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Abstract. TEA, XTEA and HIGHT are lightweight block ciphers with
64-bit block sizes and 128-bit keys. The round functions of the three ci-
phers are based on the simple operations XOR, modular addition and
shift/rotation. TEA and XTEA are Feistel ciphers with 64 rounds de-
signed by Needham and Wheeler, where XTEA is a successor of TEA,
which was proposed by the same authors as an enhanced version of TEA.
HIGHT, which is designed by Hong et al., is a generalized Feistel cipher
with 32 rounds. These block ciphers are simple and easy to implement
but their diffusion is slow, which allows us to find some impossible prop-
erties.
This paper proposes a method to identify the impossible differentials
for TEA and XTEA by using the weak diffusion, where the impossible
differential comes from a bit contradiction. Our method finds a 14-round
impossible differential of XTEA and a 13-round impossible differential of
TEA, which result in impossible differential attacks on 23-round XTEA
and 17-round TEA, respectively. These attacks significantly improve the
previous impossible differential attacks on 14-round XTEA and 11-round
TEA given by Moon et al. from FSE 2002. For HIGHT, we improve
the 26-round impossible differential attack proposed by Özen et al.; an
impossible differential attack on 27-round HIGHT that is slightly faster
than the exhaustive search is also given.

1 Introduction

TEA [22], XTEA [19] and HIGHT [6] are lightweight block ciphers suitable for
low resource devices such as RFID tags and sensor nodes. TEA was proposed

? This author is supported by Graduate Independent Innovation Foundation of Shan-
dong University (No. 11140070613183).

?? This author is supported by NSFC Projects (No.61133013, No.61070244, No.
61103237 and No.60931160442), Outstanding Young Scientists Foundation Grant
of Shandong Province (No.BS2009DX030).



2 J. Chen, M. Wang and B. Preneel

by Needham and Wheeler in 1994; it is a simple design that is easy to under-
stand and implement. By exploiting its too simple key schedule, Kelsey et al.
proposed a related-key attack on full TEA [10]. In order to preclude the attack,
the authors enhanced the cipher with an improved key schedule and a different
round function by rearranging the operations; the new version is called XTEA.
Both TEA and XTEA are implemented in the Linux kernel; they use modular
addition (modulo 232), shift (left and right) and XOR in their round functions.
Several cryptanalytic results on TEA and XTEA have been published. In the
single-key setting, Moon et al. gave impossible differential attacks on 11-round
TEA and 14-round XTEA [18] based on 10-round and 12-round impossible dif-
ferentials, respectively. Hong et al. [7] proposed truncated differential attacks
that can break TEA reduced to 17 rounds with 2123.73 encryptions and XTEA
reduced to 23 rounds with 2120.65 encryptions. Later, Sekar et al. presented a
meet-in-the-middle attack on 23-round XTEA with complexity 2117 [21]. Very
recently, Bogdanov and Wang proposed attacks on TEA and XTEA [3] with a
new technique named zero correlation linear cryptanalysis [2]; these attacks are
best attacks on TEA and XTEA in terms of the number of rounds to date, which
can break 23 rounds of TEA and 27 rounds of XTEA using the whole code book.
There are also attacks on XTEA in the related-key setting, which are given in
[4][13][15][17].

HIGHT, designed by Hong et al. [6], was standardized by the Telecommu-
nications Technology Association (TTA) of Korea. Recently, it was adopted as
an International Standard by ISO/IEC 18033-3 [8]. It is an 8-branch generalized
Feistel with initial and final whitening layers; its round function uses addition
modulo 28, rotation and XOR. The best related-key attack on HIGHT is a full-
round rectangle attack with complexity 2125.83 [14]. The best single-key attack
is a 26-round impossible differential cryptanalysis proposed by [20], which does
not take the initial whitening layer into account and needs 2119.53 encryptions.

The impossible differential attack, which was independently proposed by Bi-
ham et al. [1] and Knudsen [12], is a widely used cryptanalytic method. The
attack starts with finding an input difference that can never result in an output
difference, which makes up an impossible differential. By adding rounds before
and/or after the impossible differential, one can collect pairs with certain plain-
text and ciphertext differences. If there exists a pair that meets the input and
output values of the impossible differential under some subkey bits, these bits
must be wrong. In this way, we discard as many wrong keys as possible and
exhaustively search the rest of the keys, this phase is called key recovery phase.
The early abort technique is usually used during the key recovery phase, that
is, one does not guess all the subkey bits at once, but guess some subkey bits
instead to discard some pairs that do not satisfy certain conditions step by step.
In this case, we can discard the unwished pairs as soon as possible to reduce the
time complexity.

Our Contribution. This paper presents a novel method to derive impossible
differentials for TEA and XTEA. Due to the one-directional diffusion property of
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TEA and XTEA, one can determine a one-bit difference after a chosen difference
propagates several steps forward/backward, which might lead to a one-bit contra-
diction in certain rounds if we choose two differences and make them propagate
towards each other. Based on this technique we identify 13-round and 14-round
impossible differentials for TEA and XTEA respectively. These impossible differ-
entials are significantly better than the 10-round impossible differential of TEA
and 12-round impossible differential of XTEA in [18], and result in improved im-
possible differential attacks on 17-round TEA and 23-round XTEA. Our attack
on 17-round TEA needs 257 chosen plaintexts and 2106.6 encryptions. If we use
262.3 chosen plaintexts, we can attack 23-round XTEA with 2114.9 encryptions; if
we increase the data complexity to 263, the complexity of the attack will become
2106 memory accesses and 2105.6 encryptions. Although the attacks on TEA and
XTEA are not as good as those in [3], they greatly improve the corresponding
impossible differential attacks in [18].

Table 1: Summary of Single-Key Attacks on TEA, XTEA and HIGHT
Attack #Rounds Data Time Ref.

TEA

Impossible Differential 11 252.5 CP 284EN [18]
Truncated Differential 17 1920 CP 2123.37EN [7]

Impossible Differential 17 257 CP 2106.6EN this paper
Zero Correlation Linear 21 262.62KP 2121.52EN [3]
Zero Correlation Linear 23 264 2119.64EN [3]

XTEA

Impossible Differential 14 262.5 CP 285EN [18]
Truncated Differential 23 220.55 CP 2120.65EN [7]

Meet-in-the-Middle 23 18 KP 2117EN [21]
Impossible Differential 23 262.3 CP 2114.9EN this paper
Impossible Differential 23 263 CP 2101MA+2105.6EN this paper
Zero Correlation Linear 25 262.62KP 2124.53EN [3]
Zero Correlation Linear 27 264 2120.71EN [3]

HIGHT

Saturation 22 262.04 CP 2118.71EN [23]
Impossible Differential 25 260 CP 2126.78EN [16]
Impossible Differential 26 261 CP 2119.53EN [20]

Impossible Differential 26 261.6 CP 2114.35EN this paper
Impossible Differential 27 258 CP 2120 MA+2126.6EN this paper

CP: Chosen Plaintext; KP: Known Plaintext;
EN: Encryptions; MA: Memory Accesses.

Furthermore, we present impossible differential attacks on HIGHT reduced
to 26 and 27 rounds that improve the result of [20]. Like the attack in [20], our
26-round attack also does not take the initial whitening layer into account; the
complexity of our attack is 261.6 chosen plaintexts and 2114.35 encryptions. While
the 27-round attack includes both the initial and final whitening layers; it needs
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258 chosen plaintexts, 2126.6 27-round encryptions and 2120 memory accesses.
We summarize our results of TEA, XTEA and HIGHT, as well as the major
previous results in Table 1.

The rest of the paper is organized as follows. We give some notations and
brief descriptions of TEA, XTEA and HIGHT in Sect. 2. Some properties of
TEA, XTEA and HIGHT are described in Sect. 3. Section 4 gives the impos-
sible differentials and our attacks on reduced TEA and XTEA. The impossible
differential cryptanalysis of HIGHT is presented in Sect. 5. Finally, Section 6
concludes the paper.

2 Preliminary

2.1 Notations

– �: addition modular 232 or 28

– ⊕: exclusive-OR (XOR)
– MSB: most significant bit, which is the left-most bit
– LSB: least significant bit, which is the right-most bit
– ?: an indeterminate difference
– ||: concatenation of bits
– ∆A: the XOR difference of a pair (A,A′), where A and A′ are values of

arbitrary length
– Ai: the i-th bit of A, where the 1st bit is the LSB
– Ai∼j : the i-th to j-th bits of A
– (·)2: the binary representation a byte, where the left-most bit is the MSB
– e0: (???????0)2, e1: (???????1)2, e4: (?????100)2
– D[i]: a 32-bit difference where the i-th bit is 1, the first to the (i − 1)-th

bits are 0, and the (i+ 1)-th to 32-th bits are indeterminate. For i < 0, D[i]
means that all the 32 bits of the difference are indeterminate.

2.2 Brief Description of TEA and XTEA

TEA and XTEA are 64-bit block ciphers with 128-bit key-length. The key K
can be described as follows: K = (K0,K1,K2,K3), where Ki (i = 0, ..., 3) are
32-bit words. Denote the plaintext by (PL, PR), the ciphertext by (CL, CR), and
the input of the i-th round by (Li−1, Ri−1), so (L0 = PL, R0 = PR). Then we
can briefly describe the encryption procedure of TEA.
For i = 1 to 64, if i mod 2 = 1,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4) +K0)⊕ (Ri−1 + (i+ 1)/2× δ)⊕ ((Ri−1 � 5) +K1)) .
If i mod 2 = 0,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4) +K2)⊕ (Ri−1 + (i+ 1)/2× δ)⊕ ((Ri−1 � 5) +K3)) .
Finally, (CL = L64, CR = R64). Note that the constant δ = 0x9e3779b9. XTEA
is also very simple, it has similar structure and round function as TEA. To make
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Fig. 1: Round Functions of TEA and XTEA

the cipher resist against related-key attack, XTEA has a key schedule which is
more complicated. By using the same notion, the encryption procedure of XTEA
is depicted as follows.
For i = 1 to 64,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4⊕Ri−1 � 5) +Ri−1)⊕ (i/2× δ+K((i−1)/2×δ�11)∩3) .
The round functions of TEA and XTEA are illustrated in Fig. 1. The sequence
Ki that is used in each round of XTEA can be found in Table 2.

Table 2: Subkey Used in Each Round of XTEA
K0 K3 K1 K2 K2 K1 K3 K0 K0 K0 K1 K3 K2 K2 K3 K1

K0 K0 K1 K0 K2 K3 K3 K2 K0 K1 K1 K1 K2 K0 K3 K3

K0 K2 K1 K1 K2 K1 K3 K0 K0 K3 K1 K2 K2 K1 K3 K1

K0 K0 K1 K3 K2 K2 K3 K2 K0 K1 K1 K0 K2 K3 K3 K2

2.3 Brief Description of HIGHT

HIGHT is a lightweight block cipher with a 64-bit block size and a 128-bit
key. The cipher consists of 32 rounds with four parallel Feistel functions in
each round; whitening keys are applied before the first round and after the
last round. The master key of HIGHT is composed of 16 bytes MK=(MK15,
MK14, MK13, MK12, MK11, MK10, MK9, MK8, MK7, MK6,MK5, MK4, MK3,
MK2, MK1, MK0); the whitening keys (WK0,WK1,WK2,WK3, WK4, WK5,
WK6, WK7) and round subkeys (SK0, ..., SK127) are generated from the mas-
ter key by the key schedule algorithm. The schedule of whitening keys is rel-
atively simple and results in WK0 = MK12, WK1 = MK13, WK2 = MK14,
WK3 = MK15, WK4 = MK0, WK5 = MK1, WK6 = MK2, WK7 = MK8. The
128 7-bit constants δ0, ..., δ127 have to be generated before generating the round
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subkeys; the algorithm is described in Fig. 2. Let the plaintext and ciphertext

Set s0 ← 0, s1 ← 1, s2 ← 0, s3 ← 1, s4 ← 1, s5 ← 0 and s6 ← 1.
δ0 = s6||s5||s4||s3||s2||s1||s0.
For i = 1 to 127,

si+6 = si+2 ⊕ si−1,
δi = si+6||si+5||si+4||si+3||si+2||si+1||si.

For i = 0 to 7,
for j = 0 to 7,

SK16i+j = MK(j−i) mod 8 � δ16i+j .
for j = 0 to 7,

SK16i+j+8 = MK((j−i) mod 8)+8 � δ16i+j+8.

Fig. 2: Subkey Generation of HIGHT

be P = (P7, P6, P5, P4, P3, P2, P1, P0) and C= (C7, C6, C5, C4, C3, C2, C1, C0),
where Pj , Cj (j = 0, ..., 7) are 8-bit values. If we denote the input of the (i+ 1)-
round be Xi = (Xi

7, X
i
6, X

i
5, X

i
4, X

i
3, X

i
2, X

i
1, X

i
0), then an initial transformation

is first applied to P by setting X0
0 ← P0 �WK0, X0

1 ← P1, X0
2 ← P2 ⊕WK1,

X0
3 ← P3, X0

4 ← P4 �WK2, X0
5 ← P5, X0

6 ← P6 ⊕WK3 and X0
7 ← P7. After

this, the round transformation iterates for 32 times:

For i = 0 to 32,

Xi+1
1 = Xi

0, Xi+1
3 = Xi

2, Xi+1
5 = Xi

4, Xi+1
7 = Xi

6,

Xi+1
0 = Xi

7 ⊕ (F0(Xi
6)� SK4i+3),

Xi+1
2 = Xi

1 � (F1(Xi
0)⊕ SK4i+2),

Xi+1
4 = Xi

3 ⊕ (F0(Xi
2)� SK4i+1),

Xi+1
6 = Xi

5 � (F1(Xi
4)⊕ SK4i).

Here F0(x) = (x≪ 1) ⊕ (x≪ 2) ⊕ (x≪ 7), and F1(x) = (x≪ 3) ⊕ (x≪
4)⊕ (x≪ 6). One round of HIGHT is illustrated in Fig. 3.
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Fig. 3: One Round of HIGHT

A final transformation is used to obtain the ciphertext C, where C0 = X32
1 �

WK4, C1 = X32
2 , C2 = X32

3 ⊕WK5, C3 = X32
4 , C4 = X32

5 �WK6, C5 = X32
6 ,

C6 = X32
7 ⊕WK7 and C7 = X32

0 .
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3 Diffusion Properties of TEA, XTEA and HIGHT

For XTEA and TEA, instead of rotations, shifts (left and right) are used, hence
the differences that are shifted beyond MSB/LSB will be absorbed, which results
in a slower diffusion than for rotations. In other words, the difference in the most
significant bits can only influence the least significant bits after several rounds.
This is the starting point of our attacks, which allows us to construct impossible
differentials. The derivation of the impossible differentials will be elaborated in
Sect. 4.1.

There is also a common property in the block ciphers TEA, XTEA and
HIGHT, that is, the round subkeys are added (or XORed) to the intermediate
values after the diffusion operations. Furthermore, the operations used in all the
three ciphers are modular addition, XOR and shift (rotation), which may allow
us to guess the subkey bit by bit from the LSB to the MSB to abort the wrong
pairs as soon as possible to reduce the time complexity.

In the rest of this section, we will first give the definition of the T-function [11],
then give Theorem 1 and Property 1 that are useful for attacks on TEA and
XTEA.

Definition 1. (From [11]) A function φ from Bm×n to Bl×n is called a T-
function if the k-th column of the output [φ(x)]∗,k−1 depends only on the first k
columns of the input: [x]∗,0, ..., [x]∗,k−1, where B is the set {0, 1} and [x]∗,i is the
i-th column of x.

From the definition we know that modular addition is a T-function, more specif-
ically, we have the following Theorem.

Theorem 1 (From [5]). Let [x+y] be (x+y) mod 2n, then [x+y]i = xi⊕yi⊕ci
(i = 1, ..., n), where c1 = 0 and ci = xi−1yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1, for i = 2,
..., n.

From Theorem 1, Property 1 can be deduced:

Property 1. Given x, x′, y, y′ be n-bit values, and z = (x + y) mod 2n, z′ =
(x′+ y′) mod 2n. If the i-th (counting from 1) to j-th bits of x, x′, y, y′ and the
i-th carry ci, c

′
i of x+ y, x′+ y′ are known, then the i-th to j-th (i < j ≤ n) bits

of ∆z can be obtained, regardless of the values of least significant i− 1 bits of x
(or x′), y (or y′). Note that if there are no differences in the the least significant
i− 1 bits of x+ y and x′ + y′, then ci = c′i.

4 Impossible Differential Attacks on Reduced XTEA and
TEA

In this section, we first explain how to obtain the impossible differentials for TEA
and XTEA. Then a 13-round impossible differential for TEA and a 14-round
impossible differential for XTEA are given, which are used to attack 17-round
TEA and 23-round XTEA .
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4.1 Impossible Differentials of TEA and XTEA

As mentioned in Sect. 3, we know that the differences in the most significant
bits propagate only in one direction. Since both TEA and XTEA use operations
that shift to the left for 4 bits and shift to the right for 5 bits, they share the
following properties.

Property 2. If the input difference of the i-th round of XTEA (TEA) is (0, D[n]),
then the output difference is (D[n], D[n−5]). Vice versa, if the output difference
of the j-th round of XTEA (TEA) is (D[p], 0), then the input difference is
(D[p− 5], D[p]).

Property 3. If the input difference of the i-th round of XTEA (TEA) is (D[m], D[n]),
where (m > n− 5), then the output difference is (D[n], D[n− 5]). Vice versa, if
the output difference of the j-th round of XTEA (TEA) is (D[p], D[q]), where
(q > p− 5), then the input difference is (D[p− 5], D[p]).

From Property 2 and Property 3, we propose a method to construct impos-
sible differentials for TEA and XTEA. If we choose the input difference to be
(0, D[n]) (or (D[m], D[n]) (m > n−5)), then after i rounds, the difference should
be of the form (D[n−5(i−1)], D[n−5i]). Similarly, if we choose the output dif-
ference (D[p], 0) (or (D[p], D[q]) (q > p− 5)), then after propagating backwards
for j rounds, the difference should be of the form (D[p − 5j], D[p − 5(j − 1)]).
Then at least one bit contradiction will appear if

n− 5(i− 1) > 0, p− 5j > 0, n− 5(i− 1) 6= p− 5j.

With this method, we can derived a 14-round impossible differential for XTEA
and a 13-round impossible differential for TEA (see Fig. 4), where the left-most
bit is the MSB, each small rectangle stands for one bit: blank rectangles mean
that there are no differences in these bits, while black ones mean the differences
are equal to 1, and gray ones mean that the differences are indeterminate. Note
that we can even derive 15-round impossible differentials for both XTEA and
TEA, resulting in attacks that may work for more rounds. However, the resulting
attacks require almost the complete codebook and very high complexities, so we
decided not to describe them in detail.

4.2 Impossible Differential Attack of 23-Round XTEA

By placing the 14-round impossible differential on rounds 11 ∼ 24, we can attack
XTEA from round 6 to round 28. This is clarified in Fig. 5.

Data Collection. We first construct 25.3 structures of plaintexts, where in
each structure the LSB of PL and the 6 least significant bits of PR are fixed,
whereas the other bits take all values. For each structure, ask for the encryption
of the plaintexts to get the corresponding ciphertexts. By the birthday paradox,
we can get 257×2−1 × 2−29 = 284 pairs that satisfy (∆PL)1 = 1, (∆PR)6 = 1,
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Fig. 4: Impossible Differentials of XTEA (left) and TEA (right)

(∆CL)15 = 1, (∆CR)10 = 1, the 15 least significant bits of ∆CL are 0, and the
10 least significant bits of ∆CR are 0 in each structure. As a result, 289.3 pairs
are obtained since we have 25.3 structures; the number of chosen plaintexts is
262.3.

Key Recovery. In order to find if there are pairs obtained from the data col-
lection phase that may follow the differential in Fig. 5, we need to guess the key
bits and sieve the pairs in rounds 6 ∼ 10 and 25 ∼ 28. From Table 2 we know
the subkey used in each round (namely K1, K3, K0, K0, K0; and K0, K1, K1,
K1), hence we know the key bits we have to guess in each step.

As mentioned above, for XTEA the round subkeys intervene in the round
functions after the diffusion, hence from Property 1 one can deduce that the
attacker does not always have to guess all the 32 bits of the subkey to sieve the
pairs with the required differences.

The key recovery process is described in Table 3, where the second column
stands for the bits that have to be guessed in each step. Note that in Step 6,
guessing bits 1 ∼ 6 of K3 only takes 25 times, since one-bit information is known
from c2. Similarly, it takes 210 and 212 guesses for bits 1 ∼ 11 and 23 ∼ 25
of K0, respectively. The fifth and fourth columns of Table 3 are the rounds
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where the sieving is launched and the conditions that can be used to sieve; the
last column shows the number of remaining pairs after each step (for each key
guess). Consequently, we can get the time complexity (measured by the number
of 23-round encryptions) of each step, which is given in column 3 of the table.

In Step 7, if there is a pair kept, then we discard the key guess and try an-
other one. Otherwise, for this key guess we exhaustively search the remaining 232

keys by trial encryptions, and then either output the correct key or try another
96-bit key guess.

Analysis of the Attack. From the data collection phase we know that the data
complexity, i.e., the number of plaintexts we need is equal to 262.3. In Step 7 of the
key recovery phase, about 296×(1−2−20)2

23.3 ≈ 282.2 96-bit values (K0,K1,K3)
will remain. Since the trial encryptions need two plaintext-ciphertext pairs, the
cost of the trial encryptions is about 232× 282.2 + 250.2 = 2114.2 23-round XTEA
encryptions. The complexity of this step is about 2× 296× (1 + (1− 2−20) + ...+

(1− 2−20)2
23.3−1)× 2/23 + 2114.2 ≈ 2113.5 + 2114.2 ≈ 2114.9 encryptions, which is

also the dominating time complexity of the attack. The memory complexity to
store the pairs is 294.3 bytes.

Reducing the Time Complexity. If we prepare the pairs that satisfy the
conditions of rounds 8, 9 and 10 by precomputation, we can avoid guessing bits
1 ∼ 25 of K0 by doing some table look-ups and memory accesses. If the same data
complexity is used, the time complexity will be dominated by the trial encryp-
tions used to discard the remaining keys. Hence we also increase the data com-
plexity to 263 by choosing 26 structures. First we illustrate the procedure of pre-
computation: we choose ∆L10 = D[27] and ∆R10 = 0, for each K0, L10 and R10,
decrypt all (L10, L10⊕∆L10) and (R10, R10⊕∆R10) to get (L7, L7⊕∆L7) and
(R7, R7⊕∆R7) (the subkey used in round 8, 9 and 10 is K0); then insert bits 1 ∼
25 of K0 into a hash table T indexed by (L7, R7, ∆L7, ∆R7, (K0)26∼32). There
are 264×235×27 = 2106 (L7, R7, ∆L7, ∆R7, (K0)26∼32)s since ∆L7 = D[12] and
∆R7 = D[17]; however, only 264 × 25 × 232 = 2101 (L10, R10, ∆L10, ∆R10,K0)s
can be chosen, which means that only a fraction 2−5 of the rows in Table T
are not empty, and each non-empty row contains one (K0)1∼25 on average. The
complexity of precomputation is 2× 2101 = 2102 3-round encryptions.

With Table T , we can replace Step 6 and Step 7 of the key recovery procedure
as follows: we construct another table Γ that contains all values of bits 1 ∼
25 of K0. In Step 6, after guessing bits 1 ∼ 6, 18 ∼ 32 of K3, we calculate
(L7, R7, ∆L7, ∆R7) and access the value from the corresponding row of Table T .
If there is a value in the row, we delete this (K0)1∼25 from Table Γ . For each
guess of K1, K3 and bits 26 ∼ 32 of K0, we get 234 pairs before accessing Table T ;
a fraction 2−5 of the 234 pairs will access Table T to get a (K0)1∼25, which will

be then deleted from Γ . Consequently, 264 × 27 × 225 × (1 − 2−25)2
29 ≈ 273.6

(K0,K1,K3) will remain, which have to be further tested by trial encryptions
with each K2. The complexity of this procedure is 2107 one-round encryptions,
2101 memory accesses to Table T , 2101 memory accesses to Table Γ and 2105.6



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 11

Table 3: Attack on 23-Round XTEA
Step Guess Bits Complexity Sieve on Conds Pairs Kept

1 K1 : 1 ∼ 12 297.8 round 6 10 279.3

2 K1 : 13 ∼ 22 297.8 round 28 10 269.3

3 K1 : 23 ∼ 32 298.8 round 26,27 20 249.3

4 K0 : 26 ∼ 32, c1* 285.8 round 25 6 243.3

5 K3 : 7 ∼ 17, c2† 290.8 round 7 10 233.3

6 K3 : 1 ∼ 6, 18 ∼ 32,K0 : 12 ∼ 22, c3‡ 2103.8 round 8 10 223.3

7 K0 : 1 ∼ 11, 23 ∼ 25 2114.9 round 9,10 20 −
*c1 is the 26th carry in the left modular addition of the 25th round
† c2 is the 7th carry in the left modular addition of the 7th round
‡ c3 is the 12th carry in the left modular addition of the 8th round

trial encryptions. If we assume that one memory access to Table Γ is equivalent
to one one-round encryption, then the dominating complexity is 2101 memory
accesses to Table T and 2105.6 trial encryptions, which is also the dominating
complexity of the whole attack. The memory complexity of the attack is about
2103 bytes required for Table T .

14-Round Impossible Differential

F

F

F
F

F

F

F

F

F

F

F

13-Round Impossible Differential

F

F

Fig. 5: 23-Round Attack on XTEA (left) and 17-Round Attack on TEA (right)

4.3 Impossible Differential Attack of 17-Round TEA

Using the 13-round impossible differential, we can attack the first 17 rounds
of TEA by extending the impossible differential forward and backward for two
rounds (see Fig. 5).
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Note from [9] one can deduce that the effective key size of TEA is only 126
bits: if the MSBs of K0 and K1 flip simultaneously, the output value of the round
will be the same; actually, the same phenomenon happens for K2 and K3. As a
result, every key value has three equivalent keys, which allows us to guess only
one of the 4 equivalent keys when we mount an impossible differential attack
on TEA. At the end of the attack, if we output one correct key, there are three
other keys that are also correct.

In the data collection phase, we construct 230 structures of plaintexts with
the least 16 bits of PL and the least 21 bits of PR fixed, while the other bits take
all values. Ask for the encryptions to get the ciphertexts; for each structure we
can get 253−39 = 214 pairs that satisfy the required differences of the plaintext
and ciphertext by the birthday paradox. Then the total number of pairs kept
after the data collecting phase is 244.

Observe that K0 and K1 are used in the first and the 17th round, and K2

and K3 are used in the second and the 16th round. Hence for the remaining
pairs, we first guess K0 and K1, partially encrypt the first round and discard
the pairs that do not meet the condition of ∆R1; then decrypt the 17th round
and discard the pairs whose ∆L16 do not satisfy the required form. The number
of pairs that meet the conditions should be 224; and the complexity of this step
is about 2 × 2107 + 2 × 297 = 2108 one-round encryptions, equivalent to 2104

17-round encryptions.
Then we guess bits 21 ∼ 32 of K2 and K3, the 22th carry of the left modular

addition in round 2, and the 26th carry of the left modular addition in round
16. For the remaining pairs, we partially encrypt round 2 and round 16, and
keep only the pairs that satisfy the required differences. If there is a pair kept,
then we discard the key guess and try another one. Otherwise, for this key guess
we exhaustively search the remaining key values by trial encryption, and then
either output the correct key or try another guess. Considering the equivalent
keys, the key values we guessed are 88 bits (including the guessed carries); the

expected number of remaining 88-bit key guesses is about 288 × (1− 2−20)2
24 ≈

265.6. Since each of the remaining key guesses has to be exhaustively searched
with the other 238 key values, so the time complexity of this step is about
2×288×(1+(1−2−20)+(1−2−20)2+...+(1−2−20)2

24

)×2/17+265.6+38 ≈ 2106.3

encryptions; thus the time complexity of the attack is about 2106.3+2104 ≈ 2106.6.
The data complexity is 257 and the memory complexity is 249 bytes.

5 Impossible Differential Cryptanalysis of Reduced
HIGHT

In this section, we improve the 26-round impossible differential attack on HIGHT
in [20] by using a 16-round impossible differential that is similar to that of
[20] (see Fig. 6a). In order to take advantage of the redundancy in the key
schedule, we carefully choose the beginning and ending rounds of the impossible
differential, which are round 10 and round 25, respectively. The attack excludes
the initial whitening layer (as in [20]), and works for round 5 to round 30 (see Fig.



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 13

6b). In addition, a 27-round impossible differential attack with both the initial
and final whitening layers, which is slightly better than exhaustive search, is also
proposed based on the 16-round impossible differential in [20] (see Fig. 7a).

i ∆Xi
7 ∆X

i
6 ∆X

i
5 ∆X

i
4 ∆X

i
3 ∆X

i
2 ∆X

i
1 ∆X

i
0

9 0 0 0 0 e1 0 0 0
10 0 0 0 e1 0 0 0 0
11 0 ? e1 0 0 0 0 0
12 ? e1 0 0 0 0 0 ?
13 e1 0 0 0 0 ? ? ?
14 0 0 0 ? ? ? ? e1
15 0 ? ? ? ? ? e1 0
16 ? ? ? ? ? e1 0 ?
17 ? ? ? ? e1 ? ? ?

17 ? ? ? ? e0 0x80 ? ?
18 ? ? ? e1 0x80 0 ? ?
19 ? ? e1 0x80 0 0 ? ?
20 ? e1 0x80 0 0 0 ? ?
21 e1 0x80 0 0 0 0 ? ?
22 0x80 0 0 0 0 0 ? e4
23 0 0 0 0 0 0 e4 0x80
24 0 0 0 0 0 0 0x80 0
25 0 0 0 0 0 0x80 0 0

(a) The 16-Round Impossible Differen-
tial

i ∆Xi
7 ∆X

i
6 ∆X

i
5 ∆X

i
4 ∆X

i
3 ∆X

i
2 ∆X

i
1 ∆X

i
0

P ? e1 0 0 ? ? ? ?
4 ? e1 0 0 ? ? ? ?
5 e1 0 0 0 ? ? ? ?
6 0 0 0 0 ? ? ? e1
7 0 0 0 0 ? ? e1 0
8 0 0 0 0 ? e1 0 0
9 0 0 0 0 e1 0 0 0

Impossible Differential
25 0 0 0 0 0 0x80 0 0
26 0 0 0 e1 0x80 0 0 0
27 0 ? e1 0x80 0 0 0 0
28 ? e1 0x80 0 0 0 0 ?
29 e1 0 0 0 0 ? ? ?
30 0x80 0 0 ? ? ? ? e0
C e0 0x80 0 0 ? ? ? ?

(b) Impossible Differential Attack on
26-Round HIGHT

Fig. 6

5.1 Improved Impossible Differential Attack on 26-Round HIGHT

In order to reduce the time complexity of the 26-round attack in [20], we choose
a similar impossible differential and a different beginning round; the data com-
plexity is slightly higher because we want to reduce the complexity of the final
trial encryptions that would otherwise dominate the complexity. Precomputa-
tion is also used to reduce the time complexity.

Data Collection. Construct 213.6 structures with P4, P5 fixed and for which
P0, ..., P3, P6, P7 take all values. Ask for the encryptions of all the plaintexts to
get the corresponding ciphertexts. Since the ciphertext pairs with the difference
((???????0)2, 0x80, 0, 0, ?, ?, ?, ?) are required, and there is one more condition in
the plaintext difference, which is ∆P6,0 = 1; by the birthday paradox, there are
282.6 pairs left.

Precomputation. Three pre-computed tables α, β and ε will be set up for
the sake of reducing the complexity in the key recovery phase. The purpose of
setting up α is finding all the (X6

2 , ∆X
6
2 ), (X6

1 , ∆X
6
1 ), (X6

0 , ∆X
6
0 ), MK12 and
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MK15 which satisfy ∆X8
4 = 0. Hence we choose all values of X8

4 , X8
3 , ∆X8

3 , X7
1 ,

∆X7
1 , MK12 and MK15, calculate (X6

2 , ∆X
6
2 ), (X6

1 , ∆X
6
1 ), and (X6

0 , ∆X
6
0 ) by 1/2

round decryptions and insert MK15 to the row of α indexed by (X6
2 , ∆X

6
2 , X

6
1 ,

∆X6
1 , X

6
0 , ∆X

6
0 ,MK12). Hence there is one MK15 in each row on average; the size

of α is 255 bytes as there are only 27 ∆X6
0 s. When constructing Table β, all val-

ues of X25
2 , X25

3 , X26
2 , MK7 and MK11 are chosen, then we compute X27

3 , X27
4 and

(X27
5 , ∆X27

5 ), and insert MK11 to the row indexed by (X27
3 , X27

4 , X27
5 , ∆X27

5 ,MK7).
Since there are 240 tuples (X25

2 , X25
3 , X26

2 , MK7, MK11), but only 239 tuples
(X27

3 , X27
4 , X27

5 , ∆X27
5 ,MK7) are possible (∆X27

5 = (???????1)2), we have 239

rows in β with 2 MK11 values in each row on average. The setting of Table ε
is also similar: we choose all values of X9

4 , X9
3 , ∆X9

3 , X8
1 , MK7 and MK11, and

calculate X7
0 , (X7

1 , ∆X
7
1 ), (X7

2 , ∆X
7
2 ); then insert X7

0 to the row indexed by
(X7

1 , ∆X
7
1 , X

7
2 , ∆X

7
2 ,MK7,MK11). There is one X7

0 in each row on average. The
sizes of β and ε are 240 bytes and 248 bytes, respectively. Constructing Table α
dominates the time complexity of the precomputation, which is about 256 1/2-
round encryptions. To better illustrate the precomputation, we depict it in Fig. 8;

Key Recovery. The key recovery phase is described in Table 4, where the
second column contains the key bytes/bits which are guessed in the step, the
third column indicates the whitening keys/subkeys used in the step to calculate
the values that are needed, the fourth column gives the intermediate values that
can be calculated in the step, the fifth column stands for the time complexity
of each step, the sixth column gives the number of bit conditions which can be
used, the seventh column indicates the number of the pairs that are kept after
each step and the last column gives the position of Feistel branches where the
sieving occurs ((x, y) means the y-th branch of the x-th round, where the right-
most branch is the 0th one). To better illustrate the procedure, we also give the
subkeys used, as well as the corresponding master key bytes, in Table 5 in the
Appendix; the subkeys that have to be guessed in the attack are in bold.

In Step 1, for each remaining pair from the data collection phase, we guess
MK0 and discard the pairs that do not satisfy ∆X5

4 = 0 by 1/4-round encryp-
tions. So the number of pairs kept after this step is 282.6−8 = 274.6 and the
complexity of this step is about 2 × 282.6 × 28 × 1/4 × 1/26 ≈ 284.9 26-round
encryptions. Steps 2 ∼ 7 are similar; we guess the subkey bytes, calculate the in-
termediate value and discard the pairs that do not meet the conditions. In Step 8,
we do not guess all 8 bits of MK8 at once, but guess them bit by bit from the LSB
to the MSB by using the diffusion property mentioned in Sect. 3. Once we guess
one bit of MK8, we can compute the corresponding bit of ∆X7

4 and discard the
pairs that do not meet the condition. Since 8 bits of MK8 should be guessed in 8
times, the complexity of this step is 2×8×272×242.6×1/4×1/26 ≈ 2111.9. Step
9 is similar to Step 8, except that we have to carry out 1/2-round decryption for
each pair other than 1/4-round in Step 8.

In Step 11, for each pair obtained from Step 10 we first access Table α to get
a value of MK15, then we calculate X27

3 to access Table β. Two MK11 can be ob-
tained on average, for each of the values, we access Table ε to getX7

0 and calculate
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MK10 as X6
6 , X6

7 are already known. The corresponding (MK15,MK11,MK10)
should be discarded. After processing all the pairs, if any tuples (MK15,MK11,
MK10) remain, we output them with the guessed (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK8, MK9, MK12), and exhaustively search them with the re-
maining 16-bit key. Otherwise, we try another guess for (MK0, MK1, MK2, MK3,
MK4, MK5, MK6, MK7, MK8, MK9, MK12). In this step, 288 × 226.6 = 2114.6

1/4-round decryptions (equivalent to 2107.9 encryptions) should be performed
to compute X27

3 ; 2 × 288 × 226.6 = 2115.6 1/4-round decryptions (equivalent
to 2108.9 encryptions) should be performed to calculate MK10. We also need
288 × 226.6 = 2114.6 memory accesses to Table α, 2115.6 memory accesses to Ta-
ble β and 2115.6 memory accesses to Table ε. After analyzing all the pairs, we
expect 2112 × (1− 2/224)2

26.6 ≈ 295 112-bit key (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK8, MK9, MK10, MK11 MK12, MK15) will remain. So the
complexity of the exhaustive search is about 2111 + 247 ≈ 2111.

Table 4: Key Recovery Procedure of the Attack on 26-Round HIGHT
Step Guess Bits Known Keys Known Values Complexity Conds Pairs Kept Sieve on

1 MK0 SK17 X5
4 284.9 EN 8 274.6 (5,1)

2 MK1,MK6 WK5, SK117 X29
3 292.9 EN 8 266.6 (30,1)

3 MK5 WK4, SK116, X29
1 ,∆X29

1 , X28
1 293.9 EN 8 258.6 (29,0)

SK112

4 MK4, MK7 SK16, SK21 X5
2 ,∆X

5
2 , X

6
4 2101.9 EN 8 250.6 (6, 1)

5 MK3, MK9 WK7, SK119, X29
7 ,∆X29

7 , X28
7 , 2110.8 EN 8 242.6 (28,3)

SK115, SK111 ∆X28
7 , X27

7

6 MK2 SK19,SK20 X5
0 , X

6
2 ,∆X

6
2 2109.9 EN − 242.6 −

7 − SK118, SK114, X29
5 , X28

5 2109.9 EN − 242.6 −
WK6

8 MK8† SK25 X7
4 2111.9 EN 8 234.6 (7,1)

9 MK12† SK110, SK106 X27
5 ,∆X27

5 , X26
5 2112.9 EN 8 226.6 (27,2)

10 − SK18, SK19, X6
6 , X6

7 , X
6
0 , 2109.9 EN − 226.6 −

SK22, SK23 ∆X6
0 , X

6
1 ,∆X

6
1

11 (accessing the pre-computed tables) Complexity: 2116.6MA+2111EN

MA: memory accesses; EN: 26-round HIGHT encryptions
† The key byte is guessed bit by bit from the LSB to the MSB.

If we count one memory access to tables α, β and ε as one-round encryption,
then the complexity of Step 11 will be about 2116.6× 1/26 + 2111 ≈ 2112.5. From
Table 4, we can deduce the time complexity, which is about 2110.8 + 2109.9 +
2109.9 + 2111.9 + 2112.9 + 2112.5 ≈ 2114.35 encryptions. The data complexity of the
attack is 261.6 and the memory complexity is 287.6 bytes.

5.2 Impossible Differential Attack on 27-Round HIGHT

Placing the impossible differential of [20] on round 10 to round 25, an attack
on 27-round HIGHT can be mounted by discarding some of the wrong subkeys
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in rounds 4 ∼ 9 and 26 ∼ 30, see Fig. 7b in the Appendix. Note that for the
27-round attack, we take both the initial and final whitening layers into account.

Data Collection. Construct 22 structures with P0 fixed and for which P1, ..., P7

take all values. Ask for the encryptions of all the plaintexts to get the correspond-
ing ciphertexts. Since the ciphertext pairs with the difference (?, ?, ?, ?, (???????0)2,
0x80, 0, 0) are required, and there is one more condition in the plaintext differ-
ence, which is ∆P1,0 = 1; by the birthday paradox, there are 287 pairs left. Since
the whitening keys are considered in our attack, we have:

X3
0 = P0 �WK0, X

3
1 = P1, X

3
2 = P2 ⊕WK1, X

3
3 = P3,

X3
4 = P4 �WK2, X

3
5 = P5, X

3
6 = P6 ⊕WK3, X

3
7 = P7.

C7 = X30
0 , C0 = X30

1 �WK4, C1 = X30
2 , C2 = X30

3 ⊕WK5,

C3 = X30
4 , C4 = X30

5 �WK6, C5 = X30
6 , C6 = X30

7 ⊕WK7.

Precomputation. Before the key recovery procedure, a precomputation is car-
ried out for the sake of reducing the time complexity. We first choose all values
of MK1, MK8, MK9, MK13, MK14, X9

0 , X9
7 , ∆X9

7 , X8
0 , X8

5 , X7
3 , X25

6 , X25
7 , X26

6

and X27
6 , calculate (X6

6 , X
′6
6 ), (X6

5 , X
′6
5 ), (X6

4 , X
′6
4 ), X6

3 and X6
2 by 3-round de-

cryption; and X29
1 , (X29

3 , ∆X29
3 ), X28

7 and X30
3 by 5-round encryption (see Fig. 9

in the Appendix). Then insert (MK8, MK9) to a hash table H indexed by (MK1,
MK13, MK14, (X6

6 , X
′6
6 ), (X6

5 , X
′6
5 ), (X6

4 , ∆X
6
4 ), X6

3 , X6
2 , X29

1 , (X29
3 , ∆X29

3 ),
X28

7 , X30
3 ). There are 27 ∆X9

7 s, 27 ∆X6
4 s and 27 ∆X29

3 s, hence on average only
a fraction 2−7 of the rows are not empty; and each non-empty row consists of
one value (MK8, MK9). The complexity of the precomputation is less than 289

three-round encryptions.

Key Recovery. The key recovery procedure is demonstrated in Table 7 in
the Appendix; Table 7 has the same meaning as Table 4. Table 6 is also given
in the Appendix to illustrate the subkeys that have to be guessed.

Step 1 and Step 2 are trivial: we guess the key bytes and test whether a
0 difference can be obtained. In Step 3 we guess MK1 and MK6 to calculate
(X29

3 , X ′293 ); in Step 4, MK14 is guessed to calculate (X4
6 , X

′4
6 ) without discarding

any pairs. In order to reduce the time complexity of Step 5, we guess MK2 bit by
bit, instead of guessing the whole byte at once. We guess the bits from the LSB
to the MSB, so once we guess one bit of MK2, we can compute the corresponding
bit of ∆X6

0 and discard the pairs that do not meet the condition. In Step 6, we do
not guess any key byte, but calculate ∆X28

4 which can be used to sieve the pairs
in Step 7. The other steps are similar except Step 13, to which have to be paid
more attention. In Step 13, we first construct a small table γ which consists all
values of (MK8, MK9); then guess MK4 to look up table H. If the corresponding
row is not empty, then access the value (MK8, MK9) and delete the value from
γ. After analyzing all the pairs, if any values (MK8, MK9) remain, we output
them with the guessed (MK0, MK1, MK2, MK3, MK4, MK5, MK6, MK7, MK10,
MK12, MK13, MK14, MK15), and exhaustively search them with the remaining
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8-bit key. Otherwise, we try another guess for (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK10, MK12, MK13, MK14, MK15).

We can see from Table 7 that all the values required to access table H can
be calculated in Step 13 after guessing MK4, since the only unknown values are
X6

4 , ∆X6
4 and X28

7 . The complexity to compute the values is less than 2128 one
round encryptions, equivalent to 2123.25 27-round encryptions. Since for each
pair, Table H will be accessed with probability 2−7, it will be accessed 216 times
for each key guess; hence the number of memory accesses is about 2104 × 216 =
2120. As each memory access discards one value (MK8, MK9) on average, about

2120 × (1 − 2−16)2
16

= 2118.6 120-bit keys will remain after processing all the
pairs. For these remaining keys, we also need to guess the remaining 8 bits of
the main key and test the 2118.6 × 28 = 2126.6 keys by trial encryptions. As
trial encryption needs 2 plaintext-ciphertext pairs, the complexity of the trial
encryptions is about 2126.6 + 262.6 ≈ 2126.6 encryptions. Step 13 dominates the
time complexity of the attack, which is 2126.6 encryptions and 2120 memory
accesses. The data complexity is 258 and the memory complexity is 2120 bytes
for storing Table H.

6 Conclusion

This paper introduces impossible differential attacks on the lightweight block
ciphers TEA, XTEA and HIGHT which are based on simple operations like
modular addition, XOR, shift and rotation. We first propose a method to derive
impossible differentials for TEA and XTEA, which improves the previous 10-
round and 12-round impossible differentials up to 15 rounds. With the 13-round
and 14-round impossible differentials, attacks on 17-round TEA and 23-round
XTEA can be achieved. By using some carefully constructed pre-computed ta-
bles, we also give improved impossible differential attacks on HIGHT reduced
to 26 and 27 rounds. The method for finding impossible differentials can also be
applied to the other ciphers with similar operations as TEA and XTEA.
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Appendix

Table 5: Subkeys Used in the Attack on 26-Round HIGHT
#Round Subkey Used

5 SK19(MK2) SK18(MK1) SK17(MK0) SK16(MK7)
6 SK23(MK6) SK22(MK5) SK21(MK4) SK20(MK3)
7 SK27(MK10) SK26(MK9) SK25(MK8) SK24(MK15)
8 SK31(MK14) SK30(MK13) SK29(MK12) SK28(MK11)
9 SK35(MK1) SK34(MK0) SK33(MK7) SK32(MK6)
... ... ... ... ...
26 SK103(MK1) SK102(MK0) SK101(MK7) SK100(MK6)
27 SK107(MK13) SK106(MK12) SK105(MK11) SK104(MK10)
28 SK111(MK9) SK110(MK8) SK109(MK15) SK108(MK14)
29 SK115(MK4) SK114(MK3) SK113(MK2) SK112(MK1)
30 SK119(MK0) SK118(MK7) SK117(MK6) SK116(MK5)

Post-Whitening WK7(MK3) WK6(MK2) WK5(MK1) WK4(MK0)

Table 6: Subkeys Used in the Attack on 27-Round HIGHT
#Round Subkey Used

Pre-Whitening WK3(MK15) WK2(MK14) WK1(MK13) WK0(MK12)
4 SK15(MK15) SK14(MK14) SK13(MK13) SK12(MK12)
5 SK19(MK2) SK18(MK1) SK17(MK0) SK16(MK7)
6 SK23(MK6) SK22(MK5) SK21(MK4) SK20(MK3)
7 SK27(MK10) SK26(MK9) SK25(MK8) SK24(MK15)
8 SK31(MK14) SK30(MK13) SK29(MK12) SK28(MK11)
9 SK35(MK1) SK34(MK0) SK33(MK7) SK32(MK6)
... ... ... ... ...
26 SK103(MK1) SK102(MK0) SK101(MK7) SK100(MK6)
27 SK107(MK13) SK106(MK12) SK105(MK11) SK104(MK10)
28 SK111(MK9) SK110(MK8) SK109(MK15) SK108(MK14)
29 SK115(MK4) SK114(MK3) SK113(MK2) SK112(MK1)
30 SK119(MK0) SK118(MK7) SK117(MK6) SK116(MK5)

Post-Whitening WK7(MK3) WK6(MK2) WK5(MK1) WK4(MK0)
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i ∆Xi
7 ∆X

i
6 ∆X

i
5 ∆X

i
4 ∆X

i
3 ∆X

i
2 ∆X

i
1 ∆X

i
0

9 e1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 e1
11 0 0 0 0 0 ? e1 0
12 0 0 0 ? ? e1 0 0
13 0 ? ? ? e1 0 0 0
14 ? ? ? e1 0 0 0 ?
15 ? ? e1 0 0 ? ? ?
16 ? e1 0 ? ? ? ? ?
17 e1 ? ? ? ? ? ? ?

17 e0 0x80 ? ? ? ? ? ?
18 0x80 0 ? ? ? ? ? e1
19 0 0 ? ? ? ? e1 0x80
20 0 0 ? ? ? e1 0x80 0
21 0 0 ? ? e1 0x80 0 0
22 0 0 ? e4 0x80 0 0 0
23 0 0 e4 0x80 0 0 0 0
24 0 0 0x80 0 0 0 0 0
25 0 0x80 0 0 0 0 0 0

(a) 16-Round Impossible Differential
from [20]

i ∆Xi
7 ∆X

i
6 ∆X

i
5 ∆X

i
4 ∆X

i
3 ∆X

i
2 ∆X

i
1 ∆X

i
0

P ? ? ? ? ? ? e1 0
3 ? ? ? ? ? ? e1 0
4 ? ? ? ? ? e1 0 0
5 ? ? ? ? e1 0 0 0
6 ? ? ? e1 0 0 0 0
7 ? ? e1 0 0 0 0 0
8 ? e1 0 0 0 0 0 0
9 e1 0 0 0 0 0 0 0

Impossible Differential
25 0 0x80 0 0 0 0 0 0
26 0x80 0 0 0 0 0 0 e1
27 0 0 0 0 0 ? e1 0x80
28 0 0 0 ? ? e1 0x80 0
29 0 ? ? ? e1 0x80 0 0
30 ? ? ? e0 0x80 0 0 ?
C ? ? ? ? e0 0x80 0 0

(b) Impossible Differential Attack on
27-Round HIGHT

Fig. 7

Table 7: Key Recovery Procedure of the Attack on 27-Round HIGHT
Step Guess Bits Known Keys Known Values Complexity Conds Pairs Left Sieve on

1 MK15 WK3,SK15 X4
0 291.2 EN 8 279 (4,3)

2 MK0,MK3 WK7, SK119 X29
7 299.2 EN 8 271 (30,3)

3 MK6, MK1 SK117, WK5 X29
3 , ∆X29

3 2107.2 EN − 271 −
4 MK14 WK1,SK14 X4

6 , ∆X
4
6 2115.2 EN − 271 −

5 MK2 † SK19 X5
0 , X

6
2 2118.2 EN 8 263 (5,3)

6 − SK113,SK109 X28
3 , ∆X28

3 2115.2 EN − 263 −‡
7 MK7 † WK6,SK118 X29

5 , ∆X29
5 2118.2 EN 8 255 (30,2)

8 − SK114 X28
5 2115.2 EN 8 247 (29,2)

9 MK13 SK13,SK18,SK23, X4
4 , ∆X

4
4 , X

5
6 , 2115.2 EN 8 239 (6,3)

WK2 ∆X5
6 , X

6
0

10 MK5 WK4,SK116,SK108 X
29
1 , X28

1 , X27
1 , ∆X27

1 2115.2 EN − 239 −
11 MK10 † SK104 X26

1 2118.2 EN 8 231 (27,0)
12 MK12 WK0,SK12,SK17, X4

2 , ∆X
4
2 , X

5
4 , 2123.2 EN 8 223 (7,3)

SK22,SK27 ∆X5
4 , X

6
6 , ∆X

6
6 , X

7
0

13 MK4 SK16,SK21,SK26, X6
4 , ∆X

6
4 , X

28
7 2120 MA + *

SK107, SK31 2126.6 EN
SK111,SK115

MA: memory accesses; EN: 27-round HIGHT encryptions
† The key byte is guessed bit by bit from the LSB to the MSB.
‡ calculate ∆X28

4

* the sieving is already done by precomputation
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Table β

Table є
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3
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3
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Fig. 8: The Construction of Tables α, β and ε in the Attack on 26-Round HIGHT
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MK13

F0
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X90( X90=0)
(X97, X97)

X80( X80=0)X85( X85=0)

X73( X73=0)

(X66, X66) (X
6
5, X65) (X64, X64) X63 X62
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MK13
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X266( X266=0)
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Fig. 9: Precomputation for Rounds 7 ∼ 9 (top) and Rounds 26 ∼ 30 (bottom)
in the Attack on 27-Round HIGHT
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