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Abstract

We consider secure delegation of linear algebra computation, wherein a client, privately and verifiably,
outsources tasks such as matrix multiplication, matrix inversion, computing the rank and determinant, and
solving a linear system to a remote worker.

When operating on n×n matrices, we design non-interactive, and secure protocols for delegating matrix
multiplication, based on a number of encryption schemes with limited homomorphic properties where the
client only needs to perform O(n2) work. The main component of these delegation protocols is a mechanism
for efficiently verifying the homomorphic matrix multiplication performed by the worker. We introduce a
general method for performing this verification, for any homomorphic encryption scheme that satisfies
two special properties. We then show that most existing homomorphic encryption schemes satisfy these
properties and hence can utilize our general verification method. In case of the BGN-style encryption of
[Gentry et al., EUROCRYPT 2010], we also show a simpler and more efficient verification method that
does not follow our general approach.

Finally, we show constant round and efficient constructions for secure delegation of other linear algebra
tasks based on our delegation protocol for matrix multiplication. In all of these constructions, the client’s
work is at most O(n2 log n). Our constructions can also be efficiently transformed to server-aided protocols
for secure two-party computation of linear algebra with similar efficiency.
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1 Introduction

Linear algebra is widely used in today’s computing environment. Its applications include computer graphics
(image compression and transformation), graph theory (studying properties of networks), scientific compu-
tation (electronic circuits, or quantum mechanics), and economics. In most of these applications, one deals
with large amount of data, often arranged in large matrices with large dimensions that are in the order of
thousands or millions in some applications. When operating on n× n matrices, the majority of the tasks one
is interested in require significantly more work than the input size of O(n2). The best known theoretical upper
bound for matrix multiplication is O(nω) [12] for ω ∼= 2.38 (which is larger than the input size of O(n2)) while
in practice, the same task often requires closer to O(n3) computation which is rather expensive for large n.
For this reason, it is desirable to outsource matrix operations of this sort.

Universities, research institutes, and other entities outsource their expensive computation to external
grids and clusters, on a regular basis, or take advantage of distributed setups that utilize idle cycles of
internet users (e.g. in projects such as SETI@Home [1], and Folding@Home [36]). With the recent growth
and commercialization of cloud computing, cloud services have also emerged as an alternative solution for
performing such tasks.

With delegation of computation, the ultimate goal is to offload the majority of the computation to a
remote worker with better computational resources. In case of linear algebra, since it is infeasible to achieve
sublinear efficiency in the input size (i.e. o(n2)), we aim for protocols that require close to linear computation
by the client.

Two additional concerns with delegating any computation, including linear algebra, are (i) privacy of the
client’s input and the output and (ii) the verifiability of the computed results (see Appendix A for more
formal definitions). The recent advances in fully-homomorphic encryption schemes [23] allow a client to
encrypt his input and send the ciphertext to an untrusted worker who performs the computation on client’s
behalf. This general approach, though currently not practical, satisfies the privacy property we are after.
Encryption schemes with limited homomorphic properties can also be used to outsource the computation
of a more limited family of functionalities (e.g. matrix multiplication) in a similar way. The verifiability
property, often studied under the name of verifiable computation, has also been the focus of several works in
the theoretical community [25, 2]. In particular, using interactive proofs [25], we know how to verify arbitrary
polynomial time computation in almost linear time (in the standard model), while non-interactive solutions
can be obtained using Micali’s CS proofs [31] but in the random oracle model.

The constructions of [22] and [11] satisfy the privacy and the verifiability properties, simultaneously. These
constructions can be used to delegate linear algebra computation, but the resulting solutions have several
drawbacks: (i) first, they require the use of a fully homomorphic encryption scheme, which are currently not
practical, and more importantly are an overkill for applications such as linear algebra, and (ii) revealing the
result of verification leaks information about the inputs and/or outputs of the client, and (iii) the gain in
efficiency due to the delegation protocol is only amortized and hence the client saves on computation only if the
protocol is run multiple times. Several more recent works [9, 18, 26] alleviate the last two limitations of secure
delegation at the expense of making less standard assumptions, but these works are mostly of theoretical
interest, since the resulting constructions are inefficient.

In this paper, we aim for constructions that do not have these drawbacks. In particular, we design
delegation protocols for linear algebra computation on n× n matrices with the following properties:

• The protocols use more efficient encryption schemes with limited homomorphic properties, i.e. additive
or BGN-style homomorphism.

• Revealing the result of verification does not leak any information about the inputs or the output.
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• If we use a BGN-style encryption, client’s total work is O(n2 log n) and if we use an additively homo-
morphic encryption, his online work is O(n2 log n).

Next, we outline our contributions in more detail.

1.1 Our Contributions

We first show how to design secure delegation protocols for matrix multiplication using several of the exist-
ing homomorphic encryption schemes such as Goldwasser-Micali [27], Paillier’s [34], El Gamal’s [20], BGN
encryption [10], and the GHV scheme [24]. Later, we show that secure delegation of most linear algebra
tasks can be efficiently reduced to matrix multiplication. If one is only concerned with privacy, it is easy to
use the homomorphic operations provided by BGN-style or additively homomorphic encryptions to privately
delegate matrix multiplication. The main challenge, however, is to allow the client to verify the computed
results while preserving the above-mentioned properties. Using standard techniques for verifying correctness
of multiplication of (plaintext) matrices can be used to verify the final result of a delegation protocol for
matrix multiplication. However, revealing the result of the verification leaks information about the input
matrices and the output.

To get around this problem, instead of verifying the correctness of the matrix multiplication, we verify
the validity of the homomorphic operations performed by the worker on the corresponding ciphertexts. This
requires us to devise algorithms that allow the client to efficiently verify the correctness of homomorphic
operations performed by the worker. Intuitively, with this approach, there is a “unique ciphertext” that the
client accepts as the correct result. If the worker returns anything different (even if it decrypts to the correct
product matrix), the client will abort with high probability.

A general approach for verifying homomorphic operations. We first introduce a general technique
for verifying what we call homomorphic matrix multiplication. Homomorphic matrix multiplication is a
natural generalization of homomorphic addition and multiplication for operation on encrypted matrices. By
an encrypted matrix (ciphertext matrix), we mean the matrix that results from encrypting each element of the
plaintext matrix, individually. In case of additively homomorphic encryption, the homomorphic multiplication
operation takes one plaintext matrix and one ciphertext matrix as input and returns the encryption of the
product matrix, while in case of BGN-style encryption, it works on two ciphertext matrices.

We prove that if the homomorphic encryption scheme satisfies two specific properties we call associativity
and distinctiveness, then a simple algorithm exists that verifies the result of a homomorphic matrix multi-
plication in O(n2) time. Moreover, we show that schemes such as GM encryption, Paillier’s encryption, El
Gamal encryption (with messages in the exponent), and BGN encryption all satisfy these two properties and
hence can benefit from this simple verification method.

A more efficient verification algorithm for the GHV scheme. In case of the GHV scheme, we show a
simpler and more efficient algorithm for verifying homomorphic matrix multiplication. We observer that, since
in case of the GHV scheme, the operation performed to homomorphically multiply two encrypted matrices
is itself a matrix multiplication in the range of the encryption algorithm, existing techniques for efficiently
verifying plaintext matrix multiplication (see Lemma 4.1) can be used to perform this step. This yields an
efficient verification algorithm with O(n2) complexity.

Extension to other linear algebra computation. Next we consider secure delegation of linear algebra
problems such as matrix inversion, testing singularity, computing the rank or determinant, and solving a linear
system. A number of works on secure computation of linear algebra such as [29] and [32] reduce the problem
to secure computation of matrix multiplication. However, a straightforward application of these techniques

4



does not yield efficient delegation protocols for linear algebra. In particular, the best existing solutions still
require O(s) rounds and O(sn2+1/s) computation for any positive integer s (e.g. see [32]), and hence a direct
application of these techniques would either yield a delegation scheme that is not constant round or one that
requires the client to do more than O(n2) work.

Nevertheless, using a combination of existing techniques such as the unbounded multiplication of Bar-Ilan
and Beaver [6], the computation of minimial polynomials from [29], and the use of Chebyshev polynomials to
deal with singular matrices from [14], we show how to design constant round secure delegation protocols for
most linear algebra tasks where the client’s work is only O(n2 log n).

Server-aided two-party linear algebra. In [28], the authors formalize a server-aided setting for out-
sourcing secure multiparty computation. They also provide a general construction for transforming any
secure delegation protocol into a server-aided two-party computation protocol without any loss in efficiency.
When applied to the secure delegation protocols we introduce, this yields very efficient server-aided protocols
for secure two-party linear algebra.

1.2 Related Work

We note that a few other works have also considered secure outsourcing of linear algebra computation [4, 3].
While these works consider a problem similar to ours, they do not use the same notions of security and hence it
is unlikely that the resulting constructions satisfy the security requirements we aim for with secure delegation.
In addition, the designed protocols are based new and non-standard hardness assumptions. Finally, in these
constructions, it is not clear how to avoid the leakage of information that stems from revealing the verification
results.

We also note that it is possible to use BGN-style homomorphic encryption to design a private outsourcing
protocol and then use interactive proof techniques (e.g. [25]) to prove that the homomorphic operations were
performed correctly. However, the resulting constructions would not be practical.

Several other recent works in the cryptographic community, explore the design of secure delegation proto-
cols for special-purpose functions. The work of [8] studies secure delegation of evaluating polynomials on large
databases while [35] consider the problem of delegating operations on dynamic datasets that are outsourced
to an untrusted worker.

2 Preliminaries

2.1 Notations

We use uppercase letters for matrices (e.g. A), and lowercase bold letters for vectors (e.g. v). We use â
to denote the ciphertext that results from encrypting a plaintext message a. We use a similar notation for
vectors and matrices, where by encryption of vectors and matrices we mean their element-wise encryption.
We often use ⊕ for homomorphic addition, ⊗c,p to denote the multiplication of an encrypted value with a
plaintext, and ⊗c,c to denote the multiplication of two encrypted values (relevant for BGN-style encryption).
We use

⊕
and

⊗
to denote similar homomorphic operations on matrices and vectors.

We use mA to denote the minimal polynomial of a matrix A. We also use the notations [A]i,j to denote
the element in row i and column j of a matrix. Vectors are column vectors by default and we use the notation
[v]i to denote the element in the ith row. A> denotes the transpose of matrix A. We also use the notation
[A|B] to denote the matrix that results from concatenating two matrices A and B, horizontally.

We denote by Z the set of integers. R denotes a finite ring, F denotes a finite field, and G denotes a group.
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2.2 Minimal Polynomials

We reduce our various problems from linear algebra to computing the minimal polynomial of a certain linearly
recurrent sequence. In this section we formally define linearly recurrent sequences and discuss some of their
basic properties. We follow the exposition given in [21].

Let F be field and V be a vector space over F . An infinite sequence a = (ai)i∈N ∈ V N is linearly recurrent
(over F) if there exists n ∈ N and f0, . . . , fn ∈ F with fn 6= 0 such that

∑n
j=0 fjai+j = 0 , for all i ∈ N. The

polynomial f =
∑n

j=0 fjx
j of degree n is called a characteristic polynomial of a.

We now define a multiplication of a sequence by a polynomial. For f =
∑n

j=0 fjx
j ∈ F [x] and a =

(ai)i∈N ∈ V N, we set

f • a = (

n∑
j=0

fjai+j)i∈N ∈ V N.

This makes FN, together with •, into an F [x]-module.1

The property of being a characteristic polynomial can be expressed in terms of the operation •. A
polynomial f ∈ F [x]−{0} is a characteristic polynomial of a ∈ FN if and only if f •a = 0 where 0 is the all-0
sequence. The set of all characteristic polynomials of a sequence a ∈ FN, together with the zero polynomial
form an ideal in F [x]. This ideal is called the annihilator of a and denoted by Ann(a). Since any ideal in F [x]
is generated by a single polynomial, either Ann(a) = {0} or there is a unique monic polynomial m ∈ Ann(a)
of least degree such that 〈m〉 = {rm : r ∈ F [x]} = Ann(a). This polynomial is called the minimal polynomial
of a and divides any other characteristic polynomial of a. We denote the minimal polynomial of a by ma.
The degree of ma is called the recursion order of a.

Let A ∈ Fn×n be a matrix, and u,v ∈ Fn be vectors. We will be interested in the following three
sequences:

• A = AA = (Ai)i∈N where the sequence elements are from V = Fn×n.

• a = aA,v = (Aiv)i∈N where the sequence elements are from V = Fn.

• a′ = a′A,u,v = (u>Aiv)i∈N where the sequence elements are from V = F .

Definition 2.1. The minimal polynomial of a matrix A ∈ Fn×n is defined as mA = mA, i.e. as the minimal
polynomial of the sequence A = (Ai)i∈N.

By our definition of the minimal polynomial of a sequence the minimal polynomial of A can alternatively
be characterized as the unique monic polynomial p(x) over F of least degree such that p(A) = 0.

We denote by fA = det(xIn − A) =
∑n

i=0 fjx
j the characteristic polynomial of matrix A ∈ Fn×n. Note

that fA is monic.

Claim 1. Consider ma′ ,ma,mA, the minimal polynomials of the sequences a′,a,A respectively. Then
ma′ |ma|mA|fA.

Proof. We first show mA|fA. By the Cayley-Hamilton Theorem fA(A) = 0. Consequently,

fA •A = (

n∑
j=0

fjA
i+j)i∈N = (AifA(A))i∈N = 0,

and fA(A) is a characteristic polynomial of A. Therefore mA, the minimal polynomial of A, divides fA.

1Roughly speaking, a module is something similar to a vector space, with the only difference that the “scalars” may be
elements of an arbitrary ring instead of a field. A formal definition can be found in many linear algebra textbooks (e.g., [21]).
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Next, to prove ma|mA, write mA =
∑n

i=0 aix
i. As mA • A = 0, we get that (

∑n
j=0 ajA

i+j)i∈N = 0.
Hence,

mA • a = (

n∑
j=0

aj(A
i+j · v))i∈N = ((

n∑
j=0

ajA
i+j ·)v)i∈N = (0 · v)i∈N = 0.

Therefore mA is a characteristic polynomial of a as well, thus ma|mA. The proof of ma′ |ma is similar.

Corollary 2.2. The sequences a,a′,A are linearly recurrent of order at most n.

We will use the following useful result (e.g. see [15, page 92]).

Lemma 2.3. The minimal polynomial mA(x) of A divides the characteristic polynomial fA(x) of A, and both
polynomials have the same irreducible factors.

Since fA(0) = det(−A) = (−1)n det(A), we obtain:

Corollary 2.4. mA(0) = 0 if and only if det(A) = 0.

Corollary 2.5. If fA is square-free, then mA = fA, which implies that mA(0) = fA(0) = (−1)n · det(A).

3 Homomorphic Encryption Schemes

In this paper, we use a number of encryption schemes with limited homomorphic properties. This includes
additively homomorphic encryption schemes such as Paillier’s scheme [34] Golswasser-Micali [27], and El
Gamal [20] (with messages in the exponent) as well as BGN-style encryption schemes (that allow for one
multiplication) such as the BGN scheme [10] and the GHV scheme [24]. Since we take advantage of particular
properties of each scheme in our constructions, we describe each scheme in more detail in this section and
review the necessary algorithms and notations for the homomorphic operations they provide.

3.1 The Goldwasser-Micali Encryption Scheme

The different algorithms of Goldwasser-Micali scheme [27] are defined as follows:

1. KeyGen: On input 1k generate (N, p, q), where N = pq and p and q are random k-bit primes. The public
key is N , and a random quadratic non-residue z ∈ ZN , and the private key is the factorization (p, q).

2. Enc: On input a public key N and a message bit m, choose a random r ← Z∗N and output the ciphertext

c = zm · r2 mod N

3. Dec: On input a private key (p, q) and a ciphertext c, determine whether c is a quadratic residue modulo
N using well known algorithms. If so, output 0 and output 1 otherwise.

Homomorphic Operations. Let â = Enc(a) and b̂ = Enc(b) be two GM ciphertexts. Homomorphic
addition is defined as follows

â⊕ b̂ = â · b̂ mod N

.
It is easy to verify that Dec(â⊕ b̂) = a xor b. In addition, given an integer c and a ciphertext â = Enc(a),

homomorphic multiplication is defined as follows:

â⊗c,p c = c⊗p,c â = âc mod N

.
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Homomorphic Operations on Matrices. One can extend these homomorphic operations to work on
encrypted vectors and matrices. An encrypted matrix (vector) is defined by the collection of component-wise
encryptions of each element in the matrix (vector).

Addition of two encrypted matrices is denoted by
⊕

, and works similar to the standard matrix addition
except that the underlying addition operation is the ⊕ operation described above. Multiplication of a plaintext
matrix by an encrypted matrix is denoted by

⊗p,c, and works in the same way the normal matrix multiplication
works, but using ⊗ and ⊕ as the underlying operations.

Note that unlike the ⊗ operation, the
⊗

operation is not commutative, since in general A
⊗p,c B̂ 6=

B̂
⊗c,pA.

We use the same homomorphic notations for matrix by vector multiplication as well.

3.2 The Paillier’s Encryption Scheme

The different algorithms of Paillier’s scheme [34] are defined as follows:

1. KeyGen: On input 1k generate (N, p, q), where N = pq and p and q are random k-bit primes. The public
key is N and the private key is (N,φ(N)).

2. Enc: On input a public key N and a message m ∈ ZN , choose a random r ← Z∗N and output the
ciphertext

c = (1 +N)m · rN mod N2

3. Dec: On input a private key (N,φ(N)) and a ciphertext c, compute

m =
[cφ(N) mod N2]− 1

N
· φ(N)−1 mod N

Homomorphic Operations. Let â = Enc(a) and b̂ = Enc(b) be two GM ciphertexts. Homomorphic
addition is defined as follows

â⊕ b̂ = â · b̂ mod N

.
It is easy to verify that Dec(â ⊕ b̂) = a + b mod N . In addition, given an integer c and a ciphertext

â = Enc(a), homomorphic multiplication is defined as follows:

â⊗c,p c = c⊗p,c â = âc mod N

.
Once again, we can verify that Dec(c⊗p,c â) = ca mod N .

Homomorphic Operations on Matrices. Homomorphic operations on matrices are defined in the same
way as GM encryption and hence we use the same notations for them.

3.3 The El Gamal Encryption Scheme with Messages in the Exponent

The different algorithms for the variant of El Gamal scheme [20] with messages in the exponent is as follows:

1. KeyGen: On input 1k generate (G, q, g), where G is a cyclic group of order q and g is its generator. Then
choose a random x ∈ Zq and compute h = gx. The pulic key is (G, q, g, h) and the secret key is x.
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2. Enc: On input a public key (G, q, g, h) and a message m ∈ Zq, choose a random r ← Zq and output the
ciphertext

c = (c1, c2) = (gr, hrgm)

3. Dec: On input a private key x and a ciphertext c = (c1, c2), compute the discrete-log of gm = c2/c
x
1 .

Note that in the above construction, decryption is only efficient if messages are small, since the decryption
algorithm has to perform a discrete-log operation. Nevertheless, as shown in several previous works [17, 16],
even considering this limitation, the resulting scheme can be used in many applications.

Homomorphic Operations. Let â = Enc(a) = (gra , hraga) and b̂ = Enc(b) = (grb , hrbgb) be two El Gamal
ciphertexts. Homomorphic addition is defined as follows

â⊕ b̂ = (gragrb , (hraga)(hrbgb))

It is easy to verify that Dec(â ⊕ b̂) = a + b mod Zq. In addition, given an integer c and a ciphertext
â = Enc(a), homomorphic multiplication is defined as follows:

â⊗c,p c = c⊗p,c â = âc

.
Once again, we can verify that Dec(c⊗p,c â) = ca mod Zq.
Homomorphic operations for vectors and matrices are defined similar to GM and Paillier’s encryption

schemes.

3.4 The BGN Encryption Scheme

We briefly review the different algorithms in the scheme and its homomorphic properties.
Denote by G a bilinear cyclic group of order N = q1q2 where q1 and q2 are k-bit primes. Let g be a

generator of G and e : G × G → G1 be the bilinear map. Then, the BGN encryption scheme base on the
hardness of the subgroup decision problem is defined as follows:

1. KeyGen: Given the security parameter k, generate a tuple (q1, q2,G,G1, e) as described above. Let
N = q1q2. Pick two random generators g, u ∈ G and set h = uq2 . Then h is a random generators of the
subgroup of G of order q1. The public key is PK = (N,G,G1, e, g, h) and secret key is SK = q1.

2. Enc: On input a public key PK and a message m, pick a random r ∈ ZN , and compute

C = gmhr ∈ G.

Output C as the ciphertext.

3. Dec: On input a private key SK = q1 and a ciphertext C, compute

Cq1 = (gmhr)q1 = (gq1)m

Let g′ = gq1 . To recover m, it suffices to compute the discrete log of Cq1 base g′. For small values of m
this can be efficiently using the Pollard’s lambda method.
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Homomorphic Operations. Let â = Enc(a) and b̂ = Enc(b) be two BGN ciphertexts in G1. Homomorphic
addition is defined as follows

â⊕ b̂ = â · b̂

.
It is easy to verify that Dec(â ⊕ b̂). In addition, given a positive integer c and a ciphertext â = Enc(a),

⊕c,p multiplication is defined as follows:

â⊗c,p c = c⊗p,c â = âc

.
Once again, it is easy to verify that Dec(c⊗p,c â) = ca.
Finally, multiplying two ciphertexts is defined as:

â⊗c,c b̂ = b̂⊗c,c â = e(â, b̂)

Similar to Paillier’s encryption, we use the notations
⊕

and
⊗

to denote homomorphic matrix addition
and matrix multiplication, which are defined in the natural ways.

3.5 The GHV Encryption Scheme

Next, we review the GHV scheme [24], which is based on the hardness of the LWE problem. We skip the
details of the underlying hardness assumption since we do not need it here and instead describe the main
algorithms and the homomorphic operations one can perform using the scheme. The main algorithms of the
scheme are defined as follows:

1. KeyGen: Choose the parameters p, q, k1 ,and k appropriately. Run a trapdoor sampling scheme to obtain
P ∈ Zk1×k2q together with the trapdoor matrix T ∈ Zk1×k1 . The public key is P and the private key is
T .

2. Enc: On input a public key P and a matrix message M ∈ Zk1×k1p , choose a random matrix S ← Zk2×k1q

and an error matrix XZk1×k1q from an appropriate distribution and output the ciphertext

C ← PS + 2X +M mod q

3. Dec: On input a private key T and a ciphertext C, compute

M = T−1(TCT> mod q)(T>)−1 mod p

Note that p, the domain size of the values in the plaintext matrix can be set to any value greater than or
equal to 2. One only needs to increase the size of q appropriately. We refer the reader to [24] for more detail
on the exact relation between p and q.

Homomorphic operations on small matrices. The two homomorphic operations we need are defined
in the following way.

Given two ciphertexts M̂1 = Enc(M1) and M̂2 = Enc(M2), for Mi ∈ Zk1×k1p , homomorphic addition (⊕) is
defined as adding the ciphertext matrices modulo q:

Dec(M̂1 ⊕ M̂2) = Dec(M̂1 + M̂2 mod q) = M1 +M2 mod p

In [24], homomorphic multiplication for m×m messages is denoted by ⊗ and is defined as:
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Dec(M̂1 ⊗ M̂2) = Dec(M̂1M̂2
>

mod q) = M1M
>
2 mod p

where t is the matrix transpose operation. Note that the above matrix multiplication is different from the
standard one since we are multiplying M1 with the transpose of M2 but it is to get around this feature in our
constructions.

Encryption and homomorphic operations on large matrices. As long as the the dimension of the
input matrices are less than the GHV parameter k1 (i.e. n < k1), we can encrypt them with one invocation
of the Enc algorithm. However, when working with larger matrices (which is often the case), an efficient and
natural solution is to consider the block-wise representation of the matrix where each block is a k1×k1 matrix
itself (for simplicity we assume that n is a multiple of k1). We then encrypt the large matrix by encrypting
each block using the Enc algorithm as described above. In the remainder of the paper, when talking about
encrypting matrices using the GHV scheme, we refer to this block-wise encryption.

It is then possible to generalize the homomorphic matrix addition and multiplication operations in a block-
wise manner. In other words, one can treat each k1 × k1 block as a single element in a n/k1 × n/k1 matrix
and follow the steps of the standard matrix multiplication, and matrix addition with the exception that the
standard addition and multiplication operations are replaced with the ⊕ and ⊗ operations described above,
respectively.

We denote the resulting homomorphic matrix addition and multiplication operations with
⊕

and
⊗c,c.

Once again, these two operations are not equivalent to standard matrix operations due to the transpose
operation involved, but are easily adaptable as we will see in Section 7.

4 Private and Verifiable Delegation of Matrix Multiplication

Given the homomorphic properties of the existing encryption schemes, it is possible to privately outsource
matrix multiplication to a remote worker. In particular, the client encrypts his input matrices using the ap-
propriate encryption scheme and sends the ciphertexts to the worker who performs the relevant homomorphic
operations and returns the final result to the client. In case of the BGN-style encryption schemes [10, 24],
this is a fairly straightforward application of their homomorphic properties, while for additively homomor-
phic encryption schemes, private delegation of this form is possible if the client has previously obtained two
uniformly random matrices and their correctly computed product in an offline phase.

More specifically, when using an additively homomorphic encryption scheme, the main limitation is that
the worker can no longer multiply two encrypted messages on his own. Due to this limitation, we are only able
to design efficient delegation protocols if, in an offline precomputation stage, the client obtains two random
matrices RA, RB and their product RARA. While this is certainly a limitation compared to the BGN-style
construction described above, an offline process in which multiple random matrices and their products are
computed and stored for future use, maybe be a reasonable assumption in some applications. For example,
these matrices can be computed and stored on a device during its creation by a trusted entity and then get
updated on a regular basis. Alternatively, the computation of these random matrices could be delegated to an
untrusted party itself, as long as this party does not have the means to collude with the worker in the main
delegation protocol. Note that when delegating multiplication of random matrices, it is not necessary to use
encryption, since the input and output matrices are public and can be known by the untrusted party. The
latter approach is also reminiscent of Beaver’s paradigm of commodity-based cryptography [7, 19], where a set
of servers are trusted to undertake specific input-independent actions prior to the actual run of the protocol,
though as mentioned above, we can forgo the requirement of trusting the server as long he does not collude
with the online worker.
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We provide a detailed description of these simple private-only protocols in Appendix B. The privacy of
the protocols easily follow from the semantic security of the underlying encryption schemes, since the worker
only gets to see encrypted messages.

The main challenge is to augment these protocols with verifiability without making the client perform an
amount of work that is proportional to doing the matrix multiplication itself. In particular, our main goal is
to ensure that the client performs at most O(n2) work during the verification process.

4.1 A Non-Private Verification Mechanism

There exist a simple and efficient technique for verifying the output of any matrix multiplication protocol,
where the verification only involves matrix by vector multiplication and hence requires O(n2) work, as opposed
to the O(n3) work needed for the matrix multiplication itself. Consider the following well-known lemma.

Lemma 4.1. Given any two matrices A,A′ ∈ Rn×n where R is a finite commutative ring and A 6= A′, and
for a uniformly random vector v ∈ Rn we have

Pr[Av = A′v] ≤ 1/|R|

One can use this lemma to verify the result of any matrix multiplication. In particular, given matrices
A,B and C, the client can perform the following three matrix by vector multiplications v1 = Bv, v2 = Av1,
and v3 = Cv for a uniformly random vector v ∈ Rn. If v2 = v3, he accepts C as the product matrix and
otherwise he rejects. The main property of this verification is that computing the three vectors by the client
consists of three matrix by vector multiplication and hence only requires O(n2) work which keeps the clients
computation low. One can combine this simple technique with any private delegation protocol for matrix
multiplication to verify the result of worker’s computation.

However, this approach has two main drawbacks. First, it can leak one bit of information about the
input/output matrices and second, the verifiability holds with high probability only if R is large. Otherwise,
the verification process has to be repeated multiple times to decrease the error probability. Since the plaintext
domain for some of the existing homomorphic encryption schemes is small (e.g. GM encryption or the GHV
encryption for some choices of parameters), this would render the verification less efficient. Nevertheless,
Lemma 4.1 is an important ingredient of the verification methods we design in this paper.

One bit of information is leaked. A careful look at the above approach shows that it leaks extra
information about the inputs and/or outputs of the client. In particular, the fact that the client aborts the
protocol or not can be used to learn one bit of information about the input or output matrices. For instance,
consider an attack strategy where the worker computes Ĉ = Â

⊗
B̂ but then replaces a single element in Ĉ

with the encryption of 0, and sends the resulting matrix to the client. If the client aborts, the worker knows
that a particular element in the product matrix was not a 0. This violates output privacy. The worker can
perform a similar attack to violate input privacy by replacing an element in the encrypted input matrix A,
and computing the product matrix using the modified A.

We note that in some scenarios, leaking a single bit of information maybe a reasonable compromise and
hence the above construction would suffice.

4.2 Avoiding the Leakage

In order to avoid the leakage of this extra bit of information, we need a different verification mechanism. Note
that in the private-only delegation protocols (described in Appendix B), the main computation performed by
the worker is the homomorphic matrix multiplication operations denoted by

⊗
. Hence, the missing building

block is a mechanism for the client to verify the
⊗

operation for the particular homomorphic encryption
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scheme being used. Since such a mechanism is only verifying the correctness of the computation performed
on ciphertext matrices, it may leak arbitrary information without revealing anything about the plaintext
input/output matrices of the delegation protocol.

More specifically, in case of the BGN-style schemes, we need an algorithm verifc,c(Â, B̂, Ĉ) that, with high
probability returns 1 if Ĉ = Â

⊗c,c B̂ and 0 otherwise. More formally:

Definition 4.2. Let k be a security parameter. We call a verification algorithm verifc,c(Â, B̂, Ĉ) correct if,
when Ĉ = Â

⊗c,c B̂, verif returns 1, and when Ĉ 6= Â
⊗c,c B̂, it returns 0, with all but negligible probability

in k (the probability is over the random coins of verif).

Given such a verification algorithm, we can augment the private-only delegation protocol (of Appendix B)
for BGN-style encryption schemes as follows:

Private and Verifiable Delegation of Matrix Multiplication Using BGN-style Encryption

Common Inputs: The public key for the encryption scheme E = (KeyGen,Enc,Dec).
Client’s Inputs: Two matrices A,B ∈ Rn×n.
Client’s Outputs: The product matrix AB.

1. Client computes and sends the following two matrices to the worker.

• Â← Enc(A)

• B̂ ← Enc(B)

2. Worker computes Ĉ = (Â
⊗c,c

B̂) and sends the result to the client.

3. If verifc,c(Â, B̂, Ĉ) returns 1, client outputs C ← Dec(Ĉ) as the final plaintext product matrix. Else, he
returns ⊥.

Theorem 4.3. If the BGN-style encryption scheme E is semantically secure, and the verif algorithm is
correct and runs in O(n2) time, the above construction is a protocol for private and verifiable delegation of
multiplication of n× n matrices, where the client only needs to perform O(n2) computation.

Proof sketch. The privacy of the protocol easily follows from the semantic security of the encryption scheme
since the worker only sees encryptions of A and B. The verifiability also follows from the correctness of the
verifc,c algorithm. In particular, if the worker returns a Ĉ 6= Â

⊗c,c B̂, he will get caught with high probability,
and if he returns a Ĉ = Â

⊗c,c B̂, the client decrypts to recover the correct product matrix AB.

In case of additively homomorphic encryption schemes, we need two algorithms verifc,p(Â, B, Ĉ) and
verifp,c(A, B̂, Ĉ) that return 1 if Ĉ = Â

⊗c,pB, and Ĉ = A
⊗p,c B̂ respectively, and return 0 otherwise. The

definition of correctness for these two algorithms is the same as the one for BGN-style encryptions and hence
is omitted. Then, we have the following protocol:
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Private and Verifiable Delegation of Matrix Multiplication Using Additively Homomorphic
Encryption

Common Inputs: The public key for an additively homomorphic encryption scheme E = (KeyGen,Enc,Dec).
Client’s Inputs: Two matrices A,B ∈ Rn×n.
Client’s Outputs: The product matrix AB.

• Offline Stage: Client obtains two uniformly random matrices RA, RB ∈ Rn×n and their product RARB .

1. Client computes and sends the following four matrices to the worker.

• A′ = A−RA

• B̂ = Enc(B)

• B′ = B −RB

• R̂A = Enc(RA)

2. Worker computes Ĉ1 = (A′
⊗p,c

B̂) and Ĉ2 = (R̂A

⊗c,p
B′) and sends them to the client.

3. If both verifp,c(A′, B̂, Ĉ1) and verifc,p(R̂A, B
′, Ĉ2) return 1, client computes D = Dec(Ĉ1

⊕
Ĉ2) and outputs

D +RARB . Else he outputs ⊥.

Theorem 4.4. If the additively homomorphic encryption scheme E is semantically secure, and the algorithms
verifc,p and verifp,c are correct and run in O(n2) time, the above construction is a private and verifiable
delegation of Multiplication of n× n matrices where the client only needs to perform O(n2) computation.

Proof sketch. Once again, the privacy of the protocol easily follows from the semantic security of the encryption
scheme since the worker only sees encryptions of B, and uniformly random matrices A′, and B′ . The
verifiability also follows in a straightforward manner from the correctness of the verifc,p and verifc,p algorithms.

This reduces our task of designing private and verifiable delegation of matrix multiplication to the design
of efficient verifc,c, verifc,p and verifp,c algorithms described above. The next two sections are dedicated to the
design of such algorithms for a number of homomorphic encryption schemes in the literature.

5 A General Framework for Verifying the
⊗

Operation

In this section, we give a general framework for proving/verifying correctness of the
⊗

operation. This
approach is applicable to most of the additively homomorphic and BGN-style encryption schemes we know of.
In particular, if the homomorphic encryption scheme being used has the two main properties of (i) associativity
and (ii) distinctiveness, there is a simple and efficient algorithm for verifying the

⊗
operation without the

need for redoing the operation itself. We proceed by defining each notion and proving that the existing
homomorphic encryption schemes such as GM, Paillier’s, El Gamal, and BGN [27, 34, 20, 10] possess them.
We do not discuss GHV scheme in this section, despite the fact that it has the same properties, and instead
consider it separately in Section 7 where we show a simpler and more efficient verification algorithm which
does not follow this general paradigm.

In all the definitions that follow, matrices A, B and C are n×n matrices. In case of additively homomorphic
encryption schemes, we define associativity as follows:

Definition 5.1. Let E = (KeyGen,Enc,Dec) be an additively homomorphic encryption scheme. We call the
scheme E associative if for any ciphertext matrix B̂ = Enc(B), any plaintext matrix A, and any vector v ∈ Zn,
the following equality holds:
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A

p,c⊗
(B̂

c,p⊗
v) = (A

p,c⊗
B̂)

c,p⊗
v

In case of BGN-style encryption, we define associativity as follows:

Definition 5.2. Let E = (KeyGen,Enc,Dec) be a BGN-style encryption scheme. We call the encryption
scheme E, associative if for any two ciphertext matrices Â = Enc(A) and B̂ = Enc(B), and any vector
v ∈ Zn, the following equality holds:

Â

c,c⊗
(B̂

c,p⊗
v) = (Â

c,c⊗
B̂)

c,p⊗
v

While the homomorphic properties of the encryption schemes guarantee that the decryption of the cipher-
texts on both sides of the equations (in both definitions) are the same, they do not provide any guarantees
about the equality of the ciphertexts themselves. Nevertheless, as we will see shortly, the associativity property
holds in case of the GM, Paillier’s, El Gamal, and the BGN encryption schemes.

The second property which we call the distinctiveness property, guarantees that whenever two distinct
ciphertexts are homomorphically multiplied by a random plaintext vector, the resulting ciphertext vectors are
also distinct with high probability. The following definition formalizes this statement:

Definition 5.3. Let E = (KeyGen,Enc,Dec) be an additively homomorphic or a BGN-style encryption scheme.
We call E distinctive if for any two ciphertext matrices Â = Enc(A) and Â′ = Enc(A′) where Â 6= Â′ and for
a uniformly random vector v ∈ ZnN , for a large enough N , the following probability is negligible:

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]

Let E be an associative and distinctive additively homomorphic encryption scheme. Let B̂ = Enc(B) and
Ĉ = Enc(C) be two ciphertext matrices, and let A be a plaintext matrix. We define the verification algorithm
verifp,c(A, B̂, Ĉ) as follows:

Verification Algorithm for the
⊗p,c

Operation
verifp,c(A, B̂, Ĉ)

1. Generate a uniformly random vector v ∈ Zn
N for a large enough integer N .

2. If A
⊗p,c

(B̂
⊗c,p

v) = Ĉ
⊗c,p

v, return 1.

3. Else, return 0.

Theorem 5.4. If E is an associative and distinctive, additively homomorphic encryption scheme, then the
verifp,c algorithm described above correctly verifies the A

⊗p,c B̂ operation, and only requires O(n2) computa-
tion.

Proof sketch. The proof of correctness of the verification is a fairly straightforward implication of the asso-
ciative and distinctive properties of the encryption scheme. Particularly, note that if A

⊗p,c B̂ = Ĉ, due to
the associativity of E we have

A

p,c⊗
(B̂

c,p⊗
v) =

(A

p,c⊗
B̂)

c,p⊗
v = Ĉv
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On the other hand, if A
⊗p,c B̂ 6= Ĉ, due to distinctiveness property, with high probability we have

A

p,c⊗
(B̂

c,p⊗
v) =

(A

p,c⊗
B̂)

c,p⊗
v 6= Ĉv

The associativity of the
⊗

operation is the main reason the client can perform the verification efficiently.
In particular, the client can compute (A

⊗p,c B̂)
⊗c,p v by first computing B̂

⊗c,p v and then multiplying
this encrypted vector by matrix A on the left. This only requires two matrix-by-vector homomorphic multi-
plications which only require O(n2) work.

In case of an associative and distinctive BGN-style encryption scheme, we define the verification algorithm
verifc,c(Â, B̂, Ĉ) in a very similar way:

Verification Algorithm for the
⊗c,c

Operation
verifc,c(Â, B̂, Ĉ)

1. Generate a uniformly random vector v ∈ Zn
N for large enough integer N .

2. If Â
⊗c,c

(B̂
⊗c,p

v) = Ĉ
⊗c,p

v, return 1.

3. Else, return 0.

Theorem 5.5. If E is an associative and a distinctive BGN-style encryption scheme, then the verifc,c algo-
rithm described above correctly verifies the Â

⊗c,c B̂ operation, and only require O(n2) computation.

The proof of this theorem is exactly the same as the one for additively homomorphic encryption and hence
is omitted here.

6 Associativity and Distinctiveness for Several Encryption Schemes

In this section, we first show that the
⊗

operation is associative for GM, Paillier’s, El Gamal (messages
in the exponent) and the BGN encryption schemes. Then, we show that all four encryption schemes are
also distinctive. This implies that the verification algorithms we described in the previous section can be
implemented for all four schemes and hence be used to design private and verifiable delegation of matrix
multiplication using each (via the general construction of Section 5).

6.1 Associativity of the GM, Paillier’s, and El Gamal Encryption

We start by a claim for associativity of the GM, the Paillier’s, and the El Gamal encryption schemes, since
the proof for all three is almost identical.

Claim 2. Consider GM, Paillier’s, or El Gamal encryption schemes. For any n × n ciphertext matrix
B̂ = Enc(B), any plaintext matrix A, and any vector v ∈ Zn, the following equality holds:

A

p,c⊗
(B̂

c,p⊗
v) = (A

p,c⊗
B̂)

c,p⊗
v
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Proof. Let [A]i,j = ai,j , [B̂]i,j = b̂i,j and [v]i = vi. We algebraically work out both sides of the equation to
show that the equality in fact holds. We assume that multiplication takes place in the respective group for
each encryption scheme. For the case of GM and Paillier’s encryption, the ciphertext only has a single group
element, but for the El Gamal scheme, it consist of two group elements. The general argument below, treats
the ciphertexts as a single group element but in case of El Gamal, we can repeat the same argument for both
elements in the ciphertext in order to show associativity. Starting with the left-hand side, we have that for
all i ∈ [n]:

[B̂

c,p⊗
v]i =

∏
j∈[n]

(b̂i,j)
vj

Multiplying A on the left using the
⊗p,c operation, we have that for all i ∈ [n]:

[A

p,c⊗
(B̂

c,p⊗
v)]i =

∏
j,k∈[n]

(b̂k,j)
vj ·ai,k (1)

Now consider the right-hand side of the equation, where we have for all i, j ∈ [n]:

[A

p,c⊗
B̂]i,j =

∏
k∈[n]

(b̂k,j)
ai,k

Multiplying v on the right using the
⊗c,p operation, we have that for i ∈ [n]:

[(A

p,c⊗
B̂)

c,p⊗
v]i =

∏
j,k∈[n]

(b̂k,j)
ai,k·vj (2)

It is easy to verify that the right-hand side of equations 1 and 2 are the same which completes the proof
of our claim.

6.2 Associativity of the BGN Scheme

We show that the BGN encryption is also associative.

Claim 3. Let (N = q1q2,G,G1, e, g, h) be the public key for the BGN encryption scheme. For any two
ciphertext matrices B̂ = Enc(B), and Â = Enc(A), and any vector v ∈ ZnN , the following equality holds:

A

c,c⊗
(B̂

c,p⊗
v) = (A

c,c⊗
B̂)

c,p⊗
v

Proof. Let [Â]i,j = âi,j , [B̂]i,j = b̂i,j and [v]i = vi. Once again, we algebraically work out both sides of the
equation to show that the equality in fact holds. Starting with the left-hand side, we have for all i ∈ [n]:

[B̂

c,p⊗
v]i =

∏
j∈[n]

(b̂i,j)
vj

Multiplying Â on the left using the
⊗c,c operation, we have that for all i ∈ [n]:

[Â

c,c⊗
(B̂

c,p⊗
v)]i =

∏
k∈[n]

e(âi,k,
∏
j∈[n]

(b̂k,j)
vj )

=
∏
k∈[n]

∏
j∈[n]

e(âi,k, b̂k,j)
vj (3)
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Where the last equality holds due to the properties of the pairing operation e. Now consider the right-hand
side of the equation, where we have for all i, j ∈ [n]:

[Â

c,c⊗
B̂]i,j =

∏
k∈[n]

e(âi,k, b̂k,j)

Multiplying v on the right using the
⊗c,p operation, we have that for i ∈ [n]:

[(Â

c,c⊗
B̂)

c,p⊗
v]i =

∏
j∈[n]

(
∏
k∈[n]

e(âi,k, b̂k,j))
vj

=
∏
j∈[n]

∏
k∈[n]

e(âi,k, b̂k,j)
vj

=
∏
k∈[n]

∏
j∈[n]

e(âi,k, b̂k,j)
vj (4)

Note that the right-hand side of equations 3 and 4 are the same which completes the proof of our claim.

6.3 Distinctiveness of the GM Scheme

The second property we need and the more challenging to prove is the distinctiveness property. We show this
property for each scheme separately, since the proof depends on the specifics of each scheme.

Claim 4. Let N = pq be the composite integer used in the GM encryption scheme. Given any two ciphertext
matrices Â = Enc(A) and Â′ = Enc(A′) where Â 6= Â′, for a uniformly random vector v ∈ ZnN

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/min(p− 1, q − 1)

Proof. In order to prove this claim, we need to take a closer look at how the
⊗

operation works in GM
encryption. Let Â = Enc(A) and consider Â

⊗c,p v where v ∈ ZnN and Â ∈ (Z∗N )n×n. First, we consider
the following useful Lemma. Based on the Chinese remainder theorem, we have the following isomorphism
Z∗N ≈ Zp−1 × Zq−1:

Lemma 6.1. Let N = pq be the composite integer used in GM encryption, and let g1 and g2 be generators
for the cyclic groups Z∗p and Z∗q, respectively. Then Z∗N is isomorphic to Zp−1 × Zq−1 with isomorphism
fg1,g2 : Z∗N → Zp−1 × Zq−1 where

fg1,g2(x) = (logg1(x mod p), logg2(x mod q))

One could also consider the simpler isomorphism f ′ : Z∗N → Z∗p×Z∗q where f ′(x) = (x mod p, x mod q),
but we need the above mentioned representation for our proof. Given the above isomorphism, it is easy to
see that for any x, y ∈ Z∗N where x→ (xa, xb), y → (ya, yb), we have

xy mod N = (xa + ya mod (p− 1), xb + yb mod (q − 1))

and for any positive integer r we have,

xr mod N = (xar mod (p− 1), xbr mod (q − 1))
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Based on the above discussion, we can uniquely represent every ciphertext matric Â for the GM encryption
using a tuple of matrices (Â1 ∈ Zn×np−1 , Â2 ∈ Zn×nq−1 ). Furthermore, it is easy to see that

Â

c,p⊗
v→ (Â1v mod Zp−1, Â2v mod Zq−1)

Now consider two distinct ciphertext matrices Â→ (Â1, Â2) and Â′ → (Â′1, Â′2). We have that Âi 6= Â′i
for at least one i ∈ {1, 2}. If i = 1, based on Lemma 4.1, Pr[Â1v = Â′1v] < 1/(p − 1) and if i = 2,
Pr[Â2v = Â′2v] < 1/(q − 1). Hence, we have that

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/min(p− 1, q − 1)

This concludes the proof of Claim 4 for GM encryption.

6.4 Distinctiveness of the Paillier’s Scheme

Now lets consider Paillier’s encryption scheme. The Claim is essentially the same as that of GM’s encryption
but the proof is a bit different.

Claim 5. Let N = pq be the composite integer used in Paillier’s encryption schemes. Given any two ciphertext
matrices Â = Enc(A) and Â′ = Enc(A′) where Â 6= Â′, for a uniformly random vector v ∈ ZnN

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/min(p− 1, q − 1)

Proof. Let Â = Enc(A) be a ciphertext matrix and let v ∈ ZnN . Note that Â ∈ (Z∗N2)n×n. First we consider
the following useful Lemma:

Lemma 6.2. ZN × Z∗N is isomorphic to Z∗N2, with isomorphism f : ZN × Z∗N → Z∗N2, given by

f(a, b) = (1 +N)a · bN mod N2

.

Given the above isomorphism, it is easy to see that for any x, y ∈ Z∗N2 where x → (xa, xb), y → (ya, yb),
we have that

xy mod N2 = (xa + ya mod N, xbyb mod N)

.
And for any positive integer r, we have that

xr mod N2 = (xar mod N, (xb)
r mod N)

Combining the two Lemmas 6.1 and 6.2, we can uniquely represent any element x ∈ Z∗N2 with a tuple
x → (xa ∈ ZN , xb ∈ Zp−1, xc ∈ Zq−1). As a consequence, for any x, y ∈ Z∗N2 where x → (xa, xb, xc) and
y → (ya, yb, yc), and any positive integer r we have

xy mod N2 = (xa + ya mod N, xb + yb mod (p− 1), xc + yc mod (q − 1))

and
xr mod N2 = (xar mod N, xbr mod (p− 1), xcr mod (q − 1))
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We are now ready to complete the proof of our claim. Note that any Paillier ciphertext Â ∈ (Z∗N2)n×n

can be written as a tuple of matrices (A1 ∈ Zn×nN , A2 ∈ Zn×np−1 , A3 ∈ Zn×nq−1 ). Furthermore, based on the above
discussion, it easy to see that for any vector v with positive integer components

Â

c,p⊗
v = (A1v mod N,A2v mod (p− 1), A3v mod (p− 1))

For any Â 6= Â′ ∈ (Z∗N2)n×n, based on the above isomorphism we know that Âi 6= Â′i for at least one
i ∈ {1, 2, 3}. Hence, for a uniformly random v ∈ ZnN , if i = 1, then based on Lemma 4.1, Pr[A1v = A2v] < 1/N
and hence

Pr[Â

c,p⊗
v = Â′

c,p⊗
v] < 1/N

.
If i = 2, the Lemma 4.1 still holds since a v mod (p − 1) is also a uniformly random vector over Zp−1.

The probability of error in the verification process will reduce to 1/(p− 1). Similar argument works for i = 3,
only with the error probability 1/(q − 1).

Hence, for all three choices of i, the probability of error in the verification is less than 1/min(p− 1, q− 1).
This concludes the proof of our Claim 5.

6.5 Distinctiveness of El Gamal Scheme

Next we show that the El Gamal encryption (with messages in the exponent) is also distinctive.

Claim 6. Let (G, g, h, q) be a the public-key for El Gamal encryption (with messages in the exponent), where
G is a cyclic group of order q. Given any two ciphertext matrices Â = Enc(A) and Â′ = Enc(A′) where
Â 6= Â′, for a uniformly random vector v ∈ Znq

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/q

Proof. In order to prove this claim, we need to take a closer look at how the
⊗

operation works in El Gamal
Encryption. Let Â = Enc(A) and consider Â

⊗c,p v where v ∈ Znq and Â ∈ (G,G)n×n. First, we consider the
isomorphism (G,G) ≈ Zq × Zq expressed with the function fg,x : (G,G)→ Zq × Zq where

fg,x(c1, c2) = (logg(c1), logg(c2/c
x
1))

Given such an isomorphism, it is easy to see that for any two ciphertexts â = (a1, a2), and b̂ = (b1, b2) ∈
(G,G) where â→ (x1, x2), b̂→ (y1, y2), we have

(a1b1, a2b2)→ (x1 + y1 mod q, x2 + y2 mod q)

and for any positive integer r we have,

((ar1, a
r
2)→ (x1r mod q, x2r mod q)

Based on the above discussion, we can uniquely represent every ciphertext matric Â for the El Gamal
encryption using a tuple of matrices (Â1 ∈ Zn×nq , Â2 ∈ Zn×nq ). Furthermore, it is easy to see that

Â

c,p⊗
v→ (Â1v mod Zq, Â2v mod Zq)
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Now consider two distinct ciphertext matrices Â→ (Â1, Â2) and Â′ → (Â′1, Â′2). We have that Âi 6= Â′i
for at least one i ∈ {1, 2}. If i = 1, based on Lemma 4.1, Pr[Â1v = Â′1v] < 1/q and if i = 2, Pr[Â2v =
Â′2v] < 1/q. Hence, we have that

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/q

This concludes the proof of Claim 4 for El Gamal encryption.

6.6 Distinctiveness of the BGN Scheme

Next we show that the BGN scheme is also distinctive.

Claim 7. Let N = q1q2 be the order of the cyclic group G for the BGN encryption. Given any two ciphertext
matrices Â = Enc(A) and Â′ = Enc(A′) where Â 6= Â′, for a uniformly random vector v ∈ ZnN

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/min(q1, q2)

Proof. Let Â = Enc(A) and consider Â
⊗c,p v where v ∈ ZnN and Â ∈ (Z∗N )n×n. We need to use the following

isomorphism G ≈ Zq1 × Zq2 :

Lemma 6.3. Let g be a generator of group G. Then, G is isomorphic to Zq1 × Zq2 with isomorphism
f : G→ Zq1 × Zq2 where

f(x) = ((logg x) mod q1, (logg x) mod q2)

We skip the proof for the lemma here but it is easy to verify. Given the above isomorphism, it is easy to
see that for any x, y ∈ G where x→ (xa, xb), y → (ya, yb), we have

xy = (xa + ya mod q1, xb + yb mod q2)

and for any positive integer r we have,

xr = (xar mod q1, xbr mod q2)

Based on the above discussion, we can uniquely represent every ciphertext matric Â for the BGN encryption
using a tuple of matrices (Â1 ∈ Zn×nq1 , Â2 ∈ Zn×nq2 ). Furthermore, it is easy to see that

Â

c,p⊗
v→ (Â1v mod Zq1 , Â2v mod Zq2)

Now consider two distinct ciphertext matrices Â→ (Â1, Â2) and Â′ → (Â′1, Â′2). We have that Âi 6= Â′i
for at least one i ∈ {1, 2}. If i = 1, based on Lemma 4.1, Pr[Â1v = Â′1v] < 1/(q1) and if i = 2, Pr[Â2v =
Â′2v] < 1/(q2). Hence, we have that

Pr
[
Â

c,p⊗
v = Â′

c,p⊗
v
]
< 1/min(q1, q2)

This concludes the proof of Claim 7 for BGN encryption.
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7 Private and Verifiable Delegation Using the GHV Scheme

We start with a simple delegation protocol that provides input and output privacy but is not verifiable.
The protocol is a fairly straightforward application of the homomorphic properties of the GHV scheme. As
discussed in Section 3.5, since in the GHV scheme, the multiplication is defined as multiplying one plaintext
matrix with the transpose of another, we need to transform the original input matrices to work with this
variant of matrix multiplication. It is easy to verify that when multiplying an encrypted matrix Â by an
encrypted matrix B̂, it is sufficient to perform a block-wise transposition of B̂, and then apply the

⊗c,c

operation on Â and the transformed version of B̂.
More precisely, we denote by Block-trans(B,m), the transformation wherein B is divided into m × m

submatrices and each block is replaced by its own transpose.

Private Delegation of Matrix Multiplication (without verification)

Common Inputs: The public key for the GHV encryption scheme E = (KeyGen,Enc,Dec) with parameters
k1, p, q, k2 .
Client’s Inputs: Two matrices A,B ∈ Zn×n

p where p ≥ 2.
Client’s Outputs: The product matrix AB mod p.

1. Client computes and sends the following two matrices to the worker.

• Â← Enc(A)

• B′ ← Block-Trans(B, k1).

• B̂′ ← Enc(B′)

2. Worker computes Ĉ = (Â
⊗c,c

B̂′) and sends the result to the client.

3. Client outputs C ← Dec(Ĉ) as the final plaintext product matrix.

Correctness of the protocol is easy to verify. Simple algebraic manipulations confirm that Dec(Â
⊗c,c B̂′) =

AB mod p where B′ is a block-wise transpose of B. Input and output privacy of the protocol easily follow
from the semantic security of the GHV scheme. Also note that the client’s work is in the order of O(n2) while
the worker’s is O(n3).

7.1 Adding Verification

Next we describe a simple and efficient method for verifying the
⊗c,c operation for the GHV scheme. The

main observation is that, in the GHV scheme, the
⊗c,c operation itself can be seen as a matrix multiplication

over a ring that contains the ciphertexts. Specifically, worker’s computation can be written as

Â

c,c⊗
B̂′ = Â× Block-Trans(B̂′, k1) mod q

where × denotes matrix multiplication. Hence, we can take advantage of Lemma 4.1 to verify the cor-
rectness of the

⊗c,c operation. Moreover, since the input and output matrices of this verification step are
ciphertexts (Â and Block-Trans(B̂′, k1)), and are publicly known to the worker, the one bit of leakage of
information on these ciphertexts does not reveal any information about the original input/output matrices.
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A Private and Verifiable Delegation of Matrix Multiplication

Common Inputs: The public key for the GHV encryption scheme E = (KeyGen,Enc,Dec) with parameters
k1, p, q, k2 .
Client’s Inputs: Two matrices A,B ∈ Zn×n

p where p ≥ 2.
Client’s Outputs: The product matrix AB mod p.

1. Client computes and sends the following two matrices to the worker.

• Â← Enc(A)

• B′ ← Block-Trans(B, k1).

• B̂′ ← Enc(B′)

2. Worker computes Ĉ = (Â
⊗c,c

B̂′) and sends the result to the client.

3. Client computes B̂′′ ← Block-Trans(B̂′, k1)

4. Client generates a uniformly random vector v ∈ Zn
q and computes x = Â(B̂′′v) mod q and y = Ĉv mod q.

5. If x = y client outputs C ← Dec(Ĉ). Else, he outputs ⊥.

Theorem 7.1. The above construction is a private and verifiable protocol for delegating matrix multiplication
where the client only performs O(n2) computation.

8 Secure Delegation of Linear Algebra Computation

In this section we describe how to use a delegation protocol for matrix multiplication in order to design efficient
constructions for other standard linear algebra computation such as computing the rank, determinant and
solving a linear system. The security of the resulting protocols is implied by the security of the delegation
protocol for matrix multiplication and the composition theorem A.4.

A number of works in the literature consider secure computation of linear algebra [13, 29, 33, 14, 32] and
the approach taken by some of these papers is to reduce secure linear algebra to secure computation of matrix
multiplication.

However, the straightforward application of these techniques do not yield secure delegation protocols that
are efficient. In particular, the best existing solutions (e.g. see [32]) requires O(s) rounds and O(sn2+1/s)
computation for any integer s. Hence a direct application of their techniques either yields a delegation scheme
that is not constant round or one that requires the client to do work that is more than O(n2).

Nevertheless, we show that using a combination of existing techniques we can design constant round
delegation protocols that only require O(n2 log n) work by the client.

8.1 Delegating Matrix Inversion

We start with a simple protocol for delegating matrix inversion which we then use to design delegation
protocols for other linear algebra tasks.
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Secure Delegation of Matrix Inversion
SDinv(A)

Common Inputs: The parties exchange the necessary parameters for a secure delegation scheme SDmult(·, ·) for
matrix multiplication.
Client’s Inputs: An invertible matrix A ∈ Rn×n.
Client’s Outputs: A−1.

1. Client generates a random matrix R ∈ Rn×n.

2. Client and worker engage in a run of SDmult(A,R), as result of which client learns AR.

3. Client sends AR to the worker who computes (AR)−1 = R−1A−1 and returns the result to the client.

4. Client uses Lemma 4.1 to verify the correctness of R−1A−1. In other words, he generates a random vector
v ∈ Rn, and checks whether (R−1A−1)(ARv) = v. If not, he aborts.

5. Client and worker engage in a SDmult(R,R−1A−1) as a result of which the client learns A−1.

Note that the computation of (AR)−1 and SDmult(R,R−1A−1) can be interleaved to get a better round
complexity. The resulting protocol would only require two rounds of interaction between the client and the
worker.

Also note that while the verification in step 4 could be done using the SDmult protocol, the simple
verification based on Lemma 4.1 suffices here since the inputs to the matrix multiplication are public and
known to the worker (hence there is no need to hide them).

Claim 8. The above construction is a constant round secure delegation protocol for inverting a matrix A,
where the client only performs O(n2) computation.

Proof sketch. Note that worker’s view in the above construction is his view in the two SDmult invocations
plus the random invertible matrix RA. Hence, it is easy to argue that worker’s view is indistinguishable for
any two client inputs.

The verifiability of the construction follows directly from the verifiability of the two SDmult delegations
which ensure that AR and A−1 where computed correctly and Lemma 4.1 which guarantees that with prob-
ability 1− 1/R, R−1A−1 is also computed correctly. If R is large enough, this provides a sufficient guarantee,
but else, the verification of step 4 needs to be repeated multiple times to amplify the probability.

Note that delegating the problem of solving a linear system Ax = b if A is invertible, can be easily reduced
to matrix inversion and hence be solved using the protocol above. The more challenging scenario is for the
case when A not necessarily invertible.

8.2 Delegating Computation of Minimal Polynomial of a Matrix

In [29], the authors show how to use computer algebra techniques that reduce linear algebra tasks such as
computing the rank, determinant, or solving a linear system to computing the minimal polynomial of a matrix.

We follow the same paradigm. In fact, it turns out that if the client can delegate the computation of a
minimal polynomial, securely and efficiently, delegation of the rest of linear algebra problems follow easily.
The main building block for computing the minimal polynomial of a n×n matrix A is a protocol for computing
the sequence of vectors u>Av, . . . ,u>A2nv for random vectors v and u. The following Lemma clarifies this
connection:

Lemma 8.1. Let F be a finite field, A ∈ Fn×n, and let mA be the minimal polynomial of matrix A. For
u,v ∈ Fn chosen uniformly at random, we have mA = ma with probability at least 1− 2 deg(mA)/|F|, where
ai = (u>Aiv)i∈[2n].
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Hence, we start by describing a protocol for delegating the computation of this sequence. We first describe
a protocol for the case where A is invertible and this is known to the worker. As we will see later, this
assumption can be removed via use of Chebyshev’s polynomials, similar to what was used in [14].

High level idea. The idea is to first compute R−1AR for a random matrix R, using the delegation protocols
for matrix multiplication and inversion. Then, using a technique of Bar-Ilan and Beaver [6], the worker
performs log ` multiplications to compute R−1A2iR for 1 ≤ i ≤ log `, and client verifies these operations using
Lemma 4.1. Then, using a trick similar to what is used in [29], via log `

⊗p,c operations, the worker computes
encryptions of R−1Aiv for 1 ≤ i ≤ `, for a random vector v. An extra invocation of the delegation protocol
for matrix multiplication allows the client to recover the sequence (Aiv)i∈[`]. A detailed description of the
protocol follows:

Secure Delegation of Computation of the Sequence (Aiv)i∈[`] (for non-singular A)
SDseq−inv(A,v, `)

Common Inputs: The parties exchange the necessary parameters for secure delegation protocols SDmult(A,B),
and SDinv(A). Parties also agree on an additively or BGN-style homomorphic encryption E = (KeyGen,Enc,Dec).
Client’s Inputs: An invertible matrix A ∈ Fn×n, and a vector v ∈ Fn.
Client’s Outputs: Av, . . . , A`v.

1. Client generates a random matrix R ∈ Fn×n.

2. Client and worker compute SDmult(A,R), SDinv(R), for the client to learn AR and R−1.

3. Client and worker run SDmult(R−1, AR) for the client to learn R−1AR

4. Client computes v′ = R−1v on his own.

5. Client sends B0 = R−1AR and v̂′ = Enc(v′) to the worker.

6. The worker computes Bi = B2
i−1 = R−1A2iR for 1 ≤ i ≤ log `, and sends the results to Client.

7. Client verifies the computation of each Bi using Lemma 4.1 (note that privacy is not an issue in this case
since Bi’s are public).

8. Let dj = R−1Ajv and let Cj = [dj−1| · · · |d0] for 0 ≤ j ≤ `. Worker computes encryption of dj for 0 ≤ j ≤ `,
by computing the following for 0 ≤ i < log `:

Ĉ2i+1 = [Bi

p,c⊗
Ĉ2i |Ĉ2i ]

9. Worker sends Ĉ` to the client.

10. Client verifies the
⊗p,c

operations (log ` of them) using the verifp,c algorithm for the encryption scheme E
as discussed in the previous sections. If any of the checks fail, he aborts.

11. Client decrypts to recover the matrix

C` = [R−1A`v|R−1A`−1v| · · · |R−1Av|v]

12. Client and worker invoke SDmult(R,C`), as a result of which client learns the sequence of vectors (Aiv)i∈[`].

Claim 9. The above protocol is a constant round, secure delegation protocol for computing the vector sequence
(Aiv)i∈[`], where the client’s computation is O(n2 log `).
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It is easy to see that the client only needs to perform O(n2 log `) work. The bottleneck of computation is
in steps 7 and 10 of the protocol. Also, note that the security of the scheme follows from the security of the
delegation protocols we have introduced and the composition theorem explained in section A.
Extension to singular matrices. The protocol we described above, for delegating the computation of the
sequence Aiv, assumes that A is invertible. In particular, if A was singular, AR would not hide everything
about the input matrix A, since it reveals its rank. Next, we show how to use a technique based on Chebyshev
polynomials (previously used in [14]) in order to extend the above protocol for computing the sequence Aiv
to the case when A is potentially singular.

Consider the Chebyshev polynomials of the first kind which satisfy the following linear recurrence:

Td(x) = 2xTd−1(x)− Td−2(x), d > 2

where T0(x) = 1 and T1(x) = x, and Chebyshev polynomials of the second kind Ud(x) with the same
recurrence relation but where U0(x) = 1 and U1(x) = 2x. It is known that every polynomial p(x) =

∑d
i=0 aix

i

of degree d, can be expressed using Chebyshev polynomials:

p(x) =
d∑
i=1

λ
p(x)
i Ti(x)

where λ
p(x)
i ’s can be computed using only the coefficients of polynomial p(x). In fact, we are particularly

interested in polynomials x, x2, · · · , x`, for which simple and direct formulas for computing the λi’s exist:

xm = 21−m(Tm(x) +

[m/2]∑
k=1

(
m

k

)
Tm−2k(x))

It is easy to verify (and omitted here) that using the above formula the client can efficiently compute λx
m

i

for 1 ≤ i ≤ m and for 1 ≤ m ≤ `, in time less than O(n`). Furthermore, these coefficients are only compute
once and can be used repeatedly for many runs of the secure delegation protocol.

Note that the above equations hold in the appropriate finite rings/fields as well. Similar equations hold
when these polynomials are applied over a matrix ring which is exactly where we need to use them. In
particular, next, we review an procedure for efficiently evaluating Chebyshev polynomial’s over a matrix ring.

Given a potentially singular n×n matrix A, it can be transformed to a 2n× 2n matrix M(A) of the form

M(A) =

(
A −In
In 0

)
Note that M(A) is invertible regardless of A. Furthermore, it is easy to verify that the following equation

holds:

M(A)M(2A)d−1 =

(
Td(A) −Td−1(A)
Ud−1(A) −Ud−2(A)

)
Now, Ti(A)v for 1 ≤ i ≤ ` can be computed by computing M(A)M(2A)i−1v for 1 ≤ i ≤ ` and obtaining

the top n elements in each vector. Since M(2A) is invertible, this can be done using the delegation protocol
SDseq−inv(M(2A),v) we described above, and an invocation of SDmult(·, ·) to multiply M(A) on the left.

An extra step is needed to linearly combine the Ti(A)v vectors, using the coefficients λx
m

i (for 1 ≤ m ≤ `)
in order to retrieve the sequence Aiv for 1 ≤ i ≤ `. However, the obvious ways of computing these linear
combinations are not efficient (for the purpose of delegation) since they require the client to perform O(n3)
work (n2 multiplication for each vector). Hence, we first compute u>Ti(A)v for a random vector u, and
1 ≤ i ≤ ` (using a delegated matrix multiplication), and then compute the linear combination to this sequence
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instead. The work needed for computing the latter linear combination is only O(n2) since we are dealing with
field elements instead of vectors of dimension n. It is also not hard to verify that the linear combination of
u>Ti(A)v’s (using the correct λi coefficients) yields u>Aiv for 1 ≤ i ≤ ` which is what we are ultimately
after. A detailed description of the protocol follows:

Secure Delegation of Computation of the Sequence (u>Aiv)i∈[`]
SDseq(A,v,u, `)

Common Inputs: The parties exchange the necessary parameters for secure delegation protocols SDmult(A,B),
and SDinv(A) and SDseq−inv(A).
Client’s Inputs: An invertible matrix A ∈ Fn×n, and vector v,u ∈ Fn.
Client’s Outputs: u>Av, . . . ,u>A`v.

1. Client constructs M(A) and M(2A) as described above.

2. Client and worker engage in the delegation protocol SDseq−inv(M(2A),v, `), to learn the matrix:

B = [M(2A)`v| · · · |M(2A)2v|M(2A)v]

3. Client and worker engage in a SDmult(M(A), B) for the client to learn the matrix:

B′ = [M(A)M(2A)`v| · · · |M(A)M(2A)2v|M(A)M(2A)v]

4. Denote the top-left n× n sub-matrix of B′ by B′′. It is easy to see (based on the discussion above) that:

B′′ = [T`(A)v| · · · |T2(A)v|T1(A)v]

5. Client then computes u>B′′ on his own to retrieve the row vector:

[u>T`(A)v| · · · |u>T2(A)v|u>T1(A)v]

6. for 1 ≤ m ≤ `, client computes and outputs:

u>Amv =

m∑
i=0

λx
m

i u>Ti(A)v

Computing the minimal polynomial. Given the above construction for computing the sequence (u>Aiv)i∈[`]
and Lemma 8.1, it is easy to securely delegate the computation of the minimal polynomial of A. In particular,
the client first runs the above protocol for the case of ` = 2n. Then, the remaining computation can be
performed by the client himself, locally, since it only requires O(n2) work. Particularly, client can compute
the minimal polynomial of the sequence (u>Aiv)i∈[`], using the well-known Berlekamp/Massey algorithm [30]
in time O(n2). Based on Lemma 8.1, the computed minimal polynomial is equal to minimal polynomial of A
with high probability.

8.3 Secure Delegation of Other Linear Algebra Tasks

In [29], it is shown how to reduce different linear algebra tasks to computing the minimal polynomial. Similar
ideas can be applied in our setting in order to efficiently delegate. We do not describe the details of the
reductions as they directly follow the approach of [29], but will describe the high level ideas behind them
next.
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• Testing singularity. Testing whether a matrix A is singular or not can be efficiently reduced to testing
whether the constant coefficient of the minimal polynomial mA is zero or not.

• Computing the rank and determinant. Computing the rank of a matrix A is reduced to computing the
degree of minimal polynomial of a matrix XUAL where U,L ∈ Fn×n are random Toeplitz matrices,
and L ∈ Fn×n is a random diagonal matrix. The preprocessing multiplication steps can in fact be
performed by the client himself since they involve matrices of special form (diagonal and Toeplitz) and
can be performed in O(n2) time using computer algebra techniques.

A similar approach can be used to delegate the computation of the determinant. In particular, the
determinant of A can be derived from the constant coefficient of minimal polynomial of XUAL.

• Solving a linear system. As discussed earlier, if matrix A is non-singular, then the linear system can be
solved using our delegation protocol for matrix inversion. However, when A is a matrix of rank r, A is
first transformed to a matrix M ′ = PAQ where P and Q are full-rank random matrices. The leading
r × r principle of M ′ remains unchanged while the bottom-right n − r × n − r block is replaced by a
unit matrix. Denote the resulting non-singular matrix by N ′. Solving the linear system Ax = b can
be reduce to solving the linear system Nx = b′ where b′ can be efficiently computed based on P , b
and r (see [29] for details). Since N ′ is invertible, however, the system can be solved using the matrix
inversion delegation protocol. Note that the client also initially needs to run the delegation protocol for
computing the rank of A, and to use it for the rest of the computation.
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A Secure Delegation Protocols

We borrow the definitions for secure delegation from [22], but use the notation of [28] for the most part. A one
round (non-interactive) delegation protocol consists of four polynomial-time algorithms Del = (Gen,ProbGen,
Compute,Verify) that work as follows. Gen is a probabilistic algorithm that takes as input a security parameter
k and a function f and outputs a public and secret key pair (pk, sk) such that the public key encodes the
target function f . ProbGen is a probabilistic algorithm that takes as input a secret key sk and an input x in
the domain of f and outputs a public encoding σx and a secret state τx. Compute is a deterministic algorithm
that takes as input a public key pk and a public encoding σx and outputs a public encoding σy. Verify is a
deterministic algorithm that takes as input a secret key sk, a secret state τx and a public encoding σy and
outputs either an element y of f ’s range or the failure symbol ⊥.

We recall the formal definitions of correctness, verifiability and privacy for a delegation protocols.

Definition A.1 (Correctness). A delegation protocol Del = (Gen,ProbGen,Compute,Verify) is correct if for
all functions f , for all pk and sk output output by Gen(1k, f), for all x in the domain of f , for all σx and τx
output by ProbGensk(x), for all σy output by Computepk(σx), Verifysk(τx, σy) = f(x).
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A delegation protocol is verifiable if a malicious worker cannot convince the client to accept an incorrect
output. In other words, for a given function f and input x, a malicious worker should not be able to find
some σ′ such that the verification algorithm outputs y′ 6= f(x). This intuition is formalized in the following
definition.

Definition A.2 (Verifiability). Let Del = (Gen,ProbGen,Compute,Verify) be a delegated computation scheme,
A be an adversary and consider the following probabilistic experiment VerDel,A(k):

1. the challenger computes (pk, sk)← Gen(1k, f),

2. let O(sk, ·) be a probabilistic oracle that takes as input an element x in the domain of f , computes
(σ, τ)← ProbGensk(x) and outputs σ,

3. given pk and oracle access to O(sk, ·), A outputs an input x,

4. the challenger computes (σx, τx)← ProbGensk(x),

5. given σx, the adversary A outputs an encoding σ′,

6. if Verifysk(τ, σ′) 6∈ {⊥, f(x)} then output 1 else output 0.

We say that Del is verifiable if for all ppt adversaries A,

Pr [VerDel,A(k) = 1 ] ≤ negl(k)

where the probability is over the coins of Gen, O, A and ProbGen.

Informally, a delegation protocol is private if its public encodings reveal no useful information about the
input x.

Definition A.3 (Privacy). Let Del = (Gen,ProbGen,Compute,Verify) be a delegation protocol, A be a stateful
adversary and consider the following probabilistic experiment PrivDel,A(k):

1. the challenger computes (pk, sk)← Gen(1k, f),

2. let O(sk, ·) be a probabilistic oracle that takes as input an element x in the domain of f , computes
(σ, τ)← ProbGensk(x) and outputs σ,

3. given pk and oracle access to O(sk, ·), A outputs two inputs x0 and x1,

4. the challenger samples a bit b at random and computes (σb, τb)← ProbGensk(xb),

5. given σb, the adversary A outputs a bit b′,

6. if b′ = b output 1 else output 0.

We say that Del is private if for all ppt adversaries A,

Pr [PrivDel,A(k) = 1 ] ≤ negl(k)

where the probability is over the coins of Gen, O, A and ProbGen.
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More than one round of interaction. The above definitions assume that the delegation protocol is one-
round (non-interactive). However, this does not need to be case for all delegation protocols. The extension
of the above definitions to multi-round delegation protocols is fairly straightforward. Intuitively, the privacy
will be defined with respect to all the messages the worker sees during the protocol and the Verify algorithm
run by the client takes all the messages the client receives during the protocol as input.

Our delegation protocols for matrix multiplication runs in one-round, but our protocols for other linear
algebra problems require more rounds.

Composition of secure delegation protocols. We also use a composition theorem for secure delegation.
The guarantee we would like to provide is that sequential execution of secure delegation protocols preserves

their security guarantees. We first need to define what we mean by sequential execution. This definition is
almost identical to the one used for secure multiparty computation. We particularly adopt the notation used
in [5]. Let f1, . . . , fp(n) be polynomial-time computable functions. For each functionality fi, let Mi be a
probabilistic polynomial-time transition procedure that generates the client’s input to fi based on client’s
private input and the outputs of the previous fj computations (j < i). Let f be the function resulting from
applying M1, then f1, then M2, then f2, etc. up to Mp(n) and then fp(n). We call f the composition of fi’s
and the Mi’s.

For each i let πi be a secure delegation protocol for computing fi. Let π be the protocol obtained by
first letting the client apply M1, then run π1, then have client apply M2, then run π2, up to Mp(n) and then
πp(n). We call π the concatenation of the πi’s and the Mi’s. Then, we can express the composition theorem
as follows:

Theorem A.4. Let p(n) be a polynomial. Let f1, . . . , fp(n) be polynomial-time computable functions, M1, . . . ,Mp(n)

transition procedures (as defined above), and π1, . . . , πp(n) be delegation protocols that securely compute f1, . . . , fp(n).
Let f be the composition of fi’s s and the Mi’s and π be the concatenation of the πis and the Mi’s (as defined
above). Then π is a secure delegation protocol for computing f .

Proof sketch. The fact that correctness is preserved is fairly easy to show since if each πi computes the correct
function fi, their composition correctly computes f due to the way f is defined.

Similarly, when considering verifiability, if the worker can return an incorrect value without getting caught,
this means that his output for computation of at least one fi has been incorrect, and he has not been caught.
this contradicts the verifiability property of πi.

Finally, due to the way privacy is defined (namely the indistinguishability of views for any two inputs) it is
not hard to show that the composition preserves this property. In other words, the worker’s view in protocol
π is a concatenation of his views in π1, . . . , πp(n). Hence, a simple hybrid argument shows that this combined
view is also indistiguishable for any two inputs to the function f .

B Private-only Delegation of Matrix Multiplication

Here, we review the simple private-only protocols for delegation of matrix multiplication based on additively
homomorphic and BGN-style encryption schemes.
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Private Delegation of Matrix Multiplication Using BGN-style Encryption

Common Inputs: The public key for the encryption scheme E = (KeyGen,Enc,Dec).
Client’s Inputs: Two matrices A,B ∈ Rn×n, where R is a finite commutative ring that determines the domain
of plaintexts for scheme E.
Client’s Outputs: The product matrix AB.

1. Client computes and sends the following two matrices to the worker.

• Â← Enc(A)

• B̂ ← Enc(B)

2. Worker computes Ĉ = (Â
⊗c,c

B̂) and sends the result to the client.

3. Client outputs C ← Dec(Ĉ) as the final plaintext product matrix.

When using an additively homomorphic encryption scheme, the main limitation is that the worker can
no longer multiply two encrypted messages on his own. Due to this limitation, we are only able to design
efficient delegation protocols if, in an offline precomputation stage, the client obtains two random matrices
RA, RB and their product RARA. While this is certainly a limitation compared to the BGN-style construction
described above, an offline process in which multiple random matrices and their products are computed and
stored for future use, maybe be a reasonable assumption in some applications. For example, these matrices
can be computed and stored on a device during its creation by a trusted entity and then get updated on a
regular basis. Alternatively, the computation of these random matrices could be delegated to an untrusted
party itself, as long as this party does not have the means to collude with the worker in the main delegation
protocol. Note that when delegating multiplication of random matrices, it is not necessary to use encryption,
since the input and output matrices are public and can be known by the untrusted party.

Private Delegation of Matrix Multiplication Using Additively Homomorphic Encryption

Common Inputs: The public key for an additively homomorphic encryption scheme E = (KeyGen,Enc,Dec).
Client’s Inputs: Two matrices A,B ∈ Rn×n where R is a finite commutative ring that determines the domain
of plaintexts for E.
Client’s Outputs: The product matrix AB.

• Offline Stage: Client obtains two uniformly random matrices RA, RB ∈ Rn×n and their product RARB .

1. Client computes and sends the following four matrices to the worker.

• A′ = A−RA

• B̂ = Enc(B)

• B′ = B −RB

• R̂A = Enc(RA)

2. Worker computes Ĉ = (A′
⊗p,c

B̂)
⊕

(R̂A

⊗c,p
B′) and sends the result to the client.

3. Client computes D = Dec(Ĉ) and outputs D +RARB .

Privacy. The privacy of the above protocols easily follow from the semantic security of the underlying
encryption schemes, since the worker only gets to see encrypted messages.
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