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Abstract. The use of elliptic and hyperelliptic curves in cryptography relies on the ability to compute
the Jacobian order of a given curve. Recently, Satoh proposed a probabilistic polynomial time algorithm
to test whether the Jacobian – over a finite field Fq – of a hyperelliptic curve of the form Y 2 =
X5 + aX3 + bX (with a, b ∈ F∗q) has a large prime factor. His approach is to obtain candidates for the
zeta function of the Jacobian over F∗q from its zeta function over an extension field where the Jacobian
splits. We extend and generalize Satoh’s idea to provide explicit formulas for the zeta function of the
Jacobian of genus 2 hyperelliptic curves of the form Y 2 = X5 +aX3 +bX and Y 2 = X6 +aX3 +b (with
a, b ∈ F∗q). Our results are proved by elementary (but intricate) polynomial root-finding techniques.
Hyperelliptic curves with small embedding degree and large prime-order subgroup are key ingredients
for implementing pairing-based cryptographic systems. Using our closed formulas for the Jacobian
order, we propose two algorithms which complement those of Freeman and Satoh to produce genus
2 pairing-friendly hyperelliptic curves. Our method relies on techniques initially proposed to produce
pairing-friendly elliptic curves (namely, the Cocks-Pinch method and the Brezing-Weng method). We
show that the previous security considerations about embedding degree are valid for an elliptic curve
and can be lightened for a Jacobian. We demonstrate this method by constructing several interesting
curves with ρ-values around 4 with a Cocks-Pinch-like method and around 3 with a Brezing-Weng-like
method.

Keywords. Hyperelliptic Curves, Genus 2, Order Computation, Ordinary Curves, Pairing-Friendly
Constructions, Cocks-Pinch Method, Brezing-Weng Method.

1 Introduction

In 1985, the idea of using the group of rational points on an elliptic curve over a finite field in
public-key cryptography was introduced independently by Miller [33] and Koblitz [27]. The main
advantage of using elliptic curves is efficiency since no sub-exponential algorithms are known for
solving the discrete logarithm problem in these groups (and thus key sizes can remain small).
In 1989, Koblitz [28] suggested using Jacobian of hyperelliptic curves in cryptography. Genus 1
hyperelliptic curves are elliptic curves; genus 2 and 3 hyperelliptic curves are more complicated but
are an attractive replacement for elliptic curves in cryptography. They are as efficient as genus one
curves for bandwidth but still have a slower group law.

As for any group used for the discrete logarithm problem, one needs the order of the group to
contain a large prime factor. This raised the problem of finding hyperelliptic curves over a finite
field whose Jacobian order is (almost) a prime. For elliptic curves over finite fields, the Schoof-
Elkies-Atkin (SEA) algorithm [36,32] runs in polynomial time in any characteristic and in small
characteristic, there are even faster algorithms based on the so-called p-adic method [34,32]. For
genus 2 hyperelliptic curves, if the p-adic method gives efficient point counting algorithms in small



characteristic, up to now, no algorithms as efficient as SEA are known when the characteristic
of the underlying finite field is large (though substantial progress has recently been made in [21]
and [23]). Using basic properties on character sums, Furukawa, Kawazoe and Takahashi [15] gave
an explicit closed formula for the order of Jacobians of very special curves of type Y 2 = X5 + bX
where b ∈ Fq. Satoh [35] considered an intermediate approach and showed that point counting on
specific Jacobians of certain genus 2 curves can be performed much faster than point counting on
Jacobians of generic curves. He gave an algorithm to test whether the order of the Jacobian of a
given hyperelliptic curve in the form Y 2 = X5 + aX3 + bX has a large prime factor. His method
relies on the fact that the Jacobian of the curve is Fq4-isogenous to a square of an elliptic curve
defined over Fq4 , hence their respective zeta functions are the same over Fq4 and can be computed by
the SEA algorithm. Satoh’s method obtains candidates for the zeta function of the Jacobian over
Fq from the zeta function over Fq4 . The methodology can be formalized as an efficient probabilistic
polynomial algorithm but is not explicit and gives 26 possible orders to test for the Jacobian.

In recent years, many useful cryptographic protocols have been proposed that make use of a
bilinear map, or pairing, between two groups in which the discrete logarithm problem is hard (e.g.
[4,5]). Pairing-based cryptosystems can be constructed by using the Weil or Tate pairing on abelian
varieties over finite fields. These pairings take as input points on an abelian variety defined over
the field Fq and produce as output elements of an extension field Fqk . The degree of this extension
is known as the embedding degree. In cryptography, abelian varieties obtained as Jacobians of
hyperelliptic curves are often used. Suitable hyperelliptic curves for pairing-based cryptography are
called pairing-friendly. Such pairing-friendly curves are rare and thus require specific constructions.

For a pairing-based cryptosystem to be secure and practical, the group of rational points on the
Jacobian should have a subgroup of large prime order r, and the embedding degree k should be large
enough so that the discrete logarithm problem in Fqk is difficult but small enough to make the pairing
efficiently computable. The efficiency parameter in pairing-friendly constructions is the so-called ρ-
value: for a Jacobian of hyperelliptic curve of genus g it is defined as ρ = g log q/ log r. It measures
the ratio of the bit-sizes of the order of the Jacobian and the subgroup order r. The problem
of constructing pairing-friendly elliptic curves with small ρ-values has been studied extensively
[12]. Unfortunately, there are very few results for constructing pairing-friendly hyperelliptic curves
of genus g ≥ 2 with small ρ-values [17,2]. Galbraith, Pujolas, Ritzenthaler and Smith [18] gave
(supersingular) genus 2 pairing-friendly hyperelliptic curves with ρ-values close to 1 but only for
embedding degrees k ∈ {4, 5, 6, 12}. Freeman, Stevenhagen and Streng presented in [13] a general
method that produced pairing-friendly (ordinary) genus 2 pairing-friendly hyperelliptic curves with
ρ ' 8 for all embedding degrees k. Kawazoe and Takahashi [26] (see also [25]) presented an algorithm
which constructed hyperelliptic curves of the form Y 2 = X5 + bX (thanks to the closed formula
for its Jacobian order). Following Satoh’s approach, Freeman and Satoh [14] constructed pairing-
friendly genus 2 hyperelliptic curves of the form Y 2 = X5 + aX3 + bX and Y 2 = X6 + aX3 + b
(with a, b ∈ F∗q) by means of elliptic curves that become pairing-friendly over a finite extension of
the underlying finite field. Constructions from [26,25,14] produce pairing-friendly Jacobians with
2.22 6 ρ 6 4 only for embedding degrees divisible by 3 or 4.

Our contributions. Satoh’s approach to compute the Jacobian order of a hyperelliptic curve
Y 2 = X5 +aX3 + bX is not explicit. For each candidate, he has to check that the order is not weak
for cryptographic use. In [22, § 4], Gaudry and Schost showed that the Jacobians of hyperelliptic
curves of the form Y 2 = X6 + aX3 + b are also isogenous to a product of two elliptic curves over
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an extension field. Satoh claimed that his method applies as well to this family but did not derive
an algorithm for it.

Our first contribution is to extend and generalize Satoh’s idea to provide explicit formulas for
the zeta function of the Jacobian of genus 2 hyperelliptic curves of the form Y 2 = X5 + aX3 + bX
and Y 2 = X6 + aX3 + b (with a, b ∈ F∗q). Our results are proved by elementary polynomial root-
finding techniques. This permits to generate efficiently a random hyperelliptic curve, in one of
these two forms, suitable for cryptographic use. These curves enable various improvements to make
scalar multiplication in the Jacobian efficient (e.g. the Gallant-Lambert-Vanstone algorithm [19],
Takashima’s algorithm [38] or Gaudry’s algorithm [20]). These large families of curves are still very
specific but there is no evidence that they should be more vulnerable to discrete logarithm attacks
than the absolutely simple Jacobians.

Two algorithms proposed in [14] to produce pairing-friendly genus 2 hyperelliptic curves are
very general as they are still valid for arbitrary abelian varieties over any finite field. Assuming that
the finite field is a prime field and the abelian variety is of the above form, we can consider any
embedding degree. The security restrictions concerning the embedding degree (which must be a
multiple of 3 or 4) made in [14] are unnecessary in this particular case. Satoh and Freeman exclude
constructions which need an elliptic curve defined over a quadratic extension of a prime field (with
j-invariant in Fp2), resulting in restricted sets of parameters a, b ∈ Fp. Using our closed formulas for
the Jacobian order, we use two approaches that construct pairing-friendly elliptic curves and adapt
them to produce pairing-friendly genus 2 curves. The first one is based on the Cocks-Pinch method
[9] (see also [16, Algorithm IX.4]) of constructing individual ordinary pairing-friendly elliptic curves.
The other is based on cyclotomic polynomials as originally proposed by Brezing and Weng [7] which
generates families of curves while achieving better ρ-values. We adapt both constructions using the
elliptic curve complex multiplication method (CM) [1,16] to compute one of the two elliptic curves
to which the Jacobian is isogenous to (even if the curve j-invariant is in Fp2 rather than in a
prime field Fp). In particular, this method can construct pairing-friendly elliptic curves over Fp2 but
unfortunately with ρ ' 4.

Our approach contains the previous constructions by Kawazoe and Takahashi [26] and is in a
sense a specialization of Freeman and Satoh [14]. It also produces new families for ordinary genus
2 hyperelliptic curves. Explicit examples of cryptographically interesting curves are given.

2 Explicit Computation of JC5 Order

Throughout this paper, p ≥ 5 denotes a prime number and q a power of p. In this section, we
consider the genus 2 hyperelliptic curve defined over a finite field Fq:

C5(Fq) : Y 2 = X5 + aX3 + bX, with a, b 6= 0 ∈ Fq .

The Jacobian of the curve is denoted JC5 and it splits into two isogenous elliptic curves in an
extension over Fq of degree 1, 2 or 4 [35]. These two elliptic curves admit a quadratic twist which
is half the time defined on a smaller extension. As the trace computation is then more efficient, we
will also consider directly these quadratic twists, as in [14].
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2.1 Splitting the Jacobian JC5 into Two Isogenous Elliptic Curves

Satoh showed in [35] that the Jacobian splits into two elliptic curves defined by

E1(Fq[ 4
√
b]) : Y 2 = δ(X − 1)(X2 − γX + 1) and

E2(Fq[ 4
√
b]) : Y 2 = −δ(X − 1)(X2 − γX + 1)

with γ = (2a−12
√
b)/(a+2

√
b) and δ = (a+2

√
b)/(64 4

√
b
3
). The isogeny between JC5 and E1×E2

is defined over Fq[ 4
√
b]. Using the notation c = a/

√
b from [14], the curve parameters are

γ =
2c− 12

c+ 2
, δ =

c+ 2

26 4
√
b

and j(E1) = j(E2) = 26
(3c− 10)3

(c+ 2)2(c− 2)
.

Since E1 and E2 are isogenous over Fq[ 4
√
b,
√
−1], they have the same order over this field. They

also admit a 2-torsion point P = (1, 0) over Fq[ 4
√
b] (their order is therefore even). Let E

′
1 and E

′
2

denote the quadratic twists of E1 and E2 obtained by removing the term 1/(26 4
√
b) in δ. They are

isogenous over Fq[
√
b,
√
−1].

(E1 × E2)(Fq[ 8
√
b])

isomorphism←→ (E
′
1 × E

′
2)(Fq[

8
√
b])

| |
JC5(Fq[ 4

√
b])

isogeny←→ (E1 × E2)(Fq[ 4
√
b]) (E

′
1 × E

′
2)(Fq[

4
√
b])

| |
JC5(Fq[

√
b]) (E

′
1 × E

′
2)(Fq[

√
b])

|
JC5(Fq)

The Jacobian JC5 has the same order as the product E1 × E2 over the extension field where the
isogeny is defined. Computing the elliptic curve order is easy with the SEA algorithm [36,32] which
computes the trace. As the computation is faster for the quadratic twist (which is defined over
Fq[
√
b] instead of Fq[ 4

√
b], we will also consider the isogeny between JC5 and E

′
1 × E

′
2.

E
′
1(Fq[
√
b]) : Y 2 = (c+ 2)(X − 1)(X2 − γX + 1) and

E
′
2(Fq[
√
b]) : Y 2 = −(c+ 2)(X − 1)(X2 − γX + 1) .

It remains to compute the Jacobian order from #JC5(Fq[ 4
√
b]) to #JC5(Fq). We develop explicit

formulas using the zeta function properties. Going down directly from #JC5(Fq4) to #JC5(Fq) does
not provide an explicit order. We compute step by step the explicit order, descending by quadratic
extensions.

2.2 Computing explicit order using zeta function

Let ZJC5
denote the zeta function of the Jacobian JC5 which satisfies the following properties [35]:

1. ZJC5
(T,Fq) ∈ Z[T ] i.e. the zeta function is a polynomial with integer coefficients;

2. the degree of the zeta function polynomial is degZJC5
(T,Fq) = 2g = 4;

3. the Jacobian order is related to the zeta function by #JC5(Fq) = ZJC5
(1,Fq);

4. let z1,q, z2,q, z3,q, z4,q be the four roots of ZJC5
(T,Fq) in C. Up to index permutation, we have

z1,qz2,q = q and z3,qz4,q = q;
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5. the roots of ZJC5
(T,Fqn) the zeta function of the Jacobian considered over a degree n extension

Fqn are those over Fq to the power n: ZJC5
(T,Fqn) = (T − zn1,q)(T − zn2,q)(T − zn3,q)(T − zn4,q).

Satoh’s method to compute the Jacobian order is derived from the fact that if JC5 is isogenous over
Fq to E1 ×E2, then ZJC5

(T,Fq) = ZE1(T,Fq)×ZE2(T,Fq). We have ZE1(T,Fq) = T 2 − tqT + q with
tq the trace of the Frobenius endomorphism and #E1(Fq) = q + 1− tq = ZE1(1,Fq).

Let us denote ZJC5
(T,Fq) = T 4 − aqT 3 + bqT

2 − qaqT + q2 with

aq = z1,q + z2,q + z3,q + z4,q
bq = z1,qz2,q + z1,qz3,q + z1,qz4,q + z2,qz3,q + z2,qz4,q + z3,qz4,q

= 2q + (z1,q + z2,q)(z3,q + z4,q) .

Our goal is to find two simple formulas for computing (aq, bq) in terms of (aq2 , bq2) and apply the
two formulas recursively. A careful computation gives

aq2 = (aq)
2 − 2bq (1)

bq2 = (bq)
2 − 4qbq + 2q2 − 2qaq2 (2)

Knowing aq2 and bq2 , we can solve3 equation (2) for bq then recover aq using (1).
We have to determine where the isogeny is defined in order to solve the corresponding system.

In each case, two solutions are possible for bq. One of them induces a square root in aq that must
be an integer because the two coefficients aq and bq are integers. This solution can be chosen if the
isogeny is actually defined over Fq2 and Fq or if the elliptic curve has an additional property. In
these two cases the Jacobian splits over Fq2 and over Fq.

When the isogeny between JC5 and E1 × E2 is defined over Fq4 but not over a subfield of Fq4
and the trace tq4 of the two elliptic curves is such that 2q2 + tq4 is not a square, we see an other
simplification for the zeta function coefficients: they are not squares but of the form two times a
square. After easy (but cumbersome) calculation and a difficult identification of the rare cases that
do not correspond to the general solution, we obtain the following theorem:

Theorem 1. Let C5 be a hyperelliptic curve defined over a finite field Fq by the equation C5(Fq) :
Y 2 = X5 + aX3 + bX with a, b 6= 0 ∈ Fq. Let E1 and E2 be the elliptic curves defined over Fq[ 4

√
b]

and E
′
1, E

′
2 their quadratic twists defined over Fq[

√
b], isogenous over Fq[

√
b,
√
−1]. Let tq be the

trace of E1(Fq) if b is a fourth power, let t
′
q be the trace of E

′
1(Fq) if b is a square, let tq2 be the

trace of E1(Fq2) if b is not a square in Fq and let t
′

q2 be the trace of E
′
1(Fq2) and tq4 of E1(Fq4) if b

is neither a square nor a fourth power.

1. If b is a fourth power then #JC5(Fq) = (q+ 1− tq)2 if
√
−1 ∈ Fq and #JC5(Fq) = (q+ 1− tq)(q+

1 + tq) if
√
−1 /∈ Fq.

2. If b is a square but not a fourth power (q ≡ 1 mod 4) and tq2 + 2q is not a square, then

#JC5(Fq) = (q − 1)2 + (t
′
q)

2.

3. If b is not a square and 4
√
b ∈ Fq2 (q ≡ 3 mod 4) and tq2 + 2q is not a square, then #JC5(Fq) =

q2 + 1− tq2.

4. If b is not a square and 4
√
b 6∈ Fq2 (q ≡ 1 mod 4) and tq4 + 2q2 is not a square, then #JC5(Fq)

is equal to q2 + 1 − 2n(q + 1) + 2n2 or q2 + 1 + 2n(q + 1) + 2n2 where n ∈ N is such that
2q + t

′

q2 = 2n2 if q ≡ 5 mod 8 or 2q − t′q2 = 2n2 if q ≡ 1 mod 8.

3 Satoh [35] used only Equation (1) which resulted in a more intricate polynomial system with degree 16 polynomial
equations to solve.
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The case 1 of Th.1 is of no interest in cryptography as the Jacobian order factors trivially. In the
cases 2 and 3, we may as well work directly with the elliptic curve E1(Fq2) (of even order) since
the arithmetic is not (yet) as efficient in genus two as in genus one. The case 4 provides ordinary
Jacobians of hyperelliptic curves with explicit order and of cryptographic interest. The very special
cases excluded in the theorem with 2q2 + tq4 or 2q+ tq2 squares give a Jacobian either which splits
over Fq or whose order is an elliptic curve order, as in case 3. They are detailed in the following
remark.

Remark 1. With the same notations as in the previous theorem,

1. If b is a square but not a fourth power (q ≡ 1 mod 4) and if tq2 + 2q = y2 (with y ∈ N∗), the
Jacobian splits and its order is one of (q + 1 − y)2, (q + 1 + y)2 or (q + 1 − y)(q + 1 + y) =
(q − 1)2 + (t

′
q)

2.

2. If b is not a square and 4
√
b ∈ Fq2 (q ≡ 3 mod 4) and if tq2 +2q = y2 (with y ∈ N∗), the Jacobian

splits and its order is one of (q + 1− y)2, (q + 1 + y)2 or (q + 1− y)(q + 1 + y) = q2 + 1− tq2 .

3. If b is not a square and 4
√
b 6∈ Fq2 (q ≡ 1 mod 4) and if tq4 + 2q2 = y2 (with y ∈ N∗) then we

decompose −∆(E
′
1(Fq2)) = −(t

′

q2)2 + 4q2 = tq4 + 2q2 = y2 in the two factors (2q+ t
′

q2)(2q− t′q2).

Let 2q + t
′

q2 = D1y
2
1 and 2q − t′q2 = D2y

2
2 with D1, D2 square-free integers.

(a) if D1 6= 2 and D2 6= 2 then ±y + 2q2 is not a square and #JC5(Fq) is equal to q2 + 1− y or
q2 + 1 + y.

(b) if D1 = D2 = 2 then #JC5(Fq) = q2 + 1− 2n(q+ 1) + 2n2 (case 4 of Th. 1) can happen with
n ∈ {y1,−y1, y2,−y2}. In the same time, y+ 2q2 = (y1 + y2)

2 and −y+ 2q2 = (y1− y2)2 are
squares hence #JC5(Fq) can be (q + 1− s)2 with s ∈ {y1 + y2,−y1 − y2, y1 − y2,−y1 + y2}.
The two last possibilities are q2 + 1− y and q2 + 1 + y.

The cases 1, 2 and 3 in the remark 1 occur very rarely (e.g. the cases 1 and 3 appear only when the
elliptic curves E1 and E2 have complex multiplication by i =

√
−1). Moreover, in 1, 2 and 3b of

Rem. 1 the Jacobian order splits. In 3a, the Jacobian order is equal to the order of a quartic twist
of E1(Fq2).

In practice, when the Th. 1 or Rem. 1 present several order possibilities one can easily discrimi-
nate between them by checking whether the scalar multiplication of a random point by the possible
orders gives the infinity point.

In the two following examples, we took at random a prime p ≡ 1 mod 4 of 128 bits and
started with a = −3 and b = −2 until b was not a square mod p. Then let c = a/

√
b, E

′
1(Fp2) :

y2 = (x − 1)((c + 2)x2 − (2c − 12)x + (c + 2)) and t
′

p2 its trace. We deduced the Jacobian order
and factorized it. We repeated this process with subsequent b-values until the Jacobian order was
almost prime.

Example 1. p = 0x84c4f7a6b9aee8c6b46b34fa2a2bae69 = 1 mod 8. The 17th test provided b =
−38, t

′

p2 = 0x702461acf6a929e295786868f846ab40 = 0 mod 2, bp = 2p − t′p2 = 2n2 as expected

with n = − 0x8c1fc81b9542ce23. We found #JC5(Fp) = 25r with r a 250-bit prime of cryptographic
size close to the 128-bit security level:
r = 0x226ddb780b2ded62d1d70138d9c7361794679a609fbe5ae85918c88f5b6ea7d.

Example 2. p = 0xb081d45d7d08109c2905dd6187f7cbbd = 5 mod 8. The 17th test provided
b = −41, t

′

p2 = -0x11753eaa61f725ff118f63bb131c8b8f2 = 0 mod 2, bp = 2p + t
′

p2 = 2n2 as
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expected with n = − 0x611e298cc019b06e. We found #JC5(Fp) = 2 · 5 · r with r a 252-bit prime
of cryptographic size close to the 128-bit security level:
r = 0xc2b7a2f39d49b6b579d4c15a8440315cd1ccc424df912e6748c949008ebd989.

3 Explicit Computation of JC6 Order

In this section, we consider the genus 2 hyperelliptic curves defined over a finite field Fq:

C6(Fq) : Y 2 = X6 + aX3 + b with a, b 6= 0 ∈ Fq .

The Jacobian of the curve is denoted JC6 and it splits into two isogenous elliptic curves in an
extension over Fq of degree 1, 2, 3 or 6 [22,14]. The computation of the zeta function of JC6 over
Fq is similar to those of JC5 from the previous section but with more technical details.

3.1 Decomposition into two isogenous elliptic curves.

Freeman and Satoh showed in [14] that JC6 is isogenous over Fq[ 6
√
b] to the Jacobian of another

genus 2 hyperelliptic curve C′6 defined over Fq[
√
b]. This Jacobian JC′6

splits into two elliptic curves

Ec and E−c defined over Fq[
√
b] which are isogenous over Fq[

√
b,
√
−3]. Let c = a/

√
b and assume

c 6= ±2. The two elliptic curves are defined (in a reduced form) by

Ered
c (Fq[

√
b]) : Y 2 = X3 + 3(2c− 5)X + c2 − 14c+ 22 and

Ered
−c(Fq[

√
b]) : Y 2 = X3 − 3(2c+ 5)X + c2 + 14c+ 22 .

Freeman and Satoh remarked that both elliptic curves admit the same 3-torsion subgroup ([14,
Proof of Prop. 4.2]). With Vélu’s formulas adapted to finite fields (e.g. [31, p. 54]), we compute an
isogeny from Ec into E−c with kernel equal to this 3-torsion subgroup. Because of this isogeny, Ec

and E−c have the same order over Fq[
√
b,
√
−3] and moreover, this order is a multiple of 3.

JC6(Fq[ 6
√
b])

isogeny←→ JC′6
(Fq[ 6
√
b])

| |
JC6(Fq[

√
b]) JC′6

(Fq[
√
b])

isogeny←→ (Ec × E−c)(Fq[
√
b])

|
JC6(Fq)

In the two cases where b is not a cube, we have to deduce ZJC6
(T,Fq) from ZJC6

(T,Fq3) or ZJC6
(T,Fq2)

from ZJC6
(T,Fq6) which is equivalent. Note that we do not see explicitly the simplification in the

formula if we descent from Fq6 to Fq3 then to Fq.
Eventually, we obtain the following theorem:

Theorem 2. Let C6 be a hyperelliptic curve defined over a finite field Fq by the equation C6(Fq) :
Y 2 = X6 + aX3 + b with a, b 6= 0 ∈ Fq. Let Ec and E−c be the elliptic curves defined over Fq[

√
b]

isogenous over Fq[
√
b,
√
−3]. Let tq2 be the trace of Ec(Fq2) and let tq be the trace of Ec(Fq) if it

exists.

1. If b is a sixth power then #JC6(Fq) = (q+1−tq)2 if
√
−3 ∈ Fq and #JC6(Fq) = (q+1−tq)(q+1+tq)

if
√
−3 /∈ Fq.
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2. If b is a square but not a third power and if 3(4q − (tq)
2) is not a square then #JC6(Fq) =

q2 − q + 1 + (1 + q + tq)tq.
3. If b is a third power but not a square and if 2q+ tq2 is not a square then #JC6(Fq) = q2 +1− tq2.
4. If b is neither a cube nor a square and if 2q+tq2 is not a square, then there exists n ∈ N such that

2q− tq2 = 3n2 and #JC6(Fq) = q2 +q+1+(q+1+n)3n or #JC6(Fq) = q2 +q+1− (q+1−n)3n.

Once more, the first case is not interesting in cryptography as the Jacobian order splits. The
third case provides nothing more than an elliptic curve defined over Fq2 . Whenever the group law
computation on JC6(Fq) is not as efficient as a point addition on Ec(Fq2), it will be more appropriate
to work with the elliptic curve. The case 2 might be interesting. The case 4 provides interesting
genus 2 hyperelliptic curves.

Remark 2. With the same notations as in the previous theorem,

1. If b is a square but not a third power and if 4q − (tq)
2 = 3y2 then #JC6(Fq) equals one of

(q + 1 + (tq + 3y)/2)(q + 1 + (tq − 3y)/2) = q2 − q + 1 + (1 + q + tq)tq, (q + 1 + (tq + 3y)/2)2,
(q + 1 + (tq − 3y)/2)2.

2. If b is a third power but not a square and if 2q + tq2 = y2 is a square then #JC6(Fq) equals one
of (q + 1− y)2, (q + 1 + y)2, (q + 1− y)(q + 1 + y) = q2 + 1− tq2 .

3. If b is neither a cube nor a square,
(a) if 2q+tq2 = s2, s ∈ N, and 3(2q−tq2) is not a square then #JC6(Fq) = q2−q+1−(1+q)s+s2

or q2 − q + 1 + (1 + q)s+ s2.
(b) if 2q+tq2 = s2 and 2q−tq2 = 3n2, #JC6(Fq) splits and equals one of q2+q+1+(q+1+n)3n,

q2+q+1−(q+1−n)3n, q2−q+1−(q+1−s)s, q2−q+1+(q+1+s)s, q2+1−(−tq2 +3y)/2),
q2 + 1− (−tq2 − 3y)/2), (q + 1 + s−3n

2 )2, (q + 1− s−3n
2 )2, (q + 1 + s+3n

2 )2, (q + 1− s+3n
2 )2.

Example 3. We consider the 127-bit Mersenne prime p = 2127 − 1 which allows efficient imple-
mentation of the modular arithmetic operations required in cryptography. Looking for a curve
C6 over Fp with small parameters a and b and suitable for a cryptographic use, we found eas-
ily C6(Fp) : Y 2 = X6 − 3X3 − 92 with b = −92 which is neither a square nor a cube. Let
Fp2 = Fp[X]/(X2+1) = Fp[i], c = a/

√
b ∈ Fp2 \Fp and Ec(Fp2) : Y 2+X3+3(2c−5)X+c2−14c+22. A

few second computation gives us tp2 =0x6089c0341e5414a24bef1a1a93c54fd2 and 2p− tp2 = 3n2

as expected with n = ± 0x74a69cde5282dbb6. Hence #JC6(Fp) = p2 + p + 1 + 3n(p + 1) + 3n2.
Using few random points on the Jacobian, we find n < 0 and that #JC6(Fp) has a 250-bit prime
factor:
r = 0x25ed097b425ed0974c75619931ea7f1271757b237c3ff3c5c00a037e7906557 and provides a
security level close to 128-bits.

Efficiency. For a cryptographic application, we need #JC(Fq) be a large prime r times a small
(i.e. few bits) cofactor h. The prime r must be of size twice the security level in bits. The common
method consists in randomly generating the coefficients a and b of the hyperelliptic curve and
computing the order until it is a large prime r times a small cofactor.

Here r ∼ q2 hence the size of q is a few bits more than the security level in bits instead of twice
with an elliptic curve. To compute the Jacobian order, we have to run SEA algorithm once for an
elliptic curve defined over Fq if b is a square or over Fq2 otherwise. If b is a square our method is
much faster than generating a cryptographic elliptic curve and if b is not a square, our method is
roughly as efficient as finding an elliptic curve suitable for cryptography.

8



4 Pairing-Friendly Constructions

We have several constraints for suitable pairing-friendly constructions inherent to elliptic curves:

1. The embedding degree k must be small, in order to achieve the same security level in bits in
the elliptic curve r-torsion subgroup E(Fp)[r] and in the finite field extension Fpk . In practice,
this means 6 6 k 6 60. More precise recommendations are given in [12, Tab. 1]. For a random
elliptic curve, we have usually k ' r so this is a huge constraint.

2. The trace t of the curve must satisfy |t| 6 2
√
p.

3. The determinant of the curve ∆ = t2 − 4p = −Dy2 must have a very small square-free part
D < 109 in order to run the CM-method in reasonable time.

4. The size log r of the subgroup must be close to the optimal case, that is ρ = g log p/ log r ∼ 1
with g the genus of the curve. Quite generic methods for elliptic curves achieve 1 6 ρ 6 2. We
will try to find constructions for genus 2 curves with 2 6 ρ 6 4.

The two methods use the same shortcuts in formulas. Let E an elliptic curve and let #E(Fp) =
p+ 1− t = hr with r a large prime and h the cofactor. Hence p ≡ t− 1 mod r. Let ∆ = t2 − 4p =
−Dy2. The second useful formula is Dy2 = 4p− t2 = 4hr− (t−2)2, hence −Dy2 ≡ (t−2)2 mod r.

4.1 Cocks-Pinch Method

We first recall the method proposed by Cocks and Pinch in 2001 to construct pairing-friendly
elliptic curves [9] (see also [16, Algorithm IX.4]):

Algorithm 1: Cocks-Pinch method to find a pairing-friendly elliptic curve.
Input: Square-free integer D, size of r and embedding degree k to match the security level in bits, knowing

that ρ ≈ 2.
Output: Prime order r, prime number p, elliptic curve parameters a, b ∈ Fp such that

E(Fp) : Y 2 = X3 + aX + b has a subgroup of order r and embedding degree k with respect to r.
1 repeat
2 Pick at random a prime r of prescribed size until −D is a square in the finite field Fr and Fr contains a

primitive k-th root of unity ζk, that is r ≡ 1 mod k.
3 As r divides Φk(p), we can rewrite it as Φk(p) ≡ 0 mod r. With properties of cyclotomic polynomials, we

obtain p ≡ ζk mod r with ζk a primitive k-th root of unity. Furthermore, t ≡ 1 + p mod r so this
method chooses t = 1 + ζk in Fr. Then y = (t− 2)/

√
−D in Fr.

4 Lift t and y from Fr to Z and set p = 1
4
(t2 +Dy2).

5 until p is prime.
6 return r, p, a, b ∈ Fp

We propose to adapt this method to the Jacobian families of cryptographic interest presented
above. See the size recommendations in [2, Tab. 3.1] depending on the security level in bits to
choose accordingly the embedding degree. First, we know explicitly the Jacobian order. Just as in
the case of elliptic curves, the definition of the embedding degree is equivalent to ask for r | #JC(Fp)
and r | Φk(p). We will use the property p ≡ ζk mod r as well. The aim is to express the other
parameters, namely the square part y and the trace of the elliptic curve isogenous to the Jacobian
over some extension field, in terms of ζk mod r. We will use the same notations as previously, see
Th.1 and Th.2. Let i be a primitive fourth root of unity an ω be a primitive third root of unity in
Fr.
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Pairing-friendly Hyperelliptic curve C5

If b is not a square in Fp but
√
b, 4
√
b ∈ Fp2 (p ≡ 3 mod 4), then #JC5(Fp) = #E1(Fp2) = p2 +1− tp2

(Th.1(3.)). A pairing-friendly Jacobian of this type has exactly the same order as the corresponding
elliptic curve E1(Fp2). Hence any pairing-friendly elliptic curve defined over a quadratic extension
Fp2 (and of even order) will provide a pairing-friendly Jacobian of this type over the prime field
Fp, with the same order and the same ρ-value. Choosing the Jacobian instead of the elliptic curve
will be appropriate only if the group law on the Jacobian over Fp is faster than the group law
on the elliptic curve over Fp2 . Note that the methods described in [12] are suitable for generating
pairing-friendly elliptic curves over prime fields (in large characteristic), not over field extensions.

C5 with b a square but not a fourth power. This case is already almost solved in [14]. The Cocks-
Pinch method adapted with r | #JC5(Fp) = (p− 1)2 + (t

′
p)

2 instead of r | p+ 1− t′p produces indeed

the same algorithm as [14, Alg. 5.5] followed by [14, Alg. 5.11] with π = (t
′
p − y

√
−D)/2, d = 4.

We show that d | k is unnecessary. It is completely hopeless to expect a prime power q = ππ = pn

hence we assume that q = p is prime.

Definition 1. Embedding degree and embedding field[3, Def. 2.1 and 2.2] Let A be an abelian
variety defined over Fq, where q = pm for some prime p and integer m. Let r 6= p be a prime
dividing #A(Fq). The embedding degree of A with respect to r is the smallest integer k such that
r divides qk − 1.

The minimal embedding field of A with respect to r is the smallest extension of Fp containing
the rth roots of unity µr ⊂ Fp.

Let k be the embedding degree of the Jacobian JC5(Fp): r | #JC5(Fp), r | Φk(p). From the Jacobian
point of view, there is no security problem induced by a difference between embedding degree and
embedding field because Fp is a prime field. From elliptic curve side, the one-dimensional part of
the r-torsion arises in E

′
1(Fp4), not below. An elementary observation about elliptic curve orders

shows that
#E

′
1(Fp) = p+ 1− t′p

#E
′
1(Fp2) = (p+ 1− t′p)(p+ 1 + t

′
p)

#E
′
1(Fp4) = (p+ 1− t′p)(p+ 1 + t

′
p)((p+ 1)2 + (t

′
p)

2)

and the last factor of #E
′
1(Fp4) is the Jacobian order. Hence r | #E′1(Fp4) but not underneath. The

full r-torsion arises in E
′
1(Fp4k/ gcd(4,k)) but the embedding field is Fpk . So the elliptic curve E

′
1(Fp4)

will not be suitable for a pairing implementation when gcd(k, 4) ∈ {1, 2} which does not matter
because we are interested in Jacobians suitable for pairing, not elliptic curves. See Fig. 1.

Moreover we note that taking an even trace t
′
p and a prime p ≡ 1 mod 4 permits always to find

valid parameters, namely a c ∈ Fp satisfying the j-invariant equation, hence coefficients a, b ∈ Fp of
C5.

C5 with b not a square and p ≡ 1 mod 4. In this case we have 4
√
b /∈ Fp2 , 4

√
b ∈ Fp4 and #JC5(Fp) =

p2 + 1 + 2n2 − 2n(1 + p) = (p − n)2 + (n − 1)2 with 2p ± t
′

p2 = 2n2. The isogenous elliptic

curve is defined over Fp2 . We have ∆ = (t
′

p2)2 − 4p2 = (t
′

p2 + 2p)(t
′

p2 − 2p). With 2p − t′p2 = 2n2

we obtain 2p + t
′

p2 = 4p − 2n2 and find ∆ = −4n2(2p − n2). With 2p + t
′

p2 = 2n2 we obtain

2p − t
′

p2 = 4p − 2n2 and find also ∆ = −4n2(2p − n2). In both cases let Dy2 = 2p − n2 thus
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Fig. 1. Difference between Jacobian and elliptic curve embedding degree
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∆ = −D(2ny)2 and p = (Dy2 + n2)/2. The Jacobian order is a sum of two squares in p and n
hence n = (p + i)/(1 + i) = (p + i)(1 − i)/2 mod r. Furthermore y2 ≡ (2p − n2)/D mod r with
p ≡ ζk mod r and we find that

n ≡ (ζk + i)(1− i)/2 mod r and y ≡ ±(ζk − i)(1 + i)/(2
√
D) mod r .

The trace will be even by construction as t
′

p2 = ±(2p − 2n2) and to find valid parameters, p ≡ 1

mod 4 is required. To find the coefficients of the curve C5(Fp), do the following (Alg. 2).

Algorithm 2: Pairing-friendly Jacobian of type JC5 , Th.1(4.)

Input: Square-free integer D, size of r and embedding degree k to match the security level in bits, knowing
that ρ ≈ 4.

Output: Prime order r, prime number p, Jacobian parameters a, b ∈ Fp such that the Jacobian of the curve
C5(Fp) : Y 2 = X5 + aX3 + bX has a subgroup of order r and embedding degree k with respect to r.

1 repeat

2 Choose a prime r of prescribed size with i,
√
D, ζk ∈ Fr.

3 Let n = (ζk + i)(1− i)/2 and y = ±(ζk − i)(1 + i)/(2
√
D) ∈ Fr.

4 Lift n and y from Fr to Z and set p = (n2 +Dy2)/2 .

5 until p ≡ 1 mod 4 and p is prime.

6 Run the CM method to find the j-invariant of an elliptic curve E
′
1(Fp2) of trace ±t

′

p2 and ∆ = −4D(ny)2.

7 Solve j(E
′
1) = 26 (3c−10)3

(c−2)(c+2)2
in Fp2 and choose the solution satisfying c2 ∈ Fp.

8 Choose a, b ∈ Fp such that a 6= 0 and b = (a/c)2 (b is a square in Fp2 but not in Fp).
9 return r, p, a, b ∈ Fp

We adapt the program cm.cpp of Miracl4 [37] to compute the j-invariant of an elliptic curve
defined over Fp2 (instead of Fp). Indeed, it is not convenient for step 5 as it searches for an elliptic
curve defined over a prime field. We isolate parts of the program which compute the Weber poly-
nomial of a number field of discriminant D. Then we call the factor function but to find a factor
mod p of degree 2 (instead of degree 1) of the Weber polynomial when D 6≡ 3 mod 8 and a factor
of degree 6 (instead of degree 3) when D ≡ 3 mod 8. The papers [30,29] contain efficient formulas
to recover Hilbert polynomial roots in Fp from Weber polynomial roots in Fp or Fp3 . We find in

4 We learned very recently that the MIRACL library status has changed. This library is now a commercial product
of Certivox [8]. The CM software [11] can be an even more efficient alternative to compute class polynomials.
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Fp2 or Fp6 a root of the factor of degree 2 or 6 of Weber polynomial and apply the corresponding
transformation to get an element in Fp2 . We obtain the j-invariant of (an isogenous curve to) the

curve E
′
1(Fp2). We solve j(E

′
1) = 26 (3c−10)3

(c−2)(c+2)2
and find for various examples a solution c ∈ Fp2

satisfying c2 ∈ Fp. It comes from the appropriate restrictions 2p± t′p2 = 2n2, p ≡ 1 mod 4, n odd.

Sometimes we have to choose a quadratic twist of C5, of the form Y 2 = ν(X5 + aX3 + bX) with
ν ∈ Fp non-square.

Example 4. k = 6, D = 516505, ρ = 4.1
p =0x9d3e97371e27d006f11762f0d56b4fbf2caca7d606e92e8b6f35189723f46f57ed46

e9650ce1cca1bd90dc393db35cc38970cb0abbe236bf2c4ac2f65f1b50afb135 (528 bits),
r=0x679d8c817e0401203364615b9d34bdb3a0b89e70fa8d6807fa646e25140f25ad (255 bits),
n =0x28f34a88ab9271c2ea6d70f4a3dc758a025ad6e4ee51c16867763e8d940022de5,
y =-0x65110defe8f4669a158149675afaa23dba326d49ce841d7ef9855c7d8a65df95,
a = 1, b =0x85eb6f5b5594c1bca596a53066216ad79588cf39984314609bbd7a3a3022

41fc786703a19bc1ccb44fc9e09b9c17ac62fc38d6bf82851d3d8b753c79da7338ca56b0,
C5(Fp) : Y 2 = 2(X5 + aX3 + bX).

Pairing-friendly Hyperelliptic curve C6

If b is a cube but not a square then #JC6(Fp) = p2 + 1 − tp2 (Th.2(3.)). This case is close to the
elliptic curve case. Actually, this is the same construction as finding a pairing-friendly elliptic curve
over a field Fp2 . But in practice the methods to find such pairing-friendly elliptic curves over Fp fail

over Fp2 . Indeed, the expression for p is p2 = 1
4((t

′

p2)2 + Dy2) but this is hopeless to find a prime
square. We did not find in the literature any such construction.

C6 with b a square but not a cube. This case is treated in [14, Alg. 5.5, Alg. 5.11] and corresponds
to d = 3 and π = (tp− y

√
−D)/2. This is also a Cocks-Pinch-like method with r | p2− p+ 1 + (1 +

p)tp + (tp)
2 and r | Φk(p). As above for C5, the condition “3 | k” is not necessary since we consider

the embedding degree of the Jacobian, not the elliptic curve.

We found that p ≡ 1 mod 3 and p + 1 ± tp ≡ 0 mod 3 are enough to find always valid
parameters. Freeman and Satoh pointed out that the equation j(Ec) = 2833(2c−5)3/((c−2)(c+2)3)
has a solution in Fp in only one third of the cases [14, § 6]. One can explain this phenomenon by
simple arithmetic considerations.

The elliptic curve Ec has a 3-torsion point which means p+ 1− tp ≡ 0 mod 3, which happens
one third of the cases when p ≡ 1 mod 3. Assuming that p ≡ 1 mod 3, if p+1+tp ≡ 0 mod 3 then
Ec(Fp) has not 3-torsion point but its quadratic twist has. These two elliptic curves have the same
j-invariant and admit a 3-torsion subgroup over Fp2 . In practice we verify that the equation has a
solution when p+1± tp ≡ 0 mod 3. Combining the two conditions p ≡ 1 mod 3 and p+1± tp ≡ 0
mod 3, the equation from j(Ec) has indeed a solution one third of the time (12 ·

2
3). When p ≡ 1

mod 3 and tp ≡ 2 mod 3, we can always find a solution in step 2 of [14, Alg. 5.11] and finish to
run this algorithm. When p ≡ 1 mod 3 and tp ≡ 1 mod 3, we can still find a solution in step 2
and construct the coefficients of C6(Fp) in step 3 of [14, Alg. 5.11]. But in step 6, we have to choose
not C6 itself but its quadratic twist.
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C6 with b neither a square nor a cube. #JC6(Fp) = p2 +p+1− (p+1)3n+3n2. Here the parameters
satisfy 2p− tp2 = 3n2. Let 2p+ tp2(= 4p− 3n2) = Dy2. Hence

p =
1

4

(
3n2 +Dy2

)
.

Note that 3 - D otherwise p would not be prime. Solving p2+p+1−(p+1)3n+3n2 ≡ 0 mod r gives
p = (1−ω2)n+ω2 or p = (1−ω)n+ω with ω a primitive third root of unity. As y2 = (4p−3n2)/D
mod r and with p ≡ ζk mod r we find

n ≡ (ζk − ω)/(1− ω) mod r and y ≡ ±(ωζk + ω2)/
√
D mod r .

The last version of the Cocks-Pinch method is presented in Alg. 3.

Algorithm 3: Pairing-friendly Jacobian of type JC6 , Th.2(4.)

Input: Square-free integer D, 3 - D, size of r and embedding degree k to match the security level in bits,
knowing that ρ ≈ 4.

Output: Prime order r, prime number p, Jacobian parameters a, b ∈ Fp such that the Jacobian of the curve
C6(Fp) : Y 2 = X6 + aX3 + b has a subgroup of order r and embedding degree k with respect to r.

1 repeat

2 Choose a prime r of prescribed size such that a third root of unity ω,
√
D and ζk ∈ Fr.

3 Let n = (ζk − ω)/(1− ω) and y = ±(ωζk + ω2)/
√
D ∈ Fr.

4 Lift n and y from Fr to Z and set p = (3n2 +Dy2)/4.

5 until p ≡ 1 mod 3 and p is prime.
6 Run the CM method to find the j-invariant of an elliptic curve Ec(Fp2) of trace tp2 and ∆ = −3D(ny)2. More

precisely, run the CM method with 3D. Find a degree 2 or 6 factor of the Weber polynomial mod p, then
apply the right transformation from [30,29] to obtain a root in Fp2 of the corresponding Hilbert polynomial.

7 Solve j(Ec) = 2833 (2c−5)3

(c−2)(c+2)3
in Fp2 and choose a solution c ∈ Fp2 such that c2 ∈ Fp. Choose a, b ∈ Fp such

that (a/c)2 is not a cube and b = (a/c)2. Hence b is neither a square nor a cube.
8 return r, p, a, b ∈ Fp

4.2 Brezing-Weng Method

The method proposed by Brezing-Weng is to use a polynomial ring built with a cyclotomic poly-
nomial instead of a finite prime field Fr. The parameters will be polynomials modulo a cyclotomic
polynomial instead of integers modulo a prime. But the choice of D is limited to few values. We
tried with D square-free in the range 1 - 35 according to the embedding degree 5 6 k 6 36. We
ran a search (with Magma [6]) over different cyclotomic fields and with a change of basis as in [24]
and [25]. We obtained complete families with ρ ' 3 and recover constructions already mentioned
in previous papers [26,14] and new complete families for other embedding degrees:

Example 5 (k = 22, D = 2, ρ = 2.8).
r = Φ88(x) = x40 − x36 + x32 − x28 + x24 − x20 + x16 − x12 + x8 − x4 + 1
n = 1

2

(
x28 − x22 − x6 + 1

)
y = 1

2

(
x17 + x11

)
t
′

p2 = 1
4

(
−x56 + 2x50 − x44 + 4x34 + 4x22 − x12 + 2x6 − 1

)
p = 1

8

(
x56 − 2x50 + x44 + 8x28 + x12 − 2x6 + 1

)
x ≡ 1 mod 2
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Example 6 (k = 26, D = 2, ρ = 2.33).
r = Φ104(x) = x48−x44+x40−x36+x32−x28+x24−x20+x16−x12+x8−x4+1
n = 1

2

(
x28 − x26 − x2 + 1

)
y = 1

2

(
x15 + x13

)
t
′

p2 = 1
4

(
−x56 + 2x54 − x52 + 4x30 + 4x26 − x4 + 2x2 − 1

)
p = 1

8

(
x56 − 2x54 + x52 + 8x28 + x4 − 2x2 + 1

)
x ≡ 1 mod 2

Some constructions (k ∈ {7, 17, 19, 23, 29, 31}) have a cyclotomic polynomial of too high degree
for r. Hence there are very few possibilities for choosing a suitable integer x such that p(x) and
r(x) are prime and of the desired size. Moreover the ρ-value is close to 4. It would be preferable to
use the Cocks-Pinch-like method.

5 More Pairing-Friendly constructions with D = 1, 2, 3

We observed that when D = 1, the obtained genus 2 hyperelliptic curve of the form C5(Fp) with
b a square splits actually into two non-isogenous elliptic curves over Fp. We observed the same
decomposition for genus 2 hyperelliptic curve of the form C6 obtained with D = 3 and b a square
but not a cube. A theoretical explanation can be found in [14, Proposition 3.10]. From Rem. 1
1 we get the explicit decomposition. We give here a practical point of view from explicit zeta
function computation. Let E1(Fq) be an elliptic curve defined over a finite field Fq of trace tq an
satisfying (tq)

2 − 4q = −y2, i.e. D = 1. The zeta function of E1 is ZE1(T,Fq) = T 2 − tqT + q =

(T − tq+iy
2 )(T − tq−iy

2 ) with i ∈ C such that i2 = −1. We will use the notation α =
tq+iy

2 . With the
formula given in [14, Proposition 3.4] we find that the zeta function of the order 4 Weil restriction
of E1(Fq) is

ZJC5
(T,Fq) = (T − iα)(T + iα)(T − iα)(T + iα) = (T 2 − yT + q)(T 2 + yT + q) .

Note that q + 1 − y and q + 1 + y are the orders of the two quartic twists of E1(Fq). Hence the
obtained Jacobian always splits into the two quartic twists of E1(Fq).

For JC6(Fq) and D = 3 when b is a square but not a cube, a similar computation explains the
matter. Here Ec is an elliptic curve defined over Fq of trace tq and such that (tq)

2− 4q = −3y2. Let

us denote α =
tq+i
√
3y

2 one of the two roots of its zeta function. The zeta function of the order 3
Weil restriction of Ec(Fq) is

ZJC6
(T,Fq) =

(
T 2 + t+3y

2 T + q
)(
T 2 + t−3y

2 T + q
)
.

We recognize the two cubic twists of Ec(Fq). This confirm the results found in Rem 2 1. Trying
with an order 6 Weil restriction, we find

ZJC6
(T,Fq) =

(
T 2 − t−3y

2 T + q
)(
T 2 − t+3y

2 T + q
)
.

Hence the Jacobian splits into the two sextic twists of Ec(Fq). We recognize a case described in
Rem. 2 3b. Freeman and Satoh suggested to construct an order 8 Weil restriction when D = 1, 2
and an order 12 Weil restriction when D = 3. For k = 32, 64, 88 and D = 2 this order 8 Weil
restriction corresponds to families previously found by Kawazoe and Takahashi.

14



5.1 Order-8 Weil restriction when D = 1

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying (tp)
2− 4p = −y2

(that is, D = 1). The two roots of its zeta function over C are α = (tp + iy)/2 and α. Let ζ8 denotes
an eighth root of unity. The zeta function of the order 8 Weil restriction of E(Fp) is

Z(T,Fp) =
(
(T − ζ8α)(T − ζ78α)(T − ζ58α)(T − ζ38α)

)(
(T − ζ38α)(T − ζ58α)(T − ζ78α)(T − ζ8α)

)
= (T 4 + tyT 2 + p2)(T 4 − tyT 2 + p2)

We see this zeta function factors as two degree 4 zeta functions, that is into two genus 2 hyperelliptic
curve zeta functions. So we start from an elliptic curve E(Fp) as above, with (tp)

2 − 4p = −y2 and
search for suitable p, t, y such that there exists a genus 2 hyperelliptic curve of order #JC(Fp) =
p2 + 1± ty suitable for pairing-based cryptography.

To apply one of the two previous methods (Cocks-Pinch or Brezing-Weng), we have to find an
expression of t and y in terms of p modulo r.

t = ζ8 + ζ78ζk and y = −ζ78 − ζ8ζk mod r .

To finish, p = (t2 + y2)/4.

Example 7 (k = 8, D = 1, ρ = 3.0).
r = x4 + 2x2 + 4x+ 2
t = x
y = 1

3(−x3 + 2x2 − 3x+ 2)
p = 1

36(x6 − 4x5 + 10x4 − 16x3 + 26x2 − 12x+ 4)
x ≡ 4 mod 6

5.2 Order-8 Weil restriction when D = 2

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying (tp)
2−4p = −2y2

(that is, D = 2). The two roots of its zeta function over C are α = (tp + i
√

2y)/2 and α. Let ζ8
denotes an eighth root of unity. The zeta function of the order 8 Weil restriction of E(Fp) is

Z(T,Fp) =
(
(T − ζ8α)(T − ζ78α)(T − ζ38α)(T − ζ58α)

)(
(T − ζ58α)(T − ζ38α)(T − ζ78α)(T − ζ8α)

)
= (T 4 − 2yT 3 + 2y2T 2 − 2ypT + p2)(T 4 + 2yT 3 + 2y2T 2 + 2ypT + p2)

and #JC(Fp) = p2 +1−2yp+2y2−2y = (p−y)2 +(y−1)2. We recognize the order of JC5(Fp) when
the considered isogeny is defined over Fp4 (and with n and y swapped). Hence it is the construction
detailed above in Alg. 2 with D = 2.

5.3 Order-12 Weil restriction when D = 3

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying (tp)
2−4p = −3y2

(i.e. D = 3). The two roots of its zeta function over C are α = (tp + i
√

3y)/2 and α. Let ζ12 denotes
a twelfth root of unity. The zeta function of the order 12 Weil restriction of E(Fp) is

Z(T,Fp) =
(
(T − ζ12α)(T − ζ1112α)(T − ζ712α)(T − ζ512α)

)(
(T − ζ512α)(T − ζ712α)(T − ζ1112α)(T − ζ12α)

)
=
(
T 4 −

(
−p+ tp

tp+3y
2

)
T 2 + p2

)(
T 4 −

(
−p+ tp

tp−3y
2

)
T 2 + p2

)
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which can be interpreted as the zeta functions of two Jacobians of hyperelliptic curves defined over
Fp of order p2 + p + 1 − tp(tp ± 3y)/2. For further simplifications, we can also write #JC(Fp) =
(p− 1)2 + ((tp − 3y)/2)2 = (p+ 1)2 − 3((tp + y)/2)2.

To apply the Cocks-Pinch or Brezing-Weng method, we use

tp ≡ −ω(ωp− 1)/i mod r, y ≡ −ω(ωp+ 1)/
√

3 mod r

with ω a third root of unity and i a fourth root of unity. We found new families with ρ = 3 (with
Brezing-Weng method). It would be interesting to know if these quite special curves provide more
features such as compression due to twists of higher degree.

6 Conclusion

We provided explicit formulas for the zeta function of the Jacobian of genus 2 hyperelliptic curves
of the form Y 2 = X5+aX3+bX and Y 2 = X6+aX3+b (with a, b ∈ F∗q). We also presented several
algorithms to obtain pairing-friendly hyperelliptic families. The constructions require to run the CM
method to find a j-invariant in Fp2 . We explained the differences with a j-invariant in Fp and gave
references to fill the gap. There are some special issues for D = 1, 3: a ρ-value of 2 can be achieved
but the Jacobian is unfortunately not simple. However, it is possible to construct suitable curves
with D = 1 and D = 3 that achieve ρ-value around 3 using Weil restriction of order 8 or 12. It is
worth noting that it is also possible to adapt the Dupont-Enge-Morain technique [10] to our setting
but unfortunately it provides curves with ρ ' 4. It remains open to construct pairing-friendly
hyperelliptic curves with 1 6 ρ < 2.
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A Details of the proof of Theorem 1 and Theorem 2

A.1 Proof of Theorem 1

Let us recall that the Jacobian JC5 has the same order as the product E1 × E2 over the extension
field where the isogeny is defined.

– if the isogeny is defined over Fq, i.e. if b is a fourth power, ZJC5
(T,Fq) = ZE1(T,Fq)ZE2(T,Fq)

and

(i) #JC5(Fq) = #E1(Fq)#E2(Fq) = (q + 1− tq)2 if −1 is a square in Fq,
(ii) #JC5(Fq) = #E1(Fq)#E2(Fq) = (q + 1− tq)(q + 1 + tq) otherwise;

– if the isogeny is defined over Fq2 , i.e. if b is a square but not a fourth power (hence q ≡ 1 mod 4),
or if b is not a square and q ≡ 3 mod 4, then E1 and E2 are defined over Fq2 , of trace tq2 and
ZJC5

(T,Fq2) = ZE1(T,Fq2)ZE2(T,Fq2) = (T 2 − tq2T + q2)2 and we have to go down from Fq2 to
Fq;

– if the isogeny is defined over Fq4 , i.e. if b is not a square and q ≡ 1 mod 4, ZJC5
(T,Fq4) =

ZE1(T,Fq4)ZE2(T,Fq4) = (T 2− tq4T + q4)2 with tq4 the trace of E1 and E2 over Fq4 . We have to
recover the zeta function from Fq4 to Fq.

The isogeny is defined over Fq2. We have the following decomposition through isogenies:

(E1 × E2)(Fq4)
isomorphism←→ (E

′
1 × E

′
2)(Fq4)

| |
JC5(Fq2)

isogeny←→ (E1 × E2)(Fq2) (E
′
1 × E

′
2)(Fq2)

whose trace is tq2 = −t′
q2

of trace t
′

q2
= (t

′
q)

2 − 2q

| |
JC5(Fq) (E

′
1 × E

′
2)(Fq)

of trace ±t′q

If b is a square but not a fourth power, the coefficient δ of the curves E1 and E2 is in Fq2 . The

parameter
√
b is in Fq hence a corresponding quadratic twist for the two elliptic curves is available

and defined over Fq. If b is not a square, a quadratic extension Fq2 contains
√
b which is a square in

Fq2 if q ≡ 3 mod 4 (hence 4
√
b ∈ Fq2). Otherwise the lowest extension containing 4

√
b is Fq4 and the

isogeny is defined over Fq4 .

We have ZE1(T,Fq2) = ZE2(T,Fq2) = T 2−tq2T +q2 and for the Jacobian JC5 , its zeta function is
ZJC5

(T,Fq2) = T 4−aq2T 3+bq2T
2−q2aq2T+q4 = (T 2−tq2T+q2)2. Hence (aq2 , bq2) = (2tq2 , (tq2)2+

2q2). We easily solve equations (2-1) into (aq, bq) = (±2
√

2q + tq2 , 4q + tq2) or (aq, bq) = (0,−tq2).

In the former case, since aq must be an integer, 2q + tq2 must be a square. If E1 is actually
defined over Fq (and so does the isogeny), 2q + tq2 = (tq)

2. If E1 is not defined over Fq, neither
is the isogeny and 2q + tq2 is rarely a square. Assuming that 2q + tq2 is not a square, the unique

possibility is #JC5(Fq) = q2 + 1− tq2 . If
√
b ∈ Fq, a quadratic twist E

′
1 of E1 defined over Fq exists

with tq2 = −t′q2 = 2q − (t
′
q)

2. We can simplify the trace computation to t
′
q, the trace of the elliptic

curve E
′
1(Fq). #JC5(Fq) = (q − 1)2 + (t

′
q)

2.
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Special case. If 2q + tq2 is still a square, let 2q + tq2 = y2 with y ∈ N. There are three possibilities
for the Jacobian order: (q + 1− y)2, (q + 1 + y)2 or (q + 1− y)(q + 1 + y) = q2 + 1− tq2 (’normal ’
case) and the Jacobian is not simple (its zeta function factors in the same way). If q ≡ 1 mod 4,√
b ∈ Fq and a quadratic twist E

′
1 is defined over Fq (we remove b1/4 from the equation of E1).

Hence ∆(E1(Fq2)) = (tq2)2− 4q2 = −(y · t′q)2 and the curve has D = 1 (i.e. Complex Multiplication

by i =
√
−1). Moreover E1(Fq2) is isogenous to a curve E̊1(Fq2) with j-invariant 0. The Jacobian is

isogenous over Fq to two quartic twists of E
′
1 and E

′
2.

(E1×E2)(Fq4)
isomorphism←→ (E

′
1×E

′
2)(Fq4)

| |
JC5(Fq2)

isogeny←→(E̊1×E̊2)(Fq2)
isogeny←→(E1×E2)(Fq2) (E

′
1×E

′
2)(Fq2)

whose trace is of trace t
′

q2
= (t

′
q)

2 − 2q

| | tq2 = −t′
q2

|
JC5(Fq)

isogeny←→ (E̊1×E̊2)(Fq) (E
′
1×E

′
2)(Fq)

of trace ±t′q

The isogeny is defined over Fq4. The decomposition into two isogenous elliptic curves is as
follows:

(E1 × E2)(Fq8)
isomorphism←→ (E

′
1 × E

′
2)(Fq8)

| |
JC5(Fq4)

isogeny←→ (E1 × E2)(Fq4) (E
′
1 × E

′
2)(Fq4)

whose trace is tq4 = −t′
q4

of trace t
′

q4
= (t

′

q2
)2 − 2q2

| |
JC5(Fq2) (E

′
1 × E

′
2)(Fq2)

| of trace t
′

q2

JC5(Fq)

We proceed in two steps. First we find the coefficients of the zeta function over Fq2 . There is
also a special case: if 2q2 + tq4 is a square there are three other possibilities, see below. If 2q2 + tq4

is not a square we obtain (aq2 , bq2) = (0,−tq4) = (0, (t
′

q2)2 − 2q2). The final polynomial system to
solve is the following:

(aq)
2 − 2bq = 0 (3)

(bq)
2 − 4qbq + 2q2 + tq4 = 0 (4)

Equation (4) gives bq = 2q ±
√

2q2 − tq4 . The elliptic curve E1 admits a twisted elliptic curve E
′
1

defined over Fq2 and of opposite trace over Fq4 , tq4 = −t′q4 = −(t
′

q2)2+2q2. Hence bq ∈ {2q−t
′

q2 , 2q+

t
′

q2} and we obtain through equation (3) that aq = ±
√

2bq. Thus (aq, bq) =
(
±
√

2(2q − t′
q2

), 2q−t′q2
)

or (aq, bq) =
(
±
√

2(2q + t
′
q2

), 2q+t
′

q2

)
and either 2(2q+t

′

q2) or 2(2q−2t
′

q2) is always a square. More

precisely, when q ≡ 1 mod 8 we observe that 2q−t′q2 = 2n2 and when q ≡ 5 mod 8, 2q+t
′

q2 = 2n2.

Let n ∈ N be such that either bq = 2q + t
′

q2 = 2n2 or bq = 2q − t′q2 = 2n2. We have

#JC5(Fq) = q2 + 1− 2n(1 + q) + 2n2 or #JC5(Fq) = q2 + 1 + 2n(1 + q) + 2n2 .
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Special case. We now consider the special case of 2q2+tq4 = y2 being a square. This implies because

of the quadratic twist and tq4 − 2q2 = −(t
′

q2)2 that the curve E1 has D = 1 (∆(E1) = −(y · t′q2)2).

When solving the first system to get (aq2 , bq2), these two additional possibilities have to be checked:
(aq2 = ±2y, bq2 = 2q2 + y2) and #JC5(Fq2) = (q2 + 1∓ y)2. The Jacobian zeta function splits in two
parts. This means that the Jacobian is isogenous over Fq2 to two elliptic curves, namely the quartic

twists of E
′
1(Fq2) and E

′
2(Fq2).

What is happening over the ground field Fq ? They are at most 10 possibilities for #JC5(Fq)
and this order splits in two parts in each case. Writing tq4 + 2q2 = y2, we decompose it into

−(t
′

q2)2 + 4q2 = (2q− t′q2)(2q+ t
′

q2). Let 2q− t′q2 = D1(y1)
2 and 2q+ t

′

q2 = D2(y2)
2 with D1 and D2

square-free and D1D2 a square. Hence D1 = D2. As q ≡ 1 mod 4 and t
′

q2 ≡ 0 mod 2, we obtain
that

1. D1(y1)
2 ≡ D2(y2)

2 ≡ 0 mod 4 if t
′

q2 ≡ 2 mod 4;

2. D1(y1)
2 ≡ D2(y2)

2 ≡ 2 mod 4 if t
′

q2 ≡ 0 mod 4.

Moreover, q = (D1y
2
1 + D2y

2
2)/4 is a prime power, char > 2, t

′

q2 6= 0. We obtain that if q is prime

then y1 and y2 are coprime and D1 = D2 = 2 if t
′

q2 ≡ 0 mod 4 or D1 = D2 = 1 and gcd(y21, y
2
2) = 4

if t
′

q2 ≡ 2 mod 4. We reformulate it as gcd(y1, y2) = 1 and

1. D1 = D2 = 2 if t
′

q2 ≡ 0 mod 4 (and q = (y21 + y22)/2);

2. D1 = D2 = 4 if t
′

q2 ≡ 2 mod 4 (and q = y21 + y22).

If q is a prime power, let p = char(q). gcd(y1, y2) is 1 or a power of p and

1. if t
′

q2 ≡ 0 mod 4 then D1 = D2 = 2 and q = (y21 +y22)/2 or D1 = D2 = 2p and q = p(y21 +y22)/2;

2. if t
′

q2 ≡ 2 mod 4 then D1 = D2 = 4 and q = y21 + y22 or D1 = D2 = 4p and q = p(y21 + y22).

Does q2 + 1± y splits ? In other words, are y + 2q and −y + 2q squares ?

1. if D1 = D2 = 2 then q = (y21 + y22)/2, y = 2y1y2 and a possible choice for #JC5(Fq) is q2 + 1−
n(q + 1− n) with n ∈ {±y1,±y2}. More precisely, the Jacobian order has always two factors:

(i) n = y1, #JC5(Fq) = (q + 1− y1 + y2)(q + 1− y1 − y2);
(ii) n = −y1, #JC5(Fq) = (q + 1 + y1 + y2)(q + 1 + y1 − y2);
(iii) n = y2, #JC5(Fq) = (q + 1 + y1 − y2)(q + 1− y1 − y2);
(iv) n = −y2, #JC5(Fq) = (q + 1 + y1 + y2)(q + 1− y1 + y2).
y+ 2q = 2y1y2 + y21 + y22 = (y1 + y2)

2 and −y+ 2q = (y1− y2)2. The others choices for #JC5(Fq)
are {(q + 1 − y1 + y2)(q + 1 + y1 − y2) = q2 + 1 + y, (q + 1 + y1 + y2)(q + 1 − y1 − y2) =
q2 + 1− y, (q + 1− y1 + y2)

2, (q + 1 + y1 − y2)2, (q + 1 + y1 + y2)
2, (q + 1− y1 − y2)2}.

2. Otherwise (D1 6= 2, D2 6= 2), the two numbers y + 2q and −y + 2q are not squares. The two
choices for #JC5(Fq) are q2 + 1 + y and q2 + 1− y.

All possibilities are summarized in Tab. 1.

A.2 Proof of Theorem 2

A first observation gives these simplifications. For the notations, see 3.1.

– If b is a square in Fq then C′6, Ec and E−c are defined over Fq.
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Conditions #JC5(Fq)

b is a 4th power
in Fq

−1 is a square in Fq (q + 1− tq)2

−1 is not a square in Fq (q + 1− tq)(q + 1 + tq)

b is a square but
not a 4th power in
Fq q≡1 mod 4

tq2 + 2q is not a square (q − 1)2 + (t
′
q)2

tq2 + 2q = y2 is a square
(q + 1− y)2,
(q + 1 + y)2 or

(q + 1− y)(q + 1 + y) = (q − 1)2 + (t
′
q)2

b is not a square
in Fq and q ≡ 3
mod 4

tq2 + 2q is not a square q2 + 1− tq2

tq2 + 2q = y2 is a square
(q + 1− y)2,
(q + 1 + y)2 or
(q + 1− y)(q + 1 + y) = q2 + 1− tq2

b
is

n
o
t

a
sq

u
a
re

in
F q

a
n
d
q
≡

1
m

o
d

4 tq4 + 2q2 is
not a
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′

q2 =2n2 if q≡5

mod 8 or 2q− t
′

q2 = 2n2 if q ≡ 1
mod 8

q2 + 1− 2n(q + 1) + 2n2 or
q2 + 1 + 2n(q + 1) + 2n2

t q
4

+
2
q2

is
a

sq
u
a
re

,
=

y
2
.

W
ri

te
y
2

=
−

(t
′ q
2
)2

+
4
q2

=

(2
q

+
t′ q

2
)(

2
q
−
t′ q

2
)

=
D

1
y
2 1
D

2
y
2 2

D1 6= 2 and D2 6= 2
q2 + 1− y or
q2 + 1 + y.

D1 = D2 = 2

(q + 1− y1 + y2)(q + 1− y1 − y2) (i.e. n = y1),
(q + 1 + y1 + y2)(q + 1 + y1 − y2) (i.e. n = −y1),
(q + 1 + y1 − y2)(q + 1− y1 − y2) (i.e. n = y2),
(q + 1 + y1 + y2)(q + 1− y1 + y2) (i.e. n = −y2),
(q + 1 + y1 + y2)(q + 1− y1 − y2) = q2 + 1− y,
(q + 1− y1 + y2)(q + 1 + y1 − y2) = q2 + 1 + y,
(q + 1− y1 + y2)2,
(q + 1 + y1 − y2)2,
(q + 1 + y1 + y2)2,
(q + 1− y1 − y2)2.

Table 1. Possible Jacobian orders for the curve C5 over Fq.

(i) If b is a cube in Fq then JC6(Fq), JC′6(Fq), Ec(Fq) × E−c(Fq) are all three isogenous over Fq.
If q ≡ 1 mod 3 then −3 is a square in Fq. Ec(Fq) and E−c(Fq) are isogenous and have the
same trace tq, and we have #JC6(Fq) = (q + 1 − tq)2. Otherwise, −3 is not a square and
Ec and E−c are isogenous over Fq2 but of opposite trace tq,−tq over Fq and #JC6(Fq) =
(q + 1− tq)(q + 1 + tq).

(ii) If b is not a cube in Fq, JC6 and JC′6
are isogenous over Fq3 . But as b is not a cube, q ≡ 1

mod 3, hence −3 is a square in Fq. Ec and E−c are isogenous over Fq, with the same trace
tq and #JC′6

(Fq) = #Ec(Fq)#E−c(Fq) = (q + 1 − tq)2. We have to compute #JC6(Fq) from

#JC′6
(Fq) through #JC6(Fq3) = #JC′6

(Fq3).

– If b is not a square in Fq, the abelian varieties JC′6
, Ec, E−c are defined over Fq2 . In this case

−3 ∈ Fq is a square in Fq2 and the two elliptic curves Ec(Fq2) and E−c(Fq2) are isogenous with
the same trace tq2 . The Jacobian JC′6

and Ec × E−c are isogenous over Fq2 .

(i) If b is a cube, JC6(Fq2) is isogenous to JC′6
(Fq2). Solving equations (2) and (1) with (aq2 , bq2) =

(2tq2 , (tq2)2 + 2q2) we find (aq, bq) = (0,−tq2) (if tq2 + 2q is not a square) and #JC6(Fq) =
q2 + 1− tq2 .

(ii) If b is not a cube, JC6 and JC′6
are isogenous over Fq6 and JC′6

is isogenous to Ec ×E−c over

Fq2 .
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The isogeny is defined over Fq3. With the same assumptions about zeta functions as in Section
2, we denote by aq3 and bq3 the zeta function coefficients of JC6 over Fq3 . We have

aq3 = z31,q + z32,q + z33,q + z34,q and bq3 = 2q3 + (z31,q + z32,q)(z
3
3,q + z34,q)

We note that z31,q +z32,q = (z1,q +z2,q)
3−3q(z1,q +z2,q) and z33,q +z34,q = (z3,q +z4,q)

3−3q(z3,q +z4,q).
We have

aq3 = (z31,q + z32,q) + (z33,q + z34,q)

= (z1,q + z2,q)
3 + (z3,q + z4,q)

3 − 3q(z1,q + z2,q)− 3q(z3,q + z4,q)

= (z1,q + z2,q)
3 + (z3,q + z4,q)

3 − 3qaq

= (z1,q + z2,q)
3 + (z3,q + z4,q)

3 − 3qaq

+3 [(z1,q + z2,q) + (z3,q + z4,q)] [(z1,q + z2,q)(z3,q + z4,q)]− 3aq(bq − 2q)

= (z1,q + z2,q + z3,q + z4,q)
3 − 3aq(bq − 2q + q)

= (aq)
3 − 3aq(bq − q)

and

bq3 = 2q3 +
[
(z1,q + z2,q)

3 − 3q(z1,q + z2,q)
] [

(z3,q + z4,q)
3 − 3q(z3,q + z4,q)

]
= 2q3 + [(z1,q + z2,q)(z3,q + z4,q)]

3 + 9q2(z1,q + z2,q)(z3,q + z4,q)

−3q(z1,q + z2,q)(z3,q + z4,q)
3 − 3q(z1,q + z2,q)

3(z3,q + z4,q)

= 2q3 + (bq − 2q)3 + 9q2(bq − 2q)− 3q(bq − 2q)
[
(z3,q + z4,q)

2 + (z1,q + z2,q)
2
]

= 2q3 + (bq − 2q)3 + 9q2(bq − 2q)− 3q(bq − 2q)(aq2 + 4q)

= 2q3 + (bq − 2q)3 + 9q2(bq − 2q)− 3q(bq − 2q)((aq)
2 − 2bq + 4q)

= (bq)
3 − 3q2bq − 3q(aq)

2bq + 6q2(aq)
2

which gives the following system to solve{
aq3 = (aq)

3 − 3aq(bq − q)
bq3 = (bq)

3 − 3q2(bq)− 3q(aq)
2(bq) + 6q2(aq)

2

This system is not linear and the two equations are not independent. Nevertheless we can obtain
a more precise system to solve. Indeed, as the Jacobian splits into two isogenous elliptic curves over
Fq3 (assuming b is a square but not a cube in a first case), its zeta function over Fq3 splits into two
polynomials with integer coefficients and we can find independently the two roots of each factor.
More precisely, ZJC6

(T,Fq3) = ZEc(T,Fq3)ZE−c(T,Fq3) which results in

(T 2 − (z31,q + z32,q)T + q3)(T 2 − (z33,q + z34,q)T + q3) = (T 2 − tq3T + q3)2 .

With a last simplification using the fact tq3 = (tq)
3 − 3qtq, we obtain an easy system to solve{

z31,q + z32,q = (z1,q + z2,q)
3 − 3q(z1,q + z2,q) = (tq)

3 − 3qtq
z33,q + z34,q = (z3,q + z4,q)

3 − 3q(z3,q + z4,q) = (tq)
3 − 3qtq

It is important here to note that the two elliptic curves are isogenous, hence of same trace tq. An
obvious solution is z1,q + z2,q = z3,q + z4,q = tq which corresponds to the case where b is a cube and
JC6 is isogenous to Ec × E−c over Fq. The two other solutions are

z1,q + z2,q =
(
−tq ±

√
3(4q − (tq)2)

)
/2, z3,q + z4,q =

(
−tq ±

√
3(4q − (tq)2)

)
/2 .
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If 3(4q − (tq)
2) is not a square, we have no choice concerning the signs (the two above square

roots which are irrational must eliminate themselves when computing aq and bq), we must choose
z1,q + z2,q as the conjugate of z3,q + z4,q. This results in

aq = −tq and bq = 2q +
(
(tq)

2 − 3(4q − (tq)
2)
)
/4 = (tq)

2 − q

Finally we obtain that if b is a square but not a third power (and 3(4q− (tq)
2) is not a square) then

#JC6(Fq) = q2 − q + 1 + (1 + q + tq)tq .

Note that

#Ec(Fq) = q + 1− tq
#Ec(Fq3) = q3 + 1− ((tq)

3 − 3qtq) = (q + 1− tq)(q2 − q + 1 + tq(q + 1 + tq))

= #Ec(Fq)#JC6(Fq).

Special case. If 3(4q−(tq)
2) is a square, we face a special curve with 4q−(tq)

2 = 3y2. More precisely,
this curve is isogenous to a curve with j-invariant equals to 0. This curve admits two cubic twists
of order (over Fq) q + 1 + (tq + 3y)/2 and q + 1 + (tq − 3y)/2. Six possibilities can occur for the
Jacobian order but we don’t consider z1,q + z2,q = tq or z3,q + z4,q = tq as it corresponds to the
isogeny between JC6 and Ec × E−c defined over Fq.

z1,q + z2,q, z3,q + z4,q ∈ {(−tq + 3y)/2, (−tq − 3y)/2} .

In each case, the Jacobian splits as the two above values are integers. The Jacobian zeta function
splits into two degree 2 polynomials (T 2 − (z1,q + z2,q)T + q)(T 2 − (z3,q + z4,q)T + q).

#JC6(Fq) is one of (q+ 1 + (tq + 3y)/2)2, (q+ 1 + (tq−3y)/2)2, (q+ 1 + (tq + 3y)/2)(q+ 1 + (tq−
3y)/2) = q2 − q + 1 + (1 + q + tq)tq (’normal ’ case). When solving j(Ec) = 0 we obtain c = 5/2.
To construct a toy example, we take a = 1, b = (2/5)2. Let p = 313, a = 1, b = 213, c = 159
and C(Fp) : y2 = x6 + ax3 + b. j(Ec) = 0, j(E−c) = 67 and their trace is tp = 35. It satisfies
(tp)

2−4p = −3 ·32. We obtain that #JC6(Fp) = 327 ·336 = (p+1+(tp−3y)/2)(p+1+(tp +3y)/2).
It would be interesting to find explicitly the isogeny.

The isogeny is defined over Fq6. To generalize to the case where b is neither a square nor a
cube, we just have to consider q2, zi,q2 and tq2 instead of q, zi,q and tq. With the same arguments
we find with 3(4q2 − (tq2)2) not a square

#JC6(Fq2) = q4 − q2 + 1 + (1 + q2 + tq2)tq2 .

The descent from #JC6(Fq2) to #JC6(Fq) was already treated in 2.2. We have here (aq2 , bq2) = (−tq2 ,
(tq2)2 − q2). We solve the equations (2-1) into (aq, bq) = (±

√
2q + tq2 , q + tq2) or (±

√
3(2q − tq2),

3q−tq2). We assumed at the preceding step that 3(4q2−(tq2)2) is not a square. The expression 2q+tq2
is a square if Ec is actually defined over Fq (i.e. 2q+ tq2 = (tq)

2) or if Ec is a very special curve, with
2q+tq2 = s2 a square. For this choice, (aq, bq) = (±s, s2−q) and #JC6(Fq) = q2−q+1±(1+q)s+s2.
We can’t have 2q + tq2 and 3(2q − tq2) both squares as we assumed that 3(4q2 − (tq2)2) is not a
square. If 2q + tq2 is not a square, the right solution is (aq, bq) = (±

√
3(2q − tq2), 3q − tq2). Once

more, aq must be an integer. Let n ∈ Z be such that 2q − tq2 = 3n2. We conclude that

#JC6(Fq) = q2 + q + 1 + 3n2 + 3n(q + 1) .
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Special case. When 3(4q2 − (tq2)2) = 9y2 is a square, we have

z1,q2 + z2,q2 ; z3,q2 + z4,q2 ∈ {tq2 , (−tq2 + 3y)/2, (−tq2 − 3y)/2}.

These three values correspond to the traces of three elliptic curves that are cubic twists of each
other. One of them is Ec(Fq2). As the isogeny is defined over Fq6 but not Fq2 , we eliminate the
cases z1,q2 + z2,q2 = tq2 and z1,q2 + z2,q2 = tq2 . This value tq2 is for the cubic twist JC′6

(Fq2). Indeed

because of the isogeny between JC′6
(Fq2) and (Ec ×E−c)(Fq2), the zeta function for this Jacobian is

ZJ
C′6

(T,Fq2) = (T 2 − tq2T + q2)2. We obtain the following possibilities for (aq2 , bq2):

case z1,q2 + z2,q2 z3,q2 + z4,q2 aq2 bq2

1 (−tq2 + 3y)/2 (−tq2 − 3y)/2 −tq2 (tq2)2 − q2
2 (−tq2 + 3y)/2 (−tq2 + 3y)/2 −tq2 + 3y (−tq2 + 3y)2/4 + 2q2

3 (−tq2 − 3y)/2 (−tq2 − 3y)/2 −tq2 − 3y (−tq2 − 3y)2/4 + 2q2

The first one corresponds to the ’normal ’ case, we obtain #JC6(Fq2) = q4− q2 + 1 + (1 + q2 + tq2)tq2
and moreover it factors. The two possibilities for JC6(Fq) are

1. (aq, bq) = (±
√

3(2q − tq2), 3q − tq2)
2. (aq, bq) = (±

√
2q + tq2 , q + tq2)

hence 3(2q − tq2) or 2q + tq2 must be a square. As 3(−(tq2)2 + 4q2) is a square, the two last values
are both squares (or both not squares). If 3(2q− tq2) = n2 and 2q+ tq2 = s2, these two orders must
be checked both :

1. #JC6(Fq) = q2 − q + 1± s(q + 1) + s2

2. #JC6(Fq) = q2 + q + 1 + 3n(q + 1) + 3n2 .

The other cases are more special and we don’t see how to construct such an example. We can say
that for each case, the Jacobian splits in two elliptic curves. We recognize two cubic twists and
two sextic twists. Let denote ∆(Ec(Fq2)) = t2q2 − 4q2 = (tq2 − 2q)(tq2 + 2q) and decompose it in

tq2 − 2q = −D1y
2
1 and tq2 + 2q = D2y

2
2 with D1, D2 square-free.

All possibilities are summarized in Tab. 2.
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Conditions #JC5(Fq)

b is a 6th
power in Fq

−3 is a square in Fq (q + 1− tq)2

−3 is not a square in Fq (q + 1− tq)(q + 1 + tq)

b is a square
but not a cube
in Fq

3(4q − (tq)2) is not a square q2 − q + 1 + (1 + q + tq)tq

4q − (tq)2 = 3y2
(q + 1 + (tq + 3y)/2)2,
(q + 1 + (tq − 3y)/2)2 or

(q + 1 +
tq+3y

2
)(q + 1 +

tq−3y

2
) = q2 − q + 1 + (1 + q + tq)tq

b is a cube but
not a square in
Fq

tq2 + 2q is not a square q2 + 1− tq2

tq2 + 2q is a square, = y2
(q + 1− y)2,
(q + 1 + y)2 or
(q + 1− y)(q + 1 + y) = q2 + 1− tq2

b
is

n
ei

th
er

a
sq

u
a
re

n
o
r

a
cu

b
e

in
F q

.
W

ri
te
−
t2 q

2
+

4
q2

=
(2
q
−
t q

2
)(

2
q

+
t q

2
)

a
n
d

2
q
−
t q

2
=
D

1
n
2
,

2
q

+
t q

2
=
D

2
s2

.

D2 6= 1, D1 = 3 i.e.
2q − tq2 = 3n2

q2 + q + 1− 3n(q + 1) + 3n2 or
q2 + q + 1 + 3n(q + 1) + 3n2

D1 6= 3, D2 = 1 i.e.
2q + tq2 = s2

q2 − q + 1− (1 + q)s+ s2 or
q2 − q + 1 + (1 + q)s+ s2.

D1 = 3, D2 = 1 i.e.
2q − tq2 = 3n2 and
2q + tq2 = s2

(q + 1− s−3n
2

)(q + 1− s+3n
2

) = q2 − q + 1 + (1 + q)s+ s2,
(q + 1 + s+3n

2
)(q + 1 + s−3n

2
) = q2 − q + 1− (1 + q)s+ s2,

(q + 1 + s−3n
2

)(q + 1− s+3n
2

) = q2 + q + 1− 3n(q + 1) + 3n2,
(q + 1 + s+3n

2
)(q + 1− s−3n

2
) = q2 + q + 1 + 3n(q + 1) + 3n2,

(q + 1 + s+3n
2

)(q + 1− s+3n
2

) = q2 + 1−
−t

q2
+3y

2
,

(q + 1− s−3n
2

)(q + 1 + s−3n
2

) = q2 + 1−
−t

q2
−3y

2
,

(q + 1 + s−3n
2

)2,
(q + 1− s−3n

2
)2,

(q + 1 + s+3n
2

)2,
(q + 1− s+3n

2
)2.

Table 2. Possible Jacobian orders for the curve C6 over Fq.
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