then φ1(0, 2, 2, 2) = 3.
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The maximum likelihood inference for min-entropy at x is − log2(µ(x)/N). Inferences induced from the mode
statistic are the same as those induced from using the maximal likelihood estimate for min-entropy as a sample
statistic.

The mode statistic is a coarsening of the partition statistic. It is the coarsest of the statistics for the independent
model described in this report.

5.5 Statistics for the Markov Model

5.5.1 Markov Frequency Statistic

A natural generalization to the Markov model of the frequency sample statistic for the independent model is the
following (Markov) frequency statistic. Given x ∈ X = {0, 1, . . . , m − 1}N = (x0, . . . , xN−1), the Markov frequency
statistic is

F (x) = (e(x), U(x)), (5.9)

where: e(x) = ex0 is a m dimensional vector, all of whose entries are zero except for the entry in position x0 whose
value is 1 (vector entry indices run from 0 to m− 1); and U(x) is an m×m matrix with non-negative integer entries
Ui,j indexed by integer pairs (i, j) such that 0 6 i, j < m with:

Ui,j = |{k|1 6 k 6 N − 1, xk−1 = i, xk = j}|. (5.10)

In words, F (x) marks the initial state and the number of transitions between the various states in x. Formally, F is
a function F : X → S, where S is the statistic space. We can take S to be the set of matrices of all pairs of vectors
and matrices of dimension m, with non-negative integers, such that the sum of vector entries is 1 and the sum of the
matrix entries is N − 1.

Remark 5.30. We could also take the statistic space to be this image, S = F (X), which is a proper subset of all the non-negative
integer m-dimensional vector-matrix pairs. The resulting induced model is weakly isomorphic.

The induced model will have the form (Π, S, Q) and the induced probability function Q : Π × S → [0, 1] is

Q(p, s) = Q((v, M), (e, U)) = π(e, U)veMU , (5.11)

where: π(e, U) is an integer counting the number of sequences x such that F (x) = (e, U); and the notation ab and
AB for vector and matrix exponentiation indicates entry-wise exponentiation followed by taking the product over all
of the entries (with the convention that 00 = 1).

Formula (5.11) holds because the original probability function may be also computed using the frequency sample
statistic by the related formula:

Pp(x) = P(v,M)(x) = ve(x)MU(x). (5.12)

Remark 5.31. Formula (5.12) implies that sample values x and y are equilikely if and only if F (x) = F (y).

Remark 5.32. The induced likelihood function LF (x) is proportional to the likelihood function Lx, by a factor π(F (x)). So,
the induced model does not alter the maximal likelihood inference.

Such proportionality can fail between typicality and induced typicality, so using the Markov frequency statistic can alter
typicality-based inferences.

A combinatorial description for π(e, U) is as follows: π(e, U) is the number of sequences in (0, . . . , m − 1)N that
begin with i if ei = 1, and that have Uj,k occurrences of the two adjacent element subsequence (j, k).

Remark 5.33. A related description of π(e, U) is as follows. For any matrix U with non-negative integer entries, define a matrix
V = Û such that Vi,j is the number of sequences beginning with i and ending with j, and containing exactly Uk,l consecutive
entries in the sequence of the form (k, l). Then:

π(e, U) = ebUf, (5.13)

where e is viewed as a row vector and f is a column vector with all entries equal to one.
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Remark 5.34. The matrix operator U 7→ Û from Remark 5.33 has a role in matrix powering. Let X be any square matrix and
let n be a non-negative integer. Then

Xn =
X

U

XU Û , (5.14)

where the sum ranges over U with the same shape as X and non-negative integer entries summing to n, and XU indicates,
as above, applying entry-wise exponentiation and taking the product of all the power entries. For example, if X is a 2 by 2
matrix, then:

X2 = X( 2 0
0 0 ) ( 1 0

0 0 ) + X( 1 1
0 0 ) ( 0 1

0 0 ) + X( 0 1
1 0 ) ( 1 0

0 1 ) + X( 0 1
0 1 ) ( 0 1

0 0 ) + X( 1 0
1 0 ) ( 0 0

1 0 ) + X( 0 0
1 1 ) ( 0 0

1 0 ) + X( 0 0
0 2 ) ( 0 0

0 1 ) . (5.15)

So, taking a general X = ( x00 x01
x10 x11

), which means X2 =
“

x2
00+x01x10 x01x11+x00x01

x10x00+x11x10 x2
11+x10x01

”

, the monomials, for example, x2
00 =

X( 2 0
0 0 ) and x01x10 = X( 0 1

1 0 ) contribute to X2 by scaling of ( 1 0
0 0 ) and ( 1 0

0 1 ) respectively.

Remark 5.35. In the case of two-by-two square matrices, the matrix operator U 7→ Û from Remark 5.33 can be described as
follows:

̂„a b
c d

«

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

 

0 0

0 0

!

if |b − c| > 1

 

0
`

a+c
a

´`

d+c
d

´

0 0

!

if b = c + 1

 

0 0
`

a+b
a

´`

d+b
d

´

0

!

if c = b + 1

 

`

a+c
a

´`

d+c−1
d

´

0

0
`

a+c−1
a

´`

d+c
d

´

!

if b = c,

(5.16)

with conventions
`

−1
0

´

= 1 and
`

m
n

´

= 0 if m < n > 0.

Remark 5.36. Goulden and Jackson [GJ83, Ex. 2.4.21] give a formula that determines π(e, U). Suppose that ea = 1.
Let kj = δa,j +

Pm−1
i=0 Ui,j , where δa,j = 0 if j 6= 0 and δa,a = 1. If there exists some b ∈ {0, 1, . . . , m − 1} such that

ki = δj,b +
Pm−1

i=0 Ui,j , then

π(e, U) =

Qm−1
j=0 (kj − 1)!

Q

06i,j<m Ui,j !
det(K − U), (5.17)

where K is the diagonal matrix with entry kj at position (j, j). If no such b exists, then π(e,U) = 0.
This formula requires that all ki > 0, but can easily be adapted to handle instances ki = 0 by removing such i from all

consideration, and re-indexing and re-computing for only those ki > 0.

Remark 5.37. Goulden and Jackson’s formula (5.17) determines Û . The conditions on the vector k mean that most entries
in Û are zero, while remainder can be computed as a determinant. Let f be the column vectors of all ones. Let U ′ be the
transpose of U . Let w = (U − U ′)f . The conditions on the vector k implying the following.

1. If w = 0, then Û will be a diagonal matrix.

2. If w has entry 1 in position i and entry −1 in position j with all other entries equal to 0, then Û is a matrix with all
entries equal to zero except the entry at position (i, j).

3. For any other value of w, the matrix Û is all zeros.

Remark 5.38. Goulden and Jackson’s formula is also related to the BEST theorem of de Bruijn, van Ardenne-Ehrenfest, Smith
and Tutte on the number of Euler circuits in a directed graph.

5.5.2 Maximum Likelihood Markov Statistic

In general, in any probability model, the maximum likelihood inference can be used as a sample statistic. In the
case of the Markov model, the maximum likelihood inference is closely related to the frequency statistic. With some
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exceptions, the maximum likelihood inference can be derived from rows of the frequency matrix by dividing each
row of the matrix by its sum. So,

p̂(x) = (v̂(x), M̂ (x)), (5.18)

where v̂(x) = e(x) with e(x) the first component of the frequency statistic F (x), and

M̂(x)i,j =
|{k|(xk−1, xk) = (i, j)}|

|{k|xk−1 = i}| . (5.19)

The exceptional cases occur when some of the row sums of U(x) are zero. In these exceptional cases, the corresponding
rows of M have no effect on the probability of x. Therefore, the maximum likelihood inference in these cases is a set
where the exceptional rows can take on any legal value.

Formally, the maximum likelihood statistic can viewed as the statistic p̂ : X → S, with S = [Π], meaning the set
of all subsets of Π. Although the set S is uncountable, the image p̂(X) ⊂ S is a finite.

Remark 5.39. We could also take the statistic space to be this image, S = p̂(X). The induced models are weakly isomorphic.

Although the Markov frequency statistic determines the maximum likelihood statistic, the converse can fail: the
value of maximum likelihood statistic on the Markov model does not uniquely determine the frequency statistic. For
example, in the (3, 8) Markov model, consider the sample values

x = (1, 0, 2, 0, 0, 2, 0, 1), (5.20)

y = (1, 0, 2, 0, 1, 0, 0, 2). (5.21)

Their frequency statistics are:

F (x) =





(

0 1 0
)

,





1 1 2
1 0 0
2 0 0







 , (5.22)

F (y) =





(

0 1 0
)

,





1 1 2
2 0 0
1 0 0







 , . (5.23)

which are different. Their maximum likelihood statistics are

p̂(x) = p̂(y) =





(

0 1 0
)

,





1
4

1
4

1
2

1 0 0
1 0 0







 . (5.24)

Therefore, models induced by the frequency statistic and the maximum likelihood statistic may not be equivalent.
In the earlier terminology, maximum likelihood is a coarser statistic than Markov frequency.

5.5.3 Runs Test

The number of runs of equal elements in a sequence x equals one plus the sum of the off-diagonal entries of the
matrix F (x). Because Pp(x) is calculated from (e(x), F (x)), the number of runs in x is a model-neutral statistic in
the Markov model.

5.5.4 Maximal Likelihood Min-Entropy Statistic

As above, inference methods may perhaps also be appropriate as sample statistics. This suggests using the inferred
min-entropy over the maximum likelihood inference, specifically taking the infimum value of min-entropy over the
inferred set of distributions.
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6 Examples

This section provides some illustrative examples of entropy assessment in various models. In most of the examples,
the optimization problems which arise are easily solved. In a few examples, only the formulation of the optimization
problem is given.

6.1 Toy Example in Independent Model

In this section the probability model is the (2, 3)-independent model from §2.3.2.

Remark 6.1. We may think of this model consisting of three coin flips, with 1 indicating a coin lead its head up, and 0 its tail
up. Thus p1 is the probability that a coin lands heads up.

Remark 6.2. A main reason for analyzing this toy model is to illustrate, with hand calculations, how the various entropy
assessment approaches work.

Remark 6.3. Because this toy model is so small, the optimization problems arising from the process of statistical inference are
generally easy to solve.

Remark 6.4. In certain real-world application, the optimization problems arising may be quite difficult to solve.

In all of the following examples, the sample will be x = (0, 1, 1).

Remark 6.5. The amount of information in the sample is quite small. In other words, the sample size is small.

Remark 6.6. One effect of small sample size should be a lower confidence in the inference. Or, more precisely, a wide range of
inferences at a given a confidence.

Remark 6.7. On the one hand, the expected wider range of inference may help highlights the differences between the various
inference methods. On the other hand, because of the smallness of the sample, the results of various inference methods in this
example should not be used as a means to evaluate or compare the various inference methods.

Remark 6.8. For prudence, cryptographers generally wish to take the minimum value of min-entropy. A widening of the range
of distributions may lower this minimum value of min-entropy. In other words, a small sample size may result in an entropy
estimate lower than the actual amount of entropy, for a given level of confidence.

6.1.1 Simplified Description of the Model

The probability space Π of the (2, 3)-independent model is the set

Π = {(p0, p1) : p0, p1 ∈ [0, 1], p0 + p1 = 1} (6.1)

In the following examples, we will use a simpler but isomorphic model in which Π = [0, 1]. The isomorphism maps
p = (p0, p1) from the original model to p = p1 in the simpler model. In the other direction, p in the simpler model
maps to (1 − p, p) in the original model.

Remark 6.9. The simpler model reduces the number of variables from two, namely p0 and p1, to one, p, and also avoids the
use of subscripts. Variable p1 has been chosen to map to p because p becomes the expected of each entry xi. Less notation in
the examples may better illustrate the ideas.

Remark 6.10. Such a simpler but isomorphic model could be used (2, N) independent model. In the (m,N) independent model
for larger m, there is less advantage.
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6.1.2 Maximal Likelihood

For x = (0, 1, 1), the likelihood grading function is

Lx(p) = (1 − p)p2. (6.2)

To help maximize Lx over the probability space [0, 1], we can consider the derivative

Figure 1: Likelihood, Toy Example, with x = (0, 1, 1)

dLx(p)

dp
= L′

x(p) = 2p− 3p2 = p(2 − 3p) (6.3)

The critical points of the likelihood function, where L′
x = 0, are at p = 0 and p = 2

3 . For the purposes of maximization,
we must also consider the boundary of the space Π, which occurs at p = 0, and p = 1. Therefore, we just need to
evaluate Lx on each element of the vector (0, 2

3 , 1), which gives (0, 4
27 , 0). Therefore, the likelihood function attains

its maximal value 4
27 precisely at p = 2

3 .
The set-valued maximal likelihood inference for p is therefore for the set { 2

3}. In a cryptographic application, we
may want infer something about a probability parameter. Since the inferred set is a singleton set, for simplicity, we
will speak of inferred values for the following discussions. The inferred probability distribution is p̂ = 2

3 .
The min-entropy H∞(p̂) of the probability distribution p̂ is as follows. Recall that the inferred probability

distribution is p̂ = 2
3 . The value of x that maximizes Pp̂(x) is x̂ = (1, 1, 1), and this gives Pp̂(x̂) = 8

27 . The
min-entropy is therefore − log2

(

8
27

)

which is approximately 1.75 bits of inferred min-entropy for p.

Remark 6.11. The sample used for inference x = (0, 1, 1) and the sample x̂ = (1, 1, 1) used to calculate min-entropy of the
probability distribution inferred from x are not equal. In particular, the sample entropy (information content) of x is higher
than the min-entropy of p.

6.1.3 Threshold Inclusive Typicality

The inclusive typicality with x = (0, 1, 1), works out to be:

g1(x, p) =











3p2 − 2p3 if 0 6 p < 1
2 ,

1 if p = 1
2 ,

1 − p3 if 1
2 < p 6 1,

(6.4)

because: when p > 1/2, the only sample value y with Pp(y) > Pp(x) is y = (1, 1, 1), which has probability Pp(y) = p3;
when p = 1/2, the distribution is uniform so the inclusive typicality sums over all samples resulting in 1; when p < 1/2,
the set of sample values y with Pp(y) 6 Pp(x), is {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, whose sum of probabilities is
3p2(1 − p) + p3 = 3p2 − 2p3. See Figure 2.
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Figure 2: Inclusive Typicality, Toy Example, with x = (0, 1, 1)

Remark 6.12. The inclusive typicality evaluated at the maximum likelihood estimate for p̂, from §6.1.2 therefore works out to
be 19

27
. The corresponding confidence level is therefore 8

27
.

Remark 6.13. Inclusive typicality always takes value 1 at a the uniform distribution p, if the probability model admits a
uniform distribution. More generally, it will take value 1 at subuniform distributions (see Remark 2.24. If inclusive typicality
is used to formulate a maximally graded inference, then such uniform (and subuniform) distributions will always belong to
the inferred set.

If the inferred set consists of only the uniform distribution, then it maximal inclusive typicality may seem to be a too
optimistic inference method for use in cryptography. In other cases, the inferred set of distributions may contain other
distributions, and by narrowing the inferred set of entropies by taking its infimum, one may not end up with an overly
optimistic inference.

For each threshold value t ∈ [0, 1], an inferred set of distributions may be given such that g1/2(x, p) > t, as follows:

ig1>t(x) =



















∅ if t = 1

{ 1
2} if 7

8 6 t < 1
[

1
2 , 3

√
1 − t

)

if 1
2 6 t < 7

8
(

q(t), 3
√

1 − t
)

if 0 6 t < 1
2

(6.5)

where q(t) is the unique value in [0, 1
2 ) such that 3q(t)2 − 2q(t)3 = t.

The corresponding inferred sets of min-entropy values are then given by:

H∞ (ig1>t(x)) =











∅ if t = 1

{3} if 7
8 6 t < 1

(− log2(1 − t), 3] if 0 6 t < 7
8

(6.6)

Remark 6.14. Recall that H∞(p) depends on the maximum value of Pp(x), which will either by p3 or (1 − p)3.

Cryptographers, in the interest of practicality may wish to narrow the inferred set of min-entropies to a single
value, and, moreover, do so by taking the infimum of the set, for the sake of prudence. Instead of thresholds, one
may consider confidence level c = 1 − t. For each confidence level c ∈ [0, 1], the inferred H∞(c) value is given by

H∞(c) =











∞ if c = 0

3 if 0 < c 6 1
8

− log2(c) if 1
8 < c 6 1

(6.7)

§6 EXAMPLES Page 61 of 98



Formally Assessing Cryptographic Entropy 6.1 Toy Example in Independent Model

Remark 6.15. In this example, the infima of the inferred sets do not actually belong to the sets.

Remark 6.16. By convention, the infimum of the empty set is (positive) infinity. An inference of infinite amount of entropy in
a 3-bit random variable is clearly absurd, but this inference is only made at confidence level 0.

Remark 6.17. The sample entropy (information content) of x = (0, 1, 1), which will be treated later, is certainly higher than
the inferred min-entropy of p at high confidence levels. Intuitively, at a high confidence levels, close to 1, we must account for
the possibility that p is high, and therefore (1, 1, 1) would have been much more likely than (0, 1, 1).

In this situation, cryptographers may recognize that the sample entropy in (0, 1, 1) is at least log2(3), because we have
assumed the independent model, and the 0 bit could have occurred in any of the three locations. Such sample entropy is
therefore useful in cryptography, so we will address its inference in full formality.

6.1.4 Threshold Balanced Typicality

The balanced typicality with x = (0, 1, 1), works out to be:

g 1
2
(x, p) =











3
2p2 − 1

2p3 if 0 6 p < 1
2

1
2 if p = 1

2

1 − 3
2p2 + 1

2p3 if 1
2 < p 6 1

(6.8)

Figure 3: Balanced Typicality, Toy Example, with x = (0, 1, 1)

Remark 6.18. The third expression above may be derived as (1 − p)3 + 3p(1 − p)2 + 3
2
p2(1 − p) = 1 − 3

2
p2 + 1

2
p3.

Remark 6.19. The balanced typicality evaluated at the maximum likelihood estimate for p̂, from §6.1.2 therefore works out to
be 13

27
. The confidence level is therefore 14

27
.

Remark 6.20. Balanced typicality is maximized as p approaches 1
2

from above. Thus typicality and likelihood, in this toy
example, give much difference inferences under maximization. In particular, in this case, typicality may appear too optimistic.
It would go too far to conclude from this toy example, however, that maximal typicality is always too optimistic.

For each threshold value t ∈ [0, 1], an inferred set of distributions may be given such that g1/2(x, p) > t, as follows:

ig 1
2

>t(x) =



















∅ if 11
16 6 t 6 1

(

1
2 , q(t)

)

if 1
2 6 t < 11

16
[

1
2 , q(t)

)

if 3
16 6 t < 1

2

(r(t), q(t)) if 0 6 t < 3
16

(6.9)
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where q(t) is the unique value in (1
2 , 1] such that 1 − 3

2q(t)2 + 1
2q(t)3 = t, and r(t) is the unique value in [0, 1

2 ) such
that 3

2r(t)2(1 − r(t)) = t.
The corresponding inferred sets of min-entropy values are then given by:

H∞
(

ig 1
2

>t(x)
)

=











∅ if 11
16 6 t 6 1

(−3 log2(q(t)), 3) if 1
2 6 t < 11

16

(−3 log2(q(t)), 3] if 0 6 t < 1
2

(6.10)

Remark 6.21. Recall that H∞(p) depends on the maximum value of Pp(x), which will either by p3 or (1−p)3, hence the factor
of 3 appearing above.

Cryptographers, in the interest of practicality may wish to narrow the inferred set of min-entropies to a single
value, and, moreover, do so by taking the infimum of the set, for the sake of prudence. Instead of thresholds, one
may consider confidence level c = 1 − t. For each confidence level c ∈ [0, 1], the inferred H∞(c) value is given by

H∞(c) =

{

∞ if 0 6 c 6 5
16

−3 log2(q(1 − c)) if 5
16 < c 6 1

(6.11)

Remark 6.22. For a given confidence level, in this toy example, using balanced typicality as the grading to be threshold
generally gives a higher inference of min-entropy than inclusive typicality. Formally, this is because inclusive typicality is
always at least balanced typicality, and therefore its inferred sets contain the inferred sets from balanced typicality. When we
infer a value of min-entropy by taking an infimum, we arrive at the inclusive inference being at most the balanced inference.

Remark 6.23. In this example, the infima of the inferred sets do not actually belong to the sets.

Remark 6.24. The infimum of an empty set is, by convention, taken to be infinite. The inference of infinite entropy in three
bits is absurd, but this inference is only made at low confidence levels.

6.1.5 Maximal Adjusted Likelihood

Figure 4: Adjusted Likelihood, Toy Example, with x = (0, 1, 1)

Adjusted likelihood tσ1 , is a special case of generalized typicality (4.12) where σ1(x) = x. In this toy example,
adjusted likelihood tσ1 , with x = (0, 1, 1), works out to be:

tσ1(x, p) =
1

2

(

1 + p2(1 − p) − ((1 − p)2 + p2)3
)

=
1

2
(6p − 17p2 + 31p3 − 36p4 + 24p5 − 8p6) (6.12)

This adjusted likelihood grading seems to have a maximum at around p̂ ≈ 0.559. The corresponding inference for
min-entropy is about 2.52 bits, considerably larger than the inference made with the maximum likelihood inference.
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6.1.6 Threshold Adjusted Likelihood

The inferred set of min-entropies for a given threshold level t and sample value x = (0, 1, 1) is given by:

H∞(itι>t(x)) =

{

∞ if t > tι(x, p̂) ≈ 0.504

(−3 log2 q(t), 3] if 0 6 t < tι(x, p̂)
(6.13)

where p̂ is maximal value of adjusted likelihood as described in §6.1.5, and q(t) is now the unique solution in the
interval of [p̂, 1] of tι(x, q(t)) = t.

At threshold and confidence level c = t = 1/2, the taking the infimum of the inferred min-entropy given an
estimate of about 2.11 bits of min-entropy.

6.1.7 Frequency Statistic Induced Inferences

The value of the frequency statistic at sample x = (0, 1, 1) is v = f(x) = (1, 2). The induced probability for v = (1, 2)
is

Qp(v) = 3p2(1 − p). (6.14)

6.1.7.1 Maximal Induced Likelihood The induced likelihood is Lv(p) = 3Lx(p) where Lx is the direct like-
lihood. So, Lv is maximized at the same value of Lx, which is p̂ = 2

3 . The induced inference for min-entropy is
therefore the same as direct inference: about 1.75 bits.

6.1.7.2 Induced Inclusive Typicality The frequency statistic value v = (1, 2) has induced inclusive typicality
1 whenever

p ∈
[

1
2 , 3

4

]

. (6.15)

Taking the minimum value of the min-entropy over this range gives an inference of only about 1.24 bits.

Remark 6.25. The directed inference using maximal inclusive typicality was 3 bits of min-entropy, so the use of sample statistic
induced inference has, in this case, reduced the entropy estimate, even though the same inference method was used, namely
maximal inclusive

Remark 6.26. This example shows that the maximal inclusive typicality is not always too optimistic. Indeed, in this case, it
seems to be slightly too pessimistic.

More generally the induced inclusive typicality at x = (0, 1, 1) is the function

g1(x, p) =























3p2 − 2p3 if 0 6 p < 1
1+

√
3
≈ 0.366

1 − 3p + 6p2 − 3p3 if 1
1+

√
3

6 p < 1
2

1 if 1
2 6 p 6 3

4

1 − p3 if 3
4 < p 6 1

(6.16)

6.1.7.3 Induced Balanced Typicality Induced balanced typicality at x = (0, 1, 1) is the function

g1/2(x, p) =



















































3
2p2 − 1

2p3 if 0 6 p < 1
1+

√
3
≈ 0.366

11
2 − 3

√
3 ≈ 0.304 if p = 1

1+
√

3

1 − 3p + 9
2p2 − 3

2p3 if 1
1+

√
3

< p < 1
2

5
8 if p = 1

2

1 − 3
2p2 + 3

2p3 if 1
2 < p < 3

4
37
64 if p = 3

4

1 − 3
2p2 + 1

2p3 if 3
4 < p 6 1

(6.17)
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As p approaches 1
2 from above, balanced typicality a value of 13

16 ≈ 0.81. The supremum of the balanced typicalities
is 13

16 , although this value is never attained. One could interpret the maximal frequency-induced balanced typicality
to occur at p̂ = 1

2 + ǫ, for arbitrarily small ǫ > 0. The resulting inference for entropy is about 3− ǫ bits, for arbitrarily
small ǫ > 0.

In this case, the maximal frequency-induced balanced typicality still seems to produce a inference about min-
entropy that is too optimistic.

Remark 6.27. Balanced typicality actually has a local minimum at p = 2
3
, where it takes value 7

9
≈ 0.78. As p approaches

3
4

from below, the typicality approaches 101
128

≈ 0.79. At threshold levels, between 7
9

and 101
128

the threshold inferred set is not
connected.

6.1.7.4 Induced Adjusted Likelihood The frequency-induced adjusted likelihood at x = (0, 1, 1) is

tσ1(x, p) = 3p − 21

2
p2 +

53

2
p3 − 39p4 + 30p5 − 10p6 (6.18)

This function seems to have a maximum at around p ≈ 0.628, so that the maximal frequency-induced adjusted
likelihood estimate for min-entropy is about 2.02 bits.

Remark 6.28. In this case, the effect of inducing on the sample statistic frequency, has reduced the maximum adjusted likelihood
estimate.

6.1.8 Partition Statistic Induced Inferences

The value of the partition statistic at sample x = (0, 1, 1) is θ = φ(x) = (2, 1). The only other possible value of the
partition statistics is θ′ = (3, 0). The induced probability for θ = (2, 1) is

Qp(θ) = 3p(1 − p) (6.19)

6.1.8.1 Maximal Induced Likelihood So the induced likelihood is Lθ(p) = 3p(1 − p) = 3
(

1
4 −

(

p − 1
2

)2
)

.

This form of the likelihood shows to be maximized at p̂ = 1
2 . The resulting inference for min-entropy is 3 bits.

Remark 6.29. That the partition statistic essentially ignores the values of the entries may in part explain why the maximal
induced likelihood distribution does not favor 1 or 0.

6.1.8.2 Maximal Induced Inclusive Typicality Because the partition statistic in the (2, 3) independent model
can only takes two values, statistic value θ = (2, 1) has induced inclusive typicality 1 when 3p(1 − p) > 1

2 , which
holds whenever

p ∈
[

1
2 −

√

1
12 , 1

2 +
√

1
12

]

. (6.20)

Taking the minimum value of the min-entropy over this range gives an inference of only about 1.02 bits.

6.1.9 Bayesian Inference

Bayesian inference requires an a priori distribution on the probability space Π. For this example, let us assume a
uniform distribution on Π = [0, 1]. For x = (0, 1, 1), recall that the standard likelihood grading was Lx(p) = p2(1−p),
so the Bayesian grading works out to be:

Bx(p) =
p2(1 − p)

∫ 1

0 p2(1 − p)dp
= 12p2(1 − p). (6.21)

Because this grading is just a constant scaling of the likelihood grading, it gives the same maximally graded inference.
It is unclear how to use grading for thresholding.
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One can use the Bayesian grading to calculate an average inference over the Π of the inferred min-entropy. Such
averaging is probably ill-advised for cryptographic applications, but its computation would be as follows:

∫ 1/2

0

−3 log2(1 − p)Bx(p)dp +

∫ 1

1/2

−3 log2(p)Bx(p)dp (6.22)

which seems to be about 1.69 bits.

6.1.10 Working Entropy

The working entropy at 1 and 2 bits of workload are now considered for the (2, 3) independent model. Assuming
p > 1

2 , the working entropies are:

H(w)(p) =

{

−2 log2(p) if w = 1

−2 log2(p) − log2(3 − 2p) if w = 2
(6.23)

For p < 1
2 , replace p by 1 − p in the formula above.

6.1.10.1 Maximum Likelihood Estimate The maximum likelihood inference for p is p̂ = 2
3 . Applying (6.23)

at workload of 1 bit gives about 1.17 bits of entropy. Applying (6.23) at workload of 2 bits gives about 0.43 bits of
entropy.

6.1.10.2 Threshold Inclusive Typicality At a workload of 1 bit and confidence level c, and using the infimum
estimate, the resulting inference is very similar to (6.7), just multiplied by 2

3 , so:

H(1)(c) =











∞ if c = 0

2 if 0 < c 6 1
8

− 2
3 log2(c) if 1

8 < c 6 1

(6.24)

At a workload of 2 bits, it works out to

H(2)(c) =











∞ if c = 0

1 if 0 < c 6 1
8

− 2
3 log2(c) − log2(3 − 2 3

√
c) if 1

8 < c 6 1

(6.25)

6.1.11 Applied Min-Entropy

Suppose that the only information about x that will be applied is f(x) = x0 ⊕ x1 ⊕ x2. The applied model is
(Π, Y, Q), with the same probability space Π = [0, 1] as before, applied sample space Y = {0, 1}, and applied
probability function Q, which works out from (3.20) to be

Qp(y) =

{

(1 − p)(1 − 2p + 4p2) if y = 0

p(3 − 6p + 4p2) if y = 1
(6.26)

The applied min-entropy, as a function of p is therefore:

Hf(∞)(p) =

{

− log2((1 − p)(1 − 2p + 4p2)) if 0 6 p 6 1
2

− log2(p(3 − 6p + 4p2)) if 1
2 6 p 6 1

(6.27)

Remark 6.30. The applied min-entropy is strictly less than the min-entropy. At p = 1
2

the applied min-entropy is one third
that of the min-entropy. But as p → 1 or p → 0, the ratio of the min-entropy to the applied min-entropy approaches one.

Remark 6.31. The applied min-entropy of f(x) as function has a plateau around p = 1
2
, whereas the min-entropy x has a sharp

peak. So the applied min-entropy, in this example, is is less affected than the min-entropy by slight deviations in p, at least
when p is close to a uniform distribution.
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6.1.11.1 Maximal Likelihood At the maximal likelihood inference p̂ = 2
3 the applied min-entropy is about

− log2(
14
27 ) ≈ 0.948 bits.

6.1.11.2 Inclusive Typicality Taking the infimum of threshold inclusive typicality inference, gives the following:

Hf(∞)(c) =











∞ if c = 0

1 if 0 < c 6 1
8

− log2(3
3
√

c − 6
3
√

c2 + 4c) if 1
8 < c 6 1

(6.28)

at a confidence of c.

6.1.12 Contingent Min-Entropy

Suppose that the adversary can learn the function f(x) where f is defined as:

f(x) =

{

0 if x ∈ {(0, 0, 0), (1, 1, 1)},
1 otherwise.

(6.29)

Remark 6.32. One reason that an adversary might learn such a function f(x) is that the amount of inferred entropy may
depend strongly on the function f(x), and thus the actions that would be taken by cryptographic implementation in an effort
to gather enough entropy would need to differ, thereby creating a higher chance of a side channel.

Remark 6.33. Another possible reason that an adversary might learn such a function is that f(x) is the exclusive-or of the
bits in the representation of x0 + x1 + x2.

For given p ∈ Π, the general formula (3.22) for contingent min-entropy works out to be:

H∞|f (p) =

{

−2 log2(1 − p) if 0 6 p 6 1
2

−2 log2 p if 1
2 6 p 6 1

(6.30)

Remark 6.34. For example, when p = 1
2
, the contingent entropy is 2 bits. Intuitively, this is because an adversary has a

strategy to guess x with probability 1
4
.

One such strategy is to guess x = (0, 0, 0) when f(x) = 0 and to guess x = (0, 0, 1) when f(x) = 1.
The first case occurs 1

4
of the time, and the adversary guess is right 1

2
of that time, making for a correct guess 1

8
of the

time. The second case occurs 3
4

of the time and the adversary’s guess is right 1
6

of that time, making for a correct guess 1
8

of
time. These correctly-guessed times are disjoint and total to 1

4
.

The contingent min-entropy in this example works out to always be exactly 2
3 of the min-entropy. Therefore, all

the inferences for min-entropy will scale exactly 2
3 for inferences of contingent min-entropy.

6.1.13 Filtered Min-Entropy

Suppose that an implementation of a source assumed to be in (2, 3) independent model will reject a sample output
of (0, 0, 0) or (1, 1, 1), perhaps on the ground that these sample could have arisen from a deterministic distribution
in the independent model.

Therefore, the adversary wishing to guess x can exclude these values. For cryptographic purposes, one must
consider the filtered entropy of x based on the knowledge that the adversary would possess. In other words, the
adversary has knowledge that x ∈ Y ( X where Y = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Applying
(3.26), maximizing, and taking the negative logarithm to the base two, yields a filtered min-entropy value of:

log2(3) − log2(max(p, 1 − p)) (6.31)

The inferred set of distribution for p does not depend on the parameter, so to infer the filtered entropy, it will suffice
to apply the filtered entropy to the inferred sets, and take infima.
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6.1.13.1 Maximum Likelihood Estimate The maximum likelihood inference gives p̂ = 2
3 . Applying (6.31)

gives an inferred filtered entropy of 2 log2(3) − 1 ≈ 2.17 bits of filtered entropy.

6.1.13.2 Threshold Inclusive Typicality At confidence level c, the filtered entropy, works out to be (by
adapting (6.7)),

Ic(x) =











∞ if c = 0

log2(3) + 1 if 0 < c 6 1
8

log2(3) − 1
3 log2(c) if 1

8 < c 6 1

(6.32)

Remark 6.35. As confidence levels c approaches 1, the threshold inclusive typicality inferred min-entropy approaches 0, while
the threshold inclusive inferred filtered entropy approaches log2 3 ≈ 1.58.

The reason that inferred min-entropy is much lower is that it allows for the possibility of x = (1, 1, 1), which could occur
with probability nearly 1 when the confidence level approaches 1. By contrast, the filtered entropy, as defined above, does not
allow x = (1, 1, 1), because (1, 1, 1) is filtered.

Remark 6.36. In a cryptographic application, this example is a little artificial. In the case of prospective assessment, as c → 1,
the inferred min-entropy approaches 0, because p → 1. A source is likely to result in (1, 1, 1) and therefore by rejected.

So, as noted before, the possibility of rejection is not reflected in the definition of filtered entropy. If the source can be
freely sampled until the result is not rejected, then indeed, the higher inferred contingent entropy properly reflects reality.

But in this report, it is generally presumed that the source is expensive to sample. So, a low inferred min-entropy does
really reflect something about the rate at which entropy can be drawn from the source.

6.1.14 Sample Entropy

In this section, inferences about the sample-dependent parameter sample entropy (§3.3.1) are made.

Remark 6.37. Recall that sample entropy is mainly useful retrospective inference.

Remark 6.38. Most inference methods given sample x = (0, 1, 1) in the (2, 3) independent model infer a set of distributions
whose min-entropy infimum distribution has p > 1

2
, roughly because 1 appears more often than 0 in the sample x. For such

a distribution with p > 1
2
, the sample value (1, 1, 1) is at least as likely the given sample. Indeed, when p > 1

2
, the sample

(1, 1, 1) is more likely, and is the sample which gives rise to the min-entropy of the distribution p.
In these cases, x = (0, 1, 1) has sample entropy at least as high as the min-entropy of p.

Remark 6.39. One usually applies retrospective inference, when one does not wish to waste entropy, so a higher value of sample
entropy is not to be discarded.

The inferred set of probability distribution is the same as for min-entropy. The remaining task is to apply the
sample entropy parameter, and then take the infimum.

6.1.14.1 Maximal Likelihood Taking the maximum likelihood inference gives p̂ = 2
3 for the solely inferred

distribution. The inferred sample entry is I(p̂, x) = − log2(p̂
2(1 − p̂)) = 3 log2(3) − 2 ≈ 2.75.

Remark 6.40. By comparison, the inferred sample entropy 2.75 is exactly 1 bit greater than the inferred min-entropy 1.75,
under the same inference method (maximal likelihood estimation).

6.1.14.2 Threshold Inclusive Typicality Each threshold level t determines, under threshold inclusive typical-
ity, a set of inferred distributions ig1>t(x), which were calculated in (6.5). Applying the parameter sample entropy
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p 7→ I(p, x) to each of these subsets of Π, seems to gives

I(ig1>t(x), x) =































∅ if t = 1

{3} if 7
8 6 t < 1

(

− log2

(

t − 1 + (1 − t)2/3
)

, 3
]

if 19
27 6 t < 7

8

[3 log2(3) − 2, 3] if 1
2 6 t < 19

27

[3 log2(3) − 2,− log2 (q(t))] if 0 6 t < 1
2

(6.33)

where q(t) is the function taking value in interval [0, 1
2 ] such that 3q(t)2 − 2q(t)3 = t.

Remark 6.41. At thresholds below 1
2
, the inferred interval of sample entropies contains values larger than 3, which is an

instance of Remark 3.50.

For confidence level c = 1 − t the infimum of the inferred sample entropies is:

Ic(x) =



















3 log2(3) − 2 if c > 8
27

− log2(−c + c2/3) if 1
8 < c 6 8

27

3 if 0 < c 6 1
8

∞ if c = 0

(6.34)

6.1.15 Eventuated Min-Entropy

Suppose that the probability model is the (2, 5) independent model but that, at the time of making inference about
p, the first three bits of x have been observed to be (0, 1, 1). So, in other words, the event E that has occurred is
that (x0, x1, x2) = (0, 1, 1).

The first three bits of the x adhere to the (2, 3) independent model, so the inferences to be made about p are
those that would be made in (2, 3) independent. In particular, the inferences about p of the subsections above apply.
In this section, inferences will be made about the sample-dependent parameter eventuated min-entropy (§3.3.2).

The eventuated min-entropy is

H∞‖E(p, x) = − log2(1 − p)p2 max(p, 1 − p)2 (6.35)

6.1.15.1 Maximal Likelihood The maximum likelihood inference for p was p̂ = 2
3 (actually a singleton set),

from §6.1.2.
The inferred eventuated min-entropy under maximum likelihood inference is therefore 5 log2(3) − 4 ≈ 3.92 bits.

6.1.15.2 Threshold Inclusive Typicality Applying the infimum value of the eventuated min-entropy param-
eter H∞‖E from (6.35) to each of the threshold inclusive typicality inferred sets of distributions from (6.5), and
expressing the results as a function of the confidence level c = 1 − t, gives

H∞‖E:g1>(1−c)(x) =



















∞ if c = 0

5 if 0 < c 6 1
8

− 4
3 log2 c − log2(1 − 3

√
c) if 1

8 < c 6 64
125

5 log2(5) − 8 ≈ 3.61 if 64
125 6 c 6 1

(6.36)

Remark 6.42. The distribution p = 4
5

actually minimizes the eventuated min-entropy. Consequently at high enough confidence
levels, specifically, as shown above, the infimum of the inferred eventuated min-entropies is realized at p = 4

5
.

Recall that the adversary is presumed to know p. When p > 1
2
, the generally optimum single guess at x for adversary is

to guess x = (1, 1, 1, 1, 1). Because the event E has occurred this optimum strategy will fail, because x0 = 0 in the event E
and x0 in the optimal guess..

Nevertheless, eventuated min-entropy attempts to account for all possible strategies, including a strategy to guess x =
(0, 1, 1, 1, 1). What eventuated min-entropy measures is the general success rate of such a strategy as if the event E had not
occurred.
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6.1.16 Applied Eventuated Min-Entropy

Suppose that the probability model is the (2, 5) independent model but that, at the time of making inference about
p, the first three bits of x have been observed to be (0, 1, 1). So, in other words, the event E that has occurred is that
(x0, x1, x2) = (0, 1, 1). Explicitly, E = {(0, 1, 1, 0, 0), (0, 1, 1, 0, 1), (0, 1, 1, 1, 0), (0, 1, 1, 1, 1)}. Furthermore, suppose
that only the middle three bits f(x) = (x1, x2, x3) are to be used.

The first three bits of the x adhere to the (2, 3) independent model, so the inferences to be made about p are those
that would be made in (2, 3) independent. In particular, the inferences about p of the subsections above apply. In
this section, inferences will be made about the sample-dependent parameter applied eventuated min-entropy (§3.3.3).

The applied eventuated min-entropy is

Hf(∞)‖E(p, x) = − log2 p2 max(p, 1 − p) (6.37)

6.1.16.1 Maximal Likelihood The maximum likelihood inference for p was p̂ = 2
3 (actually a singleton set),

from §6.1.2. The inferred eventuate min-entropy under maximum likelihood inference is therefore 3 log2(3)−3 ≈ 1.75
bits.

6.1.16.2 Threshold Inclusive Typicality Applying the infimum value of the eventuated min-entropy param-
eter Hf(∞)‖E from (6.37) to each of the threshold inclusive typicality inferred sets of distributions from (6.5), and
expressing the results as a function of the confidence level c = 1 − t, gives the same inferred entropy as the inferred
min-entropy from (6.7).

Remark 6.43. For high confidence c, the inferred applied eventuated min-entropy approaches zero in this example, whereas
eventuated min-entropy in the previous example did not approach zero. The main difference accounting for this is that here
the adversary’s ideal strategy (not hinging on event E), knowing p > 1

2
is to guess f(x) = (1, 1, 1), whereas in the previous

example, for p > 1
2

(not hinging on event E), the adversary’s ideal strategy was to guess (1, 1, 1, 1, 1).

6.1.17 Contingent Eventuated Min-Entropy

Suppose that the model is the (2, 5) independent model. Suppose that, at the time of making an inference, the event
E concerning the sample x that (x0, x1, x2) = (0, 1, 1) is observed. Suppose that the adversary will learn the value
of g(x) where g is the function g : X → {0, 1, 2, 3, 4, 5} : x 7→ x0 + x1 + x2 + x3 + x4. The contingent eventuated
min-entropy from §3.3.4 may be inferred as follows.

A function f supplementary to g that may minimize the applied eventuated min-entropy Hf(∞)‖E)(p, x) is a
function f : X → {0, 1, 2, . . . , 9} such that

f :



















(0, 1, 1, 0, 0) 7→ 0

(0, 1, 1, 0, 1) 7→ 0

(0, 1, 1, 1, 0) 7→ 1

(0, 1, 1, 1, 1) 7→ 0

(6.38)

and such that, for each j ∈ {0, 1, 2, 3, 4, 5}, the function f maps g−1(j) injectively into the set {0, 1, . . . ,
(

5
j

)

− 1}. If
this function f does indeed minimize the applied min-entropy, then contingent min-entropy is given by

H∞|g‖E(p, x) = − log2 p2(1 − p)((1 − p)2 + (1 − p)p + p2) (6.39)

Contingent eventuated min-entropy seems to have a minimum at

p =
8 +

3
√

107 + 15
√

129 +
3
√

107 − 15
√

129

15
≈ 0.702 (6.40)
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6.2 Polling Inference

Examples of inference in the (2, N) independent model, with N ≫ 2 are considered in this section.
As in §6.1, we use the simplified description of the model, in which Π = [0, 1], with distribution p mapping to

distribution (1 − p, p) in the standard description of the model.
Whereas §6.1, and §6.3 could be considered as low sample size inferences in the independent model, the example

in this section could be considered as a large sample size. Intuition suggests the inferences should have higher
confidence levels, and that the resulting inference depend less on the inference method.

This example could arise in various ways. Coins could have been flipped, either one coin N times, or N coins
once, or something in between. This type of inference also arises in non-cryptographic applications such as in polling:
say N people are queried on a yes or no.

It is again emphasized that the independent model is being assumed in this section, not assessed. Again, it is
assumed that the N bits are independent and identically distributed. It is under these assumptions that inferences
will be made.

Each example will address a distinct inference method. A first part of each example may treat the general case
of any N and any sample x. For the sake concreteness, a second part of each example may treat a specific choice of
N and x. For consistency of comparison, each example will use the same specific N and x. For ease of computation,
the fairly small choice N = 32 will be used. For x, we will use:

x = (1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1) (6.41)

This value x has 20 entries of value 1, and 12 of value 0. In the independent model, the order of the entries does
not matter, so the 20 ones could be have appeared first, following by the zeroes, without affecting the inferences. Of
course, if the probability model was a Markov, then the order of the bits is crucially important.

Remark 6.44. The value of x above is derived from the binary expansion of
√

23. Taking into account the specialized manner
in which this x was actually selected produces a model much different than the independent model, which would likely yield
much lower entropy estimates.

6.2.1 Maximum Likelihood

Recall that likelihood function is Lx(p) = Pp(x) = (1 − p)f(x)0pf(x)1 , where f(x) is the frequency vector §5.4.2 of x.
Just as the probability model was given a simplified description, we simplify the frequency vector to a scalar f(x)
counting the number of ones in x. (So, the former frequency vector is now (N − f(x), f(x))). In this notation,

Lx(p) = (1 − p)N−fpf (6.42)

To maximize Lx, calculate its derivative as L′
x(p) = −(N − f)(1− p)N−f−1pf + f(1− p)N−fpf−1 = (f(1− p)− (N −

f)p))(1 − p)N−f−1pf−1 = (). For 0 < f < N , the solutions to L′
x(p) = 0 are p = 0 and p = f

N and p = 1. (At f = 0
and f = N , the solutions are p = 1 and p = 0 respectively.) Because Lx is differentiable, any local maximum p̂ must
occur at a critical point with Lx(p̂) = 0, or at boundary of Π = [0, 1]. It is straightforward to confirm, p̂ = f

N is the
global maximum in [0, 1] for all 0 6 f 6 N . (

Remark 6.45. For the f ∈ {0, N} the global maximum occurs at a boundary point where L′
x(p̂) 6= 0. Otherwise the global

maximum occurs at a local minimum interior to the domain [0, 1].

With the specific choices of x from (6.41), we get an inferred distribution of p̂ = 20
23 = 5

8 .
The inferred min-entropy is H∞(p̂) = − log2 Pp̂(x̂) = − log2 p̂32 ≈ 21.7 bits. This is due the the fact p̂ > 1

2 makes
the sample x̂ = (132) the most likely sample value.
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6.2.2 Inclusive Typicality

Using the notation f(x) from §6.2.1, the inclusive typicality is:

g1(x, p) =
∑

y:Pp(y)6Pp(y)

Pp(y)

=
∑

y:(1−p)N−f(y)pf(y)6(1−p)N−f(x)pf(x)

(1 − p)N−f(y)pf(y)

=











∑N
e=f(x)

(

N
e

)

(1 − p)N−epe if 0 6 p < 1
2

1 if p = 1
2

∑f(x)
e=0

(

N
e

)

(1 − p)N−epe if 1
2 < p 6 1

(6.43)

The inclusive typicality at the maximum likelihood estimate p̂ is about 0.566. The inclusive typicality as p approaches
1
2 from above (but not at 1

2 ) is about 0.945.
If we want to have confidence level of 0.999, which corresponds to a threshold of 0.001, then the largest value of

p meeting this threshold is p ≈ 0.857. The corresponding infimum inference for the min-entropy of p seems to 7.12
bits of entropy.

Remark 6.46. Generally, as N approaches infinity, if f(x) > N
2

, then, at all but the most lowest and highest threshold levels,

the inferred set of distributions takes the form of an interval [a, b] where a = 1
2

and b ≈ f(x)
N

. Indeed, in the interval [a, b], the
typicality is nearly one, and elsewhere is is nearly zero.

The upper end of the interval corresponds to the maximum likelihood estimate.
The lower bound of the interval reflects the fact that for distributions p ' 1

2
, The function Pp of the sample x is sufficiently

flat in the sense that with probability near to 1, it holds that Pp(y) 6 Pp(x).

Remark 6.47. A more precise description of the approximate shape of the inclusive typicality for large N is given by the Gauss
error function.

Remark 6.48. From the perspective of general inference, the inference from inclusive typicality may seem too weak, in that it
always infers some distributions close to 1

2
, whereas one might expect that inference should strongly value distributions near

to f(x)
N

. (Sample statistic induced inference may resolve this.)
From the perspective of cryptography, the arguable weakness of the inference makes no difference in this case, because by

taking the infimum of the entropies in the interval, we find the infimum is unaffected by the inclusion of distributions near to
1
2
.

6.2.3 Balanced Typicality

As N gets larger, the difference between inclusive and balanced typicality becomes negligible compared to the total
typicality.

6.2.4 Adjusted Likelihood

The adjusted likelihood seems to take a maximum value at p̂ ≈ 0.5516. The inferred min-entropy is then about 27.5
bits.

6.2.5 Frequency Statistic Induced Inference

The induced likelihood of frequency is proportional of the standard likelihood in the sense that Lf(x)(p) =
(

N
f

)

Lx(p),

so taking the induced inference under maximal likelihood is the same, namely p̂ = f(x)
N .

The frequency induced inclusive typicality takes the form

g1(f, p) =





a(f,p)
∑

e=0

+

N
∑

e=b(f,p)





(

N

e

)

pe(1 − p)N−e (6.44)
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where a(f, p) and b(f, p) are integers determined by f and p, because the likelihood function is unimodal, increasing
for f 6 pN and decreasing for f > pN . So, a(f, p) = f if f 6 pN and b(f, p) = f if f > pN .

For large N , the probability function takes the shape of a normal curve, due to the Central Limit Theorem. This
suggests the approximations a(f, p) ≈ pn − |pn − f | and b(f, p) ≈ pn + |pn − f |.

For the specific N = 32 and sample x from (6.41), which has f(x) = 20, the function p 7→ g1(f, p) from (6.44)
was estimated using floating point arithmetic at value p = m

8192 for integers m with 0 6 m 6 8192, and plotted as
shown in Figure 5.

Remark 6.49. The non-smooth, stepped appearance of the graph seems to be the actually correct effect of the shifting summa-
tion term limits, and is not merely some round effect. As N gets, this curve should probably approach a smoother curve. The
shape of Figure 5 might suggest that as N goes to infinity, the curve would approach in shape a normal curve, but actually
it should approach in shape the sum of Gauss error function and an reflected Gauss error function. The curve will be smooth
except for a sharp peak at the maximum.

Figure 5: Frequency-Induced Inclusive Typicality Plot in the (2, 32) independent model

Remark 6.50. By just casually glancing at Figure 5, at a confidence level of 0.9, the inferred set of distributions seems to be
about [0.47,0.75]. Applying the min-entropy parameter gives an inferred set of about [13.28,32]. Taking the infimum of the
min-entropies, gives 13.83 bits of entropy at a 90% confidence level.

Remark 6.51. Maximal inclusive typicality should in theory be obtained whenever p gives a peak in the likelihood at frequency
value f = 20, which should occur when p ∈ [ 19

32
, 20

32
]. Figure 5 is only slightly off from this.

6.3 Low Sample Sizes in the Independent Model

The hypothetical example from §1.1.2.8 is now addressed under the formal approaches of this report. Recall that
the independent probability model was assumed. Specifically, the (m, N) independent with m = 232.
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Remark 6.52. Some heuristic justification for the independent model. Muons are elementary particles similar to electrons but
much more massive. Because of their large mass, creation of muons requires amounts of localized energy so large that they
typically do not arise to nuclear reactions. Thus creation of muons on earth requires accelerators.

Muons passing through the atmosphere arise from the cosmic rays, primarily intergalactic protons that have been accel-
erated by galactic magnetic fields over very long distances to very high speeds. These protons strike atoms in the atmosphere
and create muons. The muons then continue in the nearly the same direction as the original proton, ionizing atoms along the
way, until the muons decay into a high-energy electron and neutrinos. Because of the mass, charge, and high speed of cosmic
ray muons, they are highly penetrating and can be used to form images of the moon kilometers underground.

Given the above, it seems not unreasonable that each muons passing through a detector may be independent. Especially
suggestive of this assumption would the intergalactic source: since perhaps muons from different directions would have sources
very far apart within the universe, and ought to have independent speeds.

Of course, hypothesis testing can be applied to this assumption. Possible reasonable causes for lack of independence might
be bursts or regularity of muons from a certain directions of the universe.

In our hypothetical example, a third party laboratory is assessing the source, collecting N = 1024 muon measures,
so the model from the lab’s perspective is the (m, N) = (232, 210) independent model. Because N ≪ m, the sample
size may be deemed as low.

Recall the supposition that the laboratory observes 1023 distinct values among the 1024 muon speed measure-
ments. In other words, one value repeats and all other values are distinct. Because the independent model is assumed,
the actual values and the order in which they occurred are irrelevant for inferring entropy. The independent model
implies that the assessed entropy is a function of sorted frequencies. So, without loss of generality, it can be assumed
that x = (x0, x1, . . . , xN−1) = (0, 0, 1, . . . , N − 2).

Because the independent model is assumed, each muon measurement contributes equally to the entropy. The lab
can divide its overall assessment by N to determine the entropy per component. This will determine the amount of
entropy per muon measurement.

The lab’s observations will not include the sample values used in cryptographic applications. So the entropy
assessment will be prospective. In the field where the source is deployed, if the assessed min-entropy per component
is h bits, and the goal it is to obtain to k bits of min-entropy, then a value of N = ⌈k/h⌉ can be used.

6.3.1 Maximal Likelihood Estimate

It is verified below that the maximal likelihood estimate inference for the probability distribution p is to take the
relative frequencies of from the sample x. More precisely, the maximal likelihood inference for the distribution is the
set {p̂}, where

p̂i =











2
N if i = 0
1
N if 1 6 i 6 N − 2

0 if N − 1 6 i 6 m − 1

(6.45)

The set-value inference for the min-entropy is then {H∞(p̂)}. Narrowing the set-valued inference to a point-valued
inference, by taking the minimum, and evaluating the result numerically gives 9216 bits of min-entropy, which is 9
bits of min-entropy per component of x.

Remark 6.53. This estimate is considerably lower than the heuristic argument for about 20 bits in the introduction. On one
hand, a lower estimate is more prudent, causing the implementer to seek out more entropy. On the other hand, a low entropy
estimate is expensive, because more entropy has to be gathered which can be costly.

The verification mentioned above for given maximum likelihood estimate for independent model is as follows.
Apply (A.10) to the objective f

f(p) = −Lx(p) = −p2
0p1p2 . . . pN−1 (6.46)

The gradient of the f is given by

∇f(p) = (2Λ/p0, Λ/p1, . . . , Λ/pN−2, 0, . . . , 0), (6.47)
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where Λ = −Lx(p), provided none of p0, . . . , pN−2 are zero. If any of p0, p1, . . . , pN−2 are zero, then the likelihood is
zero, and it is easy to find p such that the likelihood is positive. Therefore, we can assume that none of p0, . . . , pN−2

are zero.
The right hand side of (A.10) can be seen to be simply NΛ. Therefore the m inequalities of (A.10) becomes,

upon multiplication of appropriate denominators and division by NΛ < 0 become

2/N 6 p0 (6.48)

1/N 6 p1, . . . , pN−2 (6.49)

0 > pN−1, . . . , pm−1 (6.50)

which, with the usual defining conditions on the probability distribution p, implies the result claimed above.

Remark 6.54. The inclusive typicality of the the sole distribution p̂ in the maximum likelihood inferred set has value

g1(x, p̂) =

„

1 − 2

N

«N „

5 +
10

N − 2
+

4

(N − 2)2

«

≈ 0.68 (6.51)

which is less than 1, because other sample values have higher probability than x, in particular, any sample y in which the
component 0 appears more than twice, and all other components are at most N − 2. In particular, the most likely sample is
(0, 0, . . . , 0), and this is the sample value, that an adversary knowing p = p̂, should guess. This sample is 2N−2 times more
probable than the obtained sample x, under the inferred distribution p̂.

Remark 6.55. The balanced typicality of the the sole distribution p̂ in the maximum likelihood inferred set has value

g1(x, p̂) =

„

1 − 2

N

«N „

4 +
4

N − 2
+

2

(N − 2)2

«

≈ 0.54 (6.52)

which is more than 1/2, indicating that the p̂ has higher balanced typicality than any subuniform distribution consistent with
x.

6.3.2 Maximal Inclusive Typicality

Inclusive typicality always takes a maximal value of 1. For the given sample x, the inclusive typicality is 1 provided
Pp(x) > Pp(y) for all y ∈ X . We claim that this will be true whenever:

p0 = p1 = · · · = pN−2 > pN−1, . . . , pm, (6.53)

because Pp(x) = p2
0p1 . . . pN−2. To prove this claim, suppose otherwise. This supposition implies pi < pj for some

i, j with i 6 N − 2. Replace a pi by a pj to get a Pp(y) > Pp(x). More precisely, let yi+1 = j and let yk = xk for
k 6= i + 1.

This set of probability distributions given by (6.53) is more extensive than that given by a maximum likelihood
estimate. For example, it includes the (fully) uniform distribution. The directly inferred set of min-entropies is
correspondingly extensive. For example, in includes the inference of log2(N) bits.

Nevertheless, taking the minimum inferred min-entropy corresponds to the probability distribution in which
pi = 1/(N − 1) for i ∈ [0, N − 2] and otherwise pi = 0. For the choice of N = 210, we get an inferred min-entropy
log2(2

10 − 1) ≈ 9.9986 bits of entropy per component of x.

Remark 6.56. This gives an estimate of almost one more bit of entropy than we obtained from maximal likelihood estimate.

Remark 6.57. This estimate is still considerably lower than the heuristic argument for about 20 bits in the introduction.

Remark 6.58. The probability distribution at which the minimum inferred entropy is attained is a subuniform distribution,
specifically an (N − 1, m)-subuniform distribution.
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6.3.3 Maximal Balanced Typicality

Consider distributions p with inclusive typicality of 1, that also approach the uniform distribution X . The balanced
typicality of these distributions approaches:

1 − 1

2

(

N − 1

m

)N

(6.54)

or about 1 − 222000, which is very close to 1. If these distributions have higher balanced typicality than any others,
then the maximal balanced typicality is a limit, with no actual distribution hitting the maximum. Nevertheless, the
limit of the distributions exists and is the uniform distribution, which gives an estimate of 32 bits of min-entropy
per component.

Remark 6.59. At this point, the assessments seem too pessimistic or too optimistic compared to the intuition from the
introduction. Indeed, the introduction informally makes use of a sample statistic.

6.3.4 Frequency Statistic Induced Inference

The function s : X → Y given by the frequency statistic defined in §5.4.2 induces probability model (Π, Y, Q) such
that

Qp(y) = M(y)Pp(x) (6.55)

where x ∈ X is such that s(x) = y and M(y) is an integer multiplier counting that the number of x such that
s(x) = y. This holds from (5.1) because that statistic s has the property that for all x, x′ ∈ X and p ∈ Π if
s(x) = s(x′) then Pp(x) = Pp(x

′).
With our specific sample gathered of x = (0, 0, 1, . . . , N −2), we have y = s(x) = (2, 1, . . . , 1, 0, . . . , 0) where there

are N − 2 entries with value 1 and m − N + 1 entries with value 0.
The general formula for the integer multiple M(y) is given by M(y) = N !

y0!y1!...ym! . The general formula for the
probability of y is therefore:

N !
m
∏

i=0

pyi

i

yi!
(6.56)

With our specific sample example gathered y, the value of the multiplier is thus N !/2 and the probability is
1
2N !p2

0p1 . . . pN−2.

6.3.4.1 Induced Inclusive Typicality Consider the distribution p̂ maximal likelihood inference from (6.45).
The frequency-induced inclusive typicality of y = s(x) at distribution p̂ is one. Therefore the maximal induced
inclusive typicality consists of all distributions p reaching induced typicality of one. Taking the infimum of min-
entropies over this set will be at most H∞(p̂), which as above, is 9 bits per component.

Similarly, any threshold graded inference with the frequency-induced inclusive typicality will give, once one takes
an infimum of min-entropies, will give at most 9 bits of min-entropy per component of the sample.

6.3.4.2 Induced Balanced Typicality Let u be an integer with N 6 u 6 m. Let S be a (u−2)-element subset
of {1, . . . , m − 2}, such that {1, . . . , N − 2} ⊆ S. Let pS be a distribution defined by

pS
i =











2/u if i = 0

1/u if i ∈ S

0 if i 6∈ S

(6.57)

The frequency-induced inclusive typicality of x at pS is one, and as such, the distributions pS would seem to good
candidates for maximizing balanced typicality. The frequency-induced balanced typicality of x at pS seems to be:

1 − 1

4

(

m − N + 1

u − N

)

N !

uN
(6.58)
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This seems to be maximized when u = N . When u = N , the distribution pS is the same as distribution in the
maximal likelihood inference.

This suggests that threshold frequency-induced balanced typicality inferences would be similar to threshold
frequency-induced inclusive typicality inferences.

6.3.4.3 Induced Threshold Adjusted Likelihood Letting v run over the possible frequency vectors, the
adjustment term of adjusted likelihood is

∑

v

Qp(v)2 =
∑

v

(

N

v

)2

p2v

= N !2[uN ]
∑

v

m−1
∏

i=0

p2vi

i uvi

vi!2

= N !2[uN ]

m−1
∏

i=0

∑

vi>0

p2vi

i uvi

vi!2

= N !2[uN ]

m−1
∏

i=0

C0(p
2
i u)

(6.59)

where [uN ]F means the coefficient of uN in the power series F , and C0 is the Clifford-Bessel function of order 0.
To be completed.

6.3.5 Partition Statistic Induced Inference

Recall (5.8) which states that that partition statistic induces a probability function given by

Qp(θ) =

(

N

θ

)

mθ(p) (6.60)

For our sample x, where θ = φ(x) = (2, 11023), where the entry 1 is repeated 1023 times. It follows that
(

N
θ

)

= 1024!
2 .

6.3.5.1 Maximal Induced Likelihood Before considering the general problem of optimizing the likelihood
function Lx(p) = Qp(θ) over the whole independent model, consider the more restriction model which considers
of only subuniform distributions. This restriction is a relaxation of the model from §1.1.2.8 which contains three
subuniform distributions, in which the probability vector p has supports of sizes 210, 220 and 230.

Let p(u) be a probability vector, in the (m, N) independent model, that has u entries of 1
u and all other entries

zero. It results in a subuniform distribution on X where the sample with non-zero probability have probability 1
uN .

With this notation and (m, N) = (232, 210), the induced likelihood is

Lx(p(u)) =
1024!

2
1023

(

u
1023

)

u1024
, (6.61)

with a factor of 1023 accounting for the choice of which value is repeated, and the factor of
(

u
1023

)

account for which
of the u entries with non-zero probabilities (as individual entries) appear in the sample.

Based on the assumption that this is the a unimodal function of u, some brute force numerical calculations seem
to give u = 219 − 853 as the value which maximizes the induced likelihood. This is in close agreement with the
inference made in §1.1.2.8.

6.4 Toy Examples in the Markov Model

In this section, two toy examples in the Markov model will be considered:

§6 EXAMPLES Page 77 of 98



Formally Assessing Cryptographic Entropy 6.4 Toy Examples in the Markov Model

• The first example uses a (2, 3)-Markov model with sample value x = (0, 1, 1). The sample space and sample
value are the same as in §6.1. The model is a relaxation of the model in §6.1. Relaxation of the model
generally the effect of reducing the infimum of inferred entropy. Indeed, this sample value of x is the output of
a deterministic distribution in the Markov model.

• The second example uses a (2, 5)-Markov model with a sample value x′ = (0, 1, 1, 0, 1).

6.4.1 Maximum Likelihood Estimate

In the first example, the likelihood function, for x = (0, 1, 1) in the Markov model is

Lx(p) = v0M0,1M1,1 (6.62)

where, recall p = (v, M) is a pair of a vector and a matrix. It is fairly easy to see that Lx is optimized at

p̂ =

((

1
0

)

,

(

0 1
0 1

))

(6.63)

The probability of Pp̂ is maximized at y = (0, 1, 1), with value 1. So the point-valued inferred min-entropy is
H∞(p̂) = 0.

In the second example, the likelihood function, for x′ = (0, 1, 1, 0, 1) in the Markov model is

Lx′(p) = v0M
2
0,1M1,1M1,0 (6.64)

where, recall p = (v, M) is a pair of a vector and a matrix. It is fairly easy to see that Lx′ is optimized at

p̂′ =

((

1
0

)

,

(

0 1
1
2

1
2

))

(6.65)

The probability of Pp̂′ is maximized at x′ = (0, 1, 1, 0, 1), with value 1
4 . So the point-valued inference for min-entropy

is H∞(p̂) = 2 bits.

Remark 6.60. At distribution p̂′: probability 1
4

is assigned to (0, 1, 0, 1, 0), (0, 1, 0, 1, 1) and (0, 1, 1, 0, 1); probability 1
8

is
assigned to (0, 1, 1, 1, 0) and (0, 1, 1, 1, 1); and probability 0 is assigned to all other sample values.

Remark 6.61. The balanced typicality of x′ at p̂′ is 5
8
.

Remark 6.62. The working entropy at a work load two bit of the distribution p̂′ is about 0.19 bits.

6.4.2 Inclusive Typicality

In the case of sample x = (0, 1, 1), the inclusive typicality at the maximum likelihood distribution p̂ is g1(x, p̂) = 1.
So, the maximally graded or threshold graded inference based on inclusive typicality will include p̂ in the set of
distributions. Taking, the infimum of min-entropy over the set of inferred distributions, given an inference of zero
for the min-entropy.

6.4.2.1 Maximally Graded In the case of the sample x′ = (0, 1, 1, 0, 1), the inclusive typicality of the maximal
likelihood estimate p̂′ from the previous section is 1.

So, the inferred set of distributions from taking the maximally graded inference with grading equal to inclusive
typicality is all those the distributions with inclusive typicality equal to one. Since this includes the distribution,
this is at most 2 bits.

Some numerical exploration suggests that 2 is indeed the minimum value of the min-entropy among the distri-
bution with inclusive typicality one.

Remark 6.63. The set of distributions with inclusive typicality at x′ seems, based on numerical computations, largely char-
acterized as follows: M0,1 > 1

2
; and 1

2
M1,1 > c(M0,1) where c is some concave increasing function with c(1) ≈ 0.618; and

0 6 v1 6 M1,1.
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6.4.2.2 Threshold Graded At a confidence level c = 0.99, meaning a threshold of t = 0.01, some numerical
calculations give the distribution p = (v, M) with:

v =

(

1
0

)

, M =

(

0 1
0.003345 0.996655

)

(6.66)

give rise to an inclusive typicality g1(x
′, p) ≈ 0.01. The min-entropy of this distribution is H∞(p) ≈ 0.0145 bits. So,

at a confidence level of about 99%, the inferred min-entropy is at least 0.015 bits.

6.5 Dice

This section illustrates statistical inference about dice rolls. Some inference will be done in various models, and some
hypothesis testing on the models themselves will be done.

Two separate processes were used to generate two sample vectors of the following dice rolls:

x′ = (5, 4, 3, 2, 2, 1, 3, 6, 2, 3, 1, 1, 5, 4, 1, 5, 2, 6, 6, 1, 6, 5, 5, 5) (6.67)

x = (2, 5, 6, 1, 2, 5, 2, 5, 1, 1, 1, 1, 1, 4, 1, 2, 2, 1, 3, 3, 3, 1, 3, 1) (6.68)

Both sample vectors were produced by the author dropping a 15mm die (a cube), with embossed numbers {1, 2, 3, 4, 5, 6}
into a cup. The die was placed so that it touched the inside of the cup, with the top of the die approximately level
with the rim of the cup, with the numeral 1 oriented with its top pointing to the center of the cup. The die was
held so, and then let go, with an effort to let the die have initial velocity zero, and thereby let gravity create motion.
Despite this effort, the motion of the die did seem to have some correlation with the motion of the fingers releasing.
The die then fell to the bottom of the cup, bouncing, rotating, and eventually stabilizing. The numeral facing up
was recorded as above.

Sample vector x′ is the result of 24 consecutive drops into a cup of height 113mm. Sample vector x is the results
of 24 drops into a cup of height 45mm.

6.5.1 The Uniform Model

A commonly assumed model for a a single die roll is the uniform model. It is also commonly assumed that multiple
rolls are independent and identically distributed. Combining these two assumptions gives results in the uniform
model on the sample space {1, 2, 3, 4, 5, 6}N where N is the number of die rolls.

6.5.1.1 Entropy Assessment in the Uniform Model In the uniform model, the single distribution has min-
entropy of 24 log2(6) ≈ 62.0 bits for each of x and x′. This assessment assumes the uniform model, which as will be
shown below, is not very realistic for the sample x.

6.5.1.2 Hypothesis Testing of the Uniform Model A casual inspection of x from (6.68) should suggest that
x does adhere well to the uniform model. Incidentally, observations made during the process used to generate x
indicated some correlation between the motion of the die and release motion of the fingers.

Formally, we can apply hypothesis testing to the assumption of the uniform model. Although hypothesis testing
is not the main topic of this report, a brief foray into hypothesis testing may be illustrative.

One cannot rule out x as being atypical if we limit ourselves to the uniform model, because any sample value is
equally likely. Similarly, the inclusive typicality of all x is 1, and the balanced typicality is 1

2 . The tying effect of
uniform model is in effect.

Sample statistics can be used as tiebreakers. Generally, this report has somewhat discouraged the use of sample
statistics, at least for entropy assessment, and instead encourages the relaxation of the probability model. More
precisely, in entropy assessment, the probability model is deemed well-founded, so the sample statistics should be
only used for tie-breaking in the case that the sample statistics is very consistent with the assumed model, for
example, by being model-neutral.

For hypothesis testing, the probability model is less trusted, but nevertheless, the general idea above for entropy
assessment can be used. One could consider a relaxation of the model, do statistical inference in the alternative model.
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If the sample has significantly higher typicality than in the hypothesized model, one can reject the hypothesized model,
and favor the alternative model.

Alas, in this case, even the approach of an alternative hypothesis above, is ineffective, because the inclusive
typicality was 1 in the hypothesized uniform model, so the alternative cannot have higher typicality. One can blame
inclusive typicality and use balanced typicality. But even with balanced typicality, the uniform model gives 1

2 , which
is very plausible, and not real grounds for rejection. The approach of comparison to inference over the alternative
model does not seem to work well.

An intermediate approach is to use a sample statistic appropriate for the alternative model, such as a model-
neutral one, and then compute the induced typicality of the sample in the hypothesize model. This intermediate
approach seems to have to address the concerns above in the best possible way.

So, in the specific example at hand, the hypothesized model is the uniform model. The alternative model will be
independent model. The sample statistic will be the frequency statistic, which is model-neutral in the independent
model.

The frequency-induced inclusive typicality for x′ is about 0.81 and for x is about 0.02.
These typicality values can be interpreted as follows: x′ can perhaps be considered as highly consistent with the

uniform model. Of course, it is probably always more conservative to consider a more relaxed model. So, given x′,
our confidence in the assumption of the uniform model is not decreased. That is, whatever confidence we had in
the assumption of uniform model is the confidence that we could have, as cryptographers, in x having arisen from a
uniform distribution.

The other sample x has lower typicality, only 0.02. This alone may not be grounds for rejection of the uniform
model, because if the uniform model was correct, one would still get such a result have 2% of the time. In an entropy
assessment context, rejection is somewhat wasteful. So, the low typicality 0.02 should be taken as strong incentive
for relaxing to the alternative model.

6.5.2 The Independent Model

6.5.2.1 Entropy Assessment in the Independent Model The maximum likelihood inference of min-entropy
in the independent model is exactly 48 bits for x′ and about 30.3 bits for x.

Remark 6.64. The values are lower than the inference in the uniform model, as expected because the probability model has
been relaxed.

Remark 6.65. In the case of x, the maximum likelihood estimate means that inferred distribution takes its maximum probability
at x̂ = (1, 1, . . . , 1), the all ones sample vector, and that this probability is about 2−30.3. The sample x̂ is the best guess an
adversary can make given the distribution.

Remark 6.66. The inferred sample entropy, under the maximum likelihood distribution, of x is about 52.4 bits.

Other types of inference methods as applied to the independent model have been illustrated in other parts of this
report, so will not be illustrated again for this example.

Remark 6.67. If one applies a uniformity extractor to x, assuming the independent model, one can derive an integer y uniformly
distributed between 1 and 24!

10!5!4!1!3!1!
≈ 243. Note that this should not be compared to the inferred min-entropy but rather to

the inferred sample entropy of x.
To make prospective inference about some uniformity extractor as the applied function, all that is needed is a precise

description of the uniformity extractor function.

6.5.2.2 Hypothesis Testing of the Independent Model Intuition may suggest that the long subsequence
of 1 entries in x means the independent model is not an accurate assumption for x. In particular, the entry 1 is is
more frequently followed by another 1 than by something else, so order seems to matter, whereas in the independent
model order does not matter. In this section, we attempt to formally quantify this intuition, adhering to the general
principles of this report.

So the approach from §6.5.1.2 will be followed again. The hypothesized model is the independent model. The
alternative model is the Markov model, which is chosen as a simple relaxation of the independent model in which the
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order plays a role. So, the idea is to apply a compute the maximal typicality of x as induced by a sample statistic
that is model-neutral in the Markov model. The maximality is taken over all distributions in the independent model.
If the maximal typicality is low, then it is formally justified to reject the independent model.

Before, embarking on this task, we can see what happens when we compute the of maximal typicality x using
no sample statistic, and with a the frequency statistic which is model-neutral in the independent model. Let us use
inclusive typicality because it is larger than balanced typicality, so a low value of inclusive typicality is a stronger
reason for rejection. Because the uniform distribution u is included the independent model, and inclusive typicality
of x at u is 1, the maximal inclusive typicality is 1.

The frequency statistic for x is y = f(x) = (10, 5, 4, 1, 3, 1). The induced probability for any frequency statistic
z = (z1, . . . , z6) under distribution p = (p1, . . . , p6) is

N !

6
∏

j=1

p
zj

j

zj !
(6.69)

Numerical computation of the induced probability at the maximal likelihood distribution p = y
24 for each possible

frequency vector z, show that the induced probability is uniquely maximized at z = y. Therefore, the inclusive
typicality at p is exactly one. Therefore, the maximal frequency-induced inclusive typicality is one.

For the sample statistic, use Markov frequency statistic in the alternative (Markov) model from §5.5.1, which
is model-neutral in the Markov model. So, we should compute the statistic-induced inclusive typicality for both
observed samples x′ and x. More precisely, we should compute the maximum value of the inclusive typicality, taking
the maximum over all distributions in the independent model. If it is low, then we should prefer the Markov model
over the independent model.

First, we note that we will be indexing vector matrix entries from 1 to 6, rather than from 0 to 5, as in earlier
sections of this report. The resulting Markov frequency statistic value at our observed sample vectors are:

F (x′) =

















(

0 0 0 0 1 0
)

,

















1 0 1 0 2 1
1 1 1 0 0 1
1 1 0 0 0 1
1 0 1 0 0 0
0 1 0 2 2 0
1 1 0 0 1 1

































(6.70)

and

F (x) =

















(

0 1 0 0 0 0
)

,

















4 2 2 1 0 0
1 1 0 0 3 0
2 0 2 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1
1 0 0 0 0 0

































(6.71)

The induced probabilities can be computed using (5.12) and (5.17). For example, the induced probability of of
F (x′) at the maximum likelihood distribution as given in (6.72) is about 2.495 × 10−6. The induced probability of
F (x′) under the maximum likelihood distribution in the independent model is about 2.086 × 10−12. The induced
probability of F (x′) under the uniform distribution is about 5.689× 10−13. (Low values of induced probabilities are
particular distributions (or maximized over all distributions) are not grounds for model rejection.)

Similarly, the induced probability of F (x) at the maximum likelihood distribution in the Markov model, as given
by (6.73), is about 1.723 × 10−4. The induced probability of F (x) under the maximum likelihood distribution in
the independent model is about 1.322 × 10−10. The induced probability of F (x) under the uniform distribution is
1.723 × 10−13.

Induced typicalities are computed by summing the induced probabilities over the set of values of the sample
statistic. Maximal induced typicality are then computed by determining the maximum over all distribution. For
the hypothesis testing task at hand, the space of distributions over which maximum typicality is calculated is the
probability space of the hypothesized independent model.

§6 EXAMPLES Page 81 of 98



Formally Assessing Cryptographic Entropy 6.5 Dice

There at most 6
(

36+23−1
23

)

≈ 5.3 × 1016 ≈ 255.6 values for the frequency statistic (e, U), because the entries of
matrix U are non-negative integers summing to 23. This number is smaller than the number of values for x, which
is 624 ≈ 4.7 × 1018 ≈ 262, but it is still too large for any currently practical calculation. The b may condition from
(5.17) may help somewhat to reduce this number, but perhaps it may not reduce the number to a practical value
over which sums can be computed.

A general method to probabilistically estimate the inclusive typicality at a given distribution can be given based
on the fact the induced inclusive typicality at y = F (x) is the expected value of the random variable γ(Qp(F (x)) −
Qp(F (x′))) where Qp is the induced probability function, which we can compute, and x′ is drawn randomly according
to the distribution p, x is fixed, the γ evaluates to one if its input is non-negative, and to zero otherwise. So, based on
this expectation, one can compute the random variable for a large number of x′ drawn from p, and take the average.

Recall that, generally, we wish to avoid probabilistic algorithms, because the underlying problem of entropy
assessment involves inferring probabilities, and thus probabilistic assessment presents a logical circularity. In this
case though, a direct calculation was deemed infeasible. One way overcome the circularity is to use a a second
source of to assess a given source. This may be useful in the context of unconstrained, system-wide, pre-deployment
assessment of sources, but may be much more difficult in retrospective, mid-deployment assessment of sources.
Another way to overcome the circularity is to use deterministic pseudorandom generators, such as those based on
cryptographic hash function (which are likely to already be available in a cryptographic implementation).

Another potential disadvantage of probabilistic methods is the difficult of maximization of functions that can
only be computed probabilistically.

Using this method with 8192 random samples, and just an ordinary pseudorandom number generator, gives an
estimate of around 0.62 for the inclusive typicality of F (x′) at the distribution which is the maximum likelihood in
the independent model. Therefore, the maximal induced inclusive typicality is at least around 0.62. The independent
model cannot be rejected from the case because this typicality is too high.

Similarly, for F (x), the estimated induced inclusive is typicality is around 0.38, so the independent model would
be not be rejected by this test. In words, the intuition that x has too many successive ones for the independent
model is not quantifiably justifiable according to the Markov frequency sample statistic.

Just for comparison, the suppose that x′′ consisted of twelve ones followed by twelve twos. The Markov-frequency
induced inclusive typicality was estimate for four distributions: the maximum likelihood estimate in the independent
model p = (1

2 , 1
2 , 0, 0, 0, 0), at the uniform distribution, and also at the maximum likelihood distribution in the

independent model for the sample x′ and x. The first three estimated typicalities were zero (within the precision
of the numerical computations), but the last distribution resulted in an estimate of around 0.027. The maximal
typicality could be much larger, but if it is not, then the independent model could be rejected upon observing the
sample x′′.

6.5.3 The Markov model

Maximum likelihood estimate in the Markov model gives inferences:

p̂(x′) =

















(

0 0 0 0 1 0
)

,

















1/5 0 1/5 0 2/5 1/5
1/4 1/4 1/4 0 0 1/4
1/3 1/3 0 0 0 1/3
1/2 0 1/2 0 0 0
0 1/5 0 2/5 2/5 0

1/4 1/4 0 0 1/4 1/4

































(6.72)

and

p̂(x) =

















(

0 1 0 0 0 0
)

,

















4/9 2/9 2/9 1/9 0 0
1/5 1/5 0 0 3/5 0
1/2 0 1/2 0 0 0
1 0 0 0 0 0

1/3 1/3 0 0 0 1/3
1 0 0 0 0 0

































(6.73)
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The resulting inferred min-entropies are:

H∞(p̂(x′)) ≈ 27.8, (6.74)

H∞(p̂(x)) ≈ 23.5. (6.75)

6.6 Toy Model for a Ring Oscillator

In this section, we consider a toy model for a ring oscillator. No assertion is being made on the accuracy or
appropriateness of this model for actual ring oscillators. The purpose of this section is to illustrate of the principles
of this report on other types of model.

We begin with a continuous probability model (Π, XT , PT ). The probability space is

Π = {(a, b) : 0 6 a < b} (6.76)

where a and b are defined a interval in the real line. The sample space is

XT = R+ = {t : 0 6 t} (6.77)

where t is real number. (The value t which will be represent the time period of the oscillator). The probability
function is now replaced by a probability density function, which is

P(a,b)(x) =

{

1
b−a if a 6 x 6 b

0 otherwise.
(6.78)

An applied model will be used in the cryptographic application. Let the function

f : R+ → X = {0, 1}N (6.79)

be defined by
f : t 7→ (x0, x1, x2, . . . , xN−1) (6.80)

where

xi =

⌊

i

t

⌋

mod 2 (6.81)

The idea is that the ring oscillator alternates values between 0 and 1 every t units of time. Every single unit of time,
the state of the ring oscillator is sampled and an entry of x is recorded.

Remark 6.68. The model described above is actually a hull model, as in §2.4.4, obtained from tow models. The first model has
probability space Π′ = [0,∞), with distributions t, with each distribution on the discrete sample space X being deterministic
as given by (6.81). The second model has probability space Π from (6.76), and continuous sample space Π′.

Remark 6.69. For t ∈ R+ and x = f(t), it is true that x0 = 0. Therefore, any x ∈ {0, 1} with x0 = 1 is non-occurring in the
applied probability model.

In the toy model above, each distribution gives a uniform continuous distribution on the value of t within some
interval [a, b]. After applying f , the distribution gives rise to some distribution on the sequences. Because we are
starting from a continuous distribution, we cannot directly calculate the applied probabilities from (3.20), which
assumed discrete initial distribution. Rather, we need a continuous variant of (3.20). To this end, for x ∈ {0, 1}N ,
let function τx : R+ → {0, 1} be

τx(t) =

{

1 if f(t) = x,

0 if f(t) 6= x.
(6.82)

Then the applied model is (Π, X, P ) where probability function is given by

P(a,b)(x) =

∫ b

a τx(t)dt

b − a
(6.83)
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The equation above implies that

P(a,b)(x) =
1

b − a

∣

∣

∣

∣

∣

∣

[a, b] ∩
(

N−1
⋂

i=1

∞
⋃

m=0

[

2m + xi

i
,
2m + xi + 1

i

]

)−1
∣

∣

∣

∣

∣

∣

(6.84)

where for a subset S ⊂ R+, the S−1 indicates the set {s−1 : s ∈ S} and the |S| indicates the total length of a set.
For example if x = (x0, x1, x2) = (0, 1, 1), then

P(a,b)(x) =
1

b − a

∣

∣

∣

∣

[a, b] ∩
([

1

2
,
2

3

]

∪
[

1

4
,
2

7

]

∪
[

1

6
,

2

11

]

∪
[

1

8
,

2

15

]

∪ . . .

)∣

∣

∣

∣

. (6.85)

By taking p = [a, b] as a sub-interval of one of the connected components of the set Tx = {t : f(t) = x}, the finds
that Pp(x) = 1. So, this model is pseudo-deterministic.

From a cryptographic standpoint, any reasonable inference should include all the deterministic distributions
consistent with the observed sample. Taking prudent principle of using the infimum of the inferred set of entropies
should generally give a result of zero, because deterministic distributions will all have entropy of zero. So, any
prudent inference in this model gives an entropy assessment of zero.

Although the original model (without the standard deviation restriction above) does not provide any hope for
prudent entropy assessment, it, like any model, can be subject to hypothesis testing. Given a sample x, one can
calculate its typicalities in the model. Remark 6.69 has shown the model has non-occurring sample values, such as x
with x0 = 1. If the sample is a non-occurring value then its typicality, under any distribution, is zero. This should
lead to rejection of the model. But for any occurring sample value, a deterministic distribution exists, and therefore
the model cannot be rejected on this basis.

Remark 6.70. In the cryptographic context, one has incentive to reject this model, so the cryptographer would seek an
alternative model, that some support in terms of other evidence, such as further testing, such as good typicality under
extensive sampling, and so.

Under hypothesis testing, the non-occurring x are those for which {t : f(t) = x} = ∅.
There are at most N2 − N + 1 values of x for which x is occurring. To see that, consider u = t−1 mod 2, that

is, t−1 − 2⌊ 1
2t⌋. Then f(t) = f(u−1), so only the value of u affects the value of f . The value of each xi changes as a

function of u at most 2i times as u ranges from 0 to 2. Therefore, there are at most 2(1 + · · · + (N − 1) transitions
in the value of f(u−1) as u ranges from 0 to 2.

For large N , the proportion of the space X that is occurring is small. If the hypothesized model is false, then
perhaps that some under the true model, the probability that of obtaining an x that is occurring in the hypothesized
model becomes small, at least for large N . Once a non-occurring sample x is observed, our toy hypothesized model
can be rejected.

If our toy model is rejected, one could move try to move a relaxation of the model, and hopefully one that is not
pseudo-deterministic.

If the model cannot be rejected, then one’s only hope is find a restriction of the model, such as the one described
above. Again, to support the restriction, one would have to do some hypothesis testing on the restricted model. But
even if the restricted model is supportable, the resulting entropy will always be low, because any restricted model
can take at most N2 −N + 1 values, which bounds the entropy to about −2 log2(N) bits, which is can considerably
smaller than the N bits in the representation sample value, and more important than the N units of time needed to
generate the sample value. For small enough N , then it might still be worthwhile.

Perhaps the model can salvaged by restricting it, such as by supposing that the random variable t associated
with each distribution has some minimum standard deviation. In a real world example, there would have to some
justification for adding such a restriction. This would force in each p = (a, b) to be such that b > (1 + ǫ)a for some
fixed ǫ > 0.

For example, taking ǫ = 1
2 , then the distribution p = (4

9 , 2
3 ) is still allowed in the restricted model and we have:

Pp(0, 1, 1) =
3

4
. (6.86)
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If this is the unique most likely distribution for x = (0, 1, 1), the maximum likelihood estimate would give an infimum
inference of min-entropy of about 0.415 bits.

Another approach to salvaging this toy model would to be strengthen by taking its common product with itself (a
common power). Such a product model may have a some justification. If ring oscillators are manufactured according
to some strict process, then each oscillators should have a rate independent of the others, and the rates should be
identically distributed. (Perhaps a natural model for the common distribution of the rates would be a bell curve such
as a positive valued version of an normal curve, but our toy model distributions of interval may serve as a decent
approximation to such a bell curve.)

Assuming this common model, one might take multiple readings over several of the rings oscillators, and try to
infer the probability distribution from the sample values, and then deduce the various entropy parameters.

6.7 Models Based on Poisson Processes

The Poisson and Poisson process models were defined in §2.5.3.1. In a Poisson distribution p, a value of x that
maximizes Pp(x) is x = ⌈p − 1⌉. The min-entropy of the the Poisson distribution p is therefore

H∞(p) = − log2

(

e−pp⌈p−1⌉

⌈p − 1⌉!

)

, (6.87)

which can, for large enough p, be approximated using Stirling’s formula as

H∞(p) ≈ 1
2 log2(p) + 0.92 (6.88)

When a Poisson process model is assumed for a source, then one likely has a time-interval [a, b] in which one can
access the source. If the time source is sufficiently long compared to the distribution q, then p = q(b − a) is large
enough to use the approximation (6.88) to estimate the min-entropy of the cardinality of x ∩ [a, b].

Instead one could divide the interval into two pieces, say
[

a, a+b
2

]

and
[

a+b
2 , b

]

, and consider the min-entropy of
the counts for each interval. If the approximation above still applies, then the resulting estimate for the min-entropy
is log2(p) + 0.84, which is about twice as much entropy. One can divide the intervals again, perhaps about doubling
the min-entropy, but eventually the approximation (6.88) will no longer apply as p gets too small.

Even though the doubling approximation cannot be applied indefinitely, infinite min-entropy may seem theoreti-
cally available if p is sufficiently large, because if at least one real number r is expected in the set x∩ [a, b] it contains
an infinite amount of precision, and therefore contains an infinite amount of information. However, min-entropy is
not formally defined for continuous distributions. In practice, the real numbers in x ∩ [a, b] can only be determined
to a finite precision, which limits the min-entropy to a finite amount. As shown below, there remains an upper limit
on the min-entropy even if arbitrary precision is available.

Suppose that a source adheres to a Poisson process distribution q, and that a cryptographic implementation can
measure down to shortest size interval τ , and that qτ < 1, and that N such intervals can be measured. The resulting
sample space is ZN

>0, and the min-entropy of the resulting distribution is:

H∞(q, τ, N) = Nqτ log2(e) (6.89)

because in each τ -interval the count maximizing the probability is x = 0, and the intervals are independent counts.
For starting interval of length t, we can choose τt/N . So (6.89), which holds whenever τ < 1/q, bounds the min-
entropy to qt log2(e), and decreasing τ further below 1/q does not boost the min-entropy. The greater precision
does not increase the min-entropy, because even though most of the time a large amount of information from the
occurrence of real number in the interval, the probability that x∩ [a, b] is empty remains fixed and does not depend
on the precision, and this determines the min-entropy.

In other words, a Poisson process gives a realistic example of a distribution that has a relatively large spike. As
the precision goes to the zero, the Shannon entropy can go to infinity, yet the min-entropy remains bounded.
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[Cac97] C. Cachin. Smooth entropy and Rényi entropy. In W. Fumy (ed.), Advances in Cryptology –
EUROCRYPT ’97, Lecture Notes in Computer Science 1233, pp. 193–208. International Association
for Cryptologic Research, Springer, May 1997.

[CZ08] E. K. P. Chong and S. H. Zak. An Introduction to Optimization. Wiley, 2008.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1):97–139, 2008. IACR
ePrint at http://eprint.iacr.org/2003/235.

[GJ83] I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. Dover, 1983.

[JAW+00] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter and A. Zeilinger. A fast and
compact quantum random number generator. Review of Scientific Instruments, 71(4):1675–1680,
2000.

§REFERENCES Page 86 of 98

http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://eprint.iacr.org/2007/048
http://eprint.iacr.org/2003/235


Formally Assessing Cryptographic Entropy REFERENCES

[JJSH98] A. Juels, M. Jakobsson, E. Shrver and B. K. Hillyer. How to turn loaded dice into fair coins.
IEEE Transactions on Information Theory, 1998.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996.

[Mac95] I. G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, second
edn., 1995.

[Mau90] U. Maurer. A universal statistical test for random bit generators. In A. J. Menezes and S. A.

Vanstone (eds.), Advances in Cryptology — CRYPTO ’90, Lecture Notes in Computer Science 537,
pp. 409–420. International Association for Cryptologic Research, Springer, Aug. 1990.

[MvOV97] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.
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A Optimization Methods

Formally assessing cryptographic entropy defines the inference for an entropy parameter in terms of one or two
optimization problems.

• An optimization problem that always arises in formally assessing cryptographic entropy is that of minimizing
the entropy parameter over the inferred set of distributions. This problem arises after statistical inference
yields an inferred set of distributions. The inferred set of distributions corresponds to an inferred set of entropy
parameters. By the principle of prudence, cryptographers take the infimum value of inference from the inferred
set of entropy parameters.

• Another optimization problem sometimes can arise as part of the statistic inference used to determine the
inferred set of distributions. An optimization problem arises if the inference method used is a maximally
graded inference method. If the method is a threshold graded inference, then this problem does not arise.

In some cases, these optimization problems can be solved by inspection; in other cases, general optimization methods
may be required; in yet other cases, the optimization problems may be infeasible to solve, but nevertheless bounds
on the inferred entropy may be feasible; in the worst case, the optimization problem may not be feasible to solve and
no bounds on the inferred entropy can be deduced.

In the two main optimization problems above, some of the objective and constraint functions may be viewed as
solutions to optimization problems.

• The entropy parameter for a given distribution is often described as the optimum value of an objective in an
optimization problem determined by the distribution. Entropy parameters defined as optimization problems
included min-entropy, working entropy and contingent entropy.

• Some gradings, such as balanced typicality, can also viewed as the optimal value of an objective function in a
optimization problem determined by the distribution.

As the functions above are encountered while solving the two main optimization problems, their complicated definition
may cause difficulties in solving the main optimization. It may be that applying the techniques of optimization theory
may overcome difficulties arising from these functions.

Chang and Zak [CZ08] provide a general overview of optimization methods. This section briefly reviews a few
results from the theory of optimization.

A.1 Karush-Kuhn-Tucker Condition

The well-known Karush-Kuhn-Tucker (KKT) conditions are reviewed. Suppose that we want to minimize a function
f subject to the constraints gi(x) 6 0 and hj(x) = 0, for various indices i and j. Suppose that x̂ is a local minimum
of f within the constrained space of f . Suppose that f, gi, hj satisfy certain regularity conditions at x̂. Then there
exists µi and λj such that the following holds:

∇f(x̂) +
∑

i

µi∇gi(x̂) +
∑

j

λj∇hj(x̂) = 0, (A.1)

µi > 0, (A.2)
∑

i

µigi(x̂) = 0. (A.3)

These three conditions are called stationarity, dual feasibility and complementary slackness, respectively. By defini-
tion, we also have

gi(x̂) 6 0, (A.4)

hj(x̂) = 0, (A.5)
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which together are called the condition of primal feasibility. These four conditions together are called the Karush-
Kuhn-Tucker (KKT) conditions.

Under some further regularity conditions (see below), the Karush-Kuhn-Tucker (KKT) theorem states that the
KKT conditions above are a necessary condition for x̂ to be a local minimum x̂.

This suggests an algorithm for solving an optimization problem, as follows. Try to determine all x̂ that either fail
the regularity conditions or that meet the KKT conditions. The KKT theorem ensures that the local minima, and
therefore the global minima, must be among the set of all such x̂. If the set so obtained is finite, then its minima
are the global minima.

One regularity condition for the KKT theorem is as follows. The regularity condition has two parts. The first
part is that all f and gi and hj are continuously differentiable. The second part is defined in terms of the active
constraints, which includes all equality constraints and those inequalities constraints gi gi(x) = 0 at the solution x
under consideration. The condition is that the gradients of all the active constraints are linearly independent.

A.2 Optimizing Non-Smooth and Non-Continuous Functions

Min-entropy is generally not a smooth function of p. More precisely, it is only piece-wise smooth, and does not have
a well-defined gradient at some points. Typical optimization methods, such as those employing the KKT conditions,
use gradients. One approach to deal with the non-smoothness is to note that min-entropy may be viewed as the
minimum of a number of smooth functions. Then one can optimize each such smooth function separately.

Generally, one is minimizing min-entropy over some inferred set of distributions (either a maximally graded or
threshold graded). In some cases, this inferred set of distributions is symmetric with respect to the entries of the
probability distribution vectors, so that it suffices to optimize just a single of the many smooth functions mentioned
above.

Typicality, such as inclusive or balanced typicality can not only be non-smooth, but can also be non-continuous.
It may be possible to handle such non-continuous functions by breaking the optimization problem into multiple vari-
ations, based on cases corresponding to each piece. As an alternative, this report has suggested forms of generalized
typicality which can be chosen to be continuous and smooth, such as adjusted likelihood.

A.3 Model Constraints

A possible approach to handle the optimization problems arising from statistical inference, such as maximizing a
grading or minimizing the entropy over a grading-thresholded set, is to parametrize the probability space Π using
one coordinate for each sample value x ∈ X . The x-coordinate at distribution p has value Pp(x).

This approach generally uses a lot of variables, say |X |, but may have the potential of simplifying the various
functions involved because the coordinates themselves already express the probabilities. So gradings such as likelihood
and typicality, and entropy parameters are expressible as certain coordinates, or sums of coordinates.

In this approach, the probability model would have to be described as a set of constraints on these coordinates.

Remark A.1. For an example, consider the (2, 2) independent model. The previously defined parametrization of the probability
space Π in this model was with two coordinates p0 and p1 with one equality constraint p0+p1 = 1 and two inequality constraints
p0, p1 > 0. It is also possible to parametrize this space with just a single coordinate, say p1, and get two inequality constraints:
0 6 p1 6 1.

By model constraints, the space Π would instead by parametrized by four coordinates, which we may abbreviate to
p00, p01, p10, p11. For a system of constraints that describes Π, one can use

p00 + p01 + p10 + p11 = 1 (A.6)

p00, p01, p10, p11 > 0 (A.7)

p01 = p10 (A.8)

p00p11 = p01p10. (A.9)
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A.4 Optimizations for the Independent Model

The KKT conditions simplify in the case of the independent model. First we substite the general KKT notation so
that instead of optimizing over a vector x, we optimize over a vector p = (p0, . . . , pm−1). The objective function will
still be written as f here.

There are now m inequality constraints defined by gi(p) = −pi 6 0 and one equality constraint h(p) = p0 + p1 +
· · · + pm − 1 = 0. If f is continuously differentiable at sample value p, then the KKT theorem applies at p, because
regularity conditions described. (To see this, note that at most m − 1 of the inequality constraints can be active at
any probability vector p.)

Upon elimination the µi and λ, the KKT conditions are equivalent to the following conditions. For 0 6 i 6 m−1,

(∇f(p̂))i > (∇f(p̂)) · p̂, (A.10)

where (∇f(p̂))i is the ith entry in the vector ∇f(p̂), and where (∇f(p̂)) · p is the usual dot product of vectors.

Remark A.2. To see how to explicitly eliminate the intermediate KKT variables µi and λ, do as follows. The gradients of the
constraints are given by ∇gi = −ei where ei is the elementary vector with value 1 in position i and value 0 elsewhere; and
∇h =

Pm−1
i=0 ei.

Apply the dot product of the stationarity condition (A.1) with p̂. The complementary slackness (A.3) eliminates each
contribution µi∇gi ·p̂ = −µiei ·p = −µipi = µigi(p̂). The contribution from the equality constraint is λ∇h·p̂ = λ

Pm−1
i=0 pi = λ.

It follows that λ = −∇f(p̂).
Apply the dot product of the stationarity condition (A.1) with ei, to get (∇f(p̂))i + µi + λ, which gives (A.10).

Remark A.3. To see (A.10) directly, without resorting to the full KKT theorem, note the following. Equation (A.10) is
equivalent to the condition that the objective f is non-decreasing along each line ray emanating from p̂ and heading towards
a vertex of the simplex Π, that is a distribution p(i) ∈ Π with p

(i)
j equal to 1 if i = j and equal to 0 otherwise. If the objective

function is continuously differentiable and p̂ is a local minimum, then clearly f will be non-decreasing along each such ray.
The derivative along the ray is (∇f(p̂)) · (p(i) − p̂).

Remark A.4. The converse, however, may not hold: conditions (A.10) do not suffice to ensure a local minimum at p̂. If p̂ is
not a local minimum, but f is continuously differentiable at p̂, then f has a saddle at p̂: in some directions f increases and in
other directions f decreases.

Remark A.5. As an example to consider, suppose that we are in the (2, 3) independent model with an observed sample
x = (0, 1, 1). To infer something about the distribution, we want to maximize the likelihood function L011(p) = p0p

2
1. Put

f = −L011, and (A.10) transforms into the following two inequalities:

−p2
1 > −3p0p

2
1, (A.11)

−2p0p1 > −3p0p
2
1; (A.12)

which become, respectively,

p2
1(3p0 − 1) > 0, (A.13)

p0p1(3p1 − 2) > 0. (A.14)

Since p0 > 0, the first inequality implies p1 = 0 or p0 > 1/3. Since p0, p1 > 0, the second implies that 0 ∈ {p0, p1} or p1 > 2/3.
The only (p0, p1) that meet these conditions are (1, 0), (1/3, 2/3) and (0, 1).
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B Modeling

This report concerns the task of formally assessing cryptographic entropy of a source. A prerequisite to this task is
that a probability model appropriate for the source has been selected. Selection of the model is not the main focus
of this report. This section briefly describes approaches to selecting a probability model for a source. Two types of
approaches are outlined below.

B.1 Relaxation Approach to Modeling

In the relaxation approach, one selects as an initial model a very restricted model. Either the restricted model could
be selected as the ideal for the intended use of the source, such as being the uniform model, or as the model that
hypothetically describes the source in most detail, such as a deterministic model. Next, one does hypothesis testing
on the initial model, as outlined in §C. If the model is rejected, one must select another model. In the relaxation
approach, a relaxation of the initial model is selected. The choice of relaxation requires some inspiration or intuition.
If one chooses the relaxation of the model before hypothesis testing, then one can do comparative hypothesis testing,
which is the method preferred by this report. The relaxation approach can be iterated. Examples of the relaxation
approach to modeling are given in §6.5 and §6.6.

Section 6.5 deals with dice, and starts with an initial model which is the uniform model. It uses comparative
hypothesis testing with the alternative model being the independent model. For one sample, it rejects the uniform
model. In accordance with the relaxation approach to modeling, the model is relaxed from the uniform model to
the independent model, and then the independent model is tested. Again, comparative testing is used, with the
alternative model being the Markov model. In this case, the independent model is accepted.

Section 6.6 deals with ring oscillators. It starts with an initial model in which the bit sequence produced by a
ring oscillator has a simple description determined by its frequency. In this case, the model has very low entropy,
so the starting point is not the most optimistic one from the perspective of the source being used for cryptographic
entropy. (It is optimistic from the perspective of an adversary.)

Two disadvantages of the relaxation approach are:

• The relaxation approach risks being over-optimistic, which could occur if, firstly, hypothesis testing yields a
false acceptance, meaning that the source has a distribution p which is not contained in the tested model, and
if, secondly, the distribution p has significantly lower entropy than what would be inferred using the falsely
accepted model.

• In the event that a tested model is rejected, the relaxation approach provides no formally quantified guidance
on how to relax the probability model. The choice of relaxation is outside the scope of the formal techniques
in this report.

B.2 Restrictive Approach to Modeling

In the restriction approach to modeling, one starts from an initial relaxed model for the source. The selection of
the initial model is based on intuition or inspiration, with the goal is of considering the current understanding of
the source, and to capture all the possible ways in which the source could be described. The initial model should be
relaxed, so making as minimal assumptions as possible.

Once the initial relaxed model (Π, X, P ) is formulated, a sample x from the source is gathered. Then inference is
conducted using the formal methods described in this report. These inferences will depend on the observed sample.
Say that that ∆ is the set of inferred distributions.

The restriction approach tries to derive a new model from the formal inference by restricting the initial model.
The inference restriction would be to restrict the model to (∆, X, P ). The inference restriction is not really part of
the restriction approach to modeling, for several reasons:

• It is really just doing inference, whereas the task at hand is modeling.

• For some inference methods, it is likely to be too restrictive. For example, if the initial model is the independnet
model, and the inference method is maximal likelihood inference, then the restricted model will be singular.
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• For some inference methods, the inferred set ∆ depends quite strongly the observed sample x, and the restricted
model (∆, X, P ), may be unnatural for the source.

So, the ideal restriction approach instead uses the inferred set of distrubitions ∆ as inspiration for some other
restriction, say (Ξ, X, P ). Being a restriction Ξ ⊂ Π. Perhaps Ξ and ∆ have a large intersection. But Ξ should have
a simpler description, and in particular, should not be defined in terms of the observed sample.

Any such restriction of the model must also be subjected to hypothesis testing. Comparative hypothesis testing
using the original model as the alternative may be applied. If the restricted model is accepted, then the process can
be iterated.

The relaxation and restriction approaches can be mixed. Indeed, they are not entirely different, since they both
involve steps of selecting models that are relaxed and restricted.

Remark B.1. In the restriction approach, one should start from a model that is relaxed but not too relaxed, otherwise the
inferences may be too weak.

Remark B.2. For example, to model ring oscillators, one can gather multiple ring oscillators manufactured by the same process.
For an initial relaxed model, one might model their outputs as independent from each other, and furthermore assume that
each has the same distribution. So, one is formulating the common power of the models. If one does not assume anything
about each individual oscillator, then one essentially has the independent model. Considering the first 1024 output bits of
each oscillator, then the initial model in the restriction approach is the (21024, 32) independent model.

The large width 21024 is due to the initial model not assuming anything about the first 1024 bits of the ring oscillator.
The small length 32 is for the number of ring oscillators. Becuase length is much shorter than the length, the sample size is
very low. As such, the formal inferences may be so modest that the modeller should look directly at sample values themselves
should for inspiration of how to hypothesize a restriction of the model.

Remark B.3. Remark B.2 uses an initial model that may be more relaxed than necessary. For example, it ignores the fact that
the 1024 bits produced obtained from each ring oscillator sample are produced chronologically. It seems a mild assumption
that the initial bits could not depend on the latter bits. So, a hidden Markov model could be hypothesized as an initial model
for each individual oscillator. In this case, the formal initial model would be the common power of 32 copies of the hidden
Markov model. The larger the size of the hidden state for the Markov model, the more relaxed the model would be.

In this the formal inference may provide more useful inspiration for modeling the source.
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C Hypothesis Testing

This report focuses on the task of formally assessing the cryptographic entropy of a source. As noted in §B, a
prerequisite to assessing entropy is that a probability model appropriate for the source has been selected.

In this report, hypothesis testing means to determine the extent to which a given probability model is appropriate
for a given source. For example, extensive hypothesis testing may provide the confidence in the probability model
for a given source, thereby providing confidence in entropy assessments for the source.

Hypothesis testing of a model on a source requires one to gather a sample value x from the source. Two types of
hypothesis testing are considered.

Hypothesis testing has the risk that the model can be falsely accepted. For example, if the model contains the
uniform distribution, but the source is deterministic but pseudorandom, then it is unlikely to be rejected. In other
words, a badly seeded cryptographic number generator would pass any general hypothesis test. The only way to truly
overcome this risk is to ensure that both hypothesis testing and cryptographic entropy assessment look at sample
values drawn from the actual source of entropy, before any cryptographic processing.

C.1 Non-Comparative Hypothesis Testing

Non-comparative hypothesis testing does not rely on any other models. In the formalism of this report, one evaluates
the maximal typicality of x, perhaps as induced by a sample statistic. If the maximal typicality of x is too low, then
one rejects the model. Some difficulties with non-comparative hypothesis testing are:

• The model has a probability of being falsely rejected, depending on the threshold for the maximal typicality
value used for rejection. In practice, this means setting the threshold very low. A concern with a low threshold
is that it enlarges the set of samples x that will lead to acceptance of the model. If the model is false, then a
low threshold leads to a higher rate of false acceptance.

• The model may be subject to the tying effect, for example if the model contains subuniform distributions. In
this case, rejection based on direct typiclity may be impossible for any x, because subuniform distributions
in the model mean x has typicality at least one half. As was seen earlier in the report, the tying effect can
often be overcome by using a tiebreaker sample statistic. Selecting an arbitrary sample statistic risks arbitrary
hypothesis testing. Model-neutral sample statsitics may be used to avoid such arbitrariness, but model-neutral
sample statistics are primarily motivated for making inferences, not for hypothesis testing.

• If the hypothesis model being tested is rejected, then one has no other model to assume, even though the source
may still have vital entropy.

C.2 Comparative Hypothesis Testing

In comparative hypothesis testing, the hypothesized model is tested against an alternative model which is relaxation
of the hypothesized model. Comparative hypothesis testing is an attempt to address some of the difficulties with
non-comparative hypothesis testing.

In comparative hypothesis testing, one computes the maximal typicality of x using a sample statistic that is
model-neutral with respect to the alternative model. One rejects the hypothesis if the maximal typicality obtained
is below some threshold. If the maximal typicality is below this threshold, then the hypothesized model is rejected.

The alternative model becomes the new hypothesized model. In comparative hypothesis testing, one can set the
threshold much higher than in non-comparative testing, because the cost of false rejection is only to relax the model
to the alternative model.

Because comparative hypothesis testing starts with two models, a hypothesized model and its alternative relax-
ation, it may also provide some inspiration for modeling the source. On the one hand, if the hypothesis is accepted,
then the hypothesized model can be further restricted in the direction it restricted the alternative model. In this
case, the original hypothesis becomes the alternative, and comparative hypothesis testing can be applied again. On
the other hand, if the hypothesis is rejected, then the old alternative model becomes the new hypothesized, and a
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new alternative model can be formulated by relaxing the old alternative model further in the direction that it relaxed
the old hypothesized model.
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D Game-Theoretic Analysis

In this section, we consider a situation in which the adversary can choose the distribution p ∈ Π, and then tries
to guess the sample value x drawn from p. This corresponds to the third level of adversary from Remark 2.5. As
normal per the rest of this report, the entropy assessor retains the opporuntiy to make statistical inferences about p
based on an observed sample. The assessment can take the form of an inference of the entropy of p. Normally the
assessed entropy would represent a bound on the adversary success rate at guessing the outcome of sample drawn
from the distribution p. But in this section, the adversary has also chosen p. For example, the adversary could have
chosen p with very low entropy. The goal of the assessor is to detect such a situtation and to properly account for it.
If the assessor is correct, then either the key generation can be terminated, or more samples from the same or other
sources can sample until an adequate amount of entropy is obtained. Consequently, selecting the lowest possible
entropy may not be the adversary’s optimal strategy, at least if the assessor is able to detect low entropy choices.
Rather, an optimal strategy for the adversary may be to choose p with fairly low entropy, but also with the property
that the assessor is likely to overestimate the entropy from an observed sample x.

Because both the adversary and the assessor adopt strategies, and the net result is a function of the strategies,
(probabilistic) game theory is applicable.

For example, suppose that the cryptographic system is self-assesing using prospective inference. The first sample
is used for assessment, and the second for deployment. Assume that the two samples so obtained are independent
and identically distributed. So, the overall source model is a common square (Π, X2, R), see §2.4.5 of the model
(Π, X, P ) for a single sample. The game works as follows:

1. The adversary chooses p ∈ Π.

2. A sample (x1, x2) is drawn in the model (Π, X2, R).

3. The assessor is given x1.

4. The assessor outputs an entropy estimate H ∈ R.

5. The adversary guesses a value y.

6. If y = x2, the score of the game is s1(H).

7. If y 6= x2, the score of the game is s0(H).

The assessor tries to maximize the score, while the adversary tries to minimize the score. The strategies of the
assessor and the adversary in this game depend on the scoring function s0, s1 : R → R.

Indeed, the game can be viewed as a two-player game in which the two players make choices simultaneously. The
adversary’s choice consists of the pair (p, y), a distribution and a sample value. The assessor’s choice consists of a
entropy assessment function H : X → R. The score of the game is then a random variable, taking values in R.
Although the range of the score is a continuum, the random variable is discrete if the set X is finite. The probability
that a score results in s is

Pp(y)





∑

x:s=s1(H(x))

Pp(x)



+ (1 − Pp(y))





∑

x:s=s0(H(x))

Pp(x)



 . (D.1)

The adversary wishes to minimize the score, while the assessor wishes to maximize the score. But since the score is
a random variable, not a single quantity, maximization and minimization of the score are not clearly defined.

A simple way to define what it means to optimize of a random variable is to optimize its expected value. This may
be too simplistic for cryptographic applications, because expected values are often not appropriate considerations
for cryptography. Nevertheless, suppose that both the adversary and the assessor attempt to optimize (in different
directions) the expected value of the score. The expected value of the score is

∑

x∈X

Pp(x) (Pp(y)s1(H(x)) + (1 − Pp(y))s0(H(x))) . (D.2)
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The summation index x corresponds to the observed value x1 in the step-by-step game above.
For concreteness, suppose that (Π, X, P ) is the (2, 3) independent mode. Simple, but arguably arbitrary, choices

for the scoring functions are s0(h) = h and s1(h) = −h. The optimization objective function for both players, namely
the expected score, simplifies to:

1 − 2Pp(y)
∑

x∈X

Pp(x)H(x). (D.3)

In cryptographic applications, the assessor’s only source of randomness is the source. So, effectively, we can assume
that the assessor must fix the choice of assessment function H . In game theory terminology, the assessor is forced
to use a pure strategy. The adversary may use a mixed strategy. For example, the choice of (p, y) in the game may
not be fixed, but actually drawn from a distribution.

The next step would to be apply the techniques of game theory to determine optimal strategies for the cryptog-
rapher and the adversary. The optimal assessment strategy depends on the model, the choice of scoring function,
and the definition of the objective functions obtained from the random score variable.
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E Estimation Theory

Estimation theory is an approach to statistical inference that takes a given inference method, and produces an
evaluation of its quality.

For example, suppose that (Π, X, P ) and r : Π → R is a parameter, and that i : X → R is a inference function.
Furthermore, suppose that the space R is a convex space, in the sense that convex combinations are defined in R.
Then the inference function i is said to be an unbiased estimator for r if, for all p ∈ Π, it is true that

E(i(x)) = r(p), (E.1)

where E is the expected value of i(x) according to the probability distribution p. This means that:

E(i(x)) =
∑

x∈X

Pp(x)i(x). (E.2)

Remark E.1. The min-entropy parameter H∞ is a non-polynomial function of p ∈ Π. The left hand side of (E.1) is a
polynomial function in p, as seen by the definition (E.2). Therefore, for almost all choices of Π, no inference function is an
unbiased estimator for H∞.

Remark E.2. The maximum likelihood estimate (inference) is an unbiased estimator for the probability distribution p itself in
the unrestricted model.

Remark E.3. Suppose that we have two models (Π, X, P ) and (Π, Y, Q), with a shared probability space. Suppose we have
probability parameters r : Π → R and s : Π → S and inference functions i : X → R and j : Y → S. Recall that we defined the
product model (Π, X×Y,P×Q) such that (P×Q)p(x, y) = Pp(x)Qp(y). Similarly, we may define the product of the parameters
r × s : Π → R × S : p 7→ (r(p), s(p)) and the product of the inference functions i × j : X × Y → R × S : (x, y) 7→ (i(x), j(y)).
Then r× s is a parameter for the product model and i× j is an inference function for the product model with the same range
as the product parameter, namely R× S. If i and j are unbiased estimators for r and s respectively, then i× j is an unbiased
estimator for r × s.

Remark E.4. The maximum likelihood inference function is an unbiased estimator of the probability distribution itself in the
(m, N) independent model. It is easy to see that the maximum likelihood inference function i is defined such that i(x) = f(x),
where f is the frequency vector of the sample vector x. This means that f(x)i = j/N if the number of k such that xk = i is
j. To show that this is unbiased, by symmetry, it suffices to show that the expected value of f(x)0 is p0. The expected value
of f(x)0 is

f(x)0 =
X

x0,x1,...,xN−1

px0px1 . . . pxN−1 |{k : xk = 0}| /N

= 1
N

X

x0,x1,...,xN−1

p0
∂

∂p0
px0px1 . . . pxN−1

= 1
N

p0
∂

∂p0

X

x0,x1,...,xN−1

px0px1 . . . pxN−1

= 1
N

p0
∂

∂p0
(p0 + · · · + pm−1)

N

= 1
N

p0N(p0 + · · · + pm−1)
N−1 ∂p0

∂p0

= p0,

(E.3)

where the pi are treated as indeterminates when calculating partial derivatives, and then treated again as probabilities in the
final steps. The sums are over x ∈ X, meaning 0 6 x0, . . . , xN−1 6 m − 1, with the xi ∈ Z.

Other quality measures of the estimator can be defined given a metric d on the space R. For each p, we can define
the error of i as an estimator of r:

ǫe(p, i, r) = E(d(i(x) − r(p))e), (E.4)
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where e would typically be one or two. However, in statistical inference, p is unknown. Therefore, so is the error
above. What one can do is take the maximum error over all p as the total error of the inference i of r. Or, instead,
if Π is equipped with a measure, take the average error over Π.

These notions suggest that one can define an inference function in terms of achieving best quality. For example,
perhaps choose an unbiased estimator, if possible. Generally, among the remaining choices, choose an inference
function that produces the least total error, or average error.

Remark E.5. The suitability of estimation theory for cryptology is unclear, primarily because of Remark E.1.
Furthermore, all the estimation methods above use expectation, and thus use averages over the sample space X. It is a

theme of cryptology that danger lurks in using averages, because an adversary, unlike a natural process, will not confine itself
to random behavior, and thus to average behavior. An adversary will search over the sample space X, so averages over sample
space X may not be a good measure of anything.
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