
Groestl Tweaks and their Effect on FPGA Results

Marcin Rogawski and Kris Gaj
George Mason University

{kgaj, mrogawsk}@gmu.edu

Abstract. In January 2011, Groestl team published tweaks to their specification of Groestl In this paper,
we investigate the influence of these tweaks on the Groestl performance in hardware. The results indicate
that the performance penalty in terms of the throughput to area ratio depends strongly on the architecture
used. This penalty is smaller in case of architecture in which permutations P and Q are implemented
using two independent units.

1. Introduction

In December 2010, NIST announced the list of five Round 3 SHA-3 candidates, including BLAKE, Groestl, JH,
Keccak, and Skein. In January 2011, Groestl team published tweaks to their specification of Groestl [GKM11a,
GKM11]. An algorithm described by the original Groestl specification [GKM08] has been renamed to Groestl-0,
and the tweaked version of Groestl, described by the revised specification [GKM11], is from this point-on called
Groestl. The proposed tweaks are aimed primarily at the increase in the algorithm resistance to cryptanalysis
[GKM11a]. This increased resistance in security, typically comes together with some limited penalty in terms of
performance in hardware. In this short report, we evaluate this penalty in terms of throughput, area, and
throughput to area ratio for two modern high-performance FPGA families: Virtex 5 from Xilinx, and Stratix III
from Altera.

2. Previous work

Groestl-0 has been implemented by several groups in FPGAs and ASICs [SHZ11]. In this report, we focus on
implementations targeting FPGAs and optimized for high speed rather than low area.

High-speed implementations of Groestl typically use two major architectures. In the first architecture,
reported first in [GKM08], permutations P and Q are implemented using two independent units, working in
parallel. We call this architecture parallel architecture. In the second architecture, introduced in [TFK10], the
same unit is used to implement both P and Q. This unit is composed of two pipeline stages that allow
interleaving computations belonging to permutations P and Q. We call this architecture quasi-pipeline
architecture, as it is based on the similar principles as the quasi-pipelined architectures of SHA-1 and SHA-2
reported in [DMO04, MD05]. The details of the quasi-pipelined architecture of Groestl are described in [TFK10,
Section 9] and [HRG10, Section 3.8].

In Tables 1 and 2, we summarize results of high-speed implementations of Groestl-0 obtained by different
groups for Virtex 5 FPGAs. At this point, the most efficient implementation of Groestl-0-256 is a parallel
architecture implementation from the Groestl team [GKM08], and the most efficient implementation of Groestl-
0-512 is the quasi-pipelined architecture implementation from Homsirikamol et al. [HRG10].

3. Methodology

In order to compare hardware implementations of Groestl-0 and Groestl, we have first estimated the amount of
logic resources required to implement modified operations of Groestl, namely AddRoundConstant and
ShiftBytesWide, in ASICs and Virtex 5 FPGAs. For the FPGA implementations, we have assumed that these
operations are performed using separate CLB slices (i.e., CLB slices not used for any other operation of Groestl),
and we have used the property of Virtex 5 FPGAs that each CLB slice contains four 6-input look-up tables
(LUTs). We have also assumed that inversion does not require any CLB slices, as it can be very easily combined
with the following operation.

All logic resources required to implement modified operations of Groestl in ASICs and FPGAs are
summarized in Tables 3 and 4. Table 3 refers to the quasi-pipelined architecture, and Table 4 to the parallel
architecture. These tables reveal that we should expect significantly smaller area penalty in parallel architecture
compared to the quasi-pipelined architecture.

Table 1. Results of Implementations for Groestl-0-256, using Xilinx Virtex 5 FPGAs.

Source Architecture Impl.
Details

Block
Memory
[#BRAMs]

Clk.
Freq.
[MHz]

Throughput
[Mbit/s]

Area
[CLB
slices]

Thr/Area
[(Mbit/s)/
CLB_slices]

The Groestl
team [GKM08]

parallel N/A N/A 200.7 10276 1722 5.97

Homsirikamol
et al. [HRG10]

quasi-
pipelined

64-bit
interface

0 323.4 7885 1597 4.94

Matsuo et al.
[MKS10]

parallel S-boxes
in distributed
memory

0 154.0 7885 2616 3.01

Baldwin et al.
[BHH10]

parallel ideal
interface,
no padding
unit

0 101.3 5187 2391 2.17

Kobayashi et al.
[KIM10]

parallel S-boxes
decomposed
into logic

0 101.0 5171 4057 1.27

Guo et al.
[GHN10]

parallel S-box
decomposed
into logic

0 80.2 4106 3308 1.24

Baldwin et al.
[BHH10]

parallel 32-bit
interface,
no padding
unit

0 101.3 3242 2391 1.36

Baldwin et al.
[BHH10]

parallel 32-bit
interface,
padding unit

0 78.1 2498 2579 0.97

Table 2. Results of Implementations for Groestl-0-512, using Xilinx Virtex 5 FPGAs.

Source Architecture Impl.

Details
Block

Memory
[#BRAMs]

Clk.
Freq.

[MHz]

Throughput
[Mbit/s]

Area
[CLB
slices]

Thr/Area
[(Mbit/s)/

CLB_slices]
Homsirikamol
et al. [HRG10]

quasi-
pipelined

64-bit
interface

0 292.1 10314 3138 3.29

The Groestl
team [GKM08]

parallel N/A N/A 210.5 15395 5419 2.84

Baldwin et al.
[BHH10]

parallel ideal
interface,
no padding
unit

0 123.4 9025 4845 1.86

Baldwin et al.
[BHH10]

parallel 32-bit
interface,
no padding
unit

0 123.4 3948 4845 0.81

Baldwin et al.
[BHH10]

parallel 32-bit
interface,
padding unit

0 113.1 3619 4525 0.80

Table 3. Use of logic resources for the modified operations of Groestl in ASICs and Virtex 5 FPGAs
in case of the quasi-pipelined architecture. Notation: NOT – inverter, XOR2 – two input XOR gate,

MUX2 – a two-to-one multiplexer, CLB – configurable logic block.

Operation Groestl-0 Groestl Area penalty
256-bit variant

ASICs: 16xXOR2,
 8xNOT, 16xMUX2

ASICs: 128xXOR2,
 456xNOT, 512xMUX2

ASICs: 108xXOR2,
 448xNOT, 496 MUX2

AddRoundConstant

FPGAs: 4 CLB slices FPGAs: 128 CLB slices FPGAs: 124 CLB slices
ASICs: routing resources ASICs: 512xMUX2 ASICs: 512 MUX2 ShiftBytes
FPGAs: routing resources FPGAs: 128 CLB slices FPGAs: 128 CLB slices

512-bit variant
ASICs: 16xXOR2,
 8xNOT, 16xMUX2

ASICs: 256xXOR2,
 904xNOT, 1024xMUX2

ASICs: 240xXOR2,
 896xNOT, 1008 MUX2

AddRoundConstant

FPGAs: 4 CLB slices FPGAs: 256 CLB slices FPGAs: 252 CLB slices
ASICs: routing resources ASICs: 1024xMUX2 ASICs: 1024 MUX2 ShiftBytesWide
FPGAs: routing resources FPGAs: 256 CLB slices FPGAs: 256 CLB slices

Table 4. Use of logic resources for the modified operations of Groestl in ASICs and Virtex 5 FPGAs
in case of the parallel architecture. Notation: NOT – inverter, XOR2 – two input XOR gate,

MUX2 – a two-to-one multiplexer, CLB – configurable logic block.

Operation Groestl-0 Groestl Area penalty
256-bit variant

ASICs: 16xXOR2,
 8xNOT

ASICs: 128xXOR2,
 456xNOT

ASICs: 108xXOR2,
 448xNOT

AddRoundConstant

FPGAs: 4 CLB slices FPGAs: 32 CLB slices FPGAs: 28 CLB slices
ASICs: routing resources ASICs: routing resources ASICs: none ShiftBytes
FPGAs: routing resources FPGAs: routing resources FPGAs: none

512-bit variant
ASICs: 16xXOR2,
 8xNOT

ASICs: 256xXOR2,
 904xNOT

ASICs: 240xXOR2,
 896xNOT

AddRoundConstant

FPGAs: 4 CLB slices FPGAs: 64 CLB slices FPGAs: 60 CLB slices
ASICs: routing resources ASICs: routing resources ASICs: routing resources ShiftBytesWide
FPGAs: routing resources FPGAs: routing resources FPGAs: routing resources

We have followed our first order estimations with the actual implementations of the tweaked Groestl. As a
starting point, we have used two GMU implementations of Groestl-0, one based on the quasi-pipelined
architecture and the second based on the parallel architecture. The former of these two implementations was
reported in [HRG10].

As our target platform, we have chosen two very popular FPGA families: Virtex 5 from Xilinx, and
Stratix III from Altera. Both of these families are based on the same 65 nm semiconductor technology. As our
tools, we have used Xilinx ISE 12.3 and Altera Quartus II 10.1. All architectures have been first modeled in
VHDL-93, then synthesized, placed and routed using tools of the respective vendor. Maximum clock frequencies
have been determined using static timing analysis tools provided as a part of the respective software packages
(quartus_sta for Altera and trace for Xilinx). The tool options were selected in such a way, that no embedded
resources, such as block memories or DSP units, were used during implementation. This choice was made in
order to enable the comparison of all implementations in terms of area and throughput to area ratio. The
Automated Tool for Hardware Evaluation (ATHENa) [ATH11, GKA10] has been used to optimize tool options
and facilitate collection of results. This tool was run in the mode called GMU_optimization_1.

Fig. 1. Throughput vs. Area diagram for Groestl-0 and Groestl in Xilinx Virtex-5 FPGAs.

Notation: PL - parallel architecture, QP - quasi-pipelined architecture.

Fig. 2. Throughput vs. Area diagram for Groestl-0 and Groestl in Altera Stratix III FPGAs.
Notation: PL - parallel architecture, QP - quasi-pipelined architecture.

Table 5. Implementation results for the 256-bit variant of Groestl-0 and Groestl in case of the
quasi-pipelined architecture.

 Groestl-0 Groestl Percentage difference [%]

Xilinx Virtex 5

Area (CLB slices) 1597 1831 14.7

Frequency (MHz) 323.4 258.1 -20.2

Throughput (Mbit/s) 7885 6294 -20.2

Throughput/Area
((Mbit/s)/CLB slices)

4.94 3.44 -30.4

Altera Stratix III

Area (ALUTs) 6350 7189 11.7

Frequency (MHz) 220.7 171.7 -22.2

Throughput (Mbit/s) 5380 4187 -22.2

Throughput/Area
((Mbit/s)/ALUTs)

0.85 0.58 -31.8

Table 6. Implementation results for the 512-bit variant of Groestl-0 and Groestl in case of the
quasi-pipelined architecture.

 Groestl-0 Groestl Percentage difference [%]

Xilinx Virtex 5

Area (CLB slices) 3138 3880 23.6

Frequency (MHz) 292.1 225.2 -22.9

Throughput (Mbit/s) 10314 7953 -22.9

Throughput/Area
((Mbit/s)/CLB slices)

3.29 2.05 -37.7

Altera Stratix III

Area (ALUTs) 12355 14194 14.9

Frequency (MHz) 202.3 156.4 -22.7

Throughput (Mbit/s) 7142 5523 -22.7

Throughput/Area
((Mbit/s)/ALUTs)

0.58 0.39 -29.3

 Table 7. Implementation results for the 256-bit variant of Groestl-0 and Groestl in case of the
parallel architecture.

 Groestl-0 Groestl Percentage difference [%]

Xilinx Virtex 5

Area (CLB slices) 2539 2610 2.8

Frequency (MHz) 176.8 173.8 -1.7

Throughput (Mbit/s) 9054 8900 -1.7

Throughput/Area
((Mbit/s)/CLB slices)

3.57 3.41 -4.5

Altera Stratix III

Area (ALUTs) 10749 10952 1.9

Frequency (MHz) 151.0 148.2 -1.9

Throughput (Mbit/s) 7730 7585 -1.9

Throughput/Area
((Mbit/s)/ALUTs)

0.72 0.69 -4.2

Table 8. Implementation results for the 512-bit variant of Groestl-0 and Groestl in case of the

parallel architecture.

 Groestl-0 Groestl Percentage difference [%]

Xilinx Virtex 5

Area (CLB slices) 5233 5379 2.7

Frequency (MHz) 159.0 153.6 -3.4

Throughput (Mbit/s) 11628 11237 -3.4

Throughput/Area
((Mbit/s)/CLB slices)

2.22 2.09 -5.9

Altera Stratix III

Area (ALUTs) 21249 21379 0.6

Frequency (MHz) 137.8 131.9 -4.3

Throughput (Mbit/s) 10079 9648 -4.3

Throughput/Area
((Mbit/s)/ALUTs)

0.47 0.45 -4.3

4. Results

Our results for the quasi-pipelined architecture and the parallel architecture are summarized in Tables 5-8, and
Figs. 1 and 2. These results clearly indicate that the differences between Groestl-0 and Groestl implementations
are much greater for the quasi-pipelined architecture, in terms of both area and throughput. The performance
penalty of the Groestl tweaks for the parallel architecture appears to be very small.
 In terms of the choice of the architecture, for Groestl-0, the qusi-pipelined architecture gives consistently
much better results in terms of the throughput to area ratio for both hash function variants, and both investigated
FPGA families. For Groestl, the parallel architecture becomes very comparable to the quasi-pipelined
architecture for Virtex 5, and clearly better for Stratix III.

5. Conclusions

We have performed the first order analysis of the influence of the Round 3 tweaks in Groestl on the performance
of this algorithm in FPGAs. Both Groestl-0 and the revised Groestl have been fully implemented in VHDL using
two alternative architectures: quasi-pipelined and parallel.

The results indicate that the performance penalty in terms of the throughput to area ratio depends
strongly on the architecture used. In case of the quasi-pipelined architecture, we have observed from 29% to
38% decrease in the throughput to area ratio for Altera and Xilinx FPGAs. For the parallel architecture, we
expected much smaller penalty. The obtained results are very consistent and the overall throughput to area ratio
decreased by 4-6%.
 Interestingly, for Groestl-0, the quasi-pipelined architecture consistently outperformed the parallel
architecture in terms of the throughput to area ratio for all investigated FPGA families and output sizes. After the
tweak was applied, the parallel architecture became slightly better or at least comparable in terms of the same
performance measure, and may become the architecture of choice for future high-speed implementations.

References:

[ATH11] ATHENa web site, available at http://cryptography.gmu.edu/athena/
[BHH10] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O'Neill, and W.P. Marnane, “FPGA Implementations

of the Round Two SHA-3 Candidates,” Second SHA-3 Candidate Conference, 2010, available online at
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf

[DMO04] L. Dadda, M. Macchetti, and J. Owen, “The design of a high speed ASIC unit for the hash function SHA-256
(384, 512),” in Proc. Design, Automation and Test in Europe Conference 2004 (DATE’04), pp. 70–75.

[GHN10] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont. “On The Impact of Target Technology in SHA-3 Hardware
Benchmark Rankings,” Cryptology ePrint Archive: Report 2010/536, available online at

 http://eprint.iacr.org/2010/536.pdf
[GKA10] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B.Y. Brewster, ATHENa – Automated

Tool for Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of Cryptographic Hardware
Using FPGAs, 20th International Conference on Field Programmable Logic and Applications - FPL 2010, IEEE,
2010, available on line at http://cryptography.gmu.edu/athena/papers/GMU_FPL_2010_ATHENa.pdf

[GKM08] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, Ch. Rechberger, M. Schläffer, S.S. Thomsen,
“Groestl – SHA3 candidate”, original specification, October 31, 2008, available on line at
http://www.groestl.info/Groestl-0.pdf

[GKM11] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, Ch. Rechberger, M. Schläffer, S.S. Thomsen,
“Groestl – SHA3 candidate”, January 16, 2011, available at http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html

[GKM11a] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, Ch. Rechberger, M. Schläffer, S.S. Thomsen,
“Tweaks on Grostl”, January 16, 2011, available online at http://www.groestl.info/Round3Mods.pdf

[HRG10] E. Homsirikamol, M. Rogawski, and K. Gaj, "Comparing Hardware Performance of Fourteen Round Two SHA-3
Candidates Using FPGAs," Cryptology ePrint Archive: Report 2010/445, available on line at
http://eprint.iacr.org/2010/445.pdf

[KIM10] K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, and K. Ohta, “Evaluation of Hardware Performance for the
SHA-3 Candidates Using SASEBO-GII,” Cryptology ePrint Archive: Report 2010/010, available online at
http://eprint.iacr.org/2010/010.pdf

[MD05] M. Macchetti and L. Dadda, “Quasi-pipelined hash circuits,” in Proc. IEEE Symposium on Computer Arithmetic,
2005, pp. 222–229.

[MKS10] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, and K. Ota, “How Can We
Conduct "Fair and Consistent" Hardware Evaluation for SHA-3 Candidate?” Second SHA-3 Candidate
Conference, 2010, available online at http://csrc.nist.gov/groups/ST/hash/sha-
3/Round2/Aug2010/documents/papers/MATSUO_SHA-3_Criteria_Hardware_revised.pdf

[TFK10] S. Tillich and M. Feldhofer and M. Kirschbaum and T. Plos and J.-M. Schmidt and A. Szekely, “High-Speed
Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grostl, Hamsi, JH,
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein,” Cryptology ePrint Archive: Report 2009/510, available
online at http://eprint.iacr.org/2009/510.pdf

[SHZ11] SHA-3 Zoo: Hardware Implementations, available at http://ehash.iaik.tugraz.at/wiki/SHA-
3_Hardware_Implementations

