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Abstract

We construct 3-round proofs and arguments with negligible soundness error satisfying two re-
laxed notions of zero-knowledge: Weak ZK and witness hiding (WH). At the heart of our construc-
tions lie new techniques based on point obfuscation with auxiliary input (AIPO).

It is known that such protocols cannot be proven secure using black-box reductions (or simu-
lation). Our constructions circumvent these lower bounds, utilizing AIPO (and extensions) as the
“non-black-box component” in the security reduction. We also investigate the relation between
AIPO and the assumptions previously used to achieve 3-round ZK.

∗This research was funded by the Check Point Institute for Information Security.
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1 Introduction

Interactive proofs (IP’s) and arguments (IA’s) [GMR85, BCC88] are fundamental notions in the the-
ory of computation. In cryptography, these are typically used to prove NP-statements, and the proof is
required to maintain the prover’s privacy. Different notions of privacy were considered, the most com-
prehensive one being zero-knowledge (ZK). ZK protocols allow proving an assertion without revealing
anything but its validity. That is, the information on a valid statement learned by the verifier from the
interaction can be simulated only from the statement itself.

Since ZK was introduced [GMR85], questions regarding the round complexity of ZK protocols were
studied extensively. While it is known that 2-round ZK protocols (with auxiliary input) for languages
outside BPP do not exist [GO94], a classical open question is whether there exist 3-round ZK protocols
for NP with negligible soundness error. The difficulty of this problem is exemplified by the lower bound
of [GK96]: There do not exist 3-round black-box ZK (BBZK) protocols with negligible soundness for
languages outside BPP (in BBZK the simulator only has black-box access to the verifier). Namely, to
prove that a 3-round protocol is ZK, one must demonstrate a non-black-box simulator.

The work of [Bar01] shows that using non-black-box simulation it is possible to go beyond existing
black-box bounds. However, so far we do not know how to use similar techniques to obtain 3-round ZK
protocols. Nevertheless, 3-round ZK protocols have been constructed based on non-standard “knowl-
edge assumptions”. [HT98, BP04] show a 3-round ZK argument based on the knowledge of exponent
assumption (KEA) and variants of it. A different “knowledge assumption” was used to show the exis-
tence of 3-round ZK proofs for NP [LM01]. (See further discussion in Section 1.2.)

In light of the difficulties in achieving 3-round ZK, it is natural to examine relaxations of ZK that
might enable the construction of such protocols. We discuss several previously studied relaxations.

Witness indistinguishability (WI). A protocol is WI [FS90] if any two proofs for the same statement
that use two different witnesses are indistinguishable. [FS90] show that, while the parallel repetition
of basic (3-round) ZK protocols is not BBZK, it is WI. Furthermore, the soundness error decreases
exponentially in the number of repetitions. However, WI protocols do not always guarantee witness
secrecy; in particular, for statements with a unique NP-witness WI is meaningless. Nevertheless, [FS90]
show how to use WI to achieve other notions of secrecy such as ZK and witness-hiding (WH).

Witness hiding. Roughly speaking, a protocol is WH [FS90] w.r.t a distribution D on an NP-language
L if no verifier can extract a witness from its interaction with the honest prover on a common instance
x ← D. For WH to be meaningful, it should be restricted to hard distributions; namely distributions
D for which poly-size circuits cannot find a witness w ∈ RL(x) for instances x ← D. WH is in a
sense a “minimal” notion of privacy; indeed, leaking the entire witness does not leave much room for
imagination.

[FS90] present a 3-round protocol with negligible soundness error that is only WH w.r.t a specific
type of (hard) distributions on languages where every instance has two witnesses. In contrast, extending
the lower bounds of [GK96], [HRS09] show that for distributions with unique witnesses, 3-round WH
can not be ”black-box reduced” to any ”standard cryptographic assumption” (e.g. existence of OWFs),
under some natural limitations on the reduction.

In this work, we are interested in protocols that are WH w.r.t all hard distributions (including the
unique witness case). We remark that constructing WH protocols for restricted classes of distributions,
where a lower bound on their hardness is apriori known, is a relatively easy task (and is not ruled out
by [HRS09]). Indeed, using super-polynomial black-box reductions, it is possible to obtain 3-round
WH protocols w.r.t to super-polynomial hard distributions. (For example, f(n) = ω(log n) parallel
repetitions of a basic 3-round ZK protocol with constant soundness error, such as Blum, is WH w.r.t
distributions that are hard for 2f(n)-size adversaries.) Typical cryptographic scenarios, however, do call
for secrecy w.r.t general languages/distributions where no apriori super-poly hardness bound is known
at the protocol’s design time. Here, efficient reductions requiring non-black-box techniques are needed.
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Weak zero-knowledge. The standard notion of ZK requires that for any (potentially adversarial) verifier
there exist a simulator that simulates its view in an interaction with the honest prover. The simulated
view should be indistinguishable from the real one by any (efficient) distinguisher. The notion of WZK
[DNRS99] weakens ZK by changing the order of quantifiers. Specifically, it allows the ZK simulator to
depend on the particular distinguisher in question.

While ZK is often used as a sub-protocol in larger systems, WZK is not always suitable for this
purpose due to its weaker simulation guarantee. In particular, WZK is not known to be closed under
sequential repetition. Nevertheless, WZK is useful in settings where the verifier tries to learn a specific
type of information, and we can present a distinguisher that can test whether the verifier succeeded
in learning it. Examples include verifiers that try to lean a specific predicate of the witness, or any
function of the witness that is efficiently verifiable. In particular, WZK implies WH (by considering
a distinguisher which tests if the verifier’s view contains a valid witness). We note that for black-box
simulation, WZK and (standard) ZK coincide; hence, by [GK96], a 3-round protocol with negligible
soundness error can not be shown to even be WZK with a black-box simulator.

To sum up the above discussion, 3-round arguments with negligible soundness error, that are ZK,
WH or WZK cannot be constructed using black-box techniques (from this point on, we only consider
proofs arguments with negligible soundness error). In light of the existing non-black-box constructions,
it is interesting to investigate which techniques and assumptions could suffice for constructing such
protocols. Another interesting related question is understanding whether the relaxed notions of WH
and WZK require simpler techniques than for full-fledged ZK; indeed, all existing WH constructions
are based on the stronger notion of ZK as a building block. The question of finding “more direct”
constructions of WH was already raised by [FS90]. This work sheds new light on both questions,
introducing techniques based on point obfuscation.

Point obfuscation (PO) and extensions. We briefly review the concept of PO. Informally, an obfuscator
is a randomized algorithm O which gets as input a program C (given by a circuit) and outputs a new
program O(C) that has the same functionality as the original one, but does not leak any additional
information on C [BGI+01]. A stronger variant is obfuscation with auxiliary input, in whichO(C) does
not leak any information even given a related auxiliary input zC [GK05].

In this work we consider obfuscation of point circuits and their extensions. A point circuit Is outputs
1 on s and ⊥ on all other inputs. A multibit point circuit Is→t outputs t on s and ⊥ otherwise. We also
consider a new extension of point circuits which we call circular point circuits. These are circuits
Is�t which output t on input s, s on input t, and ⊥ otherwise. Obfuscators for multibit point circuits
are called Digital Lockers (DL). We introduce the new notion of circular digital lockers (CDL) that
are obfuscators for circular point circuits. Point circuits and their extensions are among the very few
functionalities for which obfuscators have been shown; in particular there are several constructions that
realize PO (and variants), under a number of strong hardness assumptions. So far, however, PO’s have
found only a handful of applications in cryptographic theory, mostly to strong forms of encryption
[Can97, Wee05, CD08, CKVW10, BC10].

1.1 Our Contribution

We construct 3-round WH and WZK protocols based on two different variants of point obfuscation:

• 3-round negligible soundness WH IP for NP given auxiliary input point obfuscators that satisfy a
relatively mild distributive security requirement. The protocol is WH w.r.t general hard distribu-
tions (including the unique witness case).

• 3-round WZK IA for NP given auxiliary input digital lockers that satisfy a worst-case simulation
security requirement.
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We next give an overview of our constructions, followed by a discussion on the nature of our obfuscation
assumptions and how they relate to previous assumptions used for 3-round ZK protocols.

3-round witness-hiding. The high level idea behind our WH protocol is as follows. Given an NP
statement x ∈ L, have the verifier V construct a modified NP verification circuit VeryL,x that on a valid
witness w ∈ RL(x) outputs a secret random point y and outputs ⊥ otherwise. V then “garbles” this
circuit using Yao’s technique and both parties execute a 2-message oblivious-transfer protocol, at the
end of which the prover P possesses the garbled circuit and the corresponding labels for the witness w.
Next, P evaluates the circuit (on w) and obtains the point y. (This is essentially a conditional disclosure
of secrets protocol, as termed by [GIKM00, AIR01], where P learns the output y only if it inputs a
valid witness.) In the third message, P sends back to V a point obfuscation of y. V accepts only after
verifying it got a valid obfuscation of y.

Informally, soundness follows from the secrecy of the garbled circuit that prevents a dishonest prover
from obtaining the random y in case there is no valid witness. In fact, we show that our protocol is a
proof of knowledge.

The witness-hiding property is based on the security of the underlying obfuscator. To exemplify,
consider a version of the protocol where P sends back y in the clear. Following is an attack on this
simple version of the protocol. Consider a cheating verifier V∗ that instead of garbling VeryL,x, garbles
the identity circuit. P now evaluates the garbled circuit on w and obtains the point y = w. If P was
to simply send back y in the clear, V∗ would have learned w and the protocol would be completely
insecure. Instead, P sends back an obfuscation O(y). The security of the obfuscator O should then
assure that V∗ can not obtain w, unless “it was already known” to V∗ in advance.

The security reduction and required obfuscation assumptions. As we have seen, the WH guarantee
of our protocol depends on the security of the underlying point obfuscator O. We now discuss the prop-
erties of the obfuscation used to show WH. Concretely, our underlying obfuscator should satisfy a distri-
butional indistinguishability requirement w.r.t to points and related auxiliary information that are jointly
sampled from an unpredictable distribution. We say that a distribution ensemble D = {(Zn, Yn)}n∈N
on pairs of strings is unpredictable (UPD) if poly-size circuits cannot predict (with noticeable chance)
the point Yn, given the potentially related auxiliary input Zn. We say that O is a distributional auxil-
iary input point obfuscator (AIPO) if for any UPD D = {(Zn, Yn)}, no poly-size circuit family can
distinguish, given Zn, an obfuscation of O(Yn) from an obfuscation of a random point O(Un).

In our setting, Zn represents the common input x and the prover’s first message (during the OT
protocol). Yn is the obfuscated point (returned by the honest prover). That is, Zn is explicitly known
to the verifier, while Yn is obfuscated. A malicious V∗ might choose its (garbled) circuit to output
illegitimate information on the witness (i.e. information it could not predict on its own only from Zn);
the obfuscation, however, should prevent it from doing so.

3-round weak zero-knowledge. The WH protocol described above is not ZK and in fact enables a
cheating verifier V∗ to learn arbitrary predicates of the witness. For example, to learn w1, the first bit
of w, V∗ can maliciously choose its garbled circuit to map any witness w to one of two arbitrary points
y0, y1 according to w1. In this case, the honest prover sends an obfuscation O(yw1), and V∗ learns w1

by simply running the obfuscation on each of the two points y0, y1. This attack can be generalized to
any function of w with output length O(log n) (using a poly-size set of strings {yi}).

Towards making the protocol ZK, we try to cope with the above attack by requiring that the verifier
“proves” it “fully knows” the secret point y (rather than just a poly-size set containing y). To achieve this
without adding rounds, we ask that the verifier itself includes an obfuscation of y in its message. The
prover then checks the obfuscation’s consistency with the point extracted from the circuit evaluation. In
case of inconsistency, the prover aborts. This modification, however, still does not prevent the above
attack. The verifier V∗ can learn w1 by sending an obfuscation of the string y0 and observing whether
the prover aborts. Moreover, the protocol might no longer be sound since a cheating prover might use
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the verifier’s obfuscation to create an obfuscation of the same point y without “knowing” y.
We resolve these issues as follows: (a) To regain soundness, we use an obfuscation scheme with

non-malleability properties, based on an obfuscated circular point circuit (CDL). (b) To achieve WZK,
we require that instead of a plain point obfuscation, the verifier sends an obfuscated multibit point circuit
(DL) that on the secret input y outputs the coins used by the verifier to garble the circuit. Now the prover
can verify that the garbled circuit is indeed VeryL,x (for some y).

In order to show that the protocol is WZK, we use stronger notions of obfuscation. Since WZK
requires worst-case simulation (i.e. simulation for any x), we require that our obfuscators also satisfy
a worst-case simulation guarantee (rather than the weaker distributive definition used for WH). To
simulate any verifier V∗, our simulator must make use of the obfuscation simulator for V∗. However,
an obfuscation simulator for general adversaries with long output could not exist (see [BGI+01]); in
fact, in known constructions of PO only address simulation of adversaries with a single output bit. To
overcome this, we use the fact that the WZK simulator is given a specific distinguisher and it only needs
to simulate the output of this distinguisher on V∗. Since V∗ and the distinguisher together can be viewed
as an adversary for the obfuscation that outputs a single bit, there exists an obfuscation simulator for this
adversary. We show how to use this simulator to construct a WZK simulator. Indeed, this limitation on
simulating adversaries with long output is the reason we do not achieve full-fledged ZK.

We note that while we do not know whether our WZK protocol remains secure under sequential
composition, we show that if the DL and CDL used are “composable obfuscators” the protocol remains
WZK under parallel composition.

1.2 Reflections on the Use of Point Obfuscation

The results of [GK96, HRS09] imply that our 3-round protocols can not be shown secure using reduc-
tions that only make black-box use of the adversary. This is not surprising: indeed, neither auxiliary
input nor standard point obfuscators can be shown to be secure using black-box reductions [Wee05].
Hence, our use of obfuscation inherently implies that the verifier is not used as a black-box.

To demonstrate the non-black-box nature of POs, we briefly review the techniques used in existing
constructions [Can97, Wee05]. We can view POs as a special case of AIPOs where the auxiliary inputZn
is empty. In this case, the distribution Yn is unpredictable if it is well-spread (i.e., has super-logarithmic
min-entropy) and the security requirement is that O(Yn) ≈c O(Un) for any well-spread Yn.

The hardness assumptions made in [Can97, Wee05] are shown to imply that the strategy of any dis-
tinguisher essentially consists of a poly-size set of “distinguishing elements”. That is, only obfuscations
of points within this set are distinguishable from an obfuscation of a random point. However, these
elements can not be extracted using black-box access to the adversary. Hence, they are given to the
reduction (or simulator) as non-uniform advice.

These techniques allow achieving the stronger worst-case simulation definition, thus showing that
the distributive and worst-case definitions are in fact equivalent in the case of no auxiliary input. When
considering auxiliary input, we can no longer apply these techniques. Indeed, the set of distinguishing
elements can now depend on the auxiliary input in an arbitrary way. That is, no short advice suffices
for the reduction to go through. In general, we do not know whether the distributive AIPO definition
implies the worst-case simulation definition in the auxiliary input case (the converse still holds).

Concrete constructions. There exist very few constructions that were shown to be secure w.r.t aux-
iliary input. [GK05] show that any point obfuscator is also secure w.r.t auxiliary input that is chosen
independently of the obfuscated point. [DKL09] suggest a construction that, under a variant of the LWE
assumption, satisfies a restricted definition, where the distribution D is “highly unpredictable”. Both
results are insufficient for our needs.

In this work, we consider two concrete constructions of AIPOs based on two different assump-
tions. The first AIPO, known as the (r, rx) obfuscator, was suggested by Canetti [Can97] based on a
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strong variant of DDH. Informally, the assumption states that there exists an ensemble of prime order
groups G = {Gn : |Gn| = pn} such that for any unpredictable distribution D = (Zn, Yn) with support

{0, 1}poly(n) × Zpn : (z, r, ry) ≈c (z, r, ru), where (z, y) ← (Zn, Yn), u
U← Zpn and r is a random

generator of Gn
1.

For the second construction, we suggest a new assumption that is stated in terms of uninvertibility
rather than indistinguishability. The assumption strengthens the assumption made by Wee [Wee05] to
account for auxiliary inputs. Roughly, to construct (non auxiliary input) POs, Wee assumes a strong
one-way permutation f that is “uninvertible” w.r.t to all well-spread distributions. A natural extension
of the latter to the auxiliary input setting is to assume that the permutation is hard to invert, even given
side information Z on the pre-image Y , from which Y cannot be predicted. An additional fact used
by Wee is that permutations inherently preserve (information-theoretic) entropy; in particular, if Y is
well-spread, so is f(Y ). In the (computational) auxiliary input setting, this might not be true; namely,
it might be that Y is unpredictable from Z, while f(Y ) is predictable from Z. One possible way to
deal with this issue is to assume a trapdoor permutation family (with the above strong uninvertibility).
In Section 2.3, we show a more general (or weaker) assumption and a corresponding construction of
AIPOs.

We remark that both the assumptions we consider (or any assumption that states that a specific
obfuscation candidate is an AIPO satisfying either a the worst-case or the distributive security definition)
are considered to be non-standard. In particular, any such assumption is non-falsifiable in the terms of
Naor [Nao03]. For example, to falsify the the distributive AIPO definition, one has to come up not only
with a distinguisher but also with an unpredictable distribution and a proof of its unpredictability.

Comparison with previous work on 3-round ZK. As already mentioned, it is known how to con-
struct 3-round ZK arguments and proofs using non-falsifiable “knowledge assumptions,” such as KEA
[HT98, BP04], the POK assumption [LM01], or the existence of “extractable perfect one-way functions”
(EPOWF)[CD09].

The KEA assumption [Dam91], essentially asserts that any algorithm that produces a DDH tuple,
must “know” the corresponding exponents.Upon the formulation of KEA, [Dam91] raised a more gen-
eral question regarding the existence of “sparse range one way functions”, such that any algorithm that
can sample an element within the function’s range, must also “know” a primage (KEA indeed yields
such a OWF). The EPOWF primitive of [CD09] formalizes this generalization. All in all, all the above
assumptions essentially fall under the abstract notion of EPOWF. (Indeed, [CD09] show that either
one of the KEA or the POK assumptions imply the EPOWF primitive, when combined with a hardness
assumption such as DDH.)

In this work we show how to circumvent the black-box impossibility results for 3-round WZK and
WH based on a different set of primitives; namely (variants of) point obfuscation with auxiliary input.
At this point, we do not know of any formal relation between the AIPO and EPOWF primitives, beyond
the relation established in this work (through 3-round ZK). We find that formalizing such a relation is
an interesting question on its own (going beyond the scope of 3-round ZK).

Coming up with different assumptions (even non falsifiable ones) that can be used to overcome
known black-box bounds opens up new directions for overcoming these bounds. In this case, we show
that the research of AIPO can also be instrumental for the attempts to overcome black-box impossibility
results for 3-round WZK and WH.

Finally, we consider the techniques in use. Unlike previous works, our work demonstrates a direct
WH construction that is not based on a ZK protocol. We then strengthen it to a limited form of ZK. Our
WH to WZK transformation is specifically tailored for our construction. An interesting open question is
whether a general transformation of this type exists.

1Both [Can97, DKL09], make use of a slightly different formulation for the distributional AIPO requirement. Their formu-
lation is essentially equivalent to ours.

5



On the efficiency of the construction. We note that basing our constructions on 2-party secure function
evaluation (using Yao’s garbled circuit technique) results in efficient protocols with a practical imple-
mentation (similarly to [IKOS07]). By working directly with the verification circuit VerL, we avoid the
overhead of Karp reducions most existing 3-round ZK IA. Specifically, using existing constructions
for the relevant primitives, we can achieve communication complexity O(ns), where n is the security
parameter and s is the size of VerL. This is not optimal as there exist ZK argument with polylog commu-
nication complexity [Kil92]. However, these require using PCP techniques, making them impractical.

2 Definitions and Tools

2.1 Weak Zero-Knowledge and Witness Hiding

We consider interactive argument systems for NP languages L with a corresponding witness relation
RL. Each system consists of a pair of PPT prover and verifier algorithms (P,V). We require that all our
protocols satisfy:

• Perfect completeness. For any (x,w) ∈ RL:

Pr[(P(w),V)(x) = 1] = 1 .

• Negligible soundness error. For any poly-size prover strategy P∗, any large enough n, and any
x ∈ {0, 1}n \ L:

Pr[(P∗,V)(x) = 1] ≤ negl(n) .

We say that the system is a proof (rather than an argument) if it is also sound against provers of
unbounded size.

We also consider the following notion of proof of knowledge: an interactive proof (P,V) is a proof of
knowledge (POK) if there exist an oracle machine E s.t. for every prover strategy P∗, for every long
enough x ∈ L and every polynomial p, if Pr[(P∗,V)(x) = 1] ≥ p(|x|) then EP(x) ∈ RL(x) and the
expected running time of EP(x) is polynomial in 1/p(|x|).

In this work we discuss two relaxations of ZK which are formalized next.

Weak zero-knowledge. In ZK we require that the view of any verifier V∗ in an interaction with the
honest prover P can be simulated by an efficient simulator S. The simulated view should be indistin-
guishable from the view of V∗ for any poly-size distinguisher. In weak ZK (WZK), the simulator is only
required to output a view that is indistinguishable from that of V∗ for a specific distinguisher. This is
modeled by supplying the simulator with the distinguisher circuit as additional auxiliary input.

Definition 2.1 (Weak zero-knowledge). The argument system (P,V) is WZK if for every PPT verifier V∗
there exist a PPT simulator S such that for every poly-size circuit family of distinguishersD = {Dn}n∈N
and any x ∈ L ∩ {0, 1}n, w ∈ RL(x), z ∈ {0, 1}poly(n) it holds that:

|Pr[Dn((P(w),V∗(z))(x)) = 1]− Pr[Dn(S(Dn, x, z)) = 1]| ≤ negl(n) .

Witness-hiding. A protocol is WH if the verifier cannot fully learn a witness from its interaction with
P . This requirement is restricted to instances and witnesses (x,w) sampled from “hard distributions”.

Definition 2.2 (Hard distribution). Let D = {Dn}n∈N be an efficiently samplable distribution ensemble
on RL, i.e. Supp(Dn) = {(x,w) : x ∈ L ∩ {0, 1}n, w ∈ RL(x)}. We say that D is hard if for any
poly-size circuit family {Cn} and sufficiently large n it holds that:

Pr
(x,w)

Dn←RL
[Cn(x) ∈ RL(x)] ≤ negl(n) .
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Definition 2.3 (D-witness-hiding). An argument system (P,V) for an NP language L is WH w.r.t to a
hard distribution D = {Dn}n∈N, if for any poly-size verifier V∗ and all large enough n ∈ N:

Pr
(x,w)←Dn

[(P(w),V∗)(x) ∈ RL(x)] ≤ negl(n) .

We say that (P,V) is WH if it is WH w.r.t to a every hard distribution.

As discussed in the introduction, in this work we will be interested in WH protocols (w.r.t to a every
hard distribution), and not with protocols that are WH w.r.t to a specific hard distribution.

2.2 2-Message Delegation

A central tool used in our constructions is a 2-message delegation protocol in which the prover and
verifier jointly evaluate the NP verification circuit of the language on the common instance and the
prover’s witness. We use this primitive (following the formulation in [IP07]) to abstract the use of Yao’s
garbled circuit construction.

A 2-message delegation protocol is executed by parties (A,B), where A has an input x, and B has
as input a function f (given by a boolean circuit). The protocol should allow A to obtain f(x) using two
messages: A → B → A, and without compromising the input secrecy of either party. We additionally
require that, given B’s message and secret randomness, one can reconstruct f . The protocol is defined
by a tuple of algorithms (Gen,Enc,Eval,Dec,Open) and proceeds as follows:

A: Obtains a key sk ← Gen(1n), computes an encryption of its input c← Enc(sk, x), and sends c.

B: Computes an encrypted output ĉ← Eval(c, f) using randomness r, and sends back ĉ.

A: Outputs y = Dec(sk, ĉ).

Definition 2.4 (Secure 2-message delegation). a protocol (Gen,Enc,Eval,Dec,Open) is a secure 2-
message delegation protocol if for every ensemble C = {Cn}n∈N of poly-size circuits, where each C ∈
Cn has input length n, the following requirements hold:

• Correctness: For all n ∈ N, x ∈ {0, 1}n and C ∈ Cn, the following procedure outputs C(x) with
probability 1:

– Obtain sk ← Gen(1n).

– Compute c← Enc(sk, x).

– Compute ĉ← Eval(c, C).

– Output Dec(sk, ĉ).

• Input Hiding: For any poly-size D, the probability that D wins the following game is at most
1/2 + negl(n):

– On 1n, D submits a pair of strings x0, x1 ∈ {0, 1}n.

– Sample sk ← Gen(1n).

– For a random bit b ∈R {0, 1}, compute c← Enc(sk, xb) and give c to D.

– D outputs a guess b′ and wins if b = b′.
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• Function Hiding: A randomized evaluation should not leak information on the input circuit C.
This should hold even when A is malicious and sends an arbitrary first message. Formally, let
E(x) = Supp(Enc(·, x)) be the set of all legal encryptions of x, and let En = ∪x∈{0,1}nE(x) be
the set legal encryptions for strings of length n. Then there exist a PPT simulator S such that:

{C,Eval(c, C)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

≈c {C,S(c, C(x))} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

(1)

{C,Eval(c, C)} n∈N
C∈Cn,c/∈En

≈c {C,S(c,⊥)} n∈N
C∈Cn,c/∈En

. (2)

• Function Binding: We require that, given the result ĉ of evaluating C on an encrypted input
and the randomness r used by Eval, one can efficiently reconstruct C. The bind should also hold
against a malicious evaluator B:

1. For all n ∈ N, x ∈ {0, 1}n, C ∈ Cn, the following procedure outputs C with probability 1:

– Obtain sk ← Gen(1n).
– Compute c← Enc(sk, x).
– Compute ĉ← Eval(c, C) using randomness r to Eval.
– Output Open(ĉ, r).

2. For any ĉ ∈ {0, 1}∗ there is at most one value of r s.t. Open(ĉ, r) 6= ⊥.

2.2.1 Remarks on Definition 2.4.

1. The function-binding property is required in our construction of WZK IA. While function-binding
is not required in common formulations of delegation protocols, we show that a Yao-based con-
struction (when instantiated with natural forms encryption) has this property.

2. To get WH proofs (rather than arguments), we use a slightly stronger variant where the function-
hiding is information-theoretic (and not computational). In this case, we no longer require the
delegation protocol to be function-binding (as in standard commitments, the two properties cannot
coexist).

3. The security definition presented is weaker than the standard definition of secure function evalua-
tion. Specifically, if the evaluating party B is malicious we can not fully simulate.

4. The definition of function-hiding does not require that the simulator knows whether the encryption
ĉ is valid or not. In our case, this will be sufficient; specifically, we shall utilize the simulator for
circuits the output ⊥ on all inputs and S(c,⊥) will correctly simulate the garbled circuit whether
c is a valid encryption or not.

Instantiating the 2-message delegation scheme. We describe how to implement a 2-message dele-
gation scheme using Yao’s garbled circuit technique and 2-message OT. We require a 2-message OT
scheme, with the following security guarantee:

1. Computational security for the receiver: for every two inputs, the receiver’s messages are compu-
tationally indistinguishable.

2. Information-theoretic security for the sender: the view of every receiver can be simulated in an
information-theoretic way by a (possibly unbounded) simulator interacting with the ideal OT func-
tionality.
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We will use the OT scheme of [NP01] that satisfy this security requirement under the DDH assumption.
A description of Yao’s garbled circuit construction can be found in [LP09].

Gen: Simply outputs as sk random coins for the OT receiver.

Enc: Use the randomness string sk to generate and output the receiver’s message of the OT, where the
choice bits correspond to the bits of the input value x.

Eval: Generate a garbled universal circuit Û taking as input a description of the circuit C and another
input x for C and outputs C(x). Output the garbled circuit Û , the labels of the input wires
describing the input circuit C, and the OT sender’s message encoding the labels of the input wires
received from A.

Dec. Use sk to obtain the labels for the input wires corresponding to x (from the OT sender-message);
evaluate the garbled circuit and obtain the result.

Open. Given the randomness used to garble the circuit Û , open all the gates of the garble circuit; reveal
and output the values of the inputs wires encoding C. For this we require that the underlying
encryption scheme for Yao’s protocol is committing; namely, any cipher should information-
theoretically determine the plaintext (even without the secret key).

The details of the security proof for the function hiding property of the scheme in the semi-honest
case are similar to [CCKM00]. By using an OT scheme that is secure against malicious senders, we can
show that the function hiding property of the construction holds also in the malicious case. Informally, if
a maliciousA sends a malformed first message, the security of the OT guaranties that it will learn nothing
about the values of the input wires to the garbled circuit. Together with the security of the garbled circuit
it follows that the message sent by B can be simulated independently of A’s first message. The function
binding property follows directly from the fact that the underlying encryption scheme for the garbled
circuit is committing.

Instantiating the 2-message delegation protocol with perfect function hiding. We showed how to
construct a 2-message delegation protocol using Yao’s garbled circuit. Note that the OT scheme used
([NP01]) is also secure against unbounded receivers. We can use an information-theoretic variant of
Yao’s garbled circuit in a similar way to get a 2-message delegation protocol with perfect function-
hiding for NC1 circuits. A description of an information-theoretic variant can be found in [IK02]. As
mentioned above, this variant will be used in order to construct IP rather than IA.

2.3 Point Obfuscation with Auxiliary Input

We start by recalling the standard definition for circuit obfuscation with auxiliary input. The definition
is a worst-case definitions in the sense that simulation must hold for any circuit in the family and any
related auxiliary input.

Definition 2.5 (Worst-case obfuscator with auxiliary input [BGI+01, GK05]). A PPTO is an obfuscator
with auxiliary input for an ensemble C = {Cn}n∈N of families of poly-size circuits if it satisfies:

• Functionality. For any n ∈ N, C ∈ Cn, O(C) is a circuit which computes the same function as C.

• Polynomial slowdown. For any n ∈ N, C ∈ Cn, |O(C)| ≤ poly(|C|).

• Virtual black box. For any PPT adversaryA there is a PPT simulator S such that for all sufficiently
large n ∈ N, C ∈ Cn and z ∈ {0, 1}poly(n):∣∣∣Pr[A(z,O(C)) = 1]− Pr[SC(z, 1|C|) = 1]

∣∣∣ ≤ negl(n) ,

where the probability is taken over the coins of A,S and O.
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An obfuscator O is recognizable if given a program C and an alleged obfuscation of C, C̃, it is easy to
verify that C and C̃ compute the same function.

• Recognizability. There exist a polynomial time recognition algorithm V such that for any C ∈ Cn:

• PrO [V(C,O(C)) = 1] = 1

• For any C̃ ∈ {0, 1}poly(n) if V(C, C̃) = 1 then C̃ and C compute the same function.

Point obfuscation. We consider obfuscation of point circuits and their extensions. A point circuit Is
outputs 1 on string s and ⊥ on all other inputs.

Definition 2.6 (Worst-Case auxiliary-input point obfuscation (AIPO)). A PPT algorithm O is a worst-
case AIPO if it is a recognizable obfuscator (according to Definition 2.5) for the following circuit en-
semble: C = {Cn = {Is|s ∈ {0, 1}n}}n∈N
Remark 2.1. The notion of recognizable obfuscation was not explicitly defined in previous works. We
only consider this property in the context of point obfuscation. While, in general, point obfuscators
are not required to be recognizable, previously constructed obfuscators [Can97, Wee05] are trivially
recognizable. This is due to the fact that they use public randomness, i.e. the randomness used by the
obfuscator appears in the clear as part of the obfuscated circuit. The recognition algorithm, given a
program and its obfuscation, can simply rerun the obfuscation algorithm with the public randomness
and compare the result to the obfuscation in hand.

We next present a weaker distributional definition for point obfuscation with auxiliary input that pre-
viously appeared in [Can97] (in a slightly different formulation). We first give a preliminary definition
of unpredictable distributions (generalizing Definition 2.2) and then present the obfuscation definition.

Definition 2.7 (Unpredictable distribution). A distribution ensemble D = {Dn = (Zn, Yn)}n∈N, on
pairs of strings is unpredictable if no poly-size circuit family can predict Yn from Zn. That is, for every
poly-size circuit family {Cn}n∈N and for all large enough n:

Pr
(z,y)←Dn

[Cn(z) = y] ≤ negl(n) .

Definition 2.8 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT algo-
rithm O is a point obfuscator for unpredictable distributions if it satisfies the functionality and polyno-
mial slowdown requirements as in Definition 2.5, and the following secrecy property. For any unpre-
dictable distribution D = {Dn = (Zn, Yn)} over {0, 1}poly(n) × {0, 1}n it holds that:

{z,O(y) : (z, y)← Dn}n∈N ≈c
{
z,O(u) : z ← Zn, u

U← {0, 1}n
}
n∈N

.

Remark 2.2. Using this definition in our WH construction, we can settle for a slightly relaxed definition
with bounded auxiliary input; namely |Yn| = ω(|Zn|). We do not know if such a bounded form of
auxiliary-input indeed weakens the requirement. However, it does seem to withstand certain “diagonal-
ization attacks” that can be performed for the non-restrictive.

AIPO constructions. Following are two constructions of AIPOs based on two different assumptions.
We recall the construction of [Can97]. Then, we describe a modification of the construction in [?] that
yields AIPOs given a new assumption that strengthens Wee’s original assumption.

Construction 2.1 (The r, rx point obfuscator [Can97]). Let G = {Gn}n∈N be a group ensemble, where
each Gn is a group of prime order pn ∈ (2n−1, 2n). We define an obfuscator,O, for points in the domain

Zpn as follows: Ix
O7−→ C(r, rx), where r U← G∗n is a random generator of Gn, and C(r, rx) is a circuit

which on input i, checks whether rx = ri.
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[Can97] considers a strong variant of the DDH assumption implying that the (r, rx) obfuscator is an
AIPO satisfying Definition 2.8. The assumption essentially states there exist an ensemble of prime
order groups G = {Gn : |Gn| = pn} such that for any unpredictable distribution D = (Zn, Xn) with

support {0, 1}poly(n)×Zpn , it holds that that (z, r, rx) ≈c (z, r, ru) where (z, x)← (Zn, Xn), u
U← Zpn

and r is a random generator of Gn. Candidate group ensembles include any ensemble where standard
DDH is assumed to hold, e.g. quadratic residues modulo a prime, or elliptic curves groups. We note
that Construction 2.1 also satisfies the recognizability requirement given in Definition 2.5. Indeed, the
recognition algorithm V(Ix, C̃), simply checks whether C̃ is of the form C(g, h), and that gx = h (here
g is the public randomness used in the obfuscation).

The second construction is based on a new assumption that strengthens the assumption of Wee [Wee05]
to account for auxiliary inputs. As explained in the introduction the natural extension of Wee’s assump-
tion to auxiliary input is insufficient as is. Instead, we make the following assumption and augment
Wee’s original construction.

Assumption 2.1. There exists an ensemble of permutation families F = {Fn = {f}} such that for any
unpredictable distribution ensemble D = {Dn = (Zn, Yn)}, the following two distribution ensembles
are also unpredictable:

• ((Zn, f(Yn), f);Yn)

• ((Zn, f); f(Yn)),

where in both f U← Fn (independently of Dn).

We remark that the first property naturally generalizes Wee’s assumption regarding strong uninvertibil-
ity; in particular, when Z is empty and Y is simply well-spread the assumption coincides with Wee’s.
The second property essentially guarantees that f(Y ) is unpredictable from Z just as Y is; In Wee’s
assumption (where Z is empty and Y is well-spread) this is inherently guaranteed by the fact that per-
mutations preserve information-theoretic entropy.

We note that the second part of the assumption has a flavor of weak extractability; still, it appears
to be significantly weaker than the sparse-range extractability discussed in the introduction. We also
note that any trapdoor permutation family would inherently imply the second part of the assumption;
hence, it suffices to have trapdoor permutations that satisfy the strong uninvertibility (first part of the
assumption).

Construction 2.2. Let F be a family of permutations given by Assumption 2.1. The obfuscator O
works as follows: given a point y ∈ {0, 1}n, O samples 3n permutations {fi}i∈[3n] from Fn, and 3n

strings {ri}i∈[3n] from {0, 1}n. For every i ∈ [3n], let f i = fi ◦ fi−1 ◦ · · · ◦ f1 (where ◦ denotes
composition). O outputs a circuit Cy that has hardcoded into it the randomness of O, {fi, ri}i∈[3n] and
the bits

{
bi = 〈ri, f i(y)〉

}
i∈[3n], where 〈., .〉 denotes the inner product in F2. Cy outputs 1 on a point x

if ∀i ∈ [3n] : bi = 〈ri, f i(x)〉; otherwise, Cy outputs 0.

The proof of security follows similar ideas to the proof in Wee, we defer the details to a later extended
version of this work.

2.4 Digital Lockers and Circular Digital Lockers

We also consider obfuscation of several extensions of point circuits. Specifically, multibit point circuits
and circular point circuits. A multibit point circuit Is→t outputs t on s and⊥ otherwise. A circular Point
circuit Is�t outputs t on input s, s on input t, and ⊥ otherwise. Obfuscators satisfying the worst-case
AIPO definition (Definition 2.6) for multibit point circuits and circular point circuits are called digital
lockers (DLs) and circular digital lockers (CDLs).
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Definition 2.9 (Digital locker (DL)). A PPT algorithm is a DL if it is a recognizable obfuscator (ac-
cording to Definition 2.5) for the following circuit ensemble: C = {Cn = {Is→t|s, t ∈ {0, 1}n}}n∈N
Definition 2.10 (Circular digital locker (CDL)). A PPT algorithm is a CDL if it a recognizable obfusca-
tor (according to Definition 2.5) for the following circuit ensemble: C = {Cn = {Is�t|s, t ∈ {0, 1}n}}n∈N
Remark 2.3. We note that the “security under circularity” feature is inherently provided by the strong
obfuscation guarantees, was already considered in previous work for constructing strong encryption
schemes which withstand key dependent messages and related keys attacks [CKVW10, BC10].

While AIPOs are sufficient for our WH protocol, our WZK protocol requires DLs and CDLs. We now
explain how these can be constructed based on a worst-case AIPO that satisfy the additional property
of composability.

Definition 2.11 (Composable obfuscation [LPS04]). A PPTO is a t-composable obfuscator for a circuit
ensemble C = {Cn} if for any PPT adversaryA, there is a PPT simulator S , such that for any sufficiently
large n, any sequence of circuits C1, . . . , Ct ∈ Cn (where t = poly(n)) and auxiliary input z ∈
{0, 1}poly(n):∣∣∣Pr[A(z,O(C1), . . . ,O(Ct)) = 1]− Pr[SC1,...,Ct

(z, 1|C
1|, . . . , 1|C

t|) = 1]
∣∣∣ ≤ negl(n) ,

where C1, . . . , Ct gets as input (x, i) and returns Ci(x).

Composable point obfuscators yield a natural construction of DLs[CD08].

Construction 2.3 (Digital lockers). Let O be a point obfuscator. Define a PPT DL for point circuits
with n-bit output as follows. For a point x ∈ {0, 1}n and output y = y1y2 . . . yn ∈ {0, 1}n, choose a
random u ∈ {0, 1}n − {x} and define ā = (a0, a1, . . . , an) as follows. a0 = x, and for any i ∈ [n]
ai = x if yi = 1 and ai = u otherwise. The output of the obfuscator is:

DL(Ix→y) = C(O(Ca0), . . . ,O(Can)) ,

where C is a circuit which performs as follows. On input z, it first checks whether z = a0 = x (using
the first point circuit). If it does not, it returns ⊥. Otherwise, it finds all other coordinates such that
ai = z = x and outputs y1 . . . yn, where yi = 1 if ai = z = x and 0 otherwise.

Proposition 2.1 ([CD08]). If O is an (n + 1)-composable worst-case AIPO then DL (given by Con-
struction 2.3) is a digital locker.

Proof. The proof of the functionality, polynomial slow down, and virtual black box properties of DL,
appears in [CD08]. It is left to prove that DL is recognizable. Let VO be the recognition algorithm for
(the single-bit output)O. We construct a recognition algorithm VDL for DL. VDL is given a program Is→t
and an obfuscated circuit C. First, VDL verifies that the format of C is correct; i.e., that C contains n+1
circuits Õ0, . . . , Õn and performs according to Construction 2.3 (we assume that a legal obfuscation
always have the same canonical form). If this is the case, it checks whether VO(Is, Õ0) = 1, if so it
checks that C(s) = t. In case any of the above checks fails, it outputs ⊥; otherwise, it outputs 1. Note
that while VDL might output 1 on circuits that are not a proper obfuscation (for example the circuits Õi
corresponding to ”0” might encode different points, rather than the same u, or even not be point circuits).
However, it is guaranteed that C has the same functionality as Is→t.

Construction 2.4 (Circular digital lockers). Given DL specified by Construction 2.3, define a PPT CDL
that on input points s, t ∈ {0, 1}n outputs the following circuit:

CDL(Is�t) = C(DL(Is→t),DL(It→s)) ,

where C is a circuit that returns ⊥ if both DLs output ⊥ and otherwise it the output of the DL that does
not output ⊥.
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Proposition 2.2. IfO is an (2n+2)-composable worst-case AIPO then CDL (given by Construction 2.4)
is a circular digital locker.

Proof. It follows directly from the construction that CDL satisfies the functionality and polynomial slow
down properties. We show that CDL satisfies the virtual black box property. Let A be an adversary
that is given a circuit CDL as input. This CDL contains a pair of DLs constructed from O according
to Construction 2.3. In [CD08] it is shown that if O is 2(n + 1)-composable, the pair of DLs are 2-
composable and therefore there exist a simulator S such that for all sufficiently large n ∈ N, every
s, t ∈ {0, 1}n and z ∈ {0, 1}poly(n):∣∣Pr[A(z,O(Is�t)) = 1]− Pr[SIs→t,It→s(z, 1n) = 1]

∣∣ ≤ negl(n)

Now we transform S to be the obfuscation simulator for A by answering all queries S makes to the pair
of oracles Is→t, It→s using the single oracle Is�t.

It is left to prove that CDL is recognizable. Let VDL be the recognition algorithm for the underlying
DL. Given a program Is�t and an obfuscated circuit C, the recognition algorithm for the CDL will
simply verify that C is correctly composed of two DLs and use VDL to verify that these DLs have the
same functionality as Is→t, It→s.

3 3-round WH

3.1 Overview of the Protocol

As a warmup consider first the following unsound protocol: To prove an NP statement x ∈ L, the
prover P and verifier V first engage in a 2-message delegation protocol where P’s (secret) input is the
witness w and V’s input function is the NP verification circuit VerL,x. P obtains the result VerL,x(w)
and sends it to V . This is unsound since a cheating prover can always send 1 as it’s last message.

To make the protocol sound, we augment it as follows. Let VeryL,x be a circuit which outputs y on
valid witnesses and ⊥ otherwise. Now, V will choose a secret string y ∈R {0, 1}n, and use the circuit
VeryL,x as its secret input in the delegation protocol. In order to convince V of the statement, P should
send back y. Indeed, in case x /∈ L we have VeryL,x ≡ ⊥, and hence the “function hiding” property of
the delegation protocol assures that P does not learn the random y.

However, this protocol is not witness hiding. Indeed, a cheating verifier can try to obtain w by
maliciously choosing its input function. For instance, choosing the function to be the identity results in
the prover sending back w.

A natural approach towards fixing the latter problem would be to have the verifier “prove” it behaved
honestly, without revealing its secret. In other words, it should give a round-efficient witness-hiding
proof, which is what we set out to do to begin with. Thus, we take a different approach. We note that an
honest verifier that “knows” y should only be able to verify that the prover “knows” it as well; hence, it
suffices to have the prover send a point obfuscation of y, instead of sending y in the clear. The security
of the obfuscation would then guarantee that any information that the verifier learns on w could also be
learned (with noticeable probability) without the obfuscation.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message delegation protocol and
let O be a point obfuscator for unpredictable distributions (AIPO) with recognition algorithm V. The
protocol is given by Figure 1.

Theorem 3.1. Let DEL be a secure 2-message delegation protocol, and let O be an AIPO. Protocol 1
is a WH IA.
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Protocol 1

Common Input: x ∈ L.

Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and sends c = Enc(sk, w).

2. V: Samples y U← {0, 1}n,
obtains ĉ← Eval(c,VeryL,x) and sends ĉ.

3. P: Decrypts ỹ = Dec(sk, ĉ),
computes a point obfuscation O(ỹ) and sends it.

4. V: Accepts iff V(Iy,O(ỹ)) = 1, i.e. O(ỹ) is a valid point obfuscation of y.

Figure 1: Protocol 1, 3-round Witness Hiding

3.2 Soundness

3.2.1 Overview of the proof.

The protocol presented is an IA. Later we show how to modify the protocol to get an IP. The sound-
ness of Protocol 1 follows from the function hiding of the underlying delegation scheme DEL and the
recognizability of the point obfuscator. Indeed, in case there is no valid witness the verifier’s message
reveals no information regarding the verifier’s secret random point y. Specifically, the prover’s view can
be simulated independently of y. Since the obfuscation is recognizable, in order to fool the verifier, the
prover must send a valid point obfuscation of y and can only succeed with negligible probability.

3.2.2 Proof of Theorem 3.1 - soundness.

Proof. Let P∗ be any poly-size prover strategy. Let c be the first message of P∗, let y be the random
point sampled by V , and let ĉ = Eval(c,VeryL,x) be the corresponding message sent by V . Assume
towards contradiction that for infinitely many x /∈ L ∩ {0, 1}n:

Pr
V

[(P∗,V)(x) = 1] ≥ ε(n)

For some non-negligible function ε. That is, P∗ manages to send V a circuit C̃ such that V(Iy, C̃) = 1,
namely a circuit with the same functionality as Iy.

Since x /∈ L, it holds that VeryL,x(w) = ⊥ for all w ∈ {0, 1}poly(n). Hence, by the function
hiding of the underlying delegation scheme, there exist a PPT simulator S such that (Iy,S(c,⊥)) is
indistinguishable from (Iy, ĉ). We now consider a simulated verifier V ′, which given the first message c
returns a simulated evaluation S(c,⊥). By the simulation guarantee it follows that:

Pr
V

[
(P∗,V ′)(x) = 1

]
≥ ε(n)− negl(n)

Otherwise, it is possible to distinguish between the distributions (Iy, ĉ) and (Iy,S(c,⊥)) as follows.
Given a sample (Iy, ĉ), the distinguisher runs P∗, gives it ĉ as the second message and obtains the
circuit C̃ returned as the third message. The distinguisher outputs V(Iy, C̃).

To complete the proof, note that when interacting with V ′, P∗’s view is completely independent of
the random point y. Hence, P∗ can not produce a circuit C̃ with the same functionality as Iy w.p. greater
than 2−|y|.
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Proof of Knowledge. In fact, we can show that our WH protocol satisfies a stronger soundness property,
namely it is a proof of knowledge. For this purpose, we use a similar idea to the one in the “knowledge
attack” described in Section 3 to show why the protocol is not ZK. In order to extract a witness, we
essentially apply this attack repeatedly “against” the prover, revealing the witness bits one by one. Our
extractor only makes black-box use of the prover and extracts the witness bit by bit using rewinding.

Proof. Let P∗ be a prover strategy s.t. Pr[(P∗,V)(x) = 1] ≥ 1/p(n) for some polynomial p and
x ∈ L ∩ {0, 1}n for large enough n. We construct an oracle machine E s.t. EP

∗
(x) ∈ RL(x). Let

c be a random variable representing the first message sent by P∗(x). Let G(c) be the event that there
exist w ∈ RL(x) and sk in the range of Gen s.t. c = Enc(sk, w). It follows from the soundness
proof that Pr[(P∗,V)(x) = 1|¬G(c)] < negl(n). But since P∗ convince V with noticeable probability,
Pr[(P∗,V)(x) = 1∧G(c)] ≥ 1/q(n) for some polynomial q. We show how to reconstruct w bit by bit.
For every i ∈ [n] and every two points y0, y1 ∈ {0, 1}n let Bi,y0,y1(w) be a circuit that outputs yb where
b is the i’th bit of w. If G(c) holds, Consider the messages ĉ = Eval(c,VerybL,x) and b̂ = Eval(c,Bi,y0,y1)
for randomly selected points y0, y1. SinceG(c) holds, it follows from the function hiding property of the
delegation scheme that (yb, ĉ) and (yb, b̂) are both indistinguishable from (yb,S(c, yb)). We denote by
P∗m the obfuscation sent by P∗ as the third message when given m as the verifier’s message. Since yb is
a random point, P∗ĉ is distributed the same as the obfuscation sent by P∗ in a real interaction with V . On
one hand, since Pr[(P∗,V)(x) = 1 ∧ G(c)] ≥ 1/q(n) then also Pr[V(Iyb ,P∗ĉ ) = 1 ∧ G(c)] ≥ 1/q(n)
and therefore Pr[V(Iyb ,P∗b̂ ) = 1∧G(c)] ≥ 1/q(n). On the other hand, Pr[V(Iy1−b

,P∗ĉ ) = 1] ≤ negl(n)

since the view of P∗ is independent of y1−b and therefore also Pr[V(Iy1−b
,P∗

b̂
) = 1] ≤ negl(n). Give

that G(c) holds, EP
∗

can sample y0, y1 and P∗
b̂

enough times and learn b for every i ∈ [n]. Since
Pr[G(c)] ≥ 1/q(n), the expected running time of E is polynomial in p.

3.3 Witness Hiding

3.3.1 Overview of the proof.

The WH property is based on the input hiding of the delegation scheme, DEL and the indistinguishability
w.r.t unpredictable distributions guarantee of the AIPO, O. Concretely, we show how any V∗ which
manages to extract a witnessw from its interaction withP , can be used to break the input hiding property
of DEL. The reduction samples (x,w) from the hard distribution, and submits c0 = w, c1 = 1|w| to the
challenger. Upon receiving a challenge c = Enc(sk, cb) it simulates V∗(x) with c as the first message.
V∗ then generates its own message ĉ, and it is left to simulate the last obfuscation message. To do so,
we treat two cases, corresponding to whether the secret point y (induced by V∗’s choice of input circuit
to DEL) is (a) unpredictable from (x, c) or (b) is predictable by some poly size predictor Π. Intuitively,
the first corresponds to a verifier which chooses its input circuit maliciously to gain information on w.
The second, corresponds to a verifier which chooses its circuit honestly. To simulate the obfuscation in
the second case, we apply the a prediction circuit y ← Π(x, c) and feed V∗ withO(y). In the case that y
is unpredictable, we obfuscate a random point O(u). Finally, when V∗ outputs w̃, we check whether it
is a valid witness, and if so answer the challenger with b = 0. Otherwise, we guess b at random. Indeed,
by the indistinguishability guarantee of the AIPO, in case b = 0 (i.e. the simulation is done with an
encryption of w) the simulated V∗ will manage to extract a witness with noticeable probability (related
to the the prediction probability of Π and the success probability of V∗ in a true interaction). In the case,
b = 1, the reduction is unlike to produce a valid witness, as its view is completely independent of w
and the underlying distribution is hard. We stress that the reduction is indeed, not black box in V∗, in
particular it applies the predictor Π implied by the AIPO guarantee, which is not black-box in V∗.
On restricted auxiliary input. In our WH protocol we require the AIPO distributional guarantee to
hold w.r.t any unpredictable distribution. However, we can in fact settle for less. Specifically, the
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auxiliary input distribution in Protocol 1 is essentially restricted to a very “benign” form, namely the
first delegation message (ciphertext) and the hard instance x; in particular, the auxiliary input is of fixed
polynomial size and can be made much shorter than the obfuscated random point.

Why isn’t Protocol 1 ZK? Protocol 1 is not ZK and in fact enables a cheating verifier V∗ to learn arbi-
trary predicates on the witness. Specifically, V∗ can deviate from the protocol by maliciously selecting
its input circuit C for the delegation protocol as follows. Let B : {0, 1}∗ → {0, 1}t be a polynomial
time computable function with t = O(log(n)) output bits. To learn B(w), V∗ fixes an arbitrary set of
strings Y = {yj}j∈{0,1}t and sets its input circuit C = CB to map the witness w to yB(w). Indeed, given
an obfuscation of CB(w), V∗ can simply run the obfuscation on all points in {yj} and learn B(w). In
the following section we explain how to transform Protocol 1 to a WZK protocol.

3.3.2 Proof of Theorem 3.1 - witness hiding.

Proof. Assume towards contradiction there exist a poly-size adversary V∗ and a hard distribution D on
L, such that for a non-negligible ε and infinitely many n ∈ N:

Pr
(x,w)

Dn←RL
[(P(w),V∗)(x) ∈ RL(x)] ≥ ε(n) (1)

We construct a poly-size adversary that breaks the input hiding property of the delegation scheme. De-
note by V∗1 the circuit which on input z = (x, c), outputs V∗’s message after it is given x as input and
c as the prover’s first message. Denote by V∗2 the circuit which on input (z,O(y)), outputs V∗’s output,
after it is given x as input, c as the first prover message and O(y) as the second prover message. We
define the following distribution ensemble.Sn = (Zn, Yn) :

(x,w)
Dn← RL, sk ← Gen(1n)c← Enc(sk, x),
ĉ = V∗1 (x, c), s̃ = Dec(sk, ĉ)

Zn = (x, c), Yn = s̃


n∈N

Intuitively, any instance of Sn corresponds to an execution of (P,V∗) on input x sampled fromD, where
Z = (x, c) are the input and first message, and Y is the point obfuscated in the last message. Let I ⊆ N
be the infinite set of indices n ∈ N for which (1) holds. By the definition of Sn, for all n ∈ I:

Pr
Zn,Yn,O

[V∗2 (Zn,O(Yn)) ∈ RL(x)] ≥ ε(n) (1)

Let G(z, y) be the event that PrO [V∗2 (z,O(y)) ∈ RL(x)] ≥ ε(n)
2 . By (1) follows that:

Claim 3.1. For all n ∈ I, PrZn,Yn [G(Zn, Yn)] ≥ ε(n)
2 .

Consider the distribution ensemble SG =
{
SGn = (ZGn , Y

G
n )
}
n∈I where SGn is the distribution Sn

conditioned on the occurrence of G. We distinguish between the case that the distribution ensemble SG

is unpredictable, and the case that it is not.

Case 1 - SG is predictable. In this case there exist an efficient predictor Π, a non-negligible function δ
and an infinite set IG ⊆ I such that for all n ∈ IG:

Pr
(z,y)←SG

n

[Π(z) = y] ≥ δ(n) (1)

We describe an adversaryA1 that breaks the input hiding property of DEL. A1(1
n) will sample (x,w)←

Dn, output the two messagesm0 = 0|w|,m1 = w, and will receive back a challenge c. It will then invoke
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V∗2 ((x, c),O(Π(x, c))). In case the output of V∗2 is inRL(x),A1 will guess b = 1 otherwise it will guess
b at random. Indeed, for all n ∈ IG, in case that b = 1:

Pr
(x,w)←Dn,O

Gen,Enc

[sk = Gen(1n), z = (x,Enc(sk, w)),V∗2 (z,O(Π(z))) ∈ RL(x)] = (1)

Pr
Zn,O

[V∗2 (Zn,O(Π(Zn))) ∈ RL(x)] ≥ (2)

ε(n)

2
· Pr
ZG
n ,O

[
V∗2 (ZGn ,O(Π(ZGn ))) ∈ RL(x)

]
≥ (3)

ε(n)δ(n)

2
· Pr
ZG
n ,Y

G
n ,O

[V∗2 (Zn,O(Yn)) ∈ RL(x)] ≥ ε2(n)δ(n)

4
(4)

Where (1) follows from the definition of Zn, (2) follows from the definition of ZGn and Claim 3.1, (3)
follows from (1), and (4) is due to the way we defined the event G. It follows that whenever b = 1, A1

guesses b with non-negligible advantage.
On the other hand, we show that when b = 0,A1 guesses b only with a negligible advantage. Indeed,

since D is hard for L, for all large enough n:

Pr
(x,w)←Dn,O

Gen,Enc

[
sk = Gen(1n), z = (x,Enc(sk, 0|w|)),V∗2 (z,O(Π(z))) ∈ RL(x)

]
≤ negl(n)

Overall, A1 breaks the input hiding property of DEL with a non-negligible advantage.

Case 2 - SG is unpredictable. By the definition of SG it holds that for all n ∈ IG.

Pr
ZG
n ,Y

G
n ,O

[
V∗2 (ZGn ,O(Y G

n )) ∈ RL(x)
]
≥ ε(n)

2

Since O is a secure point obfuscator for unpredictable distributions, it holds that for all large enough
n ∈ IG:

Pr
ZG
n ,O

y∈R{0,1}n

[
V∗2 (ZGn ,O(y)) ∈ RL(x)

]
≥ ε(n)

2
− negl(n) (1)

Otherwise, V∗2 can be used to break the security of O. Similarly to case 1, we describe an adversary A2

that breaks the input hiding property of DEL. A2(1
n) samples (x,w)← Dn, outputs the two messages

m0 = 0|w|,m1 = w, and receives back a challenge c. It then samples y U← {0, 1}n and invokes
V∗2 ((x, c),O(y)). In case the output of V∗2 is in RL(x), A2 guesses b = 1. Otherwise, it guesses b at
random. In case b = 1, it holds for n ∈ I:

Pr
(x,w)←Dn,O

Gen,Enc
y∈R{0,1}n

[sk = Gen(1n), z = (x,Enc(sk, w)),V∗2 (z,O(y)) ∈ RL(x)] = (1)

Pr
Zn,O,y∈R{0,1}n

[V∗2 (Zn,O(y)) ∈ RL(x)] ≥ (2)

ε(n)

2
· Pr
ZG
n ,O,y∈R{0,1}n

[
V∗2 (ZGn ,O(y)) ∈ RL(x)

]
≥ ε2(n)

4
− negl(n) (3)

Where (1) follows from the definition of Zn, (2) follows from the definition of ZGn and Claim 3.1,
and (3) follows from (1). It follows that whenever b = 1, A2 guesses b with non-negligible advantage.

17



On the other hand, we show that when b = 0A2 guesses b only with negligible advantage. Indeed, since
D is hard for L, then for all large enough n:

Pr
(x,w)←Dn,O
y∈R{0,1}n

,Gen,Enc

[
sk = Gen(1n),V∗2 ((x,Enc(sk, 0|w|),O(y)) ∈ RL(x)

]
≤ negl(n)

Overall, A2 breaks the input hiding property of DEL with non-negligible advantage.

3.4 From an Argument to a Proof

We modify Protocol 1 and obtain a WH IP. Note that the computational soundness proof relies only
an the function hiding property of DEL. To obtain IP, we use a 2-massage delegation protocol with
information-theoretic function-hiding (see Section 2.2.1). We would like to use the construction of a 2-
message delegation protocol with information-theoretic function-hiding that is described in Section 2.2.
However, this construction only allows to evaluate circuits of logarithmic depth while the circuit VeryL,x
might not be such. To solve this we use a techniques similar to [AIR01]. Note that except for the point y
selected by the verifier, all of the circuit VeryL,x is public. to construct a new circuit Ṽer

y
L,x of logarithmic

depth that has the same functionality as VeryL,x. The input wires of Ṽer
y
L,x correspond to all the wires

including internal wires) of the circuit VerL,x. For every gate G of VerL,x that takes two input wires
w1, w2 and outputs the wire w3 we check in Ṽer

y
L,x the condition w′3 = G(w′1, w

′
2) where w′1, w

′
2, w

′
3 are

the corresponding inputs of Ṽer
y
L,x. Let w′O be input wire of Ṽer

y
L,x corresponding to the output wire of

VerL,x. The output of Ṽer
y
L,x will be y if w′O = 1 and all of conditions hold. Otherwise, Ṽer

y
L,x outputs

⊥. We modify Protocol 1 as follows. Instead of the executing a 2-message delegation protocol where
the prover inputs a witness w and the verifier inputs the circuit VeryL,x, execute a 2-message delegation
protocol with information-theoretic function-hiding where the prover inputs the values of all wires of
the circuit VerL,x evaluated on w and the verifier inputs the circuit Ṽer

y
L,x.

Theorem 3.2. Let DEL be a secure 2-message delegation protocol with information-theoretic function
hiding, and let O be an AIPO. The modified Protocol is a WH IP.

Proof. In the soundness proof of Theorem 3.1 we only rely on the function hiding property of the the
2-message delegation protocol and on the recognizability property of the obfuscation. If the 2-massage
delegation protocol has information-theoretic function hiding, even an unbounded prover will not be able
to distinguish a real verifier message from a simulated one. Since the recognizability property holds for
every obfuscated circuit, we have that the same arguments used in the soundness proof of Theorem 3.1
hold also in this case. Similarly, The proof of the WH property remains unchanged since the circuits
Ṽer

y
L,x and VeryL,x compute the same function.

4 3-round WZK

4.1 Overview of the Protocol

To make Protocol 1 WZK, we try to cope with verifiers executing the “malicious circuit choice attack”
described in the previous section. As explained in the introduction, this involves two main modifications:

1. We require that the verifier’s message also includes a digital locker DL(Iy→rV ), which on the
secret input y “unlocks” the secret coins rV used by the verifier in the delegation protocol. Upon
receiving this message, the honest prover P applies Dec as in the previous protocol, obtains y, and
then retrieves the coins rV . Now P can apply the Open algorithm of the delegation to verify that
the input circuit of V∗ was honestly chosen (to be VeryL,x). In case it was not, P returns a circular
digital locker (CDL), Definition 2.10 of a randomly selected circular point circuit.
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2. The prover is required to send back an obfuscation of y (as in the previous protocol). However, to
maintain soundness we should prevent a malicious prover from using (or mauling) the verifier’s
message DL(Iy→rV ) to get the required obfuscation. For this purpose we apply a “non-malleable
obfuscation scheme” 2, implemented as follows. In its first message, the prover commits to a
random r ∈ {0, 1}n (by sending the image of r under some injective OWF f ). Then in the last
message, it sends a circular digital locker CDL(Iy�r) that “binds” r and the secret point y. The
honest verifier then runs the CDL on y, retrieves r and uses the CDL recognition algorithm to
validate the CDL.

We now fully describe the protocol and further explain the role of the above modifications.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message delegation protocol. Let
DL, CDL be a digital locker and a circular digital locker. Let V be the recognition algorithm for the
CDL. Let f be an injective one way function. The protocol is presented in Figure 2.

Protocol 2

Common Input: x ∈ L.

Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and c← Enc(sk, w),
samples r U← {0, 1}n,
sends c and f(r).

2. V: Samples y U← {0, 1}n,
obtains ĉ← Eval(c,VeryL,x) using random coins rV ,
sends ĉ and DLV = DL(Iy→rV ).

3. P: Decrypts ỹ = Dec(sk, ĉ),
obtains r̃V = DLV(ỹ),
verifies that V(Iỹ→rV ,DLV) = 1 and Open(ĉ, r̃V) = VerỹL,x.
If so, sends back CDLP = CDL(Iỹ�r).

Otherwise, samples u U← {0, 1}n and sends back CDLP = CDL(Iu�u).

4. V: Obtains r̃ = CDLP(y),
accepts iff f(r̃) = f(r) and V(Iy�r̃,CDLP) = 1.

Figure 2: Protocol 2, 3-round WZK

Theorem 4.1. Let DEL be a 2-message delegation protocol, let DL be a digital locker and CDL a
circular digital locker and let f be an injective one way function, then Protocol 2 is a WZK IA.

4.2 Soundness

4.2.1 Overview of the proof.

Soundness is shown in two stages. First, we argue that given V’s message (ĉ,DLV), it is hard to recover
the underlying secret point y. I.e, no poly-size circuit family can recover y, except with negligible
chance. Indeed, the auxiliary input obfuscation guarantee implies that if y can be recovered from DLV
and the related auxiliary information as ĉ, it can also be recovered solely from ĉ. However, since x /∈ L
and DEL is function hiding, y can not be recovered from ĉ (similarly to the WH protocol).

2We only consider a very restricted form of non-malleability where the adversary tries to copy an obfuscation of the same
point. A more general notion of non-mailable obfuscation can be found in [CV08].
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Second, we show that any cheating prover P∗ can be used to recover y from V’s message. Assume
WLOG that P∗ is deterministic, and note that in its first message, P∗ sends some (fixed) f(r). Since
f is injective, P∗ is in fact “committed” to the corresponding fixed r. We can then feed P∗ with V’s
message and get back CDLP . Noting that whenever P convinces V , CDLP(r) = y, we can run CDLP
on r (given as non-uniform advice) and obtain y with noticeable probability.

4.2.2 Proof of Theorem 4.1 - soundness.

Proof. Let P∗ be a cheating prover, and assume WLOG that P∗ is deterministic Assume that for in-
finitely many x /∈ L, P∗ manages to fool V with non-negligible probability δ. Let (c, f(r)) be the
(fixed) first message sent by P∗. We first show that it is hard to recover V’s secret point y from V’s
message (ĉ,DLV).

Claim 4.1. For any poly-size A:

Pr
V

[A(ĉ,DLV) = y] ≤ negl(n)

Where y is the secret point selected by V , ĉ ← Eval(c,VeryL,x) is the result of Eval applied by V using
random coins rV , and DLV = DL(Iy→rV ) is the DL sent by V .

Proof. Assume towards contradiction there exist a poly-size A which recovers y with non-negligible
probability ε. We first consider an adversary A′ which predicts the first bit of y, y1,. A′(ĉ,DLV) runs
A(ĉ,DLV) and obtains its output ỹ. If ỹ “unlocks” DLV (i.e. ỹ = y), A′ outputs ỹ1, otherwise it outputs
a random bit. By our assumption on A:

Pr
V

[A′(ĉ,DLV) = y1] ≥
1

2
+ ε(n)

Now, let SA′ be the obfuscation simulator for A′. By the obfuscation guarantee it holds that:

Pr
SA′ ,V

[SDLV
A′ (ĉ) = y1] ≥

1

2
+ ε− negl(n)) (1)

Since x /∈ L, VeryL,x(w) ≡ ⊥ and hence by the function hiding property of Eval there exist a PPT
simulator S such that:

ĉ
.
=
{
Eval(c,VeryL,x)

}
, (ĉ,DLV) ≈c {(S(c,⊥),DLV)} (2)

We now claim that SA′ does not query its oracle on the point y except with negligible chance. Otherwise,
SA′ can be used to predict y from ĉ with noticeable probability. (2) implies that SA′ can also predict y
from S(c,⊥) which is in turn independent of y, resulting in a contradiction.

Putting this together with (1) implies:

Pr
SA′ ,V

[S⊥A′(ĉ) = y1] ≥
1

2
+ ε− negl(n)

where ⊥ is the oracle that answers ⊥ on all queries. It follows that S⊥A′ can be used to predict y1 from
ĉ with noticeable advantage. In addition, by (2), S⊥A′ will also be able to recover y by applying S(c,⊥)
which is independent of y, leading once again to a contradiction. Completing the proof of Claim 4.1.

To complete the proof, we use the cheating prover P∗ to construct a poly-size A which recovers y
from (ĉ,DLV). A will have the point r hardwired in to it. It will run P∗ and feed it with (ĉ,DLV). P∗
then outputs CDLP∗ , and A outputs CDLP∗(r). By our assumption on P∗, with probability at least δ, V
accepts CDLP∗ , implying that CDLP∗ is an obfuscation of Iy�r̃ such that f(r̃) = f(r) or equivalently,
r̃ = r (as f is injective). Hence,A also manages to recover y w.p. at least δ contradicting Claim 4.1.
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4.3 Weak Zero-Knowledge

4.3.1 Overview of the proof.

We present a WZK simulator that given an adversary V∗ and a distinguisherD, simulates the view of V ∗

w.r.t D. Let V∗D be the composition of D with V∗. V∗D outputs a bit after receiving CDLP = CDL(Iy�r)
as the last message. In particular, there exist a PPT SCDL which simulates V∗D’s output given oracle
access to Iy�r and auxiliary input ai = (z, x, c, f(r)), representing the rest of V∗D’s view.

The WZK simulator S will simulate ai on its own, and utilize SCDL to simulate CDLP as the last
message. To simulate ai, S samples r and computes f(r). c is simulated by generation a random key
sk ← Gen(1n) and computing c = Enc(sk, 0|w|) (instead of w as in a true interaction). The input hiding
of DEL implies that the simulated ai is indistinguishable from the true ai. We explain how SCDL is used
to simulate the last obfuscation message. S first obtains the verifier’s message (DLV∗ , ĉ). It then runs
SCDL with the simulated ai, monitoring all its oracle queries. We treat two separate cases: (a) SCDL

makes a query y which unlocks DLV∗ ; (b) SCDL never makes such a query, in which case we always
answer its queries with ⊥.

The first case, corresponds to a verifier which “knows” the secret point y. In this case, our simulator
can perfectly simulate the behavior of P . That is, “open” ĉ to check its validity and consistency with
DLV∗ , and send back the corresponding CDL.

The second case corresponds to a cheating V∗, which either produces an invalid message, or some-
how produces a valid message but without actually “knowing” the secret y. In this case, the simulator
will always return a “dummy obfuscation”. This simulates the behavior of the honest prover P . Indeed,
if V∗’s message is invalid, the prover also produces a “dummy obfuscation”. If V∗ does not “know” y,
it can not distinguish P’s message from a “dummy obfuscation”.

The full description of the simulator as well as the proof of its validity are provided in Section ??.

4.3.2 Proof of Theorem 4.1 - weak zero-knowledge.

The simulator. Let V∗ be any verifier, and letD be the distinguisher circuit. Denote by V∗1 (z, x, c, f(r))
the algorithm that runs V∗(z, x), feeds it with (c, f(r)) as the first message, and outputs V∗’s message.
Denote by V∗2 (x, z, c, f(r),CDLP) the algorithm that runs V∗(x, z), feeds it with (c, f(r)) as a first
message, with CDLP as a second message, and returns V∗’s output. Denote by V∗D(x, z, c, f(r),CDLP)
the algorithm that runs V∗2 (x, z, c, f(r),CDLP), applies the circuit D on the output of V∗2 and returns
the output bit of D. Let SV∗,D(x, z, c, f(r)) be the PPT obfuscation simulator of V∗D as specified by
Definition 2.5. Also let `(n) be the length of a witness for instances of length n. The description of the
simulator is given by Algorithm (4.3.2)

Proof of validity. Let ViewS be output distribution of S(z, x) and let ViewV ∗ be the output distribution
of (P(w),V∗(z))(x). We show that {D(ViewS)} ≈c {D(ViewV∗)}. We first consider an alternative
hybrid simulation process S ′(z, x, w) behaving exactly like S(z, x) except that to simulate the first

message it generates sk Gen← (1n) and computes c ← Enc(sk, w) instead of c ← Enc(sk, 1`(|x|)). Let
ViewS′ be output distribution of S ′(x, z, w). By the input hiding property of the delegation protocol, it
follows that ViewS ≈c ViewS′ . Hence, it suffices to show that {D(ViewS′)} ≈c {D(ViewV∗)}.

Let (c, f(r)) be the first message used by S ′. Notice that (c, f(r)) is distributed exactly like the first
message in the real interaction. We define the following events:

• Er indicates that the obfuscation simulator SV∗,D(z, x, c, f(r)) queries its oracle on r.

• Ey indicates that the obfuscation simulator SV∗,D(x, z, c, f(r)) performs a query Q such that
DLV(Q) 6= ⊥
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Algorithm 4.1 Simulator S
Input: x ∈ L, z ∈ {0, 1}∗

1: Set ỹ = ⊥.
2: Sample r, u U← {0, 1}n.
3: Obtain sk ← Gen(1n).
4: Compute c← Enc(sk, 1`(|x|))
5: Compute (ĉ,DLV) = V∗1 (x, z, c, f(r)).
6: Emulate SV∗,D(x, z, c, f(r)).
7: for each oracle query Q made by SV∗,D do
8: if DLV(Q) = ⊥ then
9: Answer S’s query with ⊥ and continue the emulation.

10: else
11: Set r̃V = DLV(Q)
12: if V(IQ→rV ,DLV) = 1 then
13: Set ỹ = Q
14: end if
15: End the emulation of SV∗,D.
16: end if
17: end for
18: if ỹ = ⊥ or Open(ĉ, r̃V) 6= VerỹL,x then
19: return V∗2 (x, z, c, f(r),CDL(Iu�u)).
20: else
21: return V∗2 (x, z, c, f(r),CDL(Iỹ�r)).
22: end if
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• EV indicates that the second message (ĉ,DLV) = V∗1 (x, z, c, f(r)) is valid, i.e. that ∃ỹ, r̃V such
that V(Iỹ→r̃V ,DLV) = 1 and Open(ĉ, r̃V) = VerỹL,x.

First, we claim that: PrS′ [Er] ≤ negl(n). Otherwise, we can utilize S ′ in order to invert the OWF
f . We thus assume henceforth that Er does not occur. We no treat several cases:

Case 1 - EV , Ey both occur. In this case SV∗,D makes an oracle query that opens DLV , and since V∗’s
message is valid, this query is identical to the secret point, allowing S ′ to perform perfect simulation.
Indeed, in this case both ViewV∗ and ViewS′ are distributed as V∗2 (z, x, c, f(r),CDL(Iỹ�r)), where ỹ is
the secret point defined by the event EV .

Case 2 - EV does not occur and Ey does. In this case SV∗,D makes an oracle query that opens DLV ,
and both the simulator and the real prover detect that V∗’s message is invalid, and reply with a “dummy”
CDL. Hence, ViewV∗ and ViewS′ are distributed as V∗2 (z, x, c, f(r),CDL(Iu�u)) where u is random,
yielding perfect simulation.

Case 3 - both Ey, EV do not occur. In this case, the prover detects that V∗’s message is invalid and
sends back a “dummy obfuscation”. Since non of SV∗,D’s queries unlocked DLV , S ′ also produces a
“dummy” obfuscation. Hence, both ViewV∗ and ViewS′ are distributed as V∗2 (z, x, c, f(r),CDL(Iu�u))
where u is randomly selected, yielding perfect simulation.

Case 4 -Ey does not occur and EV does. In this case, the real prover extracts the secret point ỹ defined
by the event EV . S ′ on the other hand does not, since non of SV∗,D’s queries unlocked DLV , S ′ sends a
dummy CDL. However, the fact that all of SV∗,D queries result in⊥ implies that V∗ does not distinguish
the CDL used by the simulator from the dummy one used by the prover. More accurately,

{D(ViewS′)} ≈c {D(V∗2 (x, z, c, f(r),CDL(Iu�u)))} (1)

≈c S
Iu�u

V∗,D (x, z, c, f(r)) (2)

≈c S
Iỹ�r

V∗,D(x, z, c, f(r)) (3)

≈c {D(V∗2 (x, z, c, f(r),CDL(Iỹ�r)))} (4)

≈c {D(ViewV∗)} (5)

Where (2), (4) follows by the obfuscation guarantee (Definition 2.5), and (3) holds since SV∗,D does
not query ỹ nor r, and queries the random u only with negligible probability.

Putting together all the cases, yields {D(ViewS′)} ≈c {D(ViewV∗)} as required.

Composition. We do not know whether Protocol 2 remains secure under sequential composition. On
the other hand, given that DL,CDL are composable obfuscators (see Definition 2.11), Protocol 2 remains
secure under parallel composition.

Proposition 4.1 (Informal). Given that DL,CDL are t-composable obfuscators, Protocol 2 remains
secure when t parallel copies of the protocol.
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