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Abstract. Recently, efficient implementation of cryptographic algorithms
on graphics processing units (GPUs) has attracted a lot of attention in
the cryptologic research community. In this paper, we deal with efficient
implementation of the ηT pairing on supersingular curves over finite fields
of characteristics 3. We report the performance results of implementa-
tions on NVIDIA GTX 285, GTX 480, Tesla C1060, and Tesla C2050
graphics cards. We have implemented ηT pairing in three different ways,
namely, one pairing by one thread (Implementation I), one pairing by
multiple threads (Implementation II), and multiple pairings by multiple
threads in a bitsliced fashion (Implementation III). The timing for Imple-
mentation III on a single GTX 285 is 1.47, 8.15, and 140.7 milliseconds
for ηT pairing over F397 , F3193 , and F3509 , respectively. On a single GTX
480, the throughput performance of Implementation III is 33710, 4970,
and 332 ηT pairings per second over F397 , F3193 , and F3509 , respectively.
To the best of our knowledge, this is the first implementation of ηT pair-
ing on GPU. Furthermore, it is currently the software implementation
that achieves the highest single-chip throughput for ηT pairing.
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1 Introduction

Use of graphics processing unit (GPU) to accelerate general computational ap-
plications is usually called “general-purpose computation on graphics processing
units” (GPGPU). GPGPU generally follows the paradigm of SPMD (Single Pro-
gram Multiple Data), in which many processors simultaneously execute the same
commands, much like they would do in SIMD (Single Instruction Multiple Data)
but with a more relaxed synchronization constraint. Unlike multi-core x86 mi-
croprocessors, GPUs usually have simpler instruction sets and smaller caches,
allowing most transistors to be used in arithmetic circuitries.
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In recent years, GPGPU has attracted a lot of attention in computational
research communities. For example, cryptographic algorithms are studied and
implemented on GPU, such as AES [9], RSA [10], and elliptic-curve point scalar
arithmetic [17]. Furthermore, cryptanalysis computation can also be carried out
with GPU [5, 6]. In particular, Bernstein et al. has demonstrated that GPGPU
can be more efficient and cost-effective than traditional CPU, e.g., a single
NVIDIA GTX 295 graphics card can complete 41.88 million modular multipli-
cations every second for 280-bit moduli, compared with 14.85 million achieved
by an Intel Core 2 Quad Q9550 CPU [5]. It is also shown that GPGPU can
be more efficient than several other platforms including AMD Phemon III and
Sony PlayStation3 [4]. Furthermore, it is shown that GPUs can perform not only
modular multiplications but also binary-field multiplications in, e.g., F2131 [2].

Recently, pairing-based cryptography has attracted a lot of attention in cryp-
tography due to its novel cryptographic applications such as identity-based en-
cryption. In this paper, we deal with efficient implementation of the ηT pairing
on supersingular curves over finite fields of characteristics 3. The timing of sev-
eral previously reported implementations of the Tate pairing is quite efficient
in both software and hardware platforms [7, 13]. However, to the best of our
knowledge, there are no reports on implementations of the ηT pairing.

We first report our experience implementing ηT pairing on NVIDIA GTX
285, GTX 480, Tesla C1060, and Tesla C2050 graphics cards. For multi-threaded
GPU implementation, efficient exploitation of the inherent parallelism in the
algorithms is of vital importance. We will show three different ηT pairing im-
plementation strategies in the following sections. In Implementation I, we use
one single thread per pairing computation, while in Implementation II, we use
multiple threads per pairing computation. In Implementation III, we compute
several parings using multiple threads in a bitsliced fashion at the same time.
For Implementation III, it takes 1.47, 8.15, and 140.7 milliseconds to compute
one ηT pairing over F397 , F3193 , and F3509 , respectively. On a single GTX 480,
the throughput performance of Implementation III is 33710, 4970, and 332 ηT
pairings per second over F397 , F3193 , and F3509 , respectively. To the best of our
knowledge, this is the first GPU implementation result for ηT pairing.

The rest of this paper is organized as follows. In Section 2, we will give some
necessary background information about the development environment and the
various NVIDIA GPUs that we use for our implementations. In Section 3, we
will present ηT pairing over F3m and our design that maps the mathematical
computation onto GPU. We will then describe our implementation in detail and
present the performance results in Section 4. Finally, we will conclude this paper
in Section 5.

2 NVIDIA GPU

In this section, we will give some background information about CUDA (Com-
pute Unified Device Architecture), the integrated development environment for
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NVIDIA GPU, as well as the various NVIDIA GPUs that we use for our imple-
mentations.

2.1 CUDA

CUDA allows application programmers to program NVIDIA GPU using a high-
level, C-like programming language [15]. A GPU program is then compiled as
follows. First, the usual C/C++ code running on CPU is separated and compiled
using a standard C/C++ compiler such as gcc. The other part of the program,
called the “kernel,” which is written with CUDA extension and targeted for
running on GPU, is compiled by nvcc, a proprietary CUDA compiler. The output
of nvcc is in a format called PTX (Parallel Thread eXecution), an assembly-
language-like intermediary language, which is translated into the real machine
code by CUDA driver before loading onto GPU.

CUDA adopts an SPMD paradigm, in which multiple data are processed
simultaneously. When launching a kernel, usually a large number of threads are
created to process a large amount of data in parallel. In order to reduce hardware
cost and allow transparent scalability, threads are organized according to a two-
level hierarchy in CUDA. Under this thread organization, each kernel uses one
single grid of thread blocks, each of which can consist up to several hundreds of
threads. The threads from a same thread block can share data and cooperate with
each other via shared memory and barrier synchronization primitives. Threads
from different thread blocks can not cooperate and hence must be able to run
independently.

2.2 G2xx series cards

We use NVIDIA GeForce 200 series cards as one of our target platforms. Each
GPU on such a card contains 2–30 streaming multiprocessors (SMs). Each SM
contains 8 ALUs (arithmetic-logic units; in CUDA’s own terminology, streaming
processors, or SPs) and 2 super function units (SFUs). For example, the GT200b
GPU on a GTX 285 graphics card contains 30 SMs, meaning that it has 240 SPs
(or “cores,”as NVIDIA puts it). Moreover, each SM has only one instruction de-
code and dispatch unit, so all of its 8 ALUs must execute the same instructions
simultaneously. In fact, to accommodate the throughput difference between in-
struction decoding and execution, CUDA defines a notion of minimal scheduling
unit called a “thread warp,” or simply a warp. On GT200b, one thread warp
consists of 32 threads. Therefore, on GT200b, each normal instruction for the
32 threads in a warp can be processed by the 8 SPs in 4 cycles.

Unlike SIMD, threads from the thread warp can diverge and execute different
commands at a cost of performance degradation. That is, if the threads of a same
warp have different commands to execute, then the execution of the warp will
be serialized. However, that threads of a warp can execute different commands
does not mean they should. On the contrary, all threads within the same warp
better execute the same commands as much as possible to make efficient use of
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the execution engine. Therefore, it is very important to use the warp unit wisely
to have an efficient GPU implementation.

CUDA also uses a multi-level memory model, which will be described in
detail below. We also describe the available memory for Compute Capability 1.3,
which is a way that NVIDIA differentiates the capabilities of GPUs of different
generations.

– Register file: 16384 32-bit registers, or a 64 KB register file on each SM. It
allows the fastest read-write operation to the data stored in it. Registers are
private and can only be read and written by the owning threads.

– Shared memory: 16 KB read-write memory on each SM. It is organized
into 16 32-bit banks and allows fast access (same speed as register file if no
bank conflict). Shared memory can only be read and written by the threads
belonging to the same thread block.

– Global memory: 1–2 GB read-write memory. This is known to be 100 times
slower in terms of latency than accessing shared memory. Global memory
can be read and written by all the threads on the GPU.

– Constant memory: 64 KB read-only memory. It is faster than global memory
because it is cached. Constant memory can only be read by all the threads
on the GPU.

Finally, we note that though each SM has a larger register file than shared
memory, registers are private to each thread and hence can not be shared across
different threads. Furthermore, registers can only be addressed from within in-
structions and hence are not as flexible as shared memory in terms of address-
ing modes. Therefore, it is important to use the shared memory efficiently. For
compute Capability 1.3, each SM can have up to 32 simultaneous warps (1024
threads), 16384 32-bit registers, and 16 KB shared memory. We are advised to
run as many thread blocks as possible under the resource constraints to allow ef-
ficient latency hiding. For example, consider a thread block consisting of 4 warps.
If we consider the maximal number warps per SM, then we are able to run up to
8 thread blocks per SM. However, if each thread uses 20 registers, then we can
only run 6 thread blocks per SM. If one thread block uses 4 KB shared memory,
then we are restricted to 4 blocks per SM. In conclusion, in order to obtain the
maximal performance, it is important to balance the number of parallel threads
per SM with register and shared memory usage.

2.3 G4xx series cards

In our implementation, we also use the GTX 480 graphics card, which uses the
new GF100 GPU chip. GF100 belongs to the Fermi architecture family and has
Compute Capability 2.x, whose most cited improvement over previous genera-
tions is the improved performance of double-precision floating-point arithmetic.
However, as we do not use double-precisions, this improvement is irrelevant in
the context of this paper, so we focus on the other aspects of the Fermi family
in the following discussion.
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In the new Fermi architecture, NVIDIA has renamed an SP to a CUDA core.
The number of CUDA cores per GPU is increased from 240 to 512, and each
SM now has 32 CUDA cores instead of 8 SPs. As a result, the total number of
SMs per GPU is decreased from 30 to 16. Furthermore, in order to have better
manufacturing yield, NVIDIA disables one SM per GTX 480, leaving only 15
active SMs (or 480 CUDA cores). For the high-end server market, they disable
two SMs per Telsa C2050 card, leaving only 14 active SMs (or 448 CUDA cores).

Each SM on GF100 has two instruction units (or warp scheduler) instead
of one in the previous generation. The number of SFUs is also doubled from
two to four. It now takes two cycles to execute one instruction for one warp.
Moreover, each SM now has 16–48 KB of L1 cache, and all SMs share 768 KB
of coherent L2 cache. The latency of accessing L1 and L2 caches is dozens and
hundreds of clock cycles, respectively. The shared memory is increased from 16
to 48 KB, and the number of shared memory banks is also increased from 16 to
32. However, shared memory and L1 cache must add up to 64 KB in total, as
they are implemented using the same physical memory. In other words, if we use
48 KB of shared memory, then we can only have up to 16 KB of L1 cache, and
vice versa. As the primary cache of the global memory, L1 cache is automatically
handled by GPU. Therefore, unlike in the previous architecture, even if there
is no special memory management on the shared memory, the performance will
also be somewhat improved. Of course, in order to get better performance, we
need to manage the fast on-die memory by ourselves. There are 32768 32-bit
registers in one SM, totaling about 128 KB. However, the overall fast memory
on GPU is only slightly increased from 1920 to 2048 KB.

It is of crucial importance to consider the trade-off between number of threads,
available registers, and amount of shared memory per thread in the Fermi ar-
chitecture, just as it was for GPUs of previous generations. Within the limit of
memory resource consumption, we would like to run as many thread blocks as
possible to maximize the GPU utilization. With the G2xx series cards, we are
able to use a large number of threads to hide the memory latency and use a
small amount of shared memory efficiently to speed up the calculation. In con-
trast, the Fermi architecture has a larger amount of shared and register memory
per SM, which has even a smaller latency. Therefore, it would result in further
performance improvement if we use the on-die memory efficiently. When we fix
the number of threads, we can use more registers on Fermi than G2xx series
GPU in order to maximally utilize all compute resources.

Telsa is NVIDIA’s dedicated GPGPU product. In this paper, we test our
implementation on Tesla C1060 and C2050. Basically, Tesla C1060 and C2050
corresponds to the architecture of G2xx and G4xx series cards, respectively. We
summarize the characteristics of the graphics cards we have used to test our
implementation in Table 1.
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Table 1. Specifications of several NVIDIA graphics cards

Specifications GTX 285 GTX 480 Tesla C1060 Tesla C2050

CUDA Cores 240 480 240 448
Arithmetic Clock (GHz) 1.476 1.401 1.296 1.15
Single-precision GFLOPS 1063 1345 933 1030
Standard Memory Configuration (GB) 1 1.536 4 3
Memory Bandwidth (GB/sec) 159 177.4 102 144

3 Parallel ηT pairing computation

In this section, we will describe in detail the ηT pairing over F3m , the optimal
representation of elements, multiplication in F3m for GPU, as well as the parallel
thread assignment.

3.1 Definition of ηT pairing

The ηT pairing with characteristic 3 can be defined on the supersingular elliptic
curve

E : y2 = x3 − x+ b, b = ±1.

Let r be the largest prime such that r |#E(F3m), and r | (36m − 1). Let the
subgroup with order r in E(F3m) be denoted as E(F3m)[r]. Then the ηT pairing
is a bilinear mapping

ηT : E(F3m)[r]× E(F36m)/rE(F36m) −→ F∗
36m/(F

∗
36m)r.

3.2 Representation of elements in F3m

We have tried three approaches for parallel computation of ηT paring on GPU.
One approach is to use multiple threads to calculate one single element in F3m in
parallel, while another approach is to use multiple threads to calculate multiple
elements in F3m in a bitsliced fashion. In this paper, we call the former approach
Implementation II (Parallel), and the latter, Implementation III (Bitsliced). For
comparison purposes, we also include the basic approach that does not use any
parallel computation, which we call Implementation I (Serial). We are going to
describe the representation of elements in F3m for Implementation I, II, and III,
as summarized in Table 2.

Table 2. Characteristics of the implementations

Implementation I II III

Characteristic Serial Parallel Bitsliced
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Implementation I and II. Let F3[x] be the set of polynomials with coeffi-
cient from the prime field F3 = {0, 1, 2}. Let f(x) be an irreducible polyno-
mial with degree m in F3[x]. In this case, the field F3m can be expressed as
F3m = F3[x]/ (f(x)). Two bits are necessary to represent an element in F3. In
this paper, we use representation given by Kawahara, which uses one “hi bit”and
one “lo bit”to represent each element in F3 [11]. For A(x) ∈ F3m with degree
m− 1,

A(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0

is the representation of A(x). To represent A(x), we need m hi bits and m lo
bits, that is, with 32 bits in a word, 2×dm/32e words are needed. For example,
if m is 97, then an element in F397 is represented as follows.

Ahi[3] = (0, . . . , 0, (a96)hi)

Alo[3] = (0, . . . , 0, (a96)lo)

Ahi[2] = ((a95)hi, . . . , (a65)hi, (a64)hi)

Alo[2] = ((a95)lo, . . . , (a65)lo, (a64)lo)

Ahi[1] = ((a63)hi, . . . , (a33)hi, (a32)hi)

Alo[1] = ((a63)lo, . . . , (a33)lo, (a32)lo)

Ahi[0] = ((a31)hi, . . . , (a1)hi, (a0)hi)

Alo[0] = ((a31)lo, . . . , (a1)lo, (a0)lo)

Implementation III. Similar to Implementation II, Implementation III uses
hi bits and lo bits to represent A(x), too. Specifically, it uses 2×m words, with
32 bits in a word to store 32 F3m elements. This strategy is known as bitslicing,
in which a word is treated as a vector of bits from different elements [2]. In this
paper, the notation of the j-th element A(x)[j] in F3m is

A(x)[j] = a(m−1)[j]x
m−1 + · · ·+ a1[j]x+ a0[j].

For example, if m is 97, then the 32 elements in F397 are represented as follows.

Ahi[96] = ((a96 [31])hi, · · · , (a96 [1])hi, (a96 [0])hi)

Alo[96] = ((a96 [31])lo, · · · , (a96 [1])lo, (a96 [0])lo)

...

Ahi[0] = ((a0 [31])hi, · · · , (a0 [1])hi, (a0 [0])hi)

Alo[0] = ((a0 [31])lo, · · · , (a0 [1])lo, (a0 [0])lo)

Unlike Implementation II, Implementation III does not contain any redun-
dant 0’s in the representation. In other words, in Implementation II, it takes
32×2×dm/32e words to represent 32 F3m elements, while in Implementation III,
2×m.
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3.3 Multiplication in F3m

The bulk of the ηT pairing computation is multiplication. We will show the
multiplication algorithms of Implementation I, II, and III in F3m . To obtain
the optimal performance, we try our best to fit the entire input in the shared
memory and perform all operations within the shared memory to avoid going
to the slow global memory. However, for the Implementation III over F3509 in
pre-Fermi architecture, we are unable to store all the data in shared memory,
and hence some temporary data have to be stored in global memory.

Implementation I. For elements A(x), B(x) in F3m with irreducible polyno-
mial f(x), the multiplication C(x) = A(x) · B(x) mod f(x) over the finite field
F3m requires a polynomial multiplication of A(x) ·B(x) followed by a reduction
by f(x). The Comb method [12] is used as the polynomial multiplication in
Implementation I, as shown in Algorithm 1.

Algorithm 1 Comb multiplication in F3m [12]

INPUT: A(x), B(x) ∈ F3m ,W
OUTPUT: C(x) = A(x) ·B(x)
1: C(x)← 0
2: for i← 1 to W − 1 do
3: for j ← 0 to bm/W c do
4: C(x)← C(x) +A[j]i ·B(x)xjW+i

5: end for
6: end for
7: return C(x)← Reduction(C(x))

For the reduction, we use the ROT method (Reduction Optimal Trinomials)
proposed by Nakajima et al. [14] However, since there is no parallel processing
in Implementation I, we use only one thread here.

Implementation II. Implementation II is basically Implementation I with
parallelism. In order to perform in parallel the operations A[j]i · B(x)xjW+i at
Step 4 in Algorithm 1, we assign the word length W as one block in the Comb
method and perform the addition on F3m dm/W e times in each thread. Thus,
each thread’s main work is the expanded computation in the nested loops from
Step 2 to 6. Since the number of threads needs to be the same as the word length
32, we can simply use an entire warp for this part so that the SIMD efficiency
is maximized at the same time. The total number of bit operations needed is
6× dm/32e ×m+ (2× dm/32e)× 31× 32.

The reduction part is straightforward to implement but difficult to parallelize
on GPU. We just note that we do not use any windowed methods because we
believe that the bank conflicts of shared memory or the latency of global memory
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will offset any benefits parallelization can bring when a table is simultaneously
accessed by multiple threads.

Implementation III. The method used in Implementation III to perform 32
multiplications is shown in Algorithm 2. Implementation III works with 2 ×m
arrays for hi bits and lo bits. We use m threads to operate on these arrays in
order to maximize parallelism. Thus, for the expanded operations in each loop
at Step 2 and 3, each array is assigned to one thread to compute.

Algorithm 2 Multiplication of Implementation III in F3m

INPUT: A(x)[j], B(x)[j] ∈ F3m , j = {0, . . . ,m − 1}

OUTPUT: C(x)[j] = A(x)[j] ·B(x)[j]
1: C(x)[2·j] ← 0
2: for i← 0 to m− 1 do
3: for k ← 0 to m− 1 do
4: Ćhi[i+ k]← Ahi[i] &Blo[k] |Alo[i] &Bhi[k]
5: Ćlo[i+ k]← Ahi[i] &Bhi[k] |Alo[i] &Blo[k]
6: C(x)[i+k] ← C(x)[i+k] + Ć(x)[i+k]

7: end for
8: end for
9: return C(x)[j] ← Reduction(C(x)[2·j])

The total number of bit operations needed is 6 × m2 + 6 × m2. We note
that although the Karatsuba algorithm is also known as a fast multiplication
method, it may not be as efficient for our representation of F3m elements, in
which addition is as expensive as multiplication. In addition, at Step 4 and 5,
each array only needs to be accessed by the corresponding thread. Thus, we
are able to obtain a further speed-up by storing these arrays in thread-private
registers. Reduction is also done by the same threads in parallel. However, same
as in Implementation II, the parallelization of reduction is not as efficient due
the SPMD constraints.

4 Implementation results

In this section, we first describe three different types of implementation of ηT
pairing on GTX 285 that we have considered in this paper. Next, we report the
performance of the best one, Implementation III, on GTX 285, GTX 480, Tesla
C1060, and Tesla C2050. Then we show the experiment result of multiplication
throughput for ηT pairing.

4.1 Implementation techniques

Although CUDA’s SPMD model allows conditional branches within a warp, it
can cause divergent warps and, as a result, performance degradation. Therefore,
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to achieve optimal performance, we would need to minimize use of conditional
branches in the code. We achieve so whenever possible by choosing appropriate
algorithms for the operations in F3m that are needed for computing ηT pairing.
For example, since the cubing calculation of A(x) in F3m is fast and parallelizable,
we use Fermat’s method to calculate the inverse of A(x) in F3m by taking A(x)
to the power of (3m−2). We also use the algorithm proposed by Shirase et al. [3]
as the main loop for our ηT pairing computation and the algorithm implemented
with torus stated by Shirase et al. [16] Some temporary data produced in the
pairing computation need to be cached in registers. If we finish the entire pairing
computation in one kernel launch, it would require a large number of registers
for storing the temporary data. Thus, in order to balance the register usage, we
split the computation into two parts, namely, the Miller loop in Algorithm 2 and
the final exponentiation in Algorithm 3 [16].

As of the time of writing, the NVIDIA GeForce GTX 285 is considered as a
mid-class graphics card. It has a GPU that runs at 1476 MHz. We are able to fit
the entire computation on one single SM because our design allows all critical
data structures stored entirely on the on-die memory of GT200b, as shown in
Section 4.2. Then, we implement ηT pairing and multiplication in F3m on 30 SMs
and summarize our results in Section 4.3. In the reports, we use cudaEvent, part
of the CUDA API, for time measurement. To match the security levels of 66-,
89-, and 128-bit AES, we choose three finite fields, F397 , F3193 , and F3509 for our
implementation of ηT pairing.

4.2 Performance results I

The performance results on GTX 285 over F397 , F3193 , and F3509 are shown in
Table 3, Table 4, and Table 5, respectively.

In the above tables, the running time for Implementation III is normalized to
per F3m element for comparison purposes. As we have mentioned in Section 3,
the number of bit operations in multiplication in Implementation III (12×m2)
is more than that in Implementation I and II ((192 × m + 1984) × dm/32e).
However, from Table 3, 4, and 5, we can see that Implementation III is faster
than Implementation I and II in all cases. According to Section 3.2, this is
possible because the total computation time of GPU also depends on the amount
of data transfer; compared to the memory footprint of Implementation I and II
(32×dm/32e×2 32-bit arrays), that of Implementation III is more compact (m×2
arrays) and thus incurs a smaller amount of memory transfer. Moreover, unlike
Implementation I and II, the polynomials multiplication in Implementation III,
not including reduction, does not result in any warp divergences. That is, there
are no divergent branches in the multiplication of Implementation III, which
makes it much faster than its counterparts in Implementation I and II.

Based on our experiment data, Implementation III has the shortest calcula-
tion time per pairing. In Implementation III, the number of threads in one block
depends on the size of the array and the degree of pairing. Therefore, to increase
the flexibility, we have considered the feasibility that uses one single thread for
computing 32 pairings, as well as an arbitrary number of threads for computing
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Table 3. Per-SM running time (ms) for F397

Implementation I II III

Addition 0.00014 0.0003 0.00002
Subtraction 0.00014 0.0003 0.00002
Multiplication 0.1748 0.0175 0.001
Cubing 0.0499 0.0096 0.00008
Inverse 22.07 3.09 0.11

ηT pairing 337.53 43.75 1.472

Table 4. Per-SM running time (ms) for F3193

Implementation I II III

Addition 0.00023 0.0003 0.00002
Subtraction 0.00024 0.0003 0.00002
Multiplication 0.38 0.025 0.003
Cubing 0.052 0.0116 0.0001
Inverse 83.88 7.79 0.63

ηT pairing 1323.01 109.42 8.15

Table 5. Per-SM running time (ms) for F3509

Implementation I II III

Addition 0.00044 0.00078 0.00003
Subtraction 0.00043 0.00080 0.00003
Multiplication 1.02 0.135 0.023
Cubing 0.194 0.029 0.0004
Inverse 421.57 52.69 10.4

ηT pairing 6100.5 732.3 140.73

32 parings in one block. Such a design turns out to be slower than implementa-
tion III. It is a trade-off between efficiency (the number of threads should be an
integral multiple of 32, the number of threads in a warp) and flexibility (being
able to use an arbitrary number of threads).

4.3 Performance results II

In this section, we are going to show the throughput performance of ηT pairing
and multiplication in F3m using all the SMs provided by NVIDIA GTX 285,
GTX 480, Tesla C1060, and Tesla C2050 graphics cards. We focus on Imple-
mentation III because it is the fastest among the three according to Section 4.2.
As we have described in Section 2.2, the balance between number of threads,
register used, and the amount of shared memory used in each block is impor-
tant. When a block of threads is accessing memory or waiting for data transfer,
we need other blocks to fill in the gaps in order to fully utilize the compute
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resources. That is, the number of active thread blocks per SM is an important
performance index. For this purpose, we choose the number of thread blocks to
be an integral multiple of the number of SMs on the target GPU, which is 30 for
GTX 285 and Tesla C1060, 15 for GTX 480, and 14 for Tesla C2050. We show
the total number of thread blocks used in ηT pairing in Table 6 and in multipli-
cation in Table 7. Also, the throughput of ηT pairing is shown in Table 8, while
the throughput of F3m shown in Table 9.

Table 6. Total number of blocks used for ηT pairing

Base field GTX 285 Tesla C1060 GTX 480 Tesla C2050

F397 60 60 60 98
F3193 30 30 30 56
F3509 20 20 30 28

Table 7. Total number of blocks used for multiplication in F3m

Base field GTX 285 Tesla C1060 GTX 480 Tesla C2050

F397 120 120 120 112
F3193 60 60 90 84
F3509 30 30 90 84

For multiplications in F3m , we store half of the temporary data in registers
and half in shared memory. As a result, the maximal number of blocks per SM
is limited by the number of available registers. For GTX 285 and Tesla C1060,

Table 8. Throughput performance of ηT pairing on NVIDIA GPUs (1/sec)

Base field GTX 285 Tesla C1060 GTX 480 Tesla C2050

F397 23496 20619 33712 31250
F3193 3257 2874 4975 4425
F3509 81 53 332 254

Table 9. Throughput performance of multiplication on NVIDIA GPUs (106/sec)

Base field GTX 285 Tesla C1060 GTX 480 Tesla C2050

F397 41.20 36.23 61.43 47.45
F3193 11.20 9.80 17.50 13.87
F3509 0.57 0.38 2.85 2.21

in the case of F3509 , the number of registers required exceeds that are available
per SM. There are 509 threads in total, so we use 32 registers for each thread
instead and spill the rest into local memory. This is faster than the alternative in
which the computation is split among multiple threads because the latter would
require a lot of inter-thread communication and synchronization. Moreover, for
the multiplication on F3509 , since the temporary data can not all be stored in
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shared memory, we have to store some of them in global memory instead. On the
other hand, for GTX 480 and Tesla C2050 (Fermi architecture), since the number
of registers and shared memory are both increased, the memory limitation is no
longer a problem. As the result, performance on GTX 480 and Tesla C2050 is
better than that on GTX 285 and Tesla C1060.

There have been several efficient implementations of cryptographic pairings
on multi-core CPUs [1, 8, 13]. We will now compare our results with those ob-
tained on multi-core CPUs in the literature [1, 13]. The experiment results are
summarized in Table 10, in which we compare the execution time per ηT pairing
on GPU and various multi-core CPU implementations of a cyptographic pairing
on supersingular curves in characteristics 2 and 3. The acceleration on multi-
core CPUs achieved by an n-core implementation is almost always less than the
ideal n× speed-up. The timing shown in Table 10 is the normalized time per

Table 10. Performance comparison of ηT pairings on multi-core processors

Curve Architecture #cores Freq. (GHz) Time (ms)

Beuchat et al. [13] E(F397) Intel Core 2 2 2.6 0.090
This work E(F397) NVIDIA GTX 480 480 1.4 0.029

Beuchat et al. [13] E(F3193) Intel Core 2 2 2.6 0.550
This work E(F3193) NVIDIA GTX 480 480 1.4 0.201

Aranha et al. [1] E(F21223) Intel Xeon 45nm 8 2.0 1.51
Beuchat et al. [13] E(F3509) Intel Core 2 4 2.4 2.94
Beuchat et al. [13] E(F3509) Intel Core i7 8 2.9 1.87
This work E(F3509) NVIDIA GTX 480 480 1.4 3.01

ηT pairing, i.e., the total compute time divided by the total number of pairings.
From the comparison, we can see that GTX 480 has the highest throughput
performance over smaller finite fields.

Based on our experiment data on GTX 480, it would be possible to achieve
61.43 million multiplications per second in F397 . For ηT pairing over F397 , GPU’s
running time is around 29 microseconds. This is much faster than the best result
on a dual-core 2.6 GHz Intel Core 2 processor [13]. However, for ηT pairing over
F3509 , GPU’s running time is around 3.01 milliseconds. This is slower than the
best result on an eight-core 2.9 GHz Intel i7 processor [13] . We conclude that
for larger fields, GPU implementation might be slower than CPU implementa-
tions because of the limited fast on-die memory on GPU. However, for smaller
fields, GPU can easily outperform CPU because the computation uses a rela-
tively smaller number of registers, and the large-scale parallel computing is more
efficient on GPU.

5 Conclusion

In this paper, we report our experience implementing ηT pairing using three
different strategies on GPU. Implementation I uses a single thread to compute
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one pairing, Implementation II uses multiple threads to compute one pairing
in parallel, and Implementation III uses multiple threads to compute multiple
pairings in a bitsliced fashion. The best result among the three implementations
on a single GTX 285 is obtained with Implementation III, which takes 1.47,
8.15, and 140.7 milliseconds to compute one pairing over F397 , F3193 , and F3509 ,
respectively. On a single GTX 480, the throughput performance of Implementa-
tion III is 33710, 4970, and 332 ηT pairings per second over F397 , F3193 , and F3509 ,
respectively. This is the first implementation result of the ηT pairing on GPU.
To the best of our knowledge, this is also the fastest single-chip software imple-
mentation over smaller finite fields. Though the result over larger finite fields
such as F3509 is not as ideal as it is over smaller finite fields, the implementation
should be sufficient for some real-world applications.

We have implemented the ηT pairing over finite fields F3m of characteristic
3. Another efficient class of cryptographic pairings can be constructed on the
ordinary curves over finite fields Fp of large characteristic p. The implementation
of pairings over large characteristics and its comparison with our implementation
are future works.
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