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Abstract

MQ—DRBG is a pseudorandom number bit generator proposed for international stan-
dardization by the French national organization for Standardization (AFNOR). It makes
use of a specific instantiation of a one-way function S : Fn

2 → F
n+r
2 based on quadratic

multivariate polynomials. We describe two methods for constructing function S, satisfying
requirements of the proposed draft, but having less security level.

1 Introduction

In 2010 AFNOR proposed a deterministic pseudorandom number bit generator based
on quadratic multivariate polynomials. The security of the generator could be described
in terms of complexity of solving of the corresponding system of multivariate quadratic
equations. In [4] the specialists from AFNOR present the following arguments in favor of
MQ—DRBG:

• well-studied security, based on MQ-problem, which is known to be NP -hard;

• based on elementary operations AND XOR;

• MQ—DRBG is slower than generators based on block ciphers and hash functions,
but provably secure;

• MQ—DRBG is much faster than public-key primitives.

In [3] the security of the generator is described in terms of provable security. This
approach allows to show that system of functions defining MQ—DRBG satisfies the re-
quirements of ISO/IEC 18031 [7] and well-known BSI’s reference document for evaluating
pseudorandom number generators AIS20 [8] in case of a random choice of the system and
a random choice of the initial state.

The defense against the malicious developer, who tries to deliberately implement
”weak” instances of cryptographic algorithms, is one of the challenges for cryptographers
nowadays. In case of MQ—DRBG this problem could be rather serious.
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Identification schemes based on the Isomorphism of Polynomials are widely studied
lately. Such schemes ([10],[11],[12],[13]) exploit the idea of selecting the easily-invertible
systems of nonlinear polynomials and hide them with secret affine (linear) transformations.
The resulting system, being supposedly indistinguishable from random, should be hard
to solve.

One of the questions concerning MQ—DRBG is the possibility of constructing ”weak”
instances of multivariate quadratic equations (with less security than stated in [5]), which
could be mapped later to ”random” ones.

It should be mentioned that in [11] this problem of ”hiding” polynomials is described
in the following way. Let F (x) = (f1(x), . . . , fr(x)) and G(x) = (g1(x), . . . , gr(x)) – two
systems of quadratic equations. We have to check the existence of two invertible affine
(linear) transformations S and U satisfying the following property:

G(x) = U(F (S(x))).

If U – is a identity matrix, the problem is called the Isomorphism of Polynomials with one
secret (IP1S), and IP2S in the other case. In [15] an algorithm to solve IP1S is presented
in case that F and G are known. The complexity of the algorithm is O(n6), where n – is
the number of variables.

In case of MQ—DRBG implemented by malicious developer we can’t suppose that
”weak” G is known, so the mentioned algorithm is not applicable directly.

Further, we will study the possibility of constructing ”weak” instances of multivariate
quadratic equations, satisfying the requirements of [5], which could be solved with less
complexity than stated in [5].

Organization of the paper. In section 2 we recall basic notations and facts
about multivariate quadratic equations. In section 3 we describe the specifications of
MQ—DRBG. In section 4 we propose two methods for constructing multivariate quadratic
equations defining MQ—DRBG, which could be solved using guess-and-determine and
meet-in-the-middle techniques and their combination with less complexity than stated in
[5].

2 Basic notations and definitions

We denote Fn – the set of all boolean functions of n variables and AGL – the group
of affine transformations (affine group) over Vn = {0, 1}n. Let wt(f) be the weight of
function f ∈ Fn, and (α, x) is the scalar multiplication of binary vectors α, x ∈ Vn.

Definition 1. Functions f1, f2 ∈ Fn are called affine equivalent, if there exists a pair
(A, γ) ∈ AGL such, that f1(x · A ⊕ γ) = f2(x) for all x ∈ F

n
2 . We will use the notation

f1 ∼
AGL f2 to denote affine equivalence.

The following theorem describes three classes of quadratic functions (see [1],[2]).
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Theorem 1. Let f – be a quadratic boolean function from Fn, then f is affine equivalent
to one of the following types:

qk1(x1, . . . , xn) = x1x2 ⊕ . . .⊕ x2k−1x2k ⊕ 1,

qk2 (x1, . . . , xn) = x1x2 ⊕ . . .⊕ x2k−1x2k,

qk3(x1, . . . , xn) = x1x2 ⊕ . . . ⊕ x2k−1x2k ⊕ x2k+1.

The number 2k, 0 � k � [n/2], is called the rank of quadratic function. Each of
the forms qki i = 1, 3 has the weight 2n−1 ± 2n−k−1, 2n−1 correspondingly and belongs
to separate orbits (see [2]), induced by AGL. The set of all quadratic and linear boolean
functions is closed relatively to the operation of addition and form a Reed-Muller linear
code of order 2 which is denoted as RM(2, n).

Let us also denote
Ai = | {f ∈ RM(2, n) | wt(f) = i} |,

then the following theorem is correct.

Theorem 2 ([1]). For RM(2, n) the weights Ai, i = 0, 2n takes the following values:
A0 = A2n = 1,

A2n−1−2n−k−1 = A2n−1+2n−k−1 = 2k(k+1) (2
n − 1)(2n−1 − 1) · . . . · (2n−2k+1 − 1)

(22k − 1)(22k−2 − 1) · . . . · (22 − 1)

for all 1 � k � [n/2]. Other Ai are equal to zero, except A2n−1, which could be found

from the equation
∑2n

i=0 Ai = 2
n2

2
+n

2
+1.

3 Description of MQ—DRBG

Let us consider the system of boolean quadratic functions of MQ—DRBG. The system
S consists of n+ r functions of n variables and degree 2. The system defines the mapping
Vn → Vn+r and i-th step of the generator could be described as follows:

• the value of initial state xi ∈ Vn is set up (the value is unknown to a cryptanalyst);

• we apply the mapping S on vector xi, and get S(xi) = (z||y), where y ∈ Vn, z ∈ Vr;

• xi+1 = y;

• z is a pseudorandom vector produced by the generator at the current step.

The last n functions define the transition function of internal states of the generator.
We will denote this system G(x), G : Vn → Vn. The first r functions define the output
function F (x), F : Vn → Vr. The described functions could be written in the following
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way:

F (x) =

⎛
⎜⎜⎜⎝

f1(x)
f2(x)
...

fr(x)

⎞
⎟⎟⎟⎠ , (1)

G(x) =

⎛
⎜⎜⎜⎝

fr+1(x)
fr+2(x)

...
fr+n(x)

⎞
⎟⎟⎟⎠ . (2)

where each of coordinate functions is a quadratic boolean function over n variables.
The system S should satisfy the following property.

Definition 2. The system of functions fi(x), i = 1, n + r is said to satisfy the AFNOR
property with parameters lmax and ρmin(n), if

- all multivariate quadratic functions fi(x), i = 1, n + r have the rank greater or equal
to ρmin(n),

- all sums of at most lmax functions have the rank greater or equal to ρmin(n).

For different security levels described in the informative part of [7] the authors of [5]
suggest different values of parameters n, r, ρmin(n), lmax and different finite fields, deter-
mined be the complexity of solving the corresponding system of multivariate quadratic
equations. We recall these values in the table below.

3.1 The guess-and-determine technique

Let us consider quadratic function

q = x1 (α1, y)⊕ . . .⊕ xk (αk, y) , y, αi ∈ Vk, i = 1, k,

of 2k variables where the functions x1, . . . , xk, (α1, y) , . . . , (αk, y) are linearly independent
over F2.

By applying nonsingular transformation of the variables z2i−1 = xi, z2i = (αi, y) i =
1, k we could map the quadratic function q to the following form:

q′(z1, . . . , z2k) = z1z2 ⊕ . . .⊕ z2k−1z2k

of the rank 2k.
Let us define the map τq : Vk → F2k :

τq(y) = (α1, y) ξ ⊕ . . . ⊕ (αk, y) ξ
2k−1

,
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80 n = r = 112 n = r = 128 n = r = 192 n = r = 256
2-TDEA GF (2),lmax = 4 GF (24),lmax = 5 GF (26),lmax = 5 GF (28),lmax = 5

ρmin(n) = 106 ρmin(n) = 30 ρmin(n) = 30 ρmin(n) = 30
112 n = 120, r = 112 n = r = 128 n = r = 192 n = r = 256

3-TDEA GF (2),lmax = 4 GF (2),lmax = 5 GF (24),lmax = 5 GF (24),lmax = 5
ρmin(n) = 114 ρmin(n) = 122 ρmin(n) = 44 ρmin(n) = 60

128 – n = r = 128 n = r = 192 n = r = 256
AES-128 GF (2),lmax = 4 GF (23),lmax = 5 GF (24),lmax = 5

ρmin(n) = 122 ρmin(n) = 60 ρmin(n) = 60
192 – – n = 200, r = 192 n = r = 256

AES-192 GF (2),lmax = 4 GF (22),lmax = 4
ρmin(n) = 192 ρmin(n) = 124

256 – – – n = 272, r = 256
AES-256 GF (2),lmax = 4

ρmin(n) = 264

Table 1: Values of parameters for MQ—DRBG

where
〈
ξ, ξ2, . . . , ξ2

k−1
〉

is the normal basis of F2k . Let us also define the map

πi : F2k → F2k , i = 0, k − 1:

πi(v) = ξ2
i
v, v ∈ F2k .

The map τq is linear and surjective. It’s linearity is obvious, and surjectivity follows
from

rank

⎛
⎜⎝

α1
...
αk

⎞
⎟⎠ = k.

More than that, πi is a nonsingular linear map. Let v = τq(y) ∈ F2k , then

πi(v) = (α1, y) ξ
2i+1 ⊕ . . .⊕ (αk, y) ξ

2i+2k−1
=

(
α
(i)
1 , y

)
ξ ⊕ . . .⊕

(
α
(i)
k , y

)
ξ2

k−1
. (3)

We have the following equation in the matrix form:⎛
⎜⎜⎜⎝

(
α
(i)
1 , y

)
...(

α
(i)
k , y

)

⎞
⎟⎟⎟⎠ = C ·

⎛
⎜⎝

(α1, y)
...

(αk, y)

⎞
⎟⎠ = C ·

⎛
⎜⎝

α1
...
αk

⎞
⎟⎠ ·

⎛
⎜⎝

y1
...
yk

⎞
⎟⎠ =

⎛
⎜⎝

α
(i)
1
...

α
(i)
k

⎞
⎟⎠ ·

⎛
⎜⎝

y1
...
yk

⎞
⎟⎠ , (4)

where C is a nonsingular matrix of size k × k over F2, α
(i)
j ∈ Vk, yj ∈ {0, 1}, j = 1, k.
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The vectors α
(i)
1 , . . . , α

(i)
k are linearly independent over F2, i = 1, k.

The map πi(τq(y)), i = 0, k − 1 defines the following quadratic function:

q′i = x1(α
(i)
1 , y)⊕ . . . ⊕ xk(α

(i)
k , y).

Due to the linear independence of the functions x1, . . . , xk, (α
(i)
1 , y), . . . , (α

(i)
k , y), the

rank of q′i is equal to 2k. Consider the linear combination

πi1(τq(y))⊕ . . .⊕ πid(τq(y)) = ξ2
i1
τq(y)⊕ . . .⊕ ξ2

id τq(y) = (ξ2
i1 ⊕ . . . ⊕ ξ2

id )τq(y).

This transformation is linear and nonsingular, because
〈
ξ, . . . , ξ2

k−1
〉

is the normal

basis of F2k .
The coefficients of element ⊕d

j=1πij(τq(y)) in the normal basis expansion define the
quadratic function

q′i1...id = q′i1 ⊕ . . .⊕ q′id .

The rank of q′i1...id is equal to 2k due to the nonsingularity of the transformations (the
proof of this fact is the same to the case d = 1 considered above). Thereby, all non-zero
combinations c1q

′
1 ⊕ . . . ⊕ ckq

′
k produce quadratic functions of the rank 2k, cj ∈ {0, 1},

j = 1, k.
We associate the quadratic form qi1 ⊕ . . .⊕ qid with the following binary vector in Vk:

(0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0)
i1 i2 id

Consider linear code C of length k and rank m, such that 2m − 1 ≥ n+ r, and all linear
combinations of at most 4 codewords are not equal to zero. If there exists the orthogonal
[k, k − m,d]code C⊥, where d > 4, we can construct the system of 2m − 1 quadratic
functions, each of the following form:

x1(α
(i)
1 , y)⊕ . . . ⊕ xk(α

(i)
k , y)⊕ (β, z) = γ,

where γ ∈ {0, 1} , β, z ∈ Vt and coordinates of vectors (x1, . . . , xk), y, z are variables of
the system.

Such systems could be solved in the following way. We assign variables x1, . . . , xk
with all possible values (this will require 2k operations). For each vector of values all
quadratic functions became linear, except the case when all variables are assigned with
zeros (the probability of that is 2−k and negligible). As a result we get the linear system
of k variables, which could be solved with complexity k3, and restore the initial vector.
The overall complexity is 2kk3 binary operations.

For example, the complexity of such an approach for MQ—DRBG with parameters
n = r = 112 (the corresponding linear code exists [2]) is 253(59)3 ≈ 271 binary operations,
instead of 280 suggested by [5].
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3.2 The meet-in-the-middle technique

In this section we are going to construct a system of multivariate quadratic functions
such, that corresponding systems of equations could be solved with the meet-in-the-middle
technique. In order to apply this technique, the output function should be equal to the
sum of two functions of independent variables.

Let us choose s quadratic functions hi(z1, . . . , zn/2), i = 1, s of n/2 variables, satisfying
the AFNOR property with parameters lmax and ρmin(n/2) ≥ ρmin(n)/2, and construct
the system defining generator in the following way.

(
F (x)
G(x)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(x1, . . . , xn/2)⊕ h1(xn/2+1, . . . , xn)

h2(x1, . . . , xn/2)⊕ h2(xn/2+1, . . . , xn)
...

hs(x1, . . . , xn/2)⊕ hs(xn/2+1, . . . , xn)

fs+1(x)
...

fn+r(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The first s functions in the system are the sums of the chosen functions of independent
variables and satisfy the AFNOR property with parameters lmax and ρmin(n). The rest
functions could be chosen at random with restrictions in order to satisfy the AFNOR
property with parameters lmax and ρmin(n).

We have to assess the complexity of solving such a system. The first step consists of
evaluating all the output vectors of function F ′ : Vn/2 → Vs

F ′(x1, . . . , xn/2) =

⎛
⎜⎜⎜⎝

h1(x1, . . . , xn/2)

h2(x1, . . . , xn/2)
...

hs(x1, . . . , xn/2)

⎞
⎟⎟⎟⎠ ,

which are the memory addresses, where we have to store the corresponding values of
the variables. This step requires 2n/2 operations of evaluating of function F ′(x), and
(n/2) ∗ 2s ∗ 2n/2−s = (n/2) ∗ 2n/2 bits of memory.

Suppose we know the output vector of MQ—DRBG, y = (y1, . . . , ys, ys+1, . . . , yr). At
the second step we have to evaluate vectors (v1, . . . , vs) = (y1, . . . , ys)⊕F ′(xin/2+1, . . . , x

i
n)

for all values of the variables (xin/2+1, . . . , x
i
n), i = 0, 2n/2 − 1. Further, we search through

all values (x̂1, . . . , x̂n/2) which are stored at address (v1, . . . , vs) and evaluate the output
vector of function F (x̂1, . . . , x̂n/2, x

i
n/2+1, . . . , x

i
n). In case the resulting value is equal to

the output vector of MQ—DRBG, we found the initial value. The second step requires
about 2n/22n/2−s evaluations of function F , in case, the mapping defining MQ—DRBG is
close to a random mapping.
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As a result the whole attack requires 2n/2 + 2n/22n/2−s evaluations of function F , or
2n/2 ∗ s ∗ 2n2 +2n/22n/2−s ∗ r ∗ 2n2 binary operations, considering that the multiplication
of a vector of length n by a (n× n)-matrix costs about n2 binary operations.

We conducted experiments, which showed that for several sets of parameters of
MQ—DRBG suggested in [5], the proposed systems could be constructed by random
choice.

For example, we constructed a system with s = 95 for parameters n = 200, r = 192,
which could be solved with complexity at about 2129, instead of 2192 suggested by [5].

Note, that one could also use the technique developed in the previous section to con-
struct described systems for arbitrary s.

4 Conclusion

The pseudorandom number bit generator proposed by French specialists is based on
the (pseudo)random system of multivariate quadratic equations with several properties
defined in [5]. The security of the generator is based on the well-known MQ-problem.
Since there is no method for generating such pseudo(random) systems described in [5],
we managed to propose to different techniques for constructing such systems of equations
which could be solved with less complexity than stated in [5]:

• The first technique is based on guessing the part of the variables, which leads to the
linearization. The possibility of constructing such systems is based on the existence
of a linear code with given parameters. For several parameters of MQ—DRBG such
codes are known to exist.

• The second technique exploits the meet-in-the-middle approach. For several param-
eters of MQ—DRBG one can construct such systems by random choice.

• One can use the combination of both techniques.

These examples show that restrictions for multivariate quadratic systems proposed
in [5] could not guarantee the corresponding security level stated in [5]. If there exists
a malicious developer, who could force the legitimate user to use ”weak” systems, the
attack, which exploits such systems could be effective. The systems could be hidden with
the Isomorphism of Polynomials.

As a result, we have to state that the main concern is the fact that the authors used,
first, the provable security approach while assessing the security of MQ—DRBG and,
second, the estimation of the complexity of solving multivariate quadratic equations with
universal methods. We believe that this could cause the underestimation while assessing
the security of a specific system of multivariate quadratic equations used as MQ—DRBG.
We have to mention that the security of standardized primitives is based mainly on the
analysis of the specific properties of cryptographic algorithms used within the primitive.
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