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Abstract

The NTRU cryptosystem is the most practical scheme known to date. In this paper, we first
discuss the ergodic-linearization algorithm against GGH, then naturally deduce a new and uniform
broadcast attack against several variants of NTRU: for every recipient’s ciphertext, isolate out the
blinding value vector, then do derandomization directly and entirety by using inner product, after-
wards by using some properties of circular matrix together with linearization we obtain three linear
congruence equations of the form aT Y = s mod q′ with N + [ N

2 ] variables. Hence only if the num-
ber of the independent recipients’ ciphertexts/public-keys pairs reaches N + [ N

2 ]− 2 can we work out
these variables and recover the plaintext in O(N3) arithmetic operations successfully. The experiment
evidence indicates that our algorithm can efficiently broadcast attack against NTRU with the highest
security parameters. To the best of our knowledge, this is the most efficient broadcast attack against
NTRU. This is an algebraic broadcast attack, which is based on the special structure of the blinding
value space Lr.
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1 Introduction

In 1998, Hoffstein, Pipher and Silverman [1] presented a public key cryptosystem based on polynomial
algebra called NTRU, denoted by NTRU-1998. The security of NTRU comes from the interaction of the
polynomial mixing system with the independence of reduction modulo p and q. The NTRU cryptosystem
is the most practical scheme known to date. It features reasonably short, easily created keys, high speed,
and low memory requirements. In 2001, Hoffstein and Silverman [2] put forward another instance of
NTRU, denoted by NTRU-2001, by employing different parameter sets. In 2005, Howgrave-Graham,
Silverman and Whyte [3] gave the third instance of NTRU, denoted by NTRU-2005.

The best attack known against NTRU is based on lattice reduction, but this does not imply that lattice
reduction is necessary to break NTRU. Coppersmith and Shamir [4] pointed out that the security of
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NTRU is related, but not equivalent, to the hardness of some lattice problems. Jaulmes and Joux [5]
showed that they are able to conduct a chosen-ciphertext attack that recovers the secret key from a few
ciphertexts/cleartexts pairs with good probability. This is very dangerous. Most of the ciphertext-only
attacks [6, 7, 8] against NTRU rely on the underlying lattice’s special cyclic structure.

In 1988, Hästad [9] proposed the first broadcast attack against public key cryptosystems. The sce-
nario of a broadcast attack is as follows. A single message is encrypted by the sender directed for multiple
recipients who have different public keys. By observing the ciphertexts only, an attacker can derive the
plaintext without requiring any knowledge of any recipient’s secret key.

In 2009, Plantard and Susilo [10] first considered the broadcast attack against the lattice-based public-
key cryptosystems and also gave some heuristic attacks. However, they showed that NRTU may resist
their broadcast attacks, since half of its “message” is random.

Very recently, Pan and Deng [11] give the first broadcast attack against NTRU using the ergodic-
linearization algorithm [12, 13, 14]. The main idea of ergodic-linearization technique is used in practical
cryptanalysis: use interpolation formula to even out the noise to derive a set of precise nonlinear equa-
tions, then introduce new variables for the monomials and obtain a linear system in the new variables.
And Pan and Deng [11] pointed out that some other lattice-based cryptosystems, such as [15], can not
resist the broadcast attack either.

In this paper, we find that for NTRU the inner product (r, r) = rT r is a constant, where r is a
vector consisting of the coefficients of r(x) ∈ Lr. Hence, we eliminate the blinding value vector r
directly and entirety by doing inner product. Afterwards by using some properties of the circular matrix
together with linearization we obtain three linear congruence equations of the form aT Y = s mod q′ with
N+ [ N

2 ] variables from every recipient’s ciphertext. It can be easily used to give a very efficient broadcast
attack against several variants of NTRU: NTRU-1998, NTRU-2001 with an odd dg, NTRU-2001 with
q = dr, NTRU-2005 with gcd(q, dg) = 1 and NTRU-2005 with q | dr. Since the number of variables
is small, the experiment evidence indicates that one can efficiently broadcast attack against NTRU with
the big parameters. Our algorithm is based on the special structure of the blinding value space Lr. It’s
also a ciphertext-only attacks. Besides, we find that the error vector in the original GGH cryptosystem
and the modified error vector in GGH-2009 have the same special structure. Hence, we first discuss
the broadcast attacks against the original GGH and GGH-2009 by amending the ergodic-linearization
algorithm [12, 13, 14], then naturally deduce the broadcast attack against NTRU.

The remainder of the paper is organized as follows. Section 2 gives some preliminaries. In Section
3, we describe the broadcast attack against NTRU. Section 4 gives a short conclusion.

2 Preliminaries

We denote the integer ring by Z and denote the residue class ring Z/qZ by Zq. We use bold letters to
denote vectors, in column notation. If v is a vector, then we denote the i-th entry of v by vi−1.

2.1 GGH

We briefly review the original GGH cryptosystem, for more details see [16]. A GGH cryptosystem
comprises of the following algorithms.
Setup: Generate a “good basis” R ∈ ZN×N and compute a “bad basis” B ∈ ZN×N of a lattice L, such that
L(R) = L(B). Provide B as public key and keep R as private basis.
Encryption: To encrypt a message vector m ∈ ZN , use the bad basis to compute

c = Bm + r. (2.1)
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where r is an error vector uniformly chosen from {−σ,σ}N .
Decryption: Use the good basis to compute

m = B−1RdR−1cc.

and r = c − Bm.
Notice that the original GGH cryptosystem is semantically insecure, because one can check if a

ciphertext c corresponds to a plaintext m by computing c − Bm. Furthermore, it’s obvious that r2
i = σ

2

for i = 0, 1, · · · ,N − 1 and rT r = Nσ2. This fact can be used to discuss the broadcast attack against
the original GGH cryptosystem, which differs from the general method in [10]. The original GGH
cryptosystem was attacked and broken severely by Nguyen in 1999 [17], and Nguyen pointed out that
for safety, one can choose the entries of the error vector r at random in [−σ, · · · , σ] instead of {±σ}.
Afterwards the other propositions were made using the same principle [18, 19, 20].

In addition, Yanbin Pan et al in [15] presented a new lattice-based public-key cryptosystem mixed
with a knapsack and used the module strategy, which is also a GGH-type cryptosystem, denoted by
GGH-2009. It has reasonable key size and quick encryption and decryption. Its decryption algorithm
is: for any message m ∈ {0, 1}N , first we uniformly choose a vector r from {0, 1}N , then compute the
ciphertext: c = Bm + r mod p, where p is a prime satisfying certain conditions. For more details see
[15]. We find that the modified error vector in GGH-2009 has the same special structure as that in the
original GGH cryptosystem.

2.2 NTRU

We give a simple description of the NTRU-1998 cryptosystem, for more details see [1].
The NTRU cryptosystem depends on three integer parameters (N, p, q) and four sets L f ,Lg, Lr,Lm

of polynomials of degree N−1 with small integer coefficients, whereL f ,Lg is called Private Key spaces,
Lm is called Plaintext space, Lr is called Blinding Value space. In addition, N must be an odd prime,
otherwise the lattice attacks can be improved due to non-trivial factors of XN − 1 (see [21]). We choose
p, q such that gcd(p, q) = 1 and p is much smaller than q. Denote the ring Z[x]/(xN − 1) by R and the
multiplication in R by ∗ in this paper.
We work over the ring R.
Key Generation:
Step1. Choose f ∈ L f , g ∈ Lg such that there exists Fq, Fp ∈ R satisfying f ∗ Fq = 1 mod q and
f ∗ Fp = 1 mod p.
Step2. Let h = p ∗ Fq ∗ g mod q.
Public Key: h, p, q.
Private Key: f , Fp.
Encryption: To encrypt m ∈ Lm, we first choose an r ∈ Lr randomly, then compute the ciphertext:

c = h ∗ r + m mod q. (2.2)

Decryption: First we compute

a = f ∗ c mod q

= pg ∗ r + f ∗ m mod q

then we choose the coefficients of a in the interval from − q
2 to q

2 . By the fact that all the coefficients of
pg ∗ r + f ∗ m may be in the interval from − q

2 to q
2 , we almost get

a = pg ∗ r + f ∗ m.
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Then we recover the message m by computing m = Fp ∗ a mod p.
Since there exists several variants of NTRU, this has made the analysis of NTRU a tricky task, as in

[22]. However, in this paper, we give a uniform broadcast attack against NTRU. Mol and Yung in [22]
summarized the main instantiations of NTRU in the table below:

Variant q p L f Lg Lm Lr F Ref
NTRU-1998 2k ∈ [ N

2 ,N] 3 L(d f , d f − 1) L(dg, dg) Lm L(dr, dr) - [1]
NTRU-2001 2k ∈ [ N

2 ,N] 2 + x 1 + p ∗ F B(dg) B B(dr) B(dF) [2]
NTRU-2005 prime 2 1 + p ∗ F B(dg) B B(dr) B(dF) [3]

where
• Lm = {m ∈ R: m has coefficients lying between − 1

2 (p − 1) and 1
2 (p − 1)},

• L(d1, d2) = {F ∈ R : F has d1 coefficients equal 1, d2 coefficients equal −1, the rest 0},
• B denotes the set of all polynomials with binary coefficients,
• B(d) = {F ∈ R : F has d coefficients equal 1, the rest 0}.

Remark 1: Let us focus attention on the blinding value space Lr. We find that the inner product

rT r = r2
0 + r2

1 + · · · + r2
N−1

=

{
2dr f or NTRU − 1998;
dr f or NTRU − 2001 and NTRU − 2005.

is a constant, where r = (r0, r1, · · · , rN−1)T is a vector corresponding to r(x) ∈ Lr. Note that increasing
the number of recipient’s ciphertext can’t change plaintext vector m, but increases the number of blinding
value vector r respectively. It’s is a heavy curse of recovering the plaintext vector m. Hence, we should
eliminate the blinding value vector or error vector r.

2.3 The Linear Form of NTRU and Circular Matrix

In NTRU, for a polynomial f ∈ R, we can represent f as

f =
N−1∑
i=0

fixi.

It is equivalent to
f = ( f0, f1, · · · , fN−1)T .

It’s easy to verify the corresponding vector of f ∗ g in R is
f0 fN−1 . . . f1
f1 f0 . . . f2
...

...
. . .

...

fN−1 fN−2 . . . f0




g0
g1
...

gN−1


In particular, even if fi or g j are functions about x, the formula above also holds.

Thus, we have the equivalent linear form of the formula (2.2)

c = Hr +m mod q. (2.3)

where

H =


h0 hN−1 . . . h1
h1 h0 . . . h2
...

...
. . .

...

hN−1 hN−2 . . . h0
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is a circular matrix in ZN×N
q . Obviously, HT is also a circular matrix over ZN×N

q .
As needed, we only consider the circular matrix over ZN×N

q . For simplicity, we give the following
convention: hN+i = hi,HN+i,N+ j = Hi, j. Clearly, if H ∈ ZN×N

q is a circular matrix if and only if Hi, j =

HN− j+i+1,1, for i, j ∈ {1, 2, · · · ,N}. And there are the following fundamental lammas (see [23]).

Lemma 2.1 If H ∈ ZN×N
q is an invertible circular matrix over ZN×N

q , then H−1 is also a circular matrix
over ZN×N

q .

Lemma 2.2 If G,H ∈ ZN×N
q are circular matrixs, then GH is also a circular matrix. In particular, HT H

is a symmetric circular matrix.

We show how to get H−1 and HT H in O(N2) arithmetic operations respectively in Appendix A.
Of course, if N is taken to be large, then it might be faster to use Fast Fourier Transforms to compute
products HT H in O(N log N) operations. However, it doesn’t impact the final complexity. What’s more,
it’s easy to prove the following theorem.

Theorem 2.3 If G,H ∈ ZN×N
q are circular matrixes, which are corresponding to g =

∑N−1
i=0 gixi and

h =
∑N−1

i=0 hixi respectively, then GH = I mod q if and only if g ∗ h = 1 over Zq[x]/(xN − 1), where I is
an identity matrix of order N.

2.4 The Proportion of the Matrices of Rank n in Z(n+l)×n
q

Here, we discuss a general problem: how big is l, then the linear system L×Y = S mod q only has a single
solution with very high probability? Of course, the vector S ∈ Zn+l

q , the (random) matrix L ∈ Z(n+l)×n
q and

the modulus q are known and we know that there is at least one solution. Clearly, that there is a single
solution is equivalent to that the rank of L equals to n. Now, we distinguish two cases:
• For the case l = 0, if the matrix L is invertible modulo q, then there is only one solution.

Nguyen in [17] gave the following result estimating the proportion of invertible matrices modulo q
among all matrices:

Theorem 2.4 Let q be a power of prime p. Consider the ring of n × n matrices with entries in Zq. Then
the proportion of invertible matrices (i.e., with determinant coprime to q) is equal to:

n∏
k=1

(1 − p−k).

• For the case l = 1 or 2, it’s easy to obtain the following generalization of Theorem 3 in [17]:

Theorem 2.5 Let Fq be the finite field with q elements, where q is a prime power. The proportion of
matrices of rank n in the set of (n + l) × n matrices with entries in Fq is equal to:

n+l∏
k=l+1

(1 − q−k), l = 1, 2.

For the sake of completeness, detailed proof is provided in Appendix B. Note that the above proportions
converge quickly to their limit. The result of numerical experiment shows that the proportion can be
considered as constant for high dimensions (higher than 50). Table 1 gives numerical results for the case
l = 0, 1, and 2.
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Table 1. The proportion of the matrices of rank n in Z(n+l)×n
q

q 3 59 64 128 197 251 256 367 587
l = 0 0.560 0.983 0.289 0.289 0.995 0.996 0.289 0.997 0.998
l = 1 0.840 0.9997 0.9997 0.9999 0.99997 0.99998 0.99999 0.999993 0.999997
l = 2 0.945 0.999995 0.999996 1.000 1.000 1.000 1.000 1.000 1.000

It shows that if l = 0, the random matrix L is invertible modq with non-negligible probability, and
with very high probability for p > 59. And we see that for the case l = 1, there is a single solution with
very high probability.

3 The Broadcast Attacks against NTRU

3.1 Analyse the ergodic-linearization algorithm against GGH

We first analyse the ergodic-linearization algorithm [12, 13, 14] against the original GGH, which natu-
rally deduce the broadcast attacks against NTRU.

For the formula (2.1), we do the ergodic on the error set to get

(
N−1∑
j=0

Bi+1, j+1m j − ci − σ)(
N−1∑
j=0

Bi+1, j+1m j − ci + σ) = 0, i = 0, 1, · · · ,N − 1.

It’s equivalent to do square:

(
N−1∑
j=0

Bi+1, j+1m j − ci)2 = σ2, i = 0, 1, · · · ,N − 1. (3.1)

Then we assign m2
0,m0m1, · · · ,m0mN−1,m2

1, m1m2, · · · ,m1mN−1, · · · ,m2
N−1,m0,m1, · · · ,mN−1 new vari-

ables {yi}
N2+3N

2
1 . This linearization will produce N linear equations from every recipient’s ciphertext in the

form of
ai

T Y = σ2 − c2
i , i = 0, 1, · · · ,N − 1,

where Y = (y1, y2, · · · , y N2+3N
2

)T . What’s more, a0, a1, · · · , aN−1 are linearly independent, unless there

exists ci = 0 to make them linearly dependent possibly. Hence, we need at least dN+3
2 e recipients’

ciphertexts and the corresponding public keys to obtain a system of linear congruence equations L×Y =
S, where L is a N2+3N

2 × N2+3N
2 matrix, and S is a constant vector. And we can find m by solving the

above set of linear equations over Z.
Another way is to take the sum of the equation (3.1) for i = 0, 1, · · · ,N − 1, which is equivalent to

do the inner product
(c − Bm)T (c − Bm) = rT r.

Note that rT r = Nσ2, we get
mT BT Bm − 2cT Bm = Nσ2 − cT c. (3.2)

Then we treat (3.2) in the same way as above. This linearization will produce one linear equation from
every recipient’s ciphertext in the form of aT Y = Nσ2 − cT c. Hence, we need at least N2+3N

2 recipients’
ciphertexts/public-keys pairs to obtain a system of linear congruence equations L × Y = S.

Obviously, for another encoding method Br +m = c, first we get

det(L(R))r = B̃c − B̃m,
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then we can do something similar.
For GGH-2009, we modify the decryption equation to get

2c −


1
1
...

1

 = 2Bm + 2r −


1
1
...

1

 mod p.

Let ĉ = 2c − (1, 1, · · · , 1)T , B̂ = 2B and r̂ = 2r − (1, 1, · · · , 1)T , then we have

ĉ = B̂m + r̂ mod p, (3.3)

where r̂ ∈ {−1, 1}N . Then we can treat (3.3) in the same way as that for the original GGH.
Remark 2: Obviously, doing the inner product is worse than doing square, because the public key B

has no good global property as the matrix Ĥ in NTRU, which is an invertible circular matrix. Nonethe-
less, this method naturally deduces the broadcast attack against NTRU.

3.2 How to do the Broadcast Attacks against NTRU

According to Subsection 2.3, it’s equivalent to consider the linear form of NTRU over Zq. If H is
invertible in ZN×N

q , obviously we can easily get the equation below from (2.3)

H−1m + r = H−1c mod q.

Let Ĥ = H−1,b = H−1c mod q, then we have

Ĥm + r = b mod q. (3.4)

Usually, H is invertible in ZN×N
q with high probability in NTRU-2001 with an odd dg and NTRU-2005

with gcd(q, dg) = 1 (the proportion of invertible elements is close to 1, which can be computed as in
[24]). Hence, we can easily choose H which is invertible, then get an invertible circular matrix Ĥ and it
requires O(N2) arithmetic operations from Lemma 2.1. Another way to estimate whether H is invertible
in ZN×N

q or not is to observe whether gcd(det(L), q) = 1 or not.
However, for NTRU-2001 with an even dg and NTRU-2005 with q | dg, H is not invertible. We need

some extra restrictions: q | dr, to get an invertible H. In addition, H is not invertible in NTRU-1998.
Luckily, the public key h is “pseudo-invertible" modq with overwhelming probability. More precisely,
there is the following result [25].

Lemma 3.1 For any public key h in NTRU-1998, there exists a polynomial h′ ∈ R with overwhelming
probability such that for any r ∈ Lr

h′ ∗ h ∗ r = r mod q.

It requires O(N2) arithmetic operations.

It also holds true for NTRU-2001 with q = dr and NTRU-2005 with q | dr.
One takes NTRU-2005 with q | dr as an example to explain how to find h′ in polynomial time as

follows. If gcd(q, dg) = 1, then H is invertible in ZN×N
q with high probability, as mentioned in [24].

Hence, we can assume that q | dg. Since Rq = Zq[x]/(xN − 1) is isomorphic to P1 × P2 where P1 =

Zq[x]/(x − 1) and P2 = Zq[x]/(xN−1 + xN−2 + · · · + 1), we have

φ : Rq→̃P1 × P2.
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Since h(1) = 0 mod q, we have φ(h) = (0, h̄) (therefore h is not invertible in Rq), where h̄ denotes the
reduction of h modulo xN−1+ xN−2+ · · ·+1. Note that xN−1+ xN−2+ · · ·+1 is an irreducible polynomial,
the proportion that the (random) h̄ is invertible in P2 with very high probability (it’s equal to 1 − q1−N).
We denote its inverse in P2 by h̃, then h̄ ∗ h̃ = 1 over P2. Using Extended Euclidean Algorithm for
xN−1 + xN−2 + · · · + 1 and h̄ in Zq[x], we can get h̃ with O(N2) arithmetic operations (see [26], pp.71-
72, Corollary 4.6). Meanwhile, using the above algorithm, we compute polynomials u and v satisfying
(xN−1 + xN−2 + · · · + 1)u + (x − 1)v = 1. Then the Chinese Remainder Theorem tells us that

h′ = φ−1((1, h̃))

= (xN−1 + xN−2 + · · · + 1)u + (x − 1)vh̃

= 1 + (x − 1)v(h̃ − 1) mod(xN − 1)

in Rq and it uses O(N2) arithmetic operations. Since φ(h′ ∗ h) = (1, h̃)(0, h̄) = (0, 1), we can set

h′ ∗ h = ω(x)(xN−1 + xN−2 + · · · + 1) + 1 mod q,

where ω(x) satisfies Nω(1) + 1 = 0 mod q. Hence, together with q | dr, for r ∈ B(dr) we have

h′ ∗ h ∗ r

= (1, x, · · · , xN−1)


ω(x) + 1 ω(x) . . . ω(x)
ω(x) ω(x) + 1 . . . ω(x)
...

...
. . .

...

ω(x) ω(x) . . . ω(x) + 1

 r mod q

= (1, x, · · · , xN−1)r = r mod q.

Let

H′ =


h′0 h′N−1 . . . h′1
h′1 h′0 . . . h′2
...

...
. . .

...

h′N−1 h′N−2 . . . h′0


then we have

H′m + r = H′c mod q

from (2.3). Note that h′′ = φ−1((1, h̄)) is the invertible element of h′, then H′ is an invertible circular
matrix from Theorem 2.3. Similarly, let Ĥ = H′,b = H′c mod q, then we also get the formula (3.4).

With the analysis above, it’s natural to get the follow theorem.

Theorem 3.2 Given a uniformly random instance of NTRU-1998, NTRU-2001 with an odd dg, NTRU-
2001 with q = dr, NTRU-2005 with gcd(q, dg) = 1 and NTRU-2005 with q | dr, i.e. for any message m,
ciphertext c, public key H (or polynomial h) and the corresponding blinding value vector r, there exists
a polynomial time algorithm that on input H or h outputs an invertible circular matrix Ĥ with very high
probability, such that

Ĥm + r = b mod q,

where b = Ĥc mod q. It requires O(N2) arithmetic operations.

Based on Theorem 3.2, we can obtain the following main theorem.
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Theorem 3.3 For the NTRU-1998 (also NTRU-2001 with an odd dg, NTRU-2001 with q = dr, NTRU-
2005 with gcd(q, dg) = 1 and NTRU-2005 with q | dr) cryptosystem with enough (reaches O( 3N

2 )) in-
dependent recipients’ ciphertexts and corresponding public keys known, there exists a polynomial time
algorithm to recover the plaintext successfully.

Proo f . Algorithm consist of three steps.
Step 1. Separating r from Hr and Derandomization

By the Theorem 3.2, we can get
r = b − Ĥm mod q.

Then, we do the inner product

(b − Ĥm)T (b − Ĥm) = rT r mod q.

Note that rT r = d is a constant, we get

mT ĤT Ĥm − 2bT Ĥm = d − bT b mod q. (3.5)

From Lemma (2.2), ĤT Ĥ is a symmetric circular matrix.
Step 2. Linearization
We linearize the equations (3.5). Let d − bT b = s, bT Ĥ = (w0,w1, · · · ,wN−1) and

ĤT Ĥ =


a0 aN−1 . . . a1
a1 a0 . . . a2
...

...
. . .

...

aN−1 aN−2 . . . a0


where ai = aN−i, for i ∈ {0, 1, · · · ,N − 1}. From (3.5), we can get

a0(m2
0 + m2

1 + · · · + m2
N−1)

+ a1(m1m0 + m2m1 + · · · + m0mN−1)

+ · · · · · · · · · · · ·

+ aN−1(mN−1m0 + m0m1 + · · · + mN−2mN−1)

− 2w0m0 − 2w1m1 − · · · − 2wN−1mN−1 = s mod q (3.6)

Let xi = mim0+mi+1m1+ · · ·+mN−1mN−i−1+m0mN−i+ · · ·+mi−1mN−1, for i = 0, 1, · · · ,N −1. Note that
N is an odd prime, ai = aN−i and xi = xN−i for i ∈ {0, 1, · · · ,N − 1}, then the formula (3.6) is equivalent
to

a0x0 + 2a1x1 + · · · + 2a[ N
2 ]x[ N

2 ] − 2w0m0 − 2w1m1 − · · · − 2wN−1mN−1 = s mod q. (3.7)

Of course, even if N is even, we can easily obtain the same result.
Furthermore, NTRU is easily seen to be semantically insecure, since r(1) = 0 in NTRU-1998 or

r(1) = dr in NTRU-2001 and NTRU-2005. From formula (2.2), we get

h(1)r(1) + m(1) = c(1) mod q,

For several variants of NTRU, we distinguish three cases:
• For NTRU-1998, we can easily get

m0 + m1 + · · · + mN−1 = c(1) mod q. (3.8)
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and
(m0 + m1 + · · · + mN−1)2 = (c(1))2 mod q.

The formula above is equivalent to

x0 + 2x1 + · · · + 2x[ N
2 ] = c(1)2 mod q. (3.9)

By combining the formulae (3.7) and (3.9), we can get

2(a1 − a0)x1 + · · ·+ 2(a[ N
2 ] − a0)x[ N

2 ] − 2w0m0 − 2w1m1 − · · · − 2wN−1mN−1 = s− a0c(1)2 mod 2k. (3.10)

What’s more, there is a positive integer u ≥ 1 such that 2u divides the greatest common divisor of all the
coefficients but 2u+1 can not. If u ≥ k, then the equation (3.10) is noneffective. And in fact u = 1 holds
for very high probability. We just use those samples in which u = 1, so we have

(a1 − a0)x1 + · · · + (a[ N
2 ] − a0)x[ N

2 ] − w0m0 − w1m1 − · · · − wN−1mN−1 =
s − a0c(1)2

2
mod 2k−1.

Notice that the formula (3.8) can be obtained from any other recipient’s ciphertext. Hence we need at
least N + [ N

2 ] − 1 recipients’ ciphertexts and the corresponding public keys to obtain a system of linear
congruence equations

L × Y = S mod 2k−1,

where L is a (N + [ N
2 ])× (N + [ N

2 ]) matrix, Y = (x1, x2, · · · , x[ N
2 ],m0,m1, · · ·+mN−1)T and S is a constant

vector. However, in the practical experiments, we take L ∈ ZQ×(N+[ N
2 ])

q to guarantee that the rank of L
equals to N + [ N

2 ], where Q = N + [ N
2 ] + l, l ∈ N. Fortunately, in practice scheme q = 128, 256 or other

larger number of the form 2k, Table 1 in Section 2.4 indicates that even if we take l = 1, the rank of the
random matrix L equals to N + [ N

2 ] with very high probability (close to 1).
• For NTRU-2001 with an odd dg and NTRU-2001 with q = dr, since m2

i = mi holds for mi ∈ {0, 1}, we
have

2a1x1+2a2x2+ · · ·+2a[ N
2 ]x[ N

2 ]+(a0−2w0)m0+(a0−2w1)m1+ · · ·+(a0−2wN−1)mN−1 = s mod q. (3.11)

Similar to NTRU-1998, we can easily get

m0 + m1 + · · · + mN−1 = c(1) − drh(1) mod q. (3.12)

and
(m0 + m1 + · · · + mN−1)2 = (c(1) − drh(1))2 mod q.

The formula above is equivalent to

2x1 + 2x2 + · · · + 2x[ N
2 ] = c(1) − drh(1) − 1)(c(1) − drh(1)) mod q

By combining the formulae (3.11) and (3.12), we can get

2a1x1 + 2a2x2 + · · · + 2a[ N
2 ]x[ N

2 ] − 2w0m0 − 2w1m1 − · · · − 2wN−1mN−1 = s − a0(c(1) − drh(1)) mod q.

There is a positive integer u ≥ 1 such that 2u divides the greatest common divisor of all the coefficients
but 2u+1 can not. Similar to NTRU-1998, u = 1 holds for very high probability. We just use those
samples in which u = 1, so we have

a1x1 + a2x2 + · · · + a[ N
2 ]x[ N

2 ] − w0m0 − w1m1 − · · · − wN−1mN−1 =
s − a0(c(1) − drh(1))

2
mod 2k−1.
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and
x1 + x2 + · · · + x[ N

2 ] =
c(1) − drh(1) − 1)(c(1) − drh(1))

2
mod 2k−1. (3.13)

Notice that the two formulae (3.12) and (3.13) can be obtained from any other recipient’s ciphertext.
Hence, we need at least N + [ N

2 ] − 2 recipients’ ciphertexts/public-keys to obtain a system of lin-
ear congruence equations L × Y = S mod 2k−1, where L is a (N + [ N

2 ]) × (N + [ N
2 ]) matrix, Y =

(x1, x2, · · · , x[ N
2 ],m0,m1, · · · + mN−1)T and S is a constant vector. However, in the practical experiments,

we take L ∈ ZQ×(N+[ N
2 ])

q to guarantee that the rank of L equals to N + [ N
2 ], where Q = N + [ N

2 ] + l, l ∈ N.
Table 1 in Section 2.4 indicates that even if we take l = 1, the rank of L equals to N + [ N

2 ] with very high
probability (close to 1).
• For NTRU-2005 with gcd(q, dg) = 1 and NTRU-2005 with q | dr, since m2

i = mi holds for mi ∈ {0, 1},
similar to NTRU-2001, we have

m0 + m1 + · · · + mN−1 = c(1) − drh(1) mod q, (3.14)

2x1 + 2x2 + · · · + 2x[ N
2 ] = c(1) − drh(1) − 1)(c(1) − drh(1)) mod q (3.15)

and

2a1x1+2a2x2+· · ·+2a[ N
2 ]x[ N

2 ]−2w0m0−2w1m1−· · ·−2wN−1mN−1 = s−a0(c(1)−drh(1)) mod q. (3.16)

Since q is a odd prime, there exist the inverse of 2 mod q. Thus, the formulae (3.15) and (3.16) are
equivalent to

x1 + x2 + · · · + x[ N
2 ] = s′ mod q. (3.17)

and
a1x1 + a2x2 + · · · + a[ N

2 ]x[ N
2 ] − w0m0 − w1m1 − · · · − wN−1mN−1 = s′′ mod q. (3.18)

Notice that the two formulae (3.14) and (3.17) can be obtained from any other recipient’s ciphertext.
Hence, we need at least N+[ N

2 ]−2 recipients’ ciphertexts/public-keys to obtain a system of linear congru-
ence equations L×Y = S mod q, where L is a (N+[ N

2 ])×(N+[ N
2 ]) matrix, Y = (x1, x2, · · · , x[ N

2 ],m0,m1, · · ·+

mN−1)T and S is a constant vector. However, in the practical experiments, we take L ∈ ZQ×(N+[ N
2 ])

q to
guarantee that the rank of L equals to N + [ N

2 ], where Q = N + [ N
2 ] + l, l ∈ N. NTRU-2005 in [3] takes

q = 197, 251, 367 or larger primes in practice scheme, Table 1 indicates that even if we take l = 0, the
rank of L equals to N + [ N

2 ] with very high probability (close to 1).
Step 3. Solving the system of linear congruence equations
We use Gaussian elimination to solve

L × Y = S mod q′.

and the output (m0,m1, · · · + mN−1) is the plaintext m. It requires O(N3) arithmetic operations (see [27],

pp.47-48, Algorithm 2.2.1). More accurately, since L ∈ Z(N+[ N
2 ]+l)×(N+[ N

2 ])
q and the rank of L equals to

11



N + [ N
2 ], we apply Gaussian elimination to (L|S) mod q′ and get

u11 u12 · · · u1n v1
u22 · · · u2n v2

. . .
...
...

unn vn

0
...0
0



 n

 l

︸                    ︷︷                    ︸
n

︸︷︷︸
1

(3.19)

where n = N + [ N
2 ] and uii , 0, i = 1, 2, · · · , n. Thus, we use back substitution method to solve

mN−1,mN−2, · · · ,m1, not the whole Y.
Another way is to use the Hermite Normal Form. For L = (L1,L2, · · · ,LN+[ N

2 ]), we set L =
(L[ N

2 ]+1,L[ N
2 ]+2, · · · , LN+[ N

2 ],L1,L2, · · · ,L[ N
2 ]) and Y = (m0,m1, · · · ,mN−1, x1, x2, · · · , x[ N

2 ])
T . We com-

pute the Hermite Normal Form B of L
T

: B = L
T

U, where U ∈ Z(n+l)×(n+l)
q′ is a unimodular matrix (see

[27], pp.69, Algorithm 2.4.6), then get BT Y = UT S mod q′ by multiplying UT , finally by iteration solve
m0,m1, · · · ,mN−1 in turn, not the whole Y. �

Specifically, we have the following result (l ∈ N):
Variant N the number of variables Recipients Binary length Time

NTRU-1998 N N + [ N
2 ] = O(3N/2) N + [ N

2 ] − 1 + l O(log N + 2 log(q − 1) + 1) O(N3)
NTRU-2001 N N + [ N

2 ] = O(3N/2) N + [ N
2 ] − 2 + l O(log N + 2 log(q − 1) + 1) O(N3)

NTRU-2005 N N + [ N
2 ] = O(3N/2) N + [ N

2 ] − 2 + l O(log N + 2 log(q − 1) + 1) O(N3)

Pan and Dent in [11] give the following result:
Variant N the number of variables Recipients Time

NTRU-1998 N O(N3/6) O(N2/6) O(N9)
NTRU-2001 N O(N2/2) O(N/2) O(N6)
NTRU-2005 N O(N2/2) O(N/2) O(N6)

Remark 3: Compare the two tables above, our method is very efficient in the number of variables
and time complexity. In particular, for NTRU-1998 our method is very efficient and better than that in
[11]. We eliminate the blinding value vector r directly and entirety by doing the inner product from
every recipient’s ciphertext, differ from eliminating r by using ergodic in [11]. Clearly, our algorithm
also holds in the case that N is even. However, it doesn’t work against NTRU with encryption padding.

4 Experimental Results

All experiments were performed on a Windows XP system with a 2.93 GHz Pentium 4 processor and 4
GByte RAM using Shoup’s NTL library version 5.4.1 [28].

We implemented the broadcast attacks against three variants of NTRU. For NTRU-1998 and NTRU-
2001, we adopted the algorithms for u = 1. In our experiments, we always obtained an matrix L, whose
the rank equals to N+ [ N

2 ]. And the number of recipients is just a little more than the number of variables
(denoted by T). Since the number of variables is small, the experiment evidence indicates that our
algorithm can efficiently broadcast attack against NTRU with the big parameters. Some results against
NTRU with the highest security parameters are listed below:
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Variant N q p d f dg dr T Recipients Rank(L) Result
NTRU-1998 503 256 3 216 76 55 754 757 754 success
NTRU-2001 503 256 3 216 75 55 754 764 754 success
NTRU-2005 503 257 2 216 72 55 754 757 754 success

5 Conclusion

In this paper, we first discuss Ding’s algorithm against GGH, then naturally deduce new and uniform
broadcast attacks against several variants of NTRU, which is based on the special structure of blinding
value space Lr. From which we can see two main lines to study the algebraic broadcast attacks: one
is decreasing the number of variables; the other is increasing the number of equations. Now, the main
question is that how to do the broadcast attacks against NTRU, GGH and other cryptosystems more
efficiently if the error vectors lack of the special structure.
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Appendix A: How to get H−1 and HT H

We set g = (g0, g1, · · · , gN−1)T satisfying
h0 hN−1 . . . h1
h1 h0 . . . h2
...

...
. . .

...

hN−1 hN−2 . . . h0




g0
g1
...

gN−1

 =

1
0
...

0

 mod q,

then g has a unique solution over ZN
q since H ∈ CN×N is invertible over ZN×N

q . It requires O(N2) arithmetic
operations (see [27], pp.47-49, Algorithm 2.2.1). Then

H−1 =


g0 gN−1 . . . g1
g1 g0 . . . g2
...

...
. . .

...

gN−1 gN−2 . . . g0

 .
Because, for any vector v = (v0, v1, · · · , vN−1)T , we denote by v(i) its i-cycle:

v(i) =

{
v i = 0;
(vN−i, vN−i+1, · · · , vN−1, v0, v1, · · · , vN−i−1)T , i ∈ {1, 2, · · · ,N − 1}.

Then Hg(i) = Ei+1 mod q, where Ei is a column vector whose i-th entry is 1 and else are 0.
If G,H ∈ ZN×N

q are circular matrixs, for i, j ∈ {1, 2, · · · ,N}, we have

(GH)i, j = gi−1hN− j+1 + gi−2hN− j+2 + · · · + gihN− j

=

N−1∑
l=0

glhN− j+i−l,

(GH)N− j+i+1,1 = gN− j+ih0 + gN− j+i−1h1 + · · · + gN− j+i+1hN−1

=

N−1∑
l=0

glhN− j+i−l.

Hence, (GH)i, j = (GH)N− j+i+1,1, for i, j ∈ {1, 2, · · · ,N}, i.e. GH is also a circular matrix. In particular,
HT H is a symmetric circular matrix. Hence, (HT H)i,1 = (HT H)1,i = (HT H)N+2−i,1, for i ∈ {1, 2, · · · ,N}.
It’s sufficient to calculate {(HT H)1,1, (HT H)2,1, · · · , (HT H)[ N

2 ]+1,1}, which requires (2N − 1)([ N
2 ] + 1)

arithmetic operations.

Appendix B: Proof of Theorem 2.5

Theorem 2.5 is equivalent to consider the set of n × (n + l) matrices with entries in Fq. We count the
number of matrices of the form (b1,b2, · · · ,bn+1) of rank n, where bi ∈ Z

n
q. Denote by Bk the subspace

spanned by b1,b2, · · · ,bk, with the convention B0 being the nullspace. Recall that a k-dimensional
subspace has cardinality qk. For each family (b1,b2, · · · ,bn+1) of rank n, there exists a unique i such that
b1,b2, · · · ,bi−1 are linearly independent, bi ∈ Bi−1, and for all j > i,b j < B j−1. There are

∏i−2
k=0(qn − qk)
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possibilities for b1,b2, · · · ,bi−1. There are qi−1 choices for bi. And there are
∏n−1

k=i−1(qn−qk) possibilities
for bi+1,bi+2, · · · ,bn+1. It follows that the total number of families is:

n+1∑
i=1

qi−1
n−1∏
k=0

(qn − qk) = qn(n+1)
n+1∏
k=2

(1 − q−k).

Now, consider a family (b1,b2, · · · ,bn+2) of rank n. There exists a unique (i, j) with i < j such that
b1,b2, · · · ,bi−1 are linearly independent, bi ∈ Bi−1, for all i < t < j, bt < Bt−1, b j ∈ B j−1 and for
all t > j, bt < Bt−1. That way, we know the dimension of Bt for all t, and therefore, the number of
(b1,b2, · · · ,bn+2) corresponding to a given (i, j) is:

i−2∏
k=0

(qn − qk) × qi−1 ×

j−3∏
k=i−1

(qn − qk) × q j−2 ×

n−1∏
k= j−2

(qn − qk).

It follows that the total number of families of rank n is:

n−1∏
k=0

(qn − qk) ×
n+1∑
i=1

n+2∑
j=i+1

qi+ j−3.

Then computer the double sum:

n+1∑
i=1

n+2∑
j=i+1

qi+ j−3 =

n+1∑
i=1

qi+n − q2i−2

q − 1
=

(qn+2 − 1)(qn+1 − 1)
(q − 1)(q2 − 1)

.

Therefore, the number of families is:

qn(n+2)
n+2∏
k=3

(1 − q−k).

Note: The proof above is modelled on the proof of Theorem 3 in [17].
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