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Abstract In this paper, we propose two classes of 2k-variable Boolean
functions, which have optimal algebraic immunity under the assumption that
a general combinatorial conjecture is correct. These functions also have high
algebraic degree and high nonlinearity. One class contain more bent func-
tions, and the other class are balanced.
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1 Introduction

Boolean functions, which are used in the combiner and filter models of stream
ciphers and for S-box designing in block ciphers, play an critical role in sym-
metric cryptographic systems. To resist known attacks, Boolean functions
are generally required to be balanced and have high algebraic degree, high
nonlinearity, high correlation immunity and high algebraic immunity[2]. Al-
gebraic immunity, as a response to algebraic attack [1, 8, 9], was proposed
by Meier et al.[8, 15].
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It is a difficult challenge to find functions achieving all the necessary
criteria. There are several constructions of Boolean functions with optimum
algebraic immunity, for example, see[3, 4, 5, 12, 17, 18]. However, most of the
constructed Boolean functions are improper for cryptographic applications
because of less of other good properties such as low algebraic degree or low
nonlinearity. In 2008, Carlet and Feng proposed in [6] an infinite excellent
class of balanced functions with optimum algebraic immunity as well as very
high nonlinearity. It is the first that the constructed Boolean functions are
of optimal nonlinearity among all known constructions and meet most of the
cryptographic necessities. Very recently, Tu and Deng proposed in [21] a class
of algebraic immunity optimal functions of even variables under the assump-
tion of a combinatoric conjecture. The nonlinearity of these functions is even
better than functions in [6]. Carlet [7] proved that these functions are well
immune to fast algebraic attacks after small modifications. In [22], balanced
Boolean functions which have optimal algebraic degree, high nonlinearity,
and are 1-resilient, were proposed by Tu and Deng through a modification
to Boolean functions in [21]. Based on T-D conjecture [21], their functions
are at least algebraic immunity suboptimal. Tang D., Carlet C. and Tang
X. proposed in [20] a class of highly nonlinear Boolean functions with opti-
mal algebraic immunity under a new combinatorial conjecture similar to T-D
conjecture[21]. These functions also have a good immunity to fast algebraic
attacks.

In this paper, T-D functions[21] and functions in [20] are extended to the
more general case. Based on a general combinatorial conjecture[10, 20], two
classes of 2k-variable Boolean functions are constructed, both of which have
optimal algebraic immunity. The first class contain more bent functions and
the second class are balanced. Both classes of Boolean functions have high
nonlinearity as well as high algebraic degree.

2 Preliminaries

Let n be a positive integer. A Boolean function of n variables is a mapping
from Fn2 to F2, where F2 denotes the finite field with two elements. We denote
Bn the set of all n-variable Boolean functions. The basic representation of
an n-variable Boolean function f is by the output column of its truth table,
i.e., a binary string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].
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The Hamming weight of f , wt(f), is the size of the support supp(f) = {x ∈
Fn2 |f(x) = 1}. We say that a Boolean function f is balanced if the number
of 1’s equals 0’s in its truth table, that is, if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate poly-
nomial over F2, called the algebraic normal form (ANF):

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}

aI
∏
i∈I

xi (aI ∈ F2).

The algebraic degree, deg(f), is defined to be

deg(f) = max
I⊆{1,2,··· ,n}

{|I| | aI 6= 0}.

A Boolean function is affine if it has degree at most 1. The set of all affine
functions is denoted by An.

We identify the field F2n with the vector space Fn2 . Boolean functions
over F2n can also be uniquely expressed by a univariate polynomial

f(x) =
2n−1∑
i=0

aix
i

where a0, a2n−1 ∈ F2, ai ∈ F2k for 1 ≤ i < 2n − 1 such that a2
i = a2i(mod2n−1).

The algebraic degree of f equals max{wt(i)|ai 6= 0, 0 ≤ i < 2n − 1}, where i
is the binary expansion of i.

The Hamming distance dH(f, g) between two boolean functions f and
g is the Hamming weight of their difference f + g, i.e. dH(f, g) = |{x ∈
Fn2 |f(x) + g(x) = 1}|. The nonlinearity Nf of a Boolean function f ∈ Bn is
defined as

Nf = min
g∈An

(dH(f, g)).

Let x = (x1, x2, · · · , xn) and a = (a1, a2, · · · , an) both belong to Fn2 and
a · x = a1x1 + a2x2 + · · ·+ anxn.

Wf (a) =
∑
x∈Fn2

(−1)f(x)+a·x

is called the Walsh spectrum of f at a. For f : F2n −→ F2, the Walsh
spectrum of f at a ∈ F2n is defined by

Wf (a) =
∑
x∈F2n

(−1)f(x)+tr(ax),
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where tr is trace map from F2n to F2. For f : F2k × F2k −→ F2, the Walsh
spectrum of f at (a, b) ∈ F2k × F2k is defined by

Wf (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by).

A Boolean function f is balanced if and only if Wf (0) = 0. The nonlin-
earity of f can also be expressed via its Walsh spectra as

Nf = 2n−1 − 1

2
max
a∈Fn2
|Wf (a)|

It is well-known that the nonlinearity satisfies the following inequality

Nf ≤ 2n−1 − 2
n
2
−1

When n is even, the upper bound can be attained, and such Boolean functions
are called bent.

Definition 2.1 [15] The algebraic immunity AIn(f) of an n-variable Boolean
function f ∈ Bn is defined to be the lowest degree of nonzero functions g such
that f · g = 0 or (f + 1) · g = 0.

The algebraic immunity, as well as the nonlinearity and algebraic degree,
is affine invariant. Courtois and Meier [8] showed AI(f) ≤ dn

2
e.

We refer to [16] and [19] for the knowledge of BCH code and finite fields
used in this paper.

3 Combinatorial Conjecture

Recall that x is the binary expansion of the integer x.

Conjecture 3.1 [21] Let k > 1 be an integer. For any 0 ≤ t < 2k−1, define

St = { (a, b) | 0 ≤ a, b < 2k − 1, a+ b ≡ t(mod2k − 1), wt(a) +wt(b) ≤ k− 1}.

Then |St| ≤ 2k−1.

Tu and Deng [21] could validate this conjecture when k ≤ 29. In [11, 14],
the authors proved it is true for many cases of t. Tang et al.in [20] presented
a new combinatorial conjecture similar to Conjecture 3.1 as follows:
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Conjecture 3.2 [20] Let k > 1be an integer. For any 0 ≤ t < 2k−1, define

St,− = { (a, b) | 0 ≤ a, b < 2k−1, a−b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |St,−| ≤ 2k−1.

This conjecture has been proved in [10]. The authors also referred to the
following conjecture in [20].

Conjecture 3.3 Let k > 1 be an integer, and any u ∈ Z∗
2k−1

. For any

0 ≤ t < 2k − 1, define

St,u = { (a, b) | 0 ≤ a, b < 2k−1, ua+b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |St,u| ≤ 2k−1.

For 2 ≤ k ≤ 15, this general conjecture is checked in [20]. This general
conjecture includes Conjecture 3.1 and Conjecture 3.3 as special cases. The
most general conjecture is as follows:

Conjecture 3.4 Let k > 1 be an integer, and any u, v ∈ Z∗
2k−1

. For any

0 ≤ t < 2k − 1, define

St,u,v = { (a, b) | 0 ≤ a, b < 2k−1, ua+vb ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |St,u,v| ≤ 2k−1.

Lemma 3.5 Conjecture 3.4 is equivalent to Conjecture 3.3.

Proof: It’s obvious Conjecture 3.4 implies Conjecture 3.3.
If Conjecture 3.3 is true, i.e. for any u ∈ Z∗

2k−1
, 0 ≤ t < 2k − 1, |St,u| ≤

2k−1. For any v ∈ Z∗
2k−1

,

(a, b) ∈ St,u if and only if (a, b) ∈ Svt,uv,v,

so |Svt,uv,v| = |St,u| ≤ 2k−1.
For any u, v ∈ Z∗

2k−1
, 0 ≤ t < 2k − 1, |Svt,uv,v| ≤ 2k−1 if and only if for

any u, v ∈ Z∗
2k−1

, 0 ≤ t < 2k − 1, |St,u,v| ≤ 2k−1. Therefore Conjecture 3.4 is
true. �
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4 Boolean functions with optimal algebraic

immunity

In this section, we present a class of 2k-variable Boolean functions with
optimal algebraic immunity under the assumption that the general conjecture
is true. Its algebraic degree and nonlinearity will also be discussed. This
construction is a generalization of Dillon’s construction[13].

Construction 4.1 Let n = 2k ≥ 4, (u, 2k − 1) = 1. Let α be a primitive
element of the finite field F2k . Set ∆s = {αs, αs+1, · · · , α2k−1+s−1} where
0 ≤ s < 2k − 1 is an integer. Then we define a function f ∈ Bn as follows

f(x, y) = g(xy2k−1−u),

where g is a Boolean function defined over F2k with Supp(g) = ∆s.

4.1 Algebraic immunity

Theorem 4.2 Let f be the n-variable boolean function defined by Construc-
tion 4.1. If the general conjecture is correct, then f has the optimal algebraic
immunity, i.e. AI(f) = k.

Proof: It is sufficient to prove that both f and f + 1 have no annihilators
with algebraic degrees less than k. Let a nonzero Boolean function h : F2k ×
F2k −→ F2 satisfy deg(h) < k and f · h = 0. We will prove h = 0. Boolean
function h can be written as a bivariate polynomial on F2k

h(x, y) =
2k−1∑
i=0

2k−1∑
j=0

hi,jx
iyj, hi,j ∈ F2k .

Since deg(h) < k, we have hi,j = 0 if wt(i) + wt(j) ≥ k, which implies
h2k−1,i = hj,2k−1 = 0 for all 0 ≤ i, j ≤ 2k − 1. By f · h = 0 and supp(f) =
{(γyu, y)|y ∈ F∗

2k
, γ ∈ ∆s}, then h(x, y) = 0 for all (x, y) ∈ supp(f), i.e.,

h(γyu, y) = 0 for all y ∈ F∗
2k

, γ ∈ ∆s.

h(γyu, y) =
2k−2∑
i=0

2k−2∑
j=0

hi,j(γy
u)iyj =

2k−2∑
i=0

2k−2∑
j=0

hi,jγ
iyj+ui
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can be written as

h(γyu, y) =
2k−2∑
t=0

ht(γ)yt

where

ht(γ) =
∑

0≤i,j≤2k−2,ui+j≡t(mod 2k−1)

hi,jγ
i

= h0,t + h
1,t−u(mod 2k−1)

γ + h
2,t−2u(mod 2k−1)

γ2

+ · · ·+ h
2k−2,t−(2k−2)u(mod 2k−1)

γ2k−2.

Note that {t−ui(mod 2k−1)|0 ≤ i < 2k−1} = Z2k−1 due to (u, 2k−1) = 1.
For any γ ∈ ∆s, h(γyu, y) = 0 for all y ∈ F∗

2k
, so it follows that

ht(γ) = 0, 0 ≤ t ≤ 2k − 2, for all γ ∈ ∆s.

From the definition of BCH code, we know that the vector

(h0,t, h1,t−u(mod 2k−1)
, h

2,t−2u(mod 2k−1)
, · · · , h

2k−2,t−(2k−2)u(mod 2k−1)
)

is a codeword in some BCH code of length 2k−1 over F2k , having the elements
in ∆s as zeros and the designed distance 2k−1+1. If this codeword is nonzero,
its Hamming weight should be greater than or equal to 2k−1 + 1. However,
from Conjecture 3.3, the weight of this codeword should be less than or equal
to 2k−1. This leads to a contradiction. Hence this codeword must be zero,
that is

h0,t = h
1,t−u(mod 2k−1)

= h
2,t−2u(mod 2k−1)

=

· · · = h
2k−2,t−(2k−2)u(mod 2k−1)

= 0

for any 0 ≤ t ≤ 2k − 2. This proves h = 0.
Next, we prove a similar result for f + 1. Let h(x, y) ∈ B2k such that

deg(h) < k and (f + 1) · h = 0, we will prove h = 0.

supp(f + 1) = {(x, y)|xy2k−1−u ∈ F2k \∆s, x, y ∈ F2k}

Similarly, for all 0 ≤ t ≤ 2k − 2, we have

ht(γ) = 0, for any γ ∈ F∗2k \∆s.
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At the same time, h(0, β) =
∑2k−2

j=0 h0,jβ
j for any β ∈ F2k , hence h0,j = 0 for

0 ≤ j ≤ 2k − 2. Then the vector

(h0,t, h1,t−u(mod 2k−1)
, h

2,t−2u(mod 2k−1)
, · · · , h

2k−2,t−(2k−2)u(mod 2k−1)
)

is also a codeword in some BCH code of length 2k − 1 over F2k , having the
elements in F∗

2k
\∆s as zeros and designed distance 2k−1. By the BCH bound,

if the codeword is nonzero, then it has Hamming weight at least 2k−1. But
according to Conjecture 3.3 and h0,i = 0, 0 ≤ i ≤ 2k−2, its Hamming weight
is less than 2k−1. A contraction follows. So we obtain h = 0.

From the above discussion, we have AI(f) = k. That is to say, the
constructed Boolean functions have optimal algebraic immunity. �

4.2 Polynomial representation and algebraic degree

Theorem 4.3 Let f be the n-variable boolean function defined in Construc-
tion 4.1. Then its bivariate representation is

f(x, y) =
2k−2∑
i=1

α−is(1 + α−i)2k−1−1(xy2k−1−u)i

Therefore, the algebraic degree of f is max1≤i≤2k−2{wt(i)+wt((2k − 1− u)i)}
and k ≤ deg(f) ≤ 2(k − 1).

Proof: Let g(x) =
∑2k−1

i=0 gix
i be the univariate representation of g. We have

g0 = g(0) = 0, g2k−1 = 0 (since g have even Hamming weight). For every
i ∈ {1, · · · , 2k − 2},

gi =
2k−2∑
j=0

g(αj)α−ij =
2k−1−1+s∑

j=s

α−ij = α−is
1 + α−i2

k−1

1 + α−i
= α−is(1 + α−i)2k−1−1.

Then we have g(y) =
∑2k−2

i=1 α−is(1 + α−i)2k−1−1yi and deg(g) = k − 1. By
the definition of f(x, y), we obtain

f(x, y) = g(xy2k−1−u) =
2k−2∑
i=1

α−is(1 + α−i)2k−1−1(xy2k−1−u)i

and deg(f) = max1≤i≤2k−2{wt(i) + wt((2k − 1− u)i)}. It is obvious k ≤
deg(f) ≤ 2(k − 1). �
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Remark 4.4 (1) If u = 1, f has algebraic degree k, since wt(i)+wt(−i) = k
for any 0 ≤ i ≤ 2k − 2; If u = 2l, 0 ≤ l < k, deg(f) = max1≤i≤2k−2(wt(i) +

wt(−2li)) = max1≤i≤2k−2(wt(i) + wt(−i)) = k.
(2) If u = 2k − 2, deg(f) = max1≤i≤2k−2{2wt(i)} = 2(k − 1) = n − 2;

If u = 2k − 1 − 2l, 0 ≤ l < k, deg(f) = max1≤i≤2k−2(wt(i) + wt(2li)) =
max1≤i≤2k−2(wt(i) + wt(i)) = 2(k − 1) = n− 2.

4.3 Nonlinearity

Lemma 4.5 Let k ≥ 2 be a positive integer and α a primitive element of
F2k . Let ∆s = {αs, · · · , α2k−1+s−1} where 0 ≤ s < 2k−1 is an integer. Define

Γs =
∑
γ∈∆s

∑
x∈F∗

2k

(−1)tr(γx
u+x),

where (u, 2k − 1) = 1. Then

|Γs| ≤ 1 +
2k+1

π
ln

4(2k − 1)

π

Proof: Let ζ
2π
√
−i

2k−1 be a primitive (2k−1)-th root of unity in the complex field
C, and χ be the multiplicative character of F∗

2k
defined by χ(αj) = ζj (0 ≤

j ≤ 2k − 2). We define the Gauss sum

G(χµ) =
∑
x∈F∗

2k

χµ(x)(−1)tr(x), 0 ≤ µ ≤ 2k − 2.

It is well-known that G(χ0) = −1 and |G(χµ)| = 2
k
2 for 1 ≤ µ ≤ 2k − 2. By

Fourier inverse transform,

(−1)tr(α
j) =

1

2k − 1

2k−2∑
µ=0

G(χµ)χµ(αj), 0 ≤ j ≤ 2k − 2.

Let q = 2k,
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Γs =
∑
γ∈∆s

∑
x∈F∗

2k

(−1)tr(γx
u+x)

=
1

(q − 1)2

q
2

+s−1∑
i=s

q−2∑
j=0

(−1)tr(α
i+uj)(−1)tr(α

j)

=
1

(q − 1)2

q
2

+s−1∑
i=s

q−2∑
j=0

(

q−2∑
µ=0

G(χµ)χµ(αi+ju))(

q−2∑
ν=0

G(χν)χν(αj))

=
1

(q − 1)2

q−2∑
µ=0

q−2∑
ν=0

q
2

+s−1∑
i=s

q−2∑
j=0

G(χµ)G(χν)ζ−µ(i+ju)−νj

=
1

(q − 1)2

q−2∑
µ=0

q−2∑
ν=0

G(χµ)G(χν)(

q
2

+s−1∑
i=s

ζ−µi)(

q−2∑
j=0

ζ(−µu−ν)j).

It is easy to deduce that

q
2

+s−1∑
i=s

ζ−µi = ζ−µs

q
2
−1∑
i=0

ζ−µi =

{
q
2
, µ = 0;

ζ−µs 1−ζ−µ
q
2

1−ζ−µ , µ 6= 0.

and
q−2∑
j=0

ζ(−µu−ν)j =

{
q − 1, ν = µ(q − 1− u);
0, ν 6= µ(q − 1− u).

Therefore

Γs =
1

q − 1

q−2∑
µ=1

G(χµ)G(χµ(q−1−u))(ζ−µs
1− ζ−µ q2
1− ζ−µ

)− q

2(q − 1)

=
1

q − 1

q−2∑
µ=1

G(χµ)G(χµ(q−1−u))
ζ−µs+

µ
2
−µq

4 (ζ
µq
4 − ζ−µq4 )

ζ
µ
2 − ζ−µ2

− q

2(q − 1)

=
1

q − 1

q−2∑
µ=1

G(χµ)G(χµ(q−1−u))
ζ−µs+

µ
2
−µq

4 sin µqπ
2(q−1)

sin µπ
q−1

− q

2(q − 1)
.

We have
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|Γs| ≤
1

q − 1

q−2∑
µ=1

|G(χµ)||G(χµ(q−1−u))| 1

| sin µπ
q−1
|

+
q

2(q − 1)

=
q

2(q − 1)
+

q

q − 1

q−2∑
µ=1

1

sin( µπ
q−1

)
.

From [6],
∑q−2

µ=1(sin µπ
q−1

) ≤ −2(q−1)
π

ln tan( π
4(q−1)

), so we get

|Γs| ≤
q

2(q − 1)
− 2q

π
ln tan(

π

4(q − 1)
)

≤ 1− 2q

π
ln

π

4(q − 1)

≤ 1 +
2q

π
ln

4(q − 1)

π
.

Therefore, it is obtained that |Γs| ≤ 1 + 2k+1

π
ln 4(2k−1)

π
. �

Theorem 4.6 Let n = 2k and f ∈ Bn be the Boolean function given by
Construction 4.1. Then we have

Nf ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)

π
− 1 ≈ 2n−1 − 2 ln 2

π
k2k.

Proof: We only need to compute Wf (a, b). Obviously Wf (0, 0) = 22k −
2wt(f) = 22k − 2(2k − 1)2k−1 = 2k.

For any (a, b) ∈ F2k × F2k \ {(0, 0)},

Wf (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(aγy
u+by)

If a = 0, b ∈ F∗
2k

,

Wf (0, b) = −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(by) = 2k
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Since (u, 2k − 1) = 1, h(y) = ayu is a permutation polynomial on F2k s.t.
h(0) = 0. So if b = 0, a ∈ F∗

2k
,

Wf (a, 0) = −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(ay
u) = 2k

For any (a, b) ∈ F∗
2k
× F∗

2k
,

Wf (a, b) = −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(ab
−uγyu+y)

Take ab−uαs = αs
′
,

Wf (a, b) = −2
∑
γ∈∆

s
′

∑
y∈F∗

2k

(−1)tr(γy
u+y)

So we get

max
(a,b)∈F

2k
×F

2k

|Wf (a, b)| = max{2 max
0≤s<2k−1

|
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(γy
u+y)|, 2k}

By Lemma 4.5, we have

Nf = 2n−1 − 1

2
max

(a,b)∈F
2k
×F

2k

|Wf (a, b)|

≥ 2n−1 − (1 +
2k+1

π
ln

4(2k − 1)

π
)

≈ 2n−1 − 2 ln 2

π
k2k.

�

4.4 A class of bent function with optimal algebraic im-
munity

The class of Boolean functions defined in Construction 4.1 have different
nonlinearity for various u. We note that they are bent when u = 2l.

Theorem 4.7 Let f be the n-variable boolean function defined in Construc-
tion 4.1. Take u = 2l, 0 ≤ l < k. If Conjecture 3.3 is true, then f is bent
with optimal algebraic immunity, and has algebraic degree k.
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Proof: As is proved in 4.2 that AI(f) = n
2

= k.
From Theorem 4.6, when (a, b) ∈ F2k × F2k and ab = 0, Wf (a, b) = 2k.
For any (a, b) ∈ F∗

2k
× F∗

2k
,

Wf (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(aγy
u+by)

= −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(aγy
u)+tr(by)

Since (u, 2k − 1) = 1, there exists a unique βγ ∈ F∗
2k

s.t. βuγ = aγ. So for
u = 2l, tr(aγyu) = tr(βγy). We have

Wf (a, b) = −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr(βγy)+tr(by)

= −2
∑
γ∈∆s

∑
y∈F∗

2k

(−1)tr((βγ+b)y)

Case 1: βγ + b 6= 0 i.e. aγ 6= bu for any γ ∈ ∆s,

Wf (a, b) = −2
∑
γ∈∆s

(
∑
x∈F

2k

(−1)tr(x) − (−1)tr(0)) = 2k

(since
∑

x∈F
2k

(−1)tr(x) = 0.)

Case 2: βγ + b = 0 i.e. aγ1 = bu for some γ1 ∈ ∆s,

Wf (a, b) = −2
∑

γ∈∆s\{γ1}

(
∑
x∈F

2k

(−1)tr(x) − (−1)tr(0))− 2
∑
y∈F∗

2k

(−1)0

= −2(2k−1 − 1)(−1)− 2(2k − 1) = −2k

Note that here exists at most one element γ ∈ ∆s satisfying aγ = bu for
any (a, b) ∈ F∗

2k
× F∗

2k
.
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From the above discussion, for any (a, b) ∈ F2k ×F2k , Wf (a, b) = ±2k, so
f is bent.

By Remark 4.4 deg(f) = k. �

Recall that the algebraic degree of 2k−variable bent functions is at most
k, so this class of bent functions that we construct is algebraic degree optimal.

Remark 4.8 In fact, this class of bent function with optimal algebraic degree
is Dillon’s PS functions[13], since Eγ = {(γy2l , y)|y ∈ F2k}, γ ∈ ∆s are 2k−1

linear subspaces of F22k of dimension k and Eγ1∩Eγ2 = ∅ for γ1 6= γ2, γ1, γ2 ∈
∆s.

This class of Boolean functions defined by Construction 4.1 are Tu-Deng
functions[21] when u = 1, and are Boolean functions proposed by Tang el
et.[20] when u = 2k − 2.

5 Balanced function with optimal algebraic

immunity

In this section, we will give a class of 2k-variable balanced Boolean functions
by a slight modification of Construction 4.1. Based on Conjecture 3.3, we
will show this class of functions have optimal algebraic immunity. These
functions also have high nonlinearity and high algebraic degree.

Construction 5.1 Let n = 2k be an even integer, k ≥ 2. Let α be a
primitive element of the finite field F2k . Set ∆s = {αs, · · · , α2k−1+s−1} where
0 ≤ s < 2k − 1 is an integer. We define the Boolean F ∈ Bn as follows

F (x, y) =

{
g(xy2k−1−u), x 6= 0;
g(y), x = 0.

where g is a Boolean function defined on F2k with supp(g) = ∆s.

Theorem 5.2 Let F be the n-variable Boolean function defined by Construc-
tion 5.1. Then F is balanced and deg(F ) = n− 1.

Proof: It is obvious that F is balanced since wt(F ) = wt(g) + wt(f) =
2k−1 + 2k−1(2k − 1) = 2n−1.

It’s easy to see that F (x, y) = f(x, y) + (1 + x2k−1)g(y), where f ∈
B2k is the Boolean function defined in Construction 4.1. Since deg((1 +
x2k−1)g(y)) = 2k − 1 > deg(f), we get deg(F ) = 2k − 1 = n− 1. �

14



Theorem 5.3 Let F be the n-variable Boolean function defined by Construc-
tion 5.1. If Conjecture 3.3 is true, then AI(F ) = n

2
= k.

Proof: From Construction 5.1, we have {(γyu, y)|y ∈ F∗
2k
, γ ∈ ∆s} ⊆ supp(F )

and {(γyu, y)|y ∈ F∗
2k
, γ ∈ F∗

2k
\ ∆s} ∪ {(x, 0)|x ∈ F2k} ⊆ supp(F + 1). By

a similar proof to that of Theorem 4.2, we can see both F and F + 1 have
no nonzero annihilators with algebraic degree less than k. So the function F
also has optimal algebraic immunity. �

Lemma 5.4 Let α ∈ F∗
2k

be a primitive element and λ ∈ F2k . Denote

Sλ =
2k−1+s−1∑

i=s

(−1)tr(λα
i).

If λ 6= 0, then

|Sλ| ≤ 1 +
2
k
2

+1

π
ln

4(2k − 1)

π

Proof: Similar to Lemma 4.5, we have

(−1)tr(α
j) =

1

2k − 1

2k−2∑
µ=0

G(χµ)χµ(αj), 0 ≤ j ≤ 2k − 2.

Denote q = 2k,

Sλ =
2k−1+s−1∑

i=s

(−1)tr(λα
i)

=
1

q − 1

q−2∑
µ=0

G(χµ)
2k−1+s−1∑

i=s

χµ(λαi)

15



Take λ = αl,

Sλ =
1

q − 1

q−2∑
µ=0

G(χµ)
2k−1+s−1∑

i=s

ζ−(l+i)µ

= − q

2(q − 1)
+

1

q − 1

q−2∑
µ=1

G(χµ)
ζ−(l+s)µ(1− ζ −µq2 )

1− ζ−µ

= − q

2(q − 1)
+

1

q − 1

q−2∑
µ=1

G(χµ)
ζ−(l+s)µ+µ

2
−µq

4 (ζ
µq
4 − ζ−µq4 )

ζ
µ
2 − ζ−µ2

= − q

2(q − 1)
+

1

q − 1

q−2∑
µ=1

G(χµ)
ζ−(l+s)µ+µ

2
−µq

4 sin πµq
2(q−1)

sin πµ
q−1

Therefore

|Sλ| ≤
q

2(q − 1)
+

1

q − 1

q−2∑
µ=1

|G(χµ)| 1

| sin πµ
q−1
|

=
q

2(q − 1)
+

√
q

q − 1

q−2∑
µ=1

1

sin πµ
q−1

By the inequality
∑q−2

µ=1(sin µπ
q−1

) ≤ −2(q−1)
π

ln tan( π
4(q−1)

), we get

|Sλ| ≤ 1 +
2
√
q

π
ln

4(q − 1)

π

Hence |Sλ| ≤ 1 + 2
k
2 +1

π
ln 4(2k−1)

π
. �

Theorem 5.5 Let F be the n-variable Boolean function defined by Construc-
tion 5.1. Then

NF ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)

π
− 2

k
2

+1

π
ln

4(2k − 1)

π
− 2

≈ 2n−1 − 2 ln 2

π
k2k − 2 ln 2

π
k2

k
2 .
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Proof: For any (a, b) ∈ F2k × F2k ,

WF (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)F (x,y)+tr(ax+by)

=
∑
y∈F

2k

(−1)g(y)+tr(by) +
∑

(x,y)∈F∗
2k
×F

2k

(−1)f(x,y)+tr(ax+by)

=
∑
y∈F

2k

(−1)g(y)+tr(by) +
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by)

−
∑
y∈F

2k

(−1)tr(by)

=

{
0, b = 0;
Wg(b) +Wf (a, b), else.

Consequently,

max
(a,b)∈F

2k
×F

2k

|WF (a, b)| ≤ max
(a,b)∈F

2k
×F∗

2k

|Wf (a, b)|+ max
b∈F∗

2k

|Wg(b)|

For b ∈ F∗
2k

Wg(b) =
∑
x∈F

2k

(−1)g(x)+tr(bx) = −2
2k−1+s−1∑

i=s

(−1)tr(bα
i)

By Lemma 4.5 and Lemma 5.4

NF ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)

π
− 2

k
2

+1

π
ln

4(2k − 1)

π
− 2

≈ 2n−1 − 2 ln 2

π
k2k − 2 ln 2

π
k2

k
2 .

�

This class of Boolean functions defined by Construction 5.1 is Tu-Deng
balanced functions[21] when u = 1, and is balanced Boolean functions pro-
posed by Tang el et.[20] when u = 2k − 2.
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6 Conclusion

We generalize T-D functions[21] and functions proposed Tang et al.[20] and
put forward two infinite classes of 2k-variable Boolean functions, one of which
is balanced. Both classes have high nonlinearity and high algebraic degree.
Based on Conjecture 3.3, both class have optimal algebraic immunity. If we
replace xy2k−1−u by x2k−1−uy or x2k−1−vy2k−1−u, (v, 2k − 1) = 1, the corre-
sponding Boolean functions have the same properties as Boolean functions
in this paper.
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