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Abstract

In this paper, we explore a general methodology for converting composite order pairing-
based cryptosystems into the prime order setting. We employ the dual pairing vector space
approach initiated by Okamoto and Takashima and formulate versatile tools in this frame-
work that can be used to translate composite order schemes for which the prior techniques
of Freeman were insufficient. Our techniques are typically applicable for composite order
schemes relying on the canceling property and proven secure from variants of the subgroup
decision assumption, and will result in prime order schemes that are proven secure from
the decisional linear assumption. As an instructive example, we obtain a translation of the
Lewko-Waters composite order IBE scheme. This provides a close analog of the Boneh-
Boyen IBE scheme that is proven fully secure from the decisional linear assumption. We
also provide a translation of the Lewko-Waters unbounded HIBE scheme.

1 Introduction

Recently, several cryptosystems have been constructed in composite order bilinear groups and
proven secure from instances (and close variants) of the general subgroup decision assump-
tion defined in [3]. For example, the systems presented in [27, 25, 29, 28, 26] provide diverse
and advanced functionalities like identity-based encryption (IBE), hierarchical identity-based
encryption (HIBE), and attribute-based encryption with strong security guarantees (e.g. full
security, leakage-resilience) proven from static assumptions. These works leverage convenient
features of composite order bilinear groups that are not shared by prime order bilinear groups,
most notably the presence of orthogonal subgroups of coprime orders. Up to isomorphism, a
composite order bilinear group has the structure of a direct product of prime order subgroups,
so every group element can be decomposed as the product of components in the separate sub-
groups. However, when the group order is hard to factor, such a decomposition is hard to
compute. The orthogonality of these subgroups means that they can function as independent
spaces, allowing a system designer to use them in different ways without any cross interactions
between them destroying correctness. Security relies on the assumption that these subgroups
are essentially inseparable: given a random group element, it should be hard to decide which
subgroups contribute non-trivial components to it.

Though composite order bilinear groups have appealing features, it is desirable to obtain
the same functionalities and strong guarantees achieved in composite order groups from other
assumptions, particularly from the decisional linear assumption (DLIN) in prime order bilinear
groups. The ability to work with prime order bilinear groups instead of composite order ones
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offers several advantages. First, we can obtain security under the more standard decisional linear
assumption. Second, we can achieve much more efficient systems for the same security levels.
This is because in composite order groups, security typically relies on the hardness of factoring
the group order. This requires the use of large group orders, which results in considerably slower
pairing operations.

There have been many previous examples of cryptosystems that were first built in composite
order groups while later analogs were obtained in prime order groups. These include Groth-
Ostrovsky-Sahai proofs [22, 21], the Boneh-Sahai-Waters traitor tracing scheme [10, 15], and
the functional encryption schemes of Lewko-Okamoto-Sahai-Takashima-Waters [25, 33]. Waters
also notes that the dual system encryption techniques in [39] used to obtain prime order systems
were first instantiated in composite order groups. These results already suggest that there are
strong parallels between the composite order and prime order settings, but the translation
techniques are developed in system-specific ways.

Beyond improving the assumptions and efficiency for particular schemes, our goal in this
paper is to expand our general understanding of how tools that are conveniently inherent in
the composite order setting can be simulated in the prime order setting. We begin by asking:
what are the basic features of composite order bilinear groups that are typically exploited
by cryptographic constructions and security proofs? Freeman considers this question in [14]
and identifies two such features, called projecting and canceling. These properties are defined
in Section 2.3 below. Freeman then provides examples of how to construct either of these
properties using pairings of vectors of group elements in prime order groups. Notably, Freeman
does not provide a way of simultaneously achieving both projecting and canceling. There may
be good reason for this, since Meiklejohn, Shacham, and Freeman [30] have shown that both
properties cannot be simultaneously achieved in prime order groups when one relies on the
decisional linear assumption in a “natural way”.

By instantiating either projecting or canceling in prime order groups, Freeman [14] suc-
cessfully translates several composite order schemes into prime order schemes: the Boneh-
Goh-Nissim encryption scheme [9], the Boneh-Sahai-Waters traitor tracing system [10], and
the Katz-Sahai-Waters predicate encryption scheme [24]. These translations are accomplished
using a three step process. The first step is to write the scheme in an abstract framework
(replacing subgroups by subspaces of vectors in the exponent), the second step is to translate
the assumptions into prime order analogs, and the third step is to transfer the security proof.

There are two aspects of Freeman’s approach that can render the results unsatisfying in
certain cases. First, the step of translating the assumptions often does not result in standard
assumptions like DLIN. A reduction to DLIN is only provided for the most basic variant of
the subgroup decision assumption, and does not extend (for example) to the general subgroup
decision assumption from [3]. Second, the step of translating the proof fails for many schemes,
including all of the recent composite order schemes employing the dual system encryption proof
methodology [27, 25, 29, 28, 26]. These schemes use only canceling and not projecting, and so
this is unrelated to the limitations discussed in [30].

The reason for this failure is instructive to examine. As Freeman points out, “the recent
identity-based encryption scheme of Lewko and Waters [27] uses explicitly in its security proof
the fact that the group G has two subgroups of relatively prime order”. The major obstacle here
is not translating the description of the scheme or its assumptions - instead the problem lies in
translating a trick in the security proof. The trick works as follows. Suppose we have a group
G of order N = p1p2 . . . pm, where p1, . . . , pm are distinct primes. Then if we take an element
g1 ∈ G of order p1 (i.e. an element of the subgroup of G with order p1) and a random exponent
a ∈ ZN , the group element ga1 reveals no information about the value of a modulo the other
primes. Only amod p1 is revealed. The fact that amod p2, for instance, is uniformly random
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even conditioned on amod p1 follows from the Chinese Remainder Theorem. In the security
proof of the Lewko-Waters scheme, there are elements of the form ga1 in the public parameters,
and the fact that amod p2 remains information-theoretically hidden is later used to argue that
all the keys and ciphertext received by the attacker are properly distributed in the midst of a
hybrid argument.

Clearly, in a prime order group, we cannot hope to construct subgroups with coprime or-
ders. There are a few possible paths for resolving this difficulty. We could start by reworking
proofs in the composite order setting to avoid using this trick and then hope to apply the
techniques of [14] without modification. This approach is likely to result in more complicated
(though still static) assumptions in the composite order setting, which will translate into more
complicated assumptions in the prime order setting. Since we prefer to rely only on the de-
cisional linear assumption, we follow an alternate strategy: finding a version of this trick in
prime order groups that does not rely on coprimeness. This is possible because coprimeness
here is used a mechanism for achieving “parameter hiding,” meaning that some useful infor-
mation is information-theoretically hidden from the attacker, even after the public parameters
are revealed. We can construct an alternate mechanism in prime order groups that similarly
enables a form of parameter hiding.

Our Contribution We present versatile tools that can be used to translate composite or-
der bilinear systems relying on canceling to prime order bilinear systems, particularly those
whose security proofs rely on general subgroup decision assumptions and employ the coprime
mechanism discussed above. This includes schemes like [27], which could not be handled by
Freeman’s methods. Our tools are based in the dual pairing vector space framework initiated by
Okamoto and Takashima [31, 32]. We observe that dual pairing vector spaces provide a mech-
anism for parameter hiding that can be used in place of coprimeness. We then formulate an
assumption in prime order groups that can be used to mimic the effect of the general subgroup
decision assumption in composite order groups. We prove that this assumption is implied by
DLIN. Putting these ingredients together, we obtain a flexible toolkit for turning a new class
of composite order constructions into prime order constructions that can be proven secure from
DLIN.

We demonstrate the use of our toolkit by providing a translation of the composite order
Lewko-Waters IBE construction [27]. This yields a prime order IBE construction that is proven
fully secure from DLIN and also inherits the intuitive structure of the Boneh-Boyen IBE [5].
Compared to the fully secure prime order IBE construction in [39], our scheme achieves com-
parable efficiency and security with a simpler structure. As a second application, we provide a
translation of the Lewko-Waters unbounded HIBE scheme [29]. This additionally demonstrates
how to handle delegation of secret keys with our tools.

We note that some composite order systems employing dual system encryption, such as the
attribute-based encryption scheme in [25], already have analogs in prime order groups proven
secure from DLIN using dual pairing vector spaces. In [33], Okamoto and Takashima provide
a functional encryption scheme in prime order bilinear groups that is proven fully secure under
DLIN. Their construction encompasses both attribute-based and inner product encryption, and
their proof relies on dual system encryption techniques, similarly to [25]. While they focus on
providing a particular construction and proof, our goal is to formulate a more general strategy
for translating composite order schemes into prime order schemes with analogous proofs.
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1.1 Related Work

The concept of identity-based encryption was first proposed by Shamir [36] and later constructed
by Boneh and Franklin [8] and Cocks [13]. In an identity-based encryption scheme, users are
associated with identities and obtain secret keys from a master authority. Encryption to any
identity can be done knowing only the identity and some global public parameters. Both of
the initial constructions of IBE were proven secure in the random oracle model. The first
standard model constructions, by Canetti, Halevi, and Katz [11] and Boneh and Boyen [5]
relied on selective security, which is a more restrictive security model requiring the attacker
to announce the identity to be attacker prior to viewing the public parameters. Subsequently,
Boneh and Boyen [6], Gentry [16], and Waters [38, 39] provided constructions proven fully
secure in the standard model from various assumptions. Except for the scheme of [13], which
relied on the quadratic residuousity assumption, all of the schemes we have cited above rely on
bilinear groups. A lattice-based IBE construction was first provided by Gentry, Peikert, and
Vaikuntanathan in [18].

Hierarchical identity-based encryption was proposed by Horwitz and Lynn [23] and then
constructed by Gentry and Silverberg [19] in the random oracle model. In a HIBE scheme,
users are associated with identity vectors that indicate their places in a hierarchy (a user Alice
is a superior of the user Bob if her identity vector is a prefix of his). Any user can obtain a secret
key for his identity vector either from the master authority or from one of his superiors (i.e. a
mechanism for key delegation to subordinates is provided). Selectively secure standard model
constructions of HIBE were provided by Boneh and Boyen [5] and Boneh, Boyen, and Goh
[7] in the bilinear setting and by Cash, Hofheinz, Kiltz, and Peikert [12] and Agrawal, Boneh,
and Boyen [1, 2] in the lattice-based setting. Fully secure constructions allowing polynomial
depth were given by Gentry and Halevi [17], Waters [39], and Lewko and Waters [27]. The
first unbounded construction (meaning that the maximal depth is not bounded by the public
parameters) was given by Lewko and Waters in [29].

Attribute-based encryption (ABE) is a more flexible functionality than (H)IBE, first intro-
duced by Sahai and Waters in [35]. In an ABE scheme, keys and ciphertexts are associated
with attributes and access policies instead of identities. In a ciphertext-policy ABE scheme,
keys are associated with attributes and ciphertexts are associated with access policies. In a
key-policy ABE scheme, keys are associated with access policies and ciphertexts are associ-
ated with attributes. In both cases, a key can decrypt a ciphertext if and only if the at-
tributes satisfy the formula. There are several constructions of both kinds of ABE schemes, e.g.
[35, 20, 34, 4, 25, 33, 40].

The dual system encryption methodology was introduced by Waters in [39] as a tool for prov-
ing full security of advanced functionalities such as (H)IBE and ABE. It was further developed
in several subsequent works [27, 25, 33, 26, 29, 28]. Most of these works have used composite
order groups as a convenient setting for instantiating the dual system methodology, with the
exception of [33]. Here, we extend and generalize the techniques of [33] to demonstrate that
this use of composite order groups can be viewed as an intermediary step in the development
of prime order systems whose security relies on the DLIN assumption.

1.2 Organization

In Section 2, we provide the necessary background on composite order bilinear groups, prime
order bilinear groups, and dual pairing vector spaces. In Section 3, we construct the main
tools that we will employ to simulate relevant features of composite order groups in the prime
order setting. In Section 4, we demonstrate the use of our tools by providing a prime order
translation of the Lewko-Waters composite order IBE scheme from [27]. This provides a close
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variant of the original Boneh-Boyen IBE scheme [5] that is proven fully secure from the decisional
linear assumption. In Section 5, we briefly discuss how our techniques can be easily extended
to schemes providing delegation capabilities, specifically the Lewko-Waters unbounded HIBE
scheme in [29]. In Section 6, we discuss further extensions of our techniques. In Appendix
A, we provide the formal definitions for IBE and HIBE and their standard IND-CPA security
definitions. Finally, in Appendix B, we give the complete details of our prime order translation
of the Lewko-Waters unbounded HIBE scheme and the proof of its security. We advise the
reader that Appendix B is included for completeness, but is not necessary to understanding the
main ideas of our work.

2 Background

2.1 Composite Order Bilinear Groups

When G is a bilinear group of composite order N = p1p2 . . . pm (where p1, p2, . . . , pm are distinct
primes), we let e : G×G→ GT denote its bilinear map (also referred to as a pairing). We note
that both G and GT are cyclic groups of order N . For each pi, G has a subgroup of order pi
denoted by Gpi . We let g1, . . . , gm denote generators of Gp1 through Gpm respectively. Each
element g ∈ G can be expressed as g = ga11 g

a2
2 · · · gamm for some a1, . . . , am ∈ ZN , where each ai

is unique modulo pi. We will refer to gaii as the “Gpi component” of g. When ai is congruent
to zero modulo pi, we say that g has no Gpi component. The subgroups Gp1 , . . . , Gpm are
“orthogonal” under the bilinear map e, meaning that if h ∈ Gpi and u ∈ Gpj for i ̸= j, then
e(h, u) = 1, where 1 denotes the identity element in GT .

General Subgroup Decision Assumption The general subgroup decision assumption for
composite order bilinear groups (formulated in [3]) is a family of static complexity assumptions
based on the intuition that it should be hard to determine which components are present in a
random group element, except for what can be trivially determined by testing for orthogonality
with other given group elements. More precisely, for each non-empty subset S ⊆ [m], there is
an associated subgroup of order

∏
i∈S pi in G, which we will denote by GS . For two distinct,

non-empty subsets S0 and S1, we assume it is hard to distinguish a random element of GS0

from a random element of GS1 , when one is only given random elements of GS2 , . . . , GSk
where

for each 2 ≤ j ≤ k, either Sj ∩ S0 = ∅ = Sj ∩ S1 or Sj ∩ S0 ̸= ∅ ̸= Sj ∩ S1.
More formally, we let G denote a group generation algorithm, which takes in m and a

security parameter λ and outputs a bilinear group G of order N = p1 · · · pm, where p1, . . . , pm
are distinct primes. The General Subgroup Decision Assumption with respect to G is defined
as follows.

Definition 1. General Subgroup Decision Assumption. Let S0, S1, S2, . . . , Sk be non-empty
subsets of [m] such that for each 2 ≤ j ≤ k, either Sj∩S0 = ∅ = Sj∩S1 or Sj∩S0 ̸= ∅ ̸= Sj∩S1.
Given a group generator G, we define the following distribution:

G := (N = p1 · · · pm, G,GT , e)
R←− G,

Z0
R←− GS0 , Z1

R←− GS1 , Z2
R←− GS2 , . . . , Zk

R←− GSk
,

D := (G, Z2, . . . , Zk).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,Z0) = 1]− P [A(D,Z1) = 1]|

is negligible in the security parameter λ.
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We note that this assumption holds in the generic group model, assuming it is hard to find
a non-trivial factor of the group order N .

Restricting to challenge sets differing by one element We observe that it suffices to
consider challenge sets S0 and S1 of the form S1 = S0∪{i} for some i ∈ [m], i /∈ S0. We refer to
this restricted class of subgroup decision assumptions as the 1-General Subgroup Decision As-
sumption. To see that the 1-general subgroup decision assumption implies the general subgroup
decision assumption, we show that any instance of the general subgroup decision assumption is
implied by a sequence of the more restricted instances. More precisely, for general S0, S1, we
let U denote the set S0 ∪ S1 − S0. For any i in U , the 1-general subgroup decision assumption
implies that it hard to distinguish a random element of GS0 from a random element of GS0∪{i},
even given random elements from GS2 , . . . , GSk

. That is because each of the sets S2, . . . , Sk
either does not intersect S1 or S0 and hence does not intersect S0 or S0∪{i} ⊆ S1, or intersects
both S0 and S0 ∪ {i}. We can now incrementally add the other elements of U using instances
of the 1-general subgroup decision assumption, ultimately showing that it is hard to distin-
guish a random element of GS0 from a random element of GS0∪S1 . We can reverse the process
and subtract one element at a time from S0 ∪ S1 until we arrive at S1. Thus, the seemingly
more restrictive 1-general subgroup decision assumption implies the general subgroup decision
assumption.

2.2 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear map e : G × G → GT .
More generally, one may have a bilinear map e : G × H → GT , where G and H are different
groups. For simplicity in this paper, we will always consider groups where G = H.

In addition to referring to individual elements of G, we will also consider “vectors” of group
elements. For v⃗ = (v1, . . . , vn) ∈ Znp and g ∈ G, we write gv⃗ to denote a n-tuple of elements of
G:

gv⃗ := (gv1 , gv2 , . . . , gvn).

We can also perform scalar multiplication and vector addition in the exponent. For any a ∈ Zp
and v⃗, w⃗ ∈ Znp , we have:

gav⃗ := (gav1 , . . . , gavn), gv⃗+w⃗ = (gv1+w1 , . . . , gvn+wn).

We define en to denote the product of the componentwise pairings:

en(g
v⃗, gw⃗) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v⃗·w⃗.

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces We will employ the concept of dual pairing vector spaces from
[31, 32]. For a fixed (constant) dimension n, we will choose two random bases B := (⃗b1, . . . , b⃗n)
and B∗ := (⃗b∗1, . . . , b⃗

∗
n) of Znp , subject to the constraint that they are “dual orthonormal”,

meaning that

b⃗i · b⃗∗j = 0 (mod p),
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whenever i ̸= j, and

b⃗i · b⃗∗i = ψ

for all i, where ψ is a uniformly random element of Zp. (This is a slight abuse of the terminology
“orthonormal”, since ψ is not constrained to be 1.)

For a generator g ∈ G, we note that

en(g
b⃗i , gb⃗

∗
j ) = 1

whenever i ̸= j, where 1 here denotes the identity element in GT .
We note that choosing random dual orthonormal bases (B,B∗) can equivalently be thought

of as choosing a random basis B, choosing a random vector b⃗∗1 subject to the constraint that it

is orthogonal to b⃗2, . . . , b⃗n, defining ψ = b⃗1 · b⃗∗1, and then choosing b⃗∗2 so that it is orthogonal to

b⃗1, b⃗3, . . . , b⃗n, and has dot product with b⃗2 equal to ψ, and so on. We will later use the notation
(D,D∗) and d⃗1, . . . , etc. to also denote dual orthonormal bases and their vectors (and even
F,F∗ and f⃗1, etc.). This is because we will sometimes be handling more than one pair of dual
orthonormal bases at a time, and we use different notation to avoid confusing them.

Decisional Linear Assumption The complexity assumption we will rely on in prime order
bilinear groups is the Decisional Linear Assumption. To define this formally, we let G denote a
group generation algorithm, which takes in a security parameter λ and outputs a bilinear group
G of order p.

Definition 2. Decisional Linear Assumption. Given a group generator G, we define the fol-
lowing distribution:

G := (p,G,GT , e)
R←− G,

g, f, v, w
R←− G, c1, c2, w

R←− Zp,

D := (g, f, v, f c1 , vc2).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A :=
∣∣P [
A(D, gc1+c2) = 1

]
− P

[
A(D, gc1+c2+w) = 1

]∣∣
is negligible in the security parameter λ.

2.3 Previously Investigated Abstract Properties of Bilinear Groups

We now define the abstract properties of projecting and canceling as formulated by Freeman
[14]:

Projecting bilinear maps We say a bilinear map e : G × H → GT is projecting if there
exist subgroups G1 ⊂ G,H1 ⊂ H,G′

T ⊂ G and group homomorphisms π1, π2, and πT mapping
G,H,GT into themselves (respectively) such that G1 is the kernel of π1, H1 is the kernel of π2,
G′
T is the kernel of πT , and these “projection maps” π1, π2, πT commute with e in the sense

that:

e(π1(g), π2(h)) = πT (e(g, h)) ∀g ∈ G,h ∈ H.
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This structure is naturally achieved when the groups G,H,GT are of composite order N =
p1 · · · pm (where p1, . . . , pm are distinct primes), since we may take G1, H1, and G′

T to be
the subgroups of order p1 inside G,H,GT respectively, and define the projections π1, π2 to be
exponentiation by p1 while πT is exponentiation by p21.

In this work, we will not consider projecting pairings and will instead be concerned with
canceling pairings:

Canceling bilinear maps We say a bilinear map e : G × H → GT is canceling if there
are subgroups G1, . . . , Gm of G and H1, . . . ,Hm of H such that G ∼= G1 × . . . × Gm, H ∼=
H1 × . . .×Hm, and e(gi, hj) = 1 in GT whenever gi ∈ Gi, hj ∈ Hj for i ̸= j (here 1 represents
the identity element of GT ). This structure is achieved naturally when the groups G,H,GT
are of composite order N = p1 · · · pm (where p1, . . . , pm are distinct primes), since we may set
Gi = Gpi , Hi = Hpi to be the subgroups of order pi for each i. This structure is also achieved
by dual orthonormal bases (B,B∗) in prime order groups, where each subgroup Gi corresponds
to the span of vector b⃗i in the exponent, and each subgroup Hi corresponds to the span of the
vector b⃗∗i in the exponent. Here, the underlying bilinear map e : G×G→ GT acts on two copies
of the same group G, but we use different bases in the exponents of our pairing en on n-tuples
of group elements.

3 Our Main Tools

There is an additional feature of composite order groups that is often exploited along with
canceling in the security proofs for composite order constructions: we call this parameter hiding.
In composite order groups, parameter hiding takes the following form. Consider a composite
order group G of order N = p1p2 and an element g1 ∈ Gp1 (an element of order p1). Then if
we sample a uniformly random exponent a ∈ ZN and produce ga1 , this reveals nothing about
the value of a modulo p2. More precisely, the Chinese Remainder theorem guarantees that the
value of a modulo p2 conditioned on the value of a modulo p1 is still uniformly random, and ga1
only depends on the value of a modulo p1. This allows a party choosing a to publish ga1 and still
hide some information about a, namely its value modulo p2. Note that this party only needs to
know N and g1: it does not need to know the factorization of N .

This is an extremely useful tool in security proofs, enabling a simulator to choose some
secret random exponents, publish the public parameters by raising known subgroup elements to
these exponents, and still information-theoretically hide the values of these exponents modulo
some of the primes. These hidden values can be leveraged later in the security game to argue
that something looks well-distributed in the attacker’s view, even if this does not hold in the
simulator’s view. This sort of trick is crucial in proofs employing the dual system encryption
methodology.

Replicating this trick in prime order groups seems challenging, since if one is given g and
ga in a prime order group, a is completely revealed modulo p in an information-theoretic sense.
To resolve this issue, we use dual pairing vector spaces. We observe that a form of parameter
hiding is achieved by using dual orthonormal bases: one can generate a random pair of dual
orthonormal bases (B,B∗) for Znp , apply an invertible change of basis matrix A to a subset of
these basis vectors, and produce a new pair of dual orthonormal bases which is also randomly
distributed, independently of A. This allows us to hide a random matrix A. We formulate this
precisely below.
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3.1 Parameter Hiding in Dual Orthonormal Bases

We consider taking dual orthonormal bases and applying a linear change of basis to a subset of
their vectors. We do this in such a way that we produce new dual orthonormal bases. In this
subsection, we prove that if we start with randomly sampled dual orthonormal bases, then the
resulting bases will also be random - in particular, the distribution of the final bases reveals
nothing about the change of basis matrix that was employed. This “hidden” matrix can then
be leveraged in security proofs as a way of separating the simulator’s view from the attacker’s.

To describe this formally, we let m ≤ n be fixed positive integers and A ∈ Zm×m
p be an

invertible matrix. We let Sm ⊆ [n] be a subset of size m (|S| = m). For any dual orthonormal
bases B,B∗, we can then define new dual orthonormal bases BA,B∗

A as follows. We let Bm
denote the n×m matrix over Zp whose columns are the vectors b⃗i ∈ B such that i ∈ Sm. Then
BmA is also an n ×m matrix. We form BA by retaining all of the vectors b⃗i ∈ B for i /∈ Sm
and exchanging the b⃗i for i ∈ Sm with the columns of BmA. To define B∗

A, we similarly let

B∗
m denote the n×m matrix over Zp whose columns are the vectors b⃗∗i ∈ B∗ such that i ∈ Sm.

Then B∗
m(A

−1)t is also an n×m matrix, where (A−1)t denotes the transpose of A−1. We form
B∗
A by retaining all of the vectors b⃗∗i ∈ B∗ for i /∈ Sm and exchanging the b⃗i for i ∈ Sm with the

columns of B∗
m(A

−1)t.
To see that BA and B∗

A are dual orthonormal bases, note that for i ∈ Sm, the corresponding
basis vector in BA can be expressed as a linear combination of the basis vectors b⃗j ∈ B with
j ∈ Sm, and the coefficients of this linear combination correspond to a column of A, say the
ℓth column (equivalently, say i is the ℓth element of Sm). When ℓ ̸= ℓ′, the ℓth column of A
is orthogonal to the (ℓ′)th column of (A−1)t. This means that the ith vector of BA will be
orthogonal to the (i′)th vector of B∗

A whenever i ̸= i′. Moreover, the ℓth column of A and the
ℓth column of (A−1)t have dot product equal to 1, so the dot product of the ith vector of BA
and the ith vector of B∗

A will be equal to the same value ψ as in the original bases B and B∗.

For a fixed dimension n and prime p, we let (B,B∗)
R←− Dual(Zdp) denote choosing random

dual orthonormal bases B and B∗ of Znp . Here, Dual(Znp ) denotes the set of dual orthonormal
bases.

Lemma 3. For any fixed positive integers m ≤ n, any fixed invertible A ∈ Zm×m
p and set

Sm ⊆ [n] of size m, if (B,B∗)
R←− Dual(Zdp), then (BA,B∗

A) is also distributed as a random

sample from Dual(Zdp). In particular, the distribution of (BA,B∗
A) is independent of A.

Proof. There is a one-to-one correspondence between (B,B∗) and (BA,B∗
A): given (BA,B∗

A), one
can recover (B,B∗) by applying A−1 to the vectors in BA whose indices are in Sm, and applying
At to the corresponding vectors in B∗

A. This shows that every pair of dual orthonormal bases is
equally likely to occur as BA,B∗

A.

3.2 Exploiting Hidden Parameters - An Example

We now give a small example of how a hidden change of basis matrix can be exploited by a
simulator to hide a correlation from the attacker’s view. This example relies simply on pairwise
independence of the function f(x) = ax+b for x, a, b ∈ Zp when a and b are chosen uniformly at
random. Even this basic case is already quite useful - in particular, we will use this to establish
full security for a close analog of the selectively secure Boneh-Boyen IBE scheme.

Lemma 4. Let y, z ∈ Zp, z ̸= y. We define z⃗ to be the column vector (1, z)t and y⃗ to be the
column vector (y,−1)t. Let A be a 2× 2 matrix over Zp whose entries are chosen uniformly at
random and γ, λ be chosen uniformly at random from Zp. Then the distribution of the vectors
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γA−1z⃗ and λAty⃗ is negligibly close to the uniform distribution over Z2
p × Z2

p. (Note that A is
invertible with all but negligible probability.)

Proof. We let aij denote the i, j entry of A for i, j ∈ {1, 2}. We may assume that A is invert-
ible, since this holds with overwhelming probability. Up to ignoring a scaling factor (which is
irrelevant since our final vectors are randomly scaled by γ, λ), we can then write

A−1 =

(
a22 −a12
−a21 a11

)
, At =

(
a11 a21
a12 a22

)
.

We then have (still ignoring a scaling factor):

A−1z⃗ =

(
a22 − za12
−a21 + za11

)
, Aty⃗ =

(
a11y − a21
a12y − a22

)
.

Since f(x) := a11x− a21 and g(x) := a12x− a22 are both pairwise independent functions of x,
and y ̸= z, we have that these four entries are distributed as uniformly random in Z4

p.

Later, we will apply this lemma where y and z are distinct identities in an IBE scheme.

3.3 The Subspace Assumption

We now state a complexity assumption in prime order groups that we will use to simulate
the effects of subgroup decision assumptions in composite order groups. We call this the Sub-
space Assumption. We show that the subspace assumption is implied by the decisional linear
assumption.

In prime order groups, basis vectors in the exponent take the place of subgroups. Since
we are using dual orthonormal bases, our new concept of orthogonality between “subgroups”
becomes asymmetric. If we have dual orthonormal bases B,B∗ and we think of “subgroup 1” in
B as corresponding to the span of b⃗1, . . . , b⃗4, then this is not orthogonal to the other vectors in
B, but it is orthogonal to vectors b⃗∗5, . . . , b⃗

∗
n in B∗. Essentially, the notion of a single subgroup

has now been split into a pair of “subgroups”, one for each side of the pairing, and orthogonality
between different subgroups now only holds for elements on opposite sides.

This sort of asymmetry can be quite useful. For example, consider an instance of the general
subgroup decision assumption in composite order groups, where the task is to distinguish a
random element of Gp1 from Gp1p2 . In this case, we cannot give out an element of Gp2 , since it
can trivially be used to break the assumption by pairing it with the challenge term and seeing
if the result is the identity. If we instead use dual orthonormal bases in a prime order group,
the situation is a bit different. Suppose that given gv⃗, the task is to distinguish whether the
exponent vector v⃗ is in the span of b⃗∗1, b⃗

∗
2 or in the larger span of b⃗∗1, b⃗

∗
2, b⃗

∗
3. We cannot give

out gb⃗3 , since one could then break the assumption by testing if en(g
v⃗, gb⃗3) = e(g, g)v⃗·⃗b3 is the

identity, but we can give out gb⃗
∗
3 .

Our definition of the subspace assumption is motivated by this and our observation in Section
2.1 that the general subgroup decision assumption in composite order groups can be restricted
to distinguishing between sets that differ by one element. What this means is that to simulate
the uses of the general subgroup decision in composite order groups, one can focus merely on
creating an analog for expansion into one new “subgroup” at a time. At its core, our subspace
assumption says that if one is given gv⃗, then it is hard to tell if v⃗ is randomly chosen from
the span of b⃗∗1, b⃗

∗
2 or from the larger span of b⃗∗1, b⃗

∗
2, b⃗

∗
3, even if one is given scalar multiples of all

bases vectors in B and B∗ in the exponent, except for b⃗3. We augment this by also given out a
random linear combination of b⃗1, b⃗2, b⃗3 in the exponent. We then generalize this by replicating
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the same structure for k 3-tuples of vectors, with the random linear combinations having the
same coefficients. (The fact that these coefficients are the same prevents this from following
immediately from the assumption for a single 3-tuple applied in hybrid fashion.)

We now give the formal description of the subspace assumption. For a fixed dimension n ≥ 3

and prime p, we recall that (B,B∗)
R←− Dual(Znp ) denotes choosing random dual orthonormal

bases B and B∗ of Znp , and Dual(Znp ) denotes the set of dual orthonormal bases. Our assumption
is additionally parameterized by a positive integer k ≤ n

3 .

Definition 5. (Subspace Assumption) Given a group generator G, we define the following dis-
tribution:

G := (p,G,GT , e)
R←− G,

(B,B∗)
R←− Dual(Znp ),

g
R←− G, η, β, τ1, τ2, τ3, µ1, µ2, µ3

R←− Zp,

U1 := gµ1b⃗1+µ2b⃗k+1+µ3b⃗2k+1 , U2 := gµ1b⃗2+µ2b⃗k+2+µ3b⃗2k+2 , . . . , Uk := gµ1b⃗k+µ2b⃗2k+µ3b⃗3k ,

V1 := gτ1η⃗b
∗
1+τ2βb⃗

∗
k+1 , V2 := gτ1ηb⃗

∗
2+τ2βb⃗

∗
k+2 , . . . , Vk := gτ1η⃗b

∗
k+τ2βb⃗

∗
2k

W1 := gτ1η⃗b
∗
1+τ2βb⃗

∗
k+1+τ3b⃗

∗
2k+1 , W2 := gτ1η⃗b

∗
2+τ2βb⃗

∗
k+2+τ3b⃗

∗
2k+2 , . . . , Wk := gτ1ηb⃗

∗
k+τ2βb⃗

∗
2k+τ3b⃗

∗
3k

D :=
(
gb⃗1 , gb⃗2 , . . . , gb⃗2k , gb⃗3k+1 , . . . , gb⃗n , gηb⃗

∗
1 , . . . , gηb⃗

∗
k , gβb⃗

∗
k+1 , . . . , gβb⃗

∗
2k , gb⃗

∗
2k+1 , . . . , gb⃗

∗
n , U1, U2, . . . , Uk, µ3

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,V1, . . . , Vk) = 1]− P [A(D,W1, . . . ,Wk) = 1]|

is negligible in the security parameter λ.

We have included in D more terms than will be necessary for many applications of this
assumption, and in what follows we will often omit those we do not need. We will work
exclusively with the k = 1 and k = 2 cases. We present the assumption in the form above
in order make it more versatile for use in future applications. We additionally note that the
form stated above can be further generalized to involve multiple, independently generated dual
orthonormal bases (B1,B∗

1), (B2,B∗
2), . . . , (Bj ,B∗

j ), for any fixed j. The terms in the assumption
would be duplicated for each pair of bases, with the same values of η, β, τ1, τ2, τ3, µ1, µ2, µ3.
We will not need this generalization for the applications we present. To help the reader see
the main structure of this assumption through the burdensome notation, we include heuristic
illustrations of the k = 1 and k = 2 cases below.

BB

BB*
?

U1{

Figure 1: Subspace Assumption with k = 1

In these diagrams, the top rows illustrate the U terms, while the bottom rows illustrate
the V,W terms. The solid ovals and rectangles indicate the presence of basis vectors. The
crossed rectangles indicate basis elements of B which are present in U1, U2 but are not given
out in isolation. The dotted ovals adorned by question marks indicate the basis vectors whose
presence depends on whether we consider the V ’s or the W ’s.
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BB

BB*
? ?

{ {U1 U2

Figure 2: Subspace Assumption with k = 2

3.4 Reduction to the Decisional Linear Assumption

We now show that our subspace assumption is implied by the decisional linear assumption.

Lemma 6. If the decisional linear assumption holds for a group generator G, then the subspace
assumption stated in Definition 5 also holds for G.

Proof. We assume there exists a PPT algorithm A breaking the subspace assumption with non-
negligible advantage (for some fixed positive integers k, n satisfying n ≥ 3k). We will use this
to create a PPT algorithm B which breaks the decisional linear assumption with non-negligible
advantage. B is given g, f, v, f c1 , vc2 , T , where T is either gc1+c2 or T is a uniformly random
element of G. We let ℓf denote the discrete logarithm base g of f and ℓv denote the discrete
logarithm base g of v, i.e. f = gℓf and v = gℓv .
B simulates the subspace assumption for A as follows. B first samples random dual or-

thonormal bases, denoted by d⃗1, . . . , d⃗n and d⃗∗1, . . . , d⃗
∗
n. In other words, B chooses vectors

d⃗1, . . . , d⃗n, d⃗
∗
1, . . . , d⃗

∗
n randomly, subject to the constraints that d⃗i · d⃗∗j ≡ 0mod p when i ̸= j, and

d⃗i · d⃗∗i ≡ ψmod p for all i from 1 to n, where ψ is a random element of Zp. Now, B implicitly
sets:

η⃗b∗1 = d⃗∗2k+1 + ℓf d⃗
∗
1, η⃗b

∗
2 = d⃗∗2k+2 + ℓf d⃗

∗
2, . . . , η⃗b

∗
k = d⃗∗3k + ℓf d⃗

∗
k,

βb⃗∗k+1 = d⃗∗2k+1 + ℓvd⃗
∗
k+1, βb⃗

∗
k+2 = d⃗∗2k+2 + ℓvd⃗

∗
k+2, . . . , βb⃗

∗
2k = d⃗∗3k + ℓvd⃗

∗
2k,

b⃗∗2k+1 = d⃗∗2k+1, . . . , b⃗
∗
n = d⃗∗n.

We think of this as setting η = ℓf and β = ℓv, with b⃗
∗
1 = η−1d⃗∗2k+1 + d⃗∗1 for example.

B sets the dual basis as:

b⃗1 = d⃗1, b⃗2 = d⃗2, . . . , b⃗2k = d⃗2k,

b⃗2k+1 = d⃗2k+1 − ℓ−1
f d⃗1 − ℓ−1

v d⃗k+1, . . . , b⃗3k = d⃗3k − ℓ−1
f d⃗k − ℓ−1

v d⃗2k,

b⃗3k+1 = d⃗3k+1, . . . , b⃗n = d⃗n.

We observe that under these definitions, b⃗i · b⃗∗j ≡ 0mod p whenever i ̸= j, and b⃗i · b⃗∗i =

d⃗i ·d⃗∗i = ψ for all i from 1 to n. We note that B can produce all of gηb⃗
∗
1 , . . . , gηb⃗

∗
k , gβb⃗

∗
k+1 , . . . , gβb⃗

∗
2k ,

gb⃗
∗
2k+1 , . . . , gb⃗

∗
n , gb⃗1 , . . . , gb⃗2k , and gb⃗3k+1 , . . . , gb⃗n , but cannot produce gb⃗2k+1 , . . . , gb⃗3k .

We argue that η = ℓf , β = ℓv, b⃗1, . . . , b⃗n and b⃗∗1, . . . , b⃗
∗
n are properly distributed. To see this,

note that given any dual orthonormal bases b⃗1, . . . , b⃗n and b⃗∗1, . . . , b⃗
∗
n, and any η, β, one can

solve for a unique dual orthonormal bases d⃗1, . . . , d⃗n and d⃗∗1, . . . , d⃗
∗
n (with the same value of ψ)

which yields b⃗1, . . . , b⃗n and b⃗∗1, . . . , b⃗
∗
n via the equations above. Thus, η = ℓf , β = ℓv, b⃗1, . . . , b⃗n

and b⃗∗1, . . . , b⃗
∗
n are properly distributed.
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Now B creates U1, . . . , Uk as follows. It chooses random values µ′1, µ
′
2, µ

′
3 ∈ Zp. It sets:

U1 = gµ
′
1b⃗1+µ

′
2b⃗k+1+µ

′
3d⃗2k+1 .

We note that

µ′1b⃗1 + µ′2b⃗k+1 + µ′3d⃗2k+1 = (µ′1 + ℓ−1
f µ′3)⃗b1 + (µ′2 + ℓ−1

v µ′3)⃗bk+1 + µ′3b⃗2k+1.

In other words, B has implicitly set µ1 = µ′1 + ℓ−1
f µ′3, µ2 = µ′2 + ℓ−1

v µ′3, and µ3 = µ′3. We note
that these values are uniformly random, and µ3 is known to B. B can then form U2, . . . , Uk as:

U2 = gµ
′
1b⃗2+µ

′
2b⃗k+2+µ

′
3d⃗2k+2 , . . . , Uk = gµ

′
1b⃗k+µ

′
2b⃗2k+µ

′
3d⃗3k .

B then implicitly sets τ1 = c1 and τ2 = c2. We note that

τ1η⃗b
∗
1 + τ2βb⃗

∗
k+1 = (c1 + c2)d⃗

∗
2k+1 + c1ℓf d⃗

∗
1 + c2ℓvd⃗

∗
k+1,

...

τ1η⃗b
∗
k + τ2βb⃗

∗
2k = (c1 + c2)d⃗

∗
3k + c1ℓf d⃗

∗
k + c2ℓvd⃗

∗
2k.

The terms which are multiples of c1ℓf and c2ℓv are not difficult for B to produce as exponents
of g, since B has f c1 = gc1ℓf and vc2 = gc2ℓv . For the multiples of c1 + c2, B needs to use T .
B computes:

T1 = T d⃗
∗
2k+1 (f c1)d⃗

∗
1 (vc2)d⃗

∗
k+1 , . . . , Tk = T d⃗

∗
3k (f c1)d⃗

∗
k (vc2)d⃗

∗
2k .

If T = gc1+c2 , then these are distributed as V1, . . . , Vk. If T = gc1+c2+w, then these are dis-
tributed as W1, . . . ,Wk, with τ3 implicitly set to w.
B gives

D :=
(
gb⃗1 , gb⃗2 , . . . , gb⃗2k , gb⃗3k+1 , . . . , gb⃗n , gηb⃗

∗
1 , . . . , gηb⃗

∗
k , gβb⃗

∗
k+1 , . . . , gβb⃗

∗
2k ,

gb⃗
∗
2k+1 , . . . , gb⃗

∗
n , U1, U2, . . . , Uk, µ3

)
to A, along with T1, . . . , Tk. B can then leverage A’s non-negligible advantage in distinguishing
between the distributions (V1, . . . , Vk) and (W1, . . . ,Wk) to achieve a non-negligible advantage in
distinguishing T = gc1+c2 from T = gc1+c2+w, hence violating the decisional linear assumption.
We note that the above reduction can be parallelized for multiple bases (B1,B∗

1), (B2,B∗
2), . . .,

(Bj ,B∗
j ) by having the simulator sample (D1,D∗

1), . . . , (Dj ,D∗
j ) independently and follow the

same procedure for each.

4 Analog of the Boneh-Boyen IBE Scheme

In this section, we employ our subspace assumption and our parameter hiding technique for
dual orthonormal bases to prove full security for a close analog of the Boneh-Boyen IBE scheme
from the decisional linear assumption. This is the same security guarantee achieved for the
IBE scheme in [39] and our efficiency is also similar. The advantage of our scheme is that it
is a much closer analog to the original Boneh-Boyen IBE, and resultingly has a simpler, more
intuitive structure.

Our security proof essentially mirrors the structure of the security proof given in [27], which
provides a fully secure variant of the Boneh-Boyen IBE scheme in composite order groups. This
serves as an illustrative example of how our techniques can be used to simulate dual system
encryption proofs in the prime order setting that were originally presented in composite order
groups.
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4.1 Review of the Boneh-Boyen Scheme

We begin by reviewing the original Boneh-Boyen scheme [5] in prime order bilinear groups,
which was proven to be selectively secure. In this scheme, the public parameters consist of
three random elements of G and one element of GT :

PP := {g, u, h ∈ G, e(g, g)α}.

Here, α is random element of Zp, and MSK = gα. Identities are assumed to be elements of Zp,
and a secret key for identity ID is of the form

SKID = {gα(uIDh)r, gr},

where r is a random value in Zp chosen by the master authority when it is called upon to issue
this secret key. Messages are assumed to be elements of GT , and an encryption of a message
M to an identity ID takes the form:

CT = {Me(g, g)αs, gs, (uIDh)s},

where s is a random value in Zp chosen by the encryptor. Decryption works by computing two
pairings and dividing the result to obtain:

e(gα(uIDh)r, gs)/e(gr, (uIDh)s) = e(g, g)αs,

which can then be divided from Me(g, g)αs to obtain M .
This scheme is quite elegant in its simplicity - every parameter plays a clear role. The ran-

domness s is used to randomize ciphertexts. The randomness r embedded in a user’s secret key
prevents the user from recovering the master secret key. The parameter h prevents multiplica-
tive manipulations of identities: for example, suppose one user has identity ID and another
has identity 2ID. If the parameter h were absent, the user with identity 2ID could take a
ciphertext encrypted to ID and raise the last element to the power 2 to obtain a ciphertext for
his identity 2ID. The parameter u prevents users from removing the dependence on identities.
For example, if we used gID in place of uID, then a user could take the gr term in his secret
key, raise it to the power ID, and use this to strip off the identity-dependent term from the
first part of his key.

4.2 Review of the Lewko-Waters Composite Order Variant

The Lewko-Waters IBE scheme [27] takes the Boneh-Boyen IBE and embeds it into the first
subgroup of a bilinear group of composite order N = p1p2p3. Random elements from Gp3 are
multiplied to key elements for additional randomization. This results in a scheme that retains
the intuitive structure of Boneh-Boyen. In fact its description is almost identical, except that
now g, u, h are replaced by g1, u1, h1 ∈ Gp1 , and keys are of the form:

SKID = {gα1 (uID1 h1)
rR3, g

r
1R

′
3},

where R3, R
′
3 are randomly chosen elements of Gp3 . Since the ciphertext elements gs1, (u

ID
1 h1)

s

are contained in Gp1 , these extra terms R3, R
′
3 are orthogonal to the ciphertext and do not

hinder decryption.
Full security is proven using the dual system encryption methodology. In a dual system,

there are two kinds of keys and ciphertexts: normal and semi-functional. Normal keys and ci-
phertexts are used in the real system, while their semi-functional counterparts are only invoked
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in the proof. The relationships between these objects are as follows: normal keys can decrypt
both normal and semi-functional ciphertexts, while semi-functional keys can only decrypt nor-
mal ciphertexts. When a semi-functional key is used to decrypt a semi-functional ciphertext,
decryption will fail with all but negligible probability.

The security proof for a dual system is accomplished via a hybrid argument argument over
a sequence of games. The first game is the real security game with normal keys and a normal
ciphertext. In the next game, the ciphertext given to the attacker is changed to be semi-
functional. Then, the keys given to the attacker are changed to be semi-functional, one by
one. Once everything the attacker receives is semi-functional, then it is typically easy to prove
security directly.

Semi-functional keys and ciphertexts in the LW IBE are just like normal keys and ciphertexts
in the subgroups Gp1 and Gp3 , with additional random components in Gp2 . More precisely, a
semi-functional ciphertext is of the form

CT = {Me(g1, g1)
αs, gs1X2, (u

ID
1 h1)

sX ′
2},

where X2, X
′
2 are random elements in Gp2 . Similarly, a semi-functional key is of the form

SKID = {gα1 (uID1 h1)
rR3Y2, g

r
1R

′
3Y

′
2},

where Y2, Y
′
2 are random elements in Gp2 . Note that these elements in Gp2 affect decryption

only when a semi-functional key and a semi-functional ciphertext are paired together.
To execute the game transitions in the hybrid proof, one must argue that an attacker’s

advantage cannot change noticeably between adjacent games. This is done by showing that if
one is given a PPT attacker whose advantage noticeably changes, then one can create a PPT
simulator which leverages this attacker to break a computational assumption. It is relatively
straightforward to use a subgroup decision assumption to change the ciphertext from normal
to semi-functional: the simulator will be given g1 ∈ Gp1 , g3 ∈ Gp3 and T , and its task will be
to decide if T ∈ Gp1 or T ∈ Gp1p2 . It will set u1 = ga1 and h1 = gb1, where it knows a, b ∈ ZN ,
and can then implicitly set gs1 to be the Gp1 component of T . It can compute the final element
of the ciphertext as T aID+b. If T ∈ Gp1 , this is a properly distributed normal ciphertext. If
T ∈ Gp1p2 , this is a properly distributed semi-functional ciphertext (note that the values of a, b
modulo p2 are uniformly random, even conditioned on the public parameters, which only reveal
their values modulo p1).

There is a subtlety inherent in the proof while a particular key is changing from normal to
semi-functional. We will refer to this key as the “challenge key.” Since the proof provides full
security, the simulator will not know ahead of time what the challenge identity will be. Hence,
the simulator must be prepared to make the semi-functional ciphertext for any identity, and also
to make the challenge key for any identity. The simulator should not know for itself whether the
challenge key that it creates is normal or semi-functional - but it seems that it could determine
this by creating a semi-functional ciphertext for the same identity and testing if decryption
succeeds. To avoid this paradox, the simulator is designed so that if it were to make the semi-
functional ciphertext and the challenge key for the same identity, the two objects would be
correlated to ensure that decryption would succeed, regardless of whether the semi-functional
components are present on the challenge key. In other words, if semi-functional components
are present on the key, then they are correlated with the semi-functional components of the
ciphertext so that they cancel out upon decryption if the identities are equal. This phenomenon
is called nominal semi-functionality. This is where the parameter hiding technique is crucial:
the same distribution of semi-functional components that is correlated in the simulator’s view
must look uncorrelated to the attacker, who can only request keys for identities unequal to
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the identity of the challenge ciphertext. In the LW proof, this is accomplished via a pairwise
independent function, f(ID) := aID + b modulo p2. The value of a modulo p1 is the discrete
log of u1 base g1, while the value of b modulo p1 is the discrete log of h1 base g1. Information-
theoretically, the public parameters reveal amod p1 and bmod p1, but the values of amod p2 and
bmod p2 remain hidden. The pairwise independence of the function f modulo p2 can thus be
invoked to argue that the semi-functional components of the challenge ciphertext and challenge
key appear properly distributed in the attacker’s view. For more details of this argument, see
[27].

The subgroup decision assumption used for this step in the proof is as follows: given random
elements in Gp1 , Gp3 , Gp1p2 , and Gp2p3 , it should be hard to distinguish a random element of
Gp1p3 from a random element of G. The element of Gp1 is used to make the public parameters,
the element of Gp3 is used to randomize normal keys, the element of Gp1p2 is used to make
the semi-functional ciphertext, the element of Gp2p3 is used to make the semi-functional keys,
and the element of unknown type is used to make the challenge key (its Gp1 component is
implicitly set to be gr1). Because the Gp2 components of the challenge ciphertext and the
(possibly present) Gp2 components of the challenge key both enter via group elements that also
have Gp1 components, the exponents of these elements must conform to the structure of the
scheme that is enforced in the Gp1 subgroup - this is what causes nominal semi-functionality
when the identities are the same: the cancelation that happens in the Gp1 subgroup is mirrored
in the Gp2 subgroup. Essentially, what we get is a second copy of the scheme occurring in the Gp2
subgroup for the challenge key and challenge ciphertext, but with “fresh” parameters amod p2
and bmod p2 that are not constrained by the public parameters. This hides the structure in
Gp2 via pairwise independence when the identities are unequal.

4.3 Our Construction

We now construct an analog of the Boneh-Boyen IBE scheme in prime order bilinear groups that
can be proven fully secure by mimicking the LW proof strategy. We will use dual orthonormal
bases (D,D∗) of Z6

p, where p is the prime order of our bilinear group G. Public parameters and
ciphertexts will have exponents described in terms of the basis vectors in D, while secret keys
will have exponents described in terms of D∗. The first four basis vectors of each will constitute
the “normal space” (like Gp1 in the LW scheme), and the last two basis vectors of each will
constitute the “semi-functional space” (like Gp2 in the LW scheme).

By using dual pairing vector spaces, we avoid the need to simulate Gp3 . In the LW scheme,
the purpose of Gp3 is to allow the creation of other semi-functional keys while a challenge key
is changing from normal to semi-functional. More precisely, it allows the subgroup decision
assumption to give out an element of Gp2p3 that can be used to generate semi-functional keys
when the task is to distinguish a random element of Gp1p3 from a random element of G. We note
that if we did not use Gp3 here and instead tried to create all of the semi-functional keys from a
term in Gp1p2 , then these keys would not be properly randomized in the Gp2 subgroup because
the structure of the scheme is enforced in the Gp1 subgroup. Pairwise independence cannot save
us here because there are many keys. However, the asymmetry of dual pairing vector spaces
avoids this issue: while we are expanding the challenge key into the “semi-functional space” in
D∗, we can still know a basis for the semi-functional space of D∗ in the exponent - it is only the
corresponding terms in the semi-functional space of D that we do not have access to in isolation.
This allows us to make the other semi-functional keys without needing to create an analog of
the Gp3 subgroup.

As we reviewed above, the core of the Boneh-Boyen scheme is a cancelation between terms
in two pairings, one with the identity appearing on the ciphertext side and the other with
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the identity appearing on the key side. This is combined with a mechanism for preventing
multiplication manipulation of the identity. In our scheme, this core cancelation is duplicated:
instead of having one cancelation, we have two, each with its own random coefficients. The first
cancelation will occur for the d⃗1, d⃗2 and d⃗∗1, d⃗

∗
2 components, and the second will occur for the

d⃗3, d⃗4 and d⃗∗3, d⃗
∗
4 components.

This expansion gives us room to use the subspace assumption with parameter k = 2 to
transition from 4-dimensional exponents for normal keys and ciphertexts to 6-dimensional ex-
ponents for semi-functional keys and ciphertexts. Having a 2-dimensional semi-functional space
allows us to implement nominal semi-functionality. We will elaborate on this below after defin-
ing the semi-functional objects for our scheme. To prevent multiplicative manipulations of the
identities in our scheme is rather easy, since the orthogonality of the dual bases allows us to
“tie” all the components of the keys and ciphertexts together without causing cross interactions
that interfere with decryption.

We assume that messages M are elements of GT (the target group of the bilinear map) and
that identities ID are elements of Zp.

Setup(λ) → MSK,PP The setup algorithm takes in the security parameter λ and chooses a
bilinear group G of sufficiently large prime order p. We let e : G×G→ GT denote the bilinear

map. We set n = 6. The algorithm samples random dual orthonormal bases, (D,D∗)
R←−

Dual(Znp ). We let d⃗1, . . . , d⃗6 denote the elements of D and d⃗∗1, . . . , d⃗
∗
6 denote the elements of D∗.

It also chooses random values α, θ, σ ∈ Zp. The public parameters are computed as:

PP :=
{
G, p, e(g, g)αθd⃗1·d⃗

∗
1 , gd⃗1 , . . . , gd⃗4

}
.

(We note that d⃗1 · d⃗∗1 = ψ by definition of D,D∗, but we write out the dot product when we feel
it is more instructive.) The master secret key is:

MSK :=
{
gθd⃗

∗
1 , gαθd⃗

∗
1 , gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4

}
.

KeyGen(MSK, ID)→ SKID The key generation algorithm chooses random values r1, r2 ∈ Zp
and forms the secret key as:

SKID := g(α+r1ID)θd⃗∗1−r1θd⃗∗2+r2IDσd⃗∗3−r2σd⃗∗4 .

Encrypt(M, ID,PP)→ CT The encryption algorithm chooses random values s1, s2 ∈ Zp and
forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd⃗1·d⃗

∗
1

)s1
, C2 := gs1d⃗1+s1IDd⃗2+s2d⃗3+s2IDd⃗4

}
.

Decrypt(CT, SKID)→M The decryption algorithm computes the message as:

M := C1/en(SKID, C2).

Recall that n = 6, so this requires six pairings.
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4.4 Correctness

We observe that when the ciphertext is encrypted under ID, then:

en(SKID, C2) = e(g, g)s1(α+r1ID)θd⃗1·d⃗∗1−s1IDr1θd⃗2·d⃗∗2+s2r2IDσd⃗3·d⃗∗3−s2IDr2σd⃗4·d⃗∗4 .

Since d⃗1 · d⃗∗1 = d⃗2 · d⃗∗2 = d⃗3 · d⃗∗3 = d⃗4 · d⃗∗4 = ψ, this exponent is equal to:

(s1αθ + s1r1IDθ − s1r1IDθ + s2r2IDσ − s2r2IDσ)ψ = s1αθψ.

Noting that

C1 =Me(g, g)s1αθψ,

correctness follows.
A visual representation of the structure of our construction is below in Figure 3. In our

illustration, we leave out the α contribution as well as the θ and σ parameters in order to get an
uncluttered look at the core structure of the cancelations that occur in our decryption algorithm.
We indicate the semi-functional space to be the span of the vectors d⃗5, d⃗6 for ciphertexts and
the span of the vectors d⃗∗5, d⃗

∗
6 for keys. Semi-functional ciphertexts and keys will include random

vectors in these spaces. These are formally defined in the next subsection.

DD

*DD

Semi-functional

Spacer1ID

s1

-r1

s1ID s2 s2ID

r2ID -r2

ciphertext

key

Figure 3: Cancelation in our construction

4.5 Semi-functional Algorithms

We choose to define our semi-functional objects by providing algorithms that generate them.
We note that these algorithms are only provided for definitional purposes, and are not part of
the IBE system. In particular, they do not need to be efficiently computable from the public
parameters and master secret key alone.

KeyGenSF The semi-functional key generation algorithm chooses random values r1, r2, t5, t6 ∈
Zp and forms the secret key as

SKID := g(α+r1ID)θd⃗∗1−r1θd⃗∗2+r2IDσd⃗∗3−r2σd⃗∗4+t5d⃗∗5+t6d⃗∗6 .

This is distributed like a normal key with additional random multiples of d⃗∗5 and d⃗∗6 added in
the exponent.

EncryptSF The semi-functional encryption algorithm chooses random values s1, s2, z5, z6 ∈
Zp and forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd⃗1·d⃗

∗
1

)s1
, C2 := gs1d⃗1+s1IDd⃗2+s2d⃗3+s2IDd⃗4+z5d⃗5+z6d⃗6

}
.
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This is distributed like a normal ciphertext with additional random multiples of d⃗5 and d⃗6 added
in the exponent.

We observe that if one applies the decryption procedure with a semi-functional key and a
normal ciphertext, decryption will succeed because d⃗∗5, d⃗

∗
6 are orthogonal to all of the vectors

in exponent of C2, and hence have no effect on decryption. Similarly, decryption of a semi-
functional ciphertext by a normal key will also succeed because d⃗5, d⃗6 are orthogonal to all of
the vectors in the exponent of the key. When both the ciphertext and key are semi-functional,
the result of en(SKID, C2) will have an additional term, namely

e(g, g)t5z5d⃗5·d⃗
∗
5+t6z6d⃗6·d⃗∗6 = e(g, g)(t5z5+t6z6)ψ.

Decryption will then fail unless t5z5 + t6z6 ≡ 0mod p. If this modular equation holds, we say
that the key and ciphertext pair is nominally semi-functional. We note that this is possible,
even when none of t5, z5, t6, z6 are congruent to zero modulo p - this is why we have designated
a semi-functional space of dimension 2. Requiring the 1-dimensional version of this modular
equation, i.e. t5z5 ≡ 0mod p, would be equivalent to requiring that either t5 or z5 be congruent
to zero modulo p.

4.6 Proof of Security

We now prove the following theorem:

Theorem 7. Under the decisional linear assumption, the IBE scheme presented in Section 4.3
is fully secure.

We prove this using a hybrid argument over a sequence of games, following the LW strategy.
We start with the real security game, denoted by Gamereal. We let q denote the number of keys
requested by the attacker. We define the following additional games.

Gamei for i = 0, 1, . . . , q Gamei is like Gamereal, except the ciphertext given to the attacker
is semi-functional (i.e. generated by a call to EncryptSF instead of Encrypt) and the first i
keys given to the attacker are semi-functional (generated by KeyGenSF). The remaining keys
are normal. We note that in Game0, all of the keys are normal, and in Gameq, all of the keys
are semi-functional.

Gamefinal Gamefinal is like Gameq, except that the ciphertext is a semi-functional encryption
of a random message in GT , instead of one of the messages supplied by the attacker.

We transition from Gamereal to Game0, then to Game1, and so on, until we arrive at
Gameq. We prove that with each transition, the attacker’s advantage cannot change by a non-
negligible amount. As a last step, we transition to Gamefinal, where it is clear that the attacker’s
advantage is zero. These transitions are accomplished in the following lemmas, all using the
subspace assumption. We let AdvrealA denote the advantage of an algorithm A in the real game,

AdviA denote its advantage in Gamei, and Adv
final
A denote its advantage in Gamefinal.

We begin with the transition from Gamereal to Game0. At the analogous step in the LW
proof, a subgroup decision assumption is used to expand the ciphertext from Gp1 into Gp1p2 .
Here, we use the subspace assumption with k = 2 to expand the ciphertext exponent vector
from the span of d⃗1, . . . , d⃗4 into the larger span of d⃗1, . . . , d⃗6. We use a very basic instance of the
parameter hiding technique to argue that the resulting coefficients of d⃗5 and d⃗6 are randomly
distributed: this is done by initially embedding a random 2 × 2 change of basis matrix A into
our setting of the basis vectors d⃗5, d⃗6.
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A visual representation of the use of the subspace assumption in this step is provided in the
following figure.

DD

*DD

T1

T2

?
Ciphertext

Keys

Figure 4: Ciphertext expands into semi-functional space

In Figure 4, solid ovals and rectangles denote the definite presence of vectors in the expo-
nents, and the dotted ovals denote elements that may or may not be present. We have illustrated
T1, T2 as for the basis B, and we note that D is obtained from B by applying the change of basis
matrix A to the last two basis vectors.

Lemma 8. If there exists a PPT algorithm A such that AdvrealA −Adv0A is non-negligible, then
there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 2 and n = 6.

Proof. B is given:

D =
(
gb⃗1 , . . . , gb⃗4 , gη⃗b

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6 , U1, U2, µ3

)
,

along with T1, T2. It is B’s task to decide whether T1, T2 are distributed as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4

or as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1η⃗b

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 . In this proof, we will not need to use the terms

gb⃗
∗
5 , gb⃗

∗
6 , U1, U2, µ3, so these can be ignored.

B will simulate either Gamereal or Game0 with A, depending on the distribution of T1, T2.
To compute the public parameters and master secret key, B first chooses a random matrix
A ∈ Z2×2

p (with all but negligible probability, A is invertible). We define dual orthonormal
bases F,F∗ by:

f⃗1 = η⃗b∗1, f⃗2 = η⃗b∗2, f⃗3 = βb⃗∗3, f⃗4 = βb⃗∗4, f⃗5 = b⃗∗5, f⃗6 = b⃗∗6,

f⃗∗1 = η−1⃗b1, f⃗
∗
2 = η−1⃗b2, f⃗

∗
3 = β−1⃗b3, f⃗

∗
4 = β−1⃗b4, f⃗

∗
5 = b⃗5, f⃗

∗
6 = b⃗6.

Now B implicitly sets D = FA,D∗ = F∗
A, where A is applied as a change of basis matrix to f⃗5, f⃗6

and (A−1)t is applied as a change of basis matrix to f⃗∗5 , f⃗
∗
6 , as described in Section 3.1. We note

that for i = 1, . . . , 4, d⃗i = f⃗i and d⃗∗i = f⃗∗i . We note that D,D∗ are properly distributed, and
reveal no information about A. This follows from Lemma 3, since F,F∗ are still distributed as
a random pair of dual orthonormal bases.
B chooses random values α, θ′, σ′ ∈ Zp, and implicitly sets θ = θ′η, σ = σ′β. We note

that B can compute e(g, g)αθd⃗1·d⃗
∗
1 as

(
en(g

b⃗1 , gηb⃗
∗
1)
)αθ′

. B can also produce gd⃗1 , . . . , gd⃗4 , and

gθd⃗
∗
1 , gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4 . Though B cannot produce gd⃗

∗
5 or gd⃗

∗
6 , these will not be needed for creating

normal keys.
B gives A the public parameters:

PP :=
{
G, p, e(g, g)αθd⃗1·d⃗

∗
1 , gd⃗1 , . . . , gd⃗4

}
.
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The master secret key,

MSK :=
{
gθd⃗

∗
1 , gαθd⃗

∗
1 , gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4

}
,

is known to B. This allows B to respond to all of A’s key queries by calling the normal key
generation algorithm, and giving the resulting keys to A.

At some point, A submits two messages, M0 and M1, along with a challenge identity, ID∗.
B chooses a random bit b ∈ {0, 1} and encrypts Mb as follows. It sets:

C2 := T1(T2)
ID∗

.

This implicitly sets s1 = τ1 and s2 = τ2. It also computes:

C1 :=Mb

(
en(T1, g

b⃗1)
)θ′α

=Mb

(
e(g, g)αθd⃗1·d⃗

∗
1

)s1
.

It gives the ciphertext CT = {C1, C2} to A.
Now, if T1, T2 are equal to g

τ1η⃗b∗1+τ2βb⃗
∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4 , then this is a properly distributed normal

encryption of Mb. In this case, B has properly simulated Gamereal. If T1, T2 are equal to

gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 instead, then the ciphertext element C2 has an additional

term of

τ3⃗b
∗
5 + ID∗τ3⃗b

∗
6 (1)

in its exponent. The coefficients here in the basis b⃗∗5, b⃗
∗
6 form the vector (τ3, ID

∗τ3). To compute

the coefficients in the basis d⃗5, d⃗6, we multiply the matrix A−1 by the transpose of this vector,
obtaining τ3A

−1(1, ID∗)t. Since A is random (everything else given to A has been distributed
independently of A), these coefficients are uniformly random. Therefore, in this case, B has
properly simulated Game0. This allows B to leverage A’s non-negligible difference in advan-
tage between Gamereal and Game0 to achieve a non-negligible advantage against the subspace
assumption.

We now handle the transition from Gamei−1 to Gamei. At this step in the LW proof, a
subgroup decision assumption is used to expand the ith secret key from Gp1p3 into G = Gp1p2p3 .
Analogously, we will use the subspace assumption to expand the ith secret key exponent vector
from the span of d⃗∗1, . . . , d⃗

∗
4 into the larger span of d⃗∗1, . . . , d⃗

∗
6. We will embed a 2 × 2 change

of basis matrix A and set D = BA and D∗ = B∗
A, where A is applied to b⃗5, b⃗6 to form d⃗5, d⃗6.

As in the LW proof, we cannot be given an object that resides solely in the semi-functional

space of the ciphertext (e.g. we cannot be given gd⃗5 , gd⃗6), but we are given objects that have
semi-functional components attached to normal components, and we can use these to create
the semi-functional ciphertext. In the LW proof, a term in Gp1p2 in used. Here, an exponent

vector that is a linear combination of b⃗1, b⃗3, b⃗5 and another exponent vector that is a linear
combination of b⃗2, b⃗4, b⃗6 are used. In our case, making the other normal and semi-functional
keys is straightforward, since we are given scalar multiples of all of the vectors of D∗ in the
exponent. We use the fact that the matrix A is hidden from the attacker in order to argue that
the semi-functional parts of the ciphertext and ith key appear well-distributed.

The following diagram illustrates how the subspace assumption is used in this transition.
In Figure 5, solid ovals and rectangles indicate basis vectors which are definitely present in

the exponents, while the dashed ovals indicate basis vectors which may or may not be present.
The X’s indicate basis vectors which the simulator does not have by themselves in the exponent,
but only has access to them as attached to other vectors. We have illustrated T1, T2, U1, U2 as
for bases B,B∗, and we note that D,D∗ are obtained from B,B∗ by applying the change of basis
matrix A to the last two vectors of B and applying (A−1)t to the last two vectors of B∗.
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Figure 5: Key i expands into semi-functional space

Lemma 9. If there exists a PPT algorithm A such that AdviA − Adv
i−1
A is non-negligible for

some i = 1, . . . , q, then there exists a PPT algorithm B with non-negligible advantage against
the subspace assumption, with k = 2 and n = 6.

Proof. B is given:

D =
(
gb⃗1 , . . . , gb⃗4 , gη⃗b

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6 , U1, U2, µ3

)
,

along with T1, T2. It is B’s task to decide whether T1, T2 are distributed as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4

or as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 . (We note that knowledge of µ3 will not be needed by

B in this proof.)
B will simulate either Gamei or Gamei−1 with A, depending on the distribution of T1, T2.

B chooses a random A ∈ Z2×2
p (with all but negligible probability, A is invertible). B implicitly

sets D = BA and D = B∗
A, where the change of basis matrix A is applied to b⃗5, b⃗6 and the change

of basis matrix (A−1)t is applied to b⃗∗5, b⃗
∗
6, as described in Section 3.1. Note that the first four

basis vectors are unchanged:

d⃗1 = b⃗1, . . . , d⃗4 = b⃗4,

d⃗∗1 = b⃗∗1, . . . , d⃗
∗
4 = b⃗∗4.

We note that D,D∗ are well-distributed, and reveal no information about A (by Lemma 3). B
can produce gd⃗1 , . . . , gd⃗4 . B also implicitly sets θ = η and σ = β. We note that this allows it

to produce gθd⃗
∗
1 = gηb⃗

∗
1 , and similarly for gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4 . It chooses a random value α ∈ Zp for

itself, enabling it to compute the public parameters and master secret key as:

PP :=
{
G, p, e(g, g)αθd⃗1·d⃗

∗
1 =

(
en(g

b⃗1 , gηb⃗
∗
1)
)α

, gd⃗1 , . . . , gd⃗4
}

MSK :=
{
gθd⃗

∗
1 ,

(
gθd⃗

∗
1

)α
, gθd⃗

∗
2 , gσd⃗

∗
3 , gσd⃗

∗
4

}
.

B can then produce normal keys by running the normal key generation algorithm. Since B also

knows gb⃗
∗
5 and gb⃗

∗
6 , it can easily produce semi-functional keys. More precisely, it can create

random linear combinations of gd⃗
∗
5 and gd⃗

∗
6 in the exponent by taking random combinations of

b⃗∗5 and b⃗∗6. This is equivalent because the span of d⃗∗5 and d⃗∗6 is equal to the span of b⃗∗5 and b⃗∗6.
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B gives PP to A. To answer the first i − 1 key queries that A makes, B runs the semi-
functional key generation algorithm to produce semi-functional keys and gives these to A.
When A makes the ith query for identity IDi, B responds with:

SKIDi :=
(
gηb⃗

∗
1

)α
T IDi
1 (T2)

−1 .

This implicitly sets r1 = τ1 and r2 = τ2. If T1, T2 are equal to g
τ1η⃗b∗1+τ2βb⃗

∗
3 , gτ1η⃗b

∗
2+τ2βb⃗

∗
4 , then this

is a properly distributed normal key. If T1, T2 are equal to gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 ,

then this is a semi-functional key, whose exponent vector includes

IDiτ3⃗b
∗
5 − τ3⃗b∗6 (2)

as its component in the span of b⃗∗5, b⃗
∗
6. To respond to the remaining key queries, B simply runs

the normal key generation algorithm.
At some point, A submits two messages, M0 and M1, along with a challenge identity, ID∗.

B chooses a random bit b ∈ {0, 1} and produces a semi-functional encryption of Mb as follows.
It sets:

C2 = U1 (U2)
ID∗

.

This implicitly sets s1 = µ1 and s2 = µ2. The “semi-functional part” of the exponent vector
here (i.e. the part in the span of d⃗5 = b⃗5 and d⃗6 = b⃗6) is:

µ3⃗b5 + ID∗µ3⃗b6. (3)

We observe that if ID∗ = IDi (which is not allowed), then the vectors (2) and (3) would be
orthogonal, resulting in a nominally semi-functional ciphertext and key pair. The other element
of the ciphertext is formed as:

C1 =Mb

(
gηb⃗

∗
1 , U1

)α
=Mb

(
e(g, g)αθd⃗

∗
1

)s1
.

The ciphertext CT = {C1, C2} is given to A.
We now argue that since ID∗ ̸= IDi, in A’s view the vectors (2) and (3) are distributed

as random vectors in the spans of {d⃗∗5, d⃗∗6} and {d⃗5, d⃗6} respectively. To see this, we take the

coefficients of vectors (2) and (3) in terms of the bases b⃗∗5, b⃗
∗
6 and b⃗5, b⃗6 respectively and translate

them into coefficients in terms of the bases d⃗∗5, d⃗
∗
6 and d⃗5, d⃗6. Using the change of basis matrix

A, we obtain the new coefficients (in vector form) as:

τ3A
t(IDi,−1)t, µ3A−1(1, ID∗).

Since the distribution of everything given to A except for the ith key and the challenge ciphertext
is independent of the random matrix A and ID∗ ̸= IDi, we can apply Lemma 4 to conclude
that these coefficients are uniformly random. Thus, B has properly simulated Gamei in this
case.

In summary, B has properly simulated either Gamei−1 or Gamei for A, depending on the dis-
tribution of T1, T2. It can therefore leverage A’s non-negligible difference in advantage between
these games to obtain a non-negligible advantage against the subspace assumption.

The final step of the LW proof uses an assumption that it is not technically an instance of
the general subgroup decision assumption, but is of a similar flavor. Namely, it is assumed that
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given g1, g2, g3, g
α
1X2, g

s
1Y2, it is hard to distinguish e(g1, g1)

αs from a random element of GT .
Here, g1, g2, g3 are randomly chosen generators of Gp1 , Gp2 , Gp3 respectively, α, s are randomly
chosen from ZN , and X2, Y2 are randomly chosen elements of Gp2 . The term gα1X2 is used to
make semi-functional keys, gs1Y2 is used to make semi-functional ciphertexts, and T is used to
blind the message. When T = e(g1, g1)

αs, this yields a properly distributed semi-functional
ciphertext. When T is random, this yields a properly distributed semi-functional encryption of
a random message.

In our case, we use a slightly different strategy. Instead of enacting a change directly
on the blinding factor of the message, we use the subspace assumption with k = 1 twice to
randomize each appearance of s1 in the C2 term of the ciphertext, thereby severing its link
with the blinding factor. The end result is the same - we obtain a semi-functional encryption of
a random message. This randomization of s1 is accomplished by first expanding an exponent
vector from the span of d⃗5, d⃗6 into the larger span of d⃗5, d⃗6, d⃗2 and then expanding an exponent
vector from the span of d⃗5, d⃗6 into the larger span of d⃗5, d⃗6, d⃗1. We note that the knowledge of
the µ3 value in the subspace assumption is used here to ensure that while we are doing the first
expansion, for example, we can make the two occurrences of r1 in the keys match consistently

(this is necessary because gd⃗
∗
2 by itself will not be known during this step).

The following diagram illustrates how the subspace assumption is used for the first of these
two steps (the second step is similar).

DD

*DD

T1

?
Ciphertext

U1

Keys

Figure 6: The coefficient of d⃗2 in the ciphertext is randomized

In Figure 6, we only illustrate how T1 and U1 affect the keys and ciphertext, and we neglect
many other terms. One should also note that U1 will be raised to a fresh random power for
each key - a subtlety which our diagram does not capture.

Lemma 10. If there exists a PPT algorithm A such that AdvqA−Adv
final
A is non-negligible, then

there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 1 and n = 6.

We prove this lemma in two steps. As a first step, we consider an intermediary game, called
Game′q:

Game′q This is exactly like Gameq, except that in the C2 term of the challenge ciphertext,

the coefficient of d⃗2 is changed from being s1ID
∗ to a fresh random value in Zp. We denote the

advantage of an algorithm A in this game by Advq
′

A.

We first prove:

Lemma 11. If there exists a PPT algorithm A such that AdvqA −Adv
q′

A is non-negligible, then
there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 1 and n = 6.
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Proof. B is given:

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , gb⃗5 , gb⃗6 , gη⃗b

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

To define the public parameters, B implicitly sets:

d⃗1 = b⃗∗6, d⃗2 = b⃗∗3, d⃗3 = b⃗∗5, d⃗4 = b⃗∗4, d⃗5 = b⃗∗2, d⃗6 = b⃗∗1.

We note that this enables B to produce gd⃗1 , . . . , gd⃗4 for the public parameters. B additionally
sets:

d⃗∗1 = b⃗6, d⃗
∗
2 = b⃗3, d⃗

∗
3 = b⃗5, d⃗

∗
4 = b⃗4, d⃗

∗
5 = b⃗2, d⃗

∗
6 = b⃗1.

This ensures that D,D∗ are properly distributed dual orthonormal bases. We note that B can

produce gd⃗
∗
1 , gd⃗

∗
3 , . . . , gd⃗

∗
6 , but does not know gd⃗

∗
2 .

B chooses random values θ, σ, α ∈ Zp for itself. It can compute e(g, g)αθd⃗1·d⃗
∗
1 as

(
en(g

b⃗∗6 , gb⃗6)
)αθ

.

It gives A the public parameters:

PP :=
{
G, p, e(g, g)αθd⃗1·d⃗

∗
1 , gd⃗1 , . . . , gd⃗4

}
.

We note that B does not know the full master secret key, because it does not know gd⃗
∗
2 = gb⃗3 .

It does know U1 and µ3, however, where U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 . This will allow it to produce
semi-functional keys as follows. When A requests a key for some identity ID, B chooses random
values r′1, r2, t

′
5, t

′
6 ∈ Zp. It will set r1 = µ3r

′
1. It forms the secret key as:

SKID := (U1)
−θr′1g(α+µ3r

′
1ID)θd⃗∗1+r2IDσd⃗

∗
3−r2σd⃗∗4+t′5d⃗∗5+t′6d⃗∗6 .

We note that the coefficient of d⃗∗2 = b⃗3 here is equal to −µ3r′1θ = −r1θ, as required. The

coefficients of d⃗∗5 = b⃗2 and d⃗∗6 = b⃗1 are uniformly random (since they are additively randomized
by t′5, t

′
6), so this is a properly distributed semi-functional key. The simulator’s knowledge of µ3

was helpful here, in that it allowed the simulator to form the r1 coefficient for use with d⃗∗1 as

well as d⃗∗2.
At some point, A submits messages M0,M1 and a challenge identity, ID∗. B samples a

random bit b ∈ {0, 1} and forms the challenge ciphertext as follows. It chooses s1, s2 ∈ Zp
randomly. It sets:

C1 :=Mbe(g, g)
αs1 , C2 := gs1d⃗1+s1ID

∗d⃗2+s2d⃗3+s2ID∗d⃗4T1.

Now, if T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2 , then the exponent vector of T1 is a random linear combination of d⃗5

and d⃗6, making this a well-distributed semi-functional ciphertext in Gameq. If the exponent of

T1 additionally has τ3⃗b
∗
3 = τ3d⃗2, then this randomizes the coefficient of d⃗2, yielding a ciphertext

distributed as in Game′q. Therefore, B can leverage A’s non-negligible difference of advantage
between these two games to achieve a non-negligible advantage against the subspace assumption.

Lemma 12. If there exists a PPT algorithm A such that Advq
′

A−Adv
final
A is non-negligible, then

there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 1 and n = 6.
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Proof. B is given:

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , gb⃗5 , gb⃗6 , gη⃗b

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gb⃗

∗
4 , gb⃗

∗
5 , gb⃗

∗
6 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

We recall that U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 .
To define the public parameters, B implicitly sets:

d⃗1 = b⃗∗3, d⃗2 = b⃗∗4, d⃗3 = b⃗∗5, d⃗4 = b⃗∗6, d⃗5 = b⃗∗1, d⃗6 = b⃗∗2

d⃗∗1 = b⃗3, d⃗
∗
2 = b⃗4, d⃗

∗
3 = b⃗5, d⃗

∗
4 = b⃗6, d⃗

∗
5 = b⃗1, d⃗

∗
6 = b⃗2.

We note that D and D∗ are properly distributed dual orthonormal bases, and B can produce

gd⃗1 , . . . , gd⃗4 , gd⃗
∗
2 , . . . , gd⃗

∗
6 .

B chooses α′, θ, σ randomly from Zp. It will implicitly set α = α′µ3. It can then compute

e(g, g)αθd⃗1·d⃗
∗
1 as

(
en(g

b⃗4 , gb⃗
∗
4)
)α′µ3θ

, for instance, since d⃗1 · d⃗∗1 = b⃗∗3 · b⃗3 = b⃗∗4 · b⃗4. It can then give

A the public parameters:

PP :=
{
G, p, e(g, g)αθd⃗1·d⃗

∗
1 , gd⃗1 , . . . , gd⃗4

}
.

When A requests a key for an identity ID, B responds as follows. It chooses random values
r′1, r2, t

′
5, t

′
6 and implicitly sets r1 = r′1µ3. It forms the key as:

SKID = U
(α′+r′1ID)θ
1 g−r

′
1µ3θd⃗

∗
2+r2IDσd⃗

∗
3−r2σd⃗∗4+t′5d⃗∗5+t′6d⃗∗6 .

We note that the coefficient of d⃗∗1 = b⃗3 here is µ3(α
′+ r′1ID)θ = (α+ r1ID)θ, as required. Also,

the coefficients of d⃗∗5 = b⃗1 and d⃗∗6 = b⃗2 are uniformly random (since t′5, t
′
6 are random). Thus, B

produces properly distributed semi-functional keys.
When A submits messagesM0,M1 and ID

∗, B chooses a random bit b ∈ {0, 1} and encrypts
Mb as follows. It chooses s1, s2, w randomly from Zp and sets the ciphertext as:{

C1 :=Mb

(
e(g, g)αθd⃗1·d⃗

∗
1

)s1
, C2 := gs1d⃗1+wd⃗2+s2d⃗3+s2IDd⃗4T1

}
.

Now, if T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2 , then the exponent vector of T1 is a random linear combination of d⃗5

and d⃗6, making this a well-distributed semi-functional ciphertext in Game′q. If the exponent of

T1 additionally has τ3⃗b
∗
3 = τ3d⃗1, then this randomizes the coefficient of d⃗1, yielding a ciphertext

distributed as in Gamefinal (since now the distribution of C2 is independent of s1, which makes
C1 a random group element in GT ). Therefore, B can leverage A’s non-negligible difference of
advantage between these two games to achieve a non-negligible advantage against the subspace
assumption.

Combining Lemmas 11 and 12, we obtain Lemma 10. Along with Lemmas 6, 8, and 9, this
completes the proof of Theorem 7.

5 Unbounded HIBE

As a second demonstration of our tools, we consider a variant of the Lewko-Waters unbounded
HIBE construction [29]. The composite order construction we present is simpler than the one
presented in [29], at the cost of using more subgroups. Since we will ultimately simulate these
subgroups in a prime order group, such a cost is no longer a significant detriment.
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In designing our prime order translation and proof, we will proceed along a path that is
very similar to the path we took to translate the more basic IBE scheme. However, we now
must take care to preserve delegation ability throughout our proof. The only place where this
becomes non-trivial is in the final step of the proof, where everything is already semi-functional
and we want to transition to a random message. Before, we used the subspace assumption to
expand from the semi-functional space into the normal space of the ciphertext, and in doing so,
we randomized the blinding factor. However, this strategy is problematic when we must enable
delegation, since it will result in a simulator who does not know some important basis vectors
in the exponent for the normal space of the keys. This seems to prevent the simulator from
having what it needs to equip users with delegation capabilities.

To avoid this issue, we employ a different strategy for the final step of the proof. Instead
of expanding the semi-functional space into the normal space to randomize the blinding fac-
tor, we expand the part of the normal space involved in forming the blinding factor into the
semi-functional space. Essentially, this moves us from a blinding factor determined from the
exponents in the normal space to a blinding factor that is additionally affected by some terms
embedded in the semi-functional space. Our blinding factor can now be seen as random, since
the exponents in the semi-functional space can be re-randomized independently of these em-
bedded terms.

The details of our composite order construction, its prime order translation, and security
proofs in both settings can be found in Appendix B.

6 Further Discussion

In applying our tools to the both IBE and unbounded HIBE applications, we see that there
is some flexibility in how we choose the construction, organize the hybrid games, and embed
the subspace assumption in our reductions. All of these considerations interact, allowing us to
make tradeoffs. For example, we were able to make our construction more compact in the IBE
case and our final proof step simpler, but our way of embedding the subspace assumption in
the final stage was problematic for applications requiring delegation of keys. This was easily
solved by expanding our construction and hybrid sequence a bit and embedding the subspace
assumption in the final stages in a different way in the HIBE setting.

The amount of flexibility available in applying our tools make them suitably versatile to
handle a wider variety of applications as well. In particular, they can be applied in the attribute-
based encryption setting. We suspect that applying our techniques to the composite order
ABE constructions in [25] would result in a system and proof quite similar to the functional
encryption schemes presented by Okamoto and Takashima in [33], who obtain security from
the decisional linear assumption through dual pairing vector spaces. As in [33], one could
obtain small universe ABE by having a distinct pair of dual orthornomal bases associated with
each attribute. Each such pair would have constant dimension, with room for both a normal
space and a semi-functional space. The proof would proceed by first expanding the ciphertext
attributes all into their respective semi-functional spaces, and then expanding the secret keys
one by one. We would argue that the coefficients of the semi-functional basis vectors in each key
appear to share a truly random vector, even when one is constructed to be nominal, meaning
that it actually shares zero. This would follow from the observation that for attributes which
the ciphertext does not contain, the corresponding bases vectors of the semi-functional space
on the ciphertext side are hidden, and therefore a hidden change of basis matrix makes the
corresponding coefficients in the associated semi-functional space of the key appear random.
Since the attacker cannot ask for a key capable of decrypting the challenge ciphertext, this
hides enough shares so that the shared value in the semi-functional spaces appears random.
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A Standard Definitions for IBE and HIBE

A.1 Identity-Based Encryption

An identity-based encryption scheme consists of four algorithms: Setup, Encrypt, KeyGen, and
Decrypt.

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and outputs
the public parameters PP and the master secret key MSK.

KeyGen(MSK, ID) → SKID The key generation algorithm takes in the master secret key
and an identity ID and produces a secret key SKID for that identity.

Encrypt(PP,M, ID) → CT The encryption algorithm takes in the public parameters PP, a
message M , and an identity ID, and outputs a ciphertext CT encrypted under that identity.

Decrypt(CT, SKID) → M The decryption algorithm takes in a ciphertext CT and a secret
key SKID and outputs the message M when the CT is encrypted under the same ID.

A.1.1 Security Definition

Security is defined by the following game, played by a challenger and an attacker.

Setup The challenger runs the Setup algorithm to generate PP and MSK. It gives PP to the
attacker.

Phase 1 The attacker requests keys for identities ID, and is provided with corresponding
secret keys SKID, which the challenger generates by running the key generation algorithm.

Challenge The attacker gives the challenger two messagesM0 andM1 and a challenge identity
ID∗. This identity must not have been queried in Phase 1. The challenger sets b ∈ {0, 1}
randomly, and encrypts Mb under ID∗ by running the encryption algorithm. It sends the
ciphertext to the attacker.
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Phase 2 This is the same as Phase 1, with the added restriction a secret key for ID∗ cannot
be requested.

Guess The attacker must output a guess b′ for b.
The advantage of an attacker A is defined to be Pr[b′ = b]− 1

2 .

Definition 13. An identity-based encryption scheme is secure if all polynomial time attackers
achieve at most a negligible advantage in the above security game.

This is the full, IND-CPA definition of security. The weaker notion of selective security
is defined similarly, except that the attacker must declare ID∗ at the beginning of the game,
before seeing PP.

A.2 Hierarchical Identity-Based Encryption

A hierarchical identity-based encryption scheme consists of five algorithms: Setup, Encrypt,
KeyGen, Decrypt, and Delegate.

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and outputs
the public parameters PP and the master secret key MSK.

KenGen(MSK, (ID1, . . . , IDj)) → SK The key generation algorithm takes in the master
secret key and an identity vector (ID1, . . . , IDj) and outputs a private key SK for that identity
vector.

Delegate(PP, SK, IDj+1)→ SK′ The delegation algorithm takes in a secret key for the iden-
tity vector (ID1, . . . , IDj) and an identity component IDj+1 and outputs a secret key SK′ for
the identity vector (ID1, . . . , IDj+1).

Encrypt(PP,M, (ID1, . . . , IDj)) → CT The encryption algorithm takes in the public pa-
rameters PP, a message M , and an identity vector (ID1, . . . , IDj) and outputs a ciphertext
CT.

Decrypt(CT, SK)→M The decryption algorithm takes in a ciphertext CT and a secret key
SK and outputs the message M , if secret key is for an identity vector which is a prefix of the
ciphertext identity vector.

We could alternatively only require the decryption algorithm to work when the identity
vector for the ciphertext matches the secret key exactly. In this case, someone who had a secret
key for a prefix of this identity vector could delegate to themselves the required secret key and
still decrypt.

A.2.1 Security definition

We give the complete form of the security definition [37] which keeps track of how keys are
generated and delegated. Security is defined by the following game, played by a challenger and
an attacker.

Setup The challenger runs the Setup algorithm to generate PP and MSK. It gives PP to the
attacker. We let S denote the set of private keys that the challenger has created but not yet
given to the attacker. Initially, S = ∅.
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Phase 1 The attacker makes Create, Delegate, and Reveal key queries. To make a Create
query, the attacker specifies an identity vector. In response, the challenger creates a key for this
vector by calling the key generation algorithm, and places this key in the set S. It only gives
the attacker a reference to this key, not the key itself. To make a Delegate query, the attacker
specifies a key in the set S for identity vector (ID1, . . . , IDj) and an identity component IDj+1.
In response, the challenger makes a key for this new identity vector (ID1, . . . , IDj+1) by running
the delegation algorithm. It adds this delegated key to the set S and again gives the attacker
only a reference to it, not the actual key. To make a Reveal query, the attacker specifies an
element of the set S. The challenger gives this key to the attacker and removes it from the set
S. We note that the attacker need no longer make any delegation queries for this key because
it can run the delegation algorithm on the revealed key for itself.

Challenge The adversary gives the challenger two messages M0 and M1 and a challenge
identity vector (ID∗

1, . . . , ID
∗
j∗). This identity vector must satisfy the property that no revealed

identity in Phase 1 was a prefix of it. The challenger sets b ∈ {0, 1} randomly, and encrypts Mb

under (ID∗
1, . . . , ID

∗
j∗). It sends the ciphertext to the attacker.

Phase 2 This is the same as Phase 1, with the added restriction that any revealed identity
vector must not be a prefix of (ID∗

1, . . . , ID
∗
j∗).

Guess The attacker must output a guess b′ for b.
The advantage of an attacker A is defined to be Pr[b′ = b]− 1

2 .

Definition 14. A Hierarchical Identity-Based Encryption scheme is secure if all polynomial
time attackers achieve at most a negligible advantage in the above security game.

We note that for schemes where a delegated key is identically distributed to a key produced
by a fresh call to the key generation algorithm, one can equivalently use a simplified game,
where there are no Create or Delegate queries and instead there are only key requests, which
are fulfilled by calling the key generation algorithm and providing the attacker with the resulting
key. The constructions we consider in this paper have this feature, and so we use the simplified
version of the security game.

B Unbounded HIBE

The main idea of the Lewko-Waters unbounded HIBE construction is to tie together separate
IBE instances for each level, where these instances share the same public parameters but each
have their own random exponents. The instances are tied together by a secret sharing of the
master secret key exponent that takes place across the components of the identity vector for
each secret key. This approach allows one to form keys and ciphertexts for identity vectors of
arbitrary depth from public parameters consisting of a constant number of group elements.

A nested dual system encryption approach is employed to prove security. In addition to
using semi-functional keys and ciphertexts, [29] also introduces ephemeral semi-functional keys
and ciphertexts. These additional objects are used in the proof to extend the dual system
encryption methodology to cope with the small size of the public parameters. As for the LW IBE
scheme, the information-theoretic part of the proof is accomplished via pairwise independence:
because the public parameters are in the subgroup Gp1 , the values of their exponents modulo the
other primes remain hidden. This entropy that remains (conditioned on the public parameters)
can be used to argue that the attacker cannot distinguish a nominally semi-functional key
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and ciphertext IBE pair from a regular semi-functional key and ciphertext IBE pair when the
identities are unequal. Extending this argument to the unbounded HIBE setting presents a few
challenges. First, keys and ciphertexts now consist of potentially many IBE instances - and the
constant size of the public parameters only enables us to hide nominality for one instance at a
time. Second, even when a key cannot decrypt, some of the components of its identity vector
may appear also as components in the ciphertext identity vector.

In [29], these problems are addressed by employing a nested hybrid strategy and an encoding
for identity vectors. The encoding ensures that if an identity vector (ID1, . . . , IDj) is not a
prefix of another identity vector (ID∗

1, . . . , ID
∗
j∗), then IDj does not appear anywhere in the

set {ID∗
1, . . . , ID

∗
j∗}. All of the semi-functional and ephemeral semi-functional terms for keys

will appear in terms corresponding to this last IDj only. For the ciphertext, these terms will
appear everywhere.

The nested hybrid strategy is used to isolate changes in behavior between the keys and
ciphertext to occur for one IBE instance at a time. The hybrid proceeds as follows. One should
imagine that there are three separate orthogonal spaces: the normal space, the semi-functional
space, and the ephemeral semi-functional space. First the ciphertext changes from being normal
to semi-functional. More precisely, the ciphertext consists of many IBE instances, and all of
these expand into the semi-functional space at once. Next, the first key becomes ephemeral
semi-functional. This means that the part of the key corresponding to the IBE instance for
the last coordinate of its identity vector expands into the ephemeral semi-functional space.
Since this is orthogonal to the regular semi-functional space present in the ciphertext terms,
decryption capability is not yet affected. Now, the IBE instances in the ciphertext will also
expand into the ephemeral semi-functional space, one by one. Each time, the last part of the
key and the changing part of the ciphertext will form a nominal pair in the ephemeral space
- in other words, if the ID components were equal, these terms in the ephemeral space would
still cancel out. However, the ID components are guaranteed to be unequal by our encoding,
and so these terms will appear well-distributed in the ephemeral space in the attacker’s view.
At this point, the key appears unable to decrypt the ciphertext. Now, the last part of the key
expands into the regular semi-functional space, and drops out of the ephemeral semi-functional
space. We then remove the ephemeral semi-functional space from the ciphertext and repeat this
process for the next key. By the end, we have a semi-functional ciphertext and semi-functional
keys incapable of decrypting - at this point, security is easy to prove directly. It is crucial to
note that throughout this hybrid process, there is at most one key at a time that has terms
in the ephemeral space. This is what allows one to employ the information-theoretic argument
that hides nominality for only key and one piece of the ciphertext at a time. For more discussion
of this, see [29].

In [29], a scheme is presented in bilinear groups of composite order N = p1p2p3, a product
of three distinct primes. We present here a simpler version of the scheme using group order
N = p1p2p3p4p5, a product of five distinct primes. The subgroup Gp1 is where the main scheme
takes place, while Gp4 serves as the semi-functional space and Gp5 serves as the ephemeral
semi-functional space. Gp2 is used to additionally randomize ciphertexts, while Gp3 is used
to additionally randomize keys. These extra randomizing subspaces are used to enable us to
make all of the other keys and ciphertext pieces which are not changing during a particular
step of our hybrid. These will not be needed in the prime order version, since the asymmetry
of the subspace assumption replaces this. Recall, when one is changing from a 2-dimensional
subspace in B∗ to a 3-dimensional subspace, one can actually be given a complete basis of B∗ is
the exponent, it is only a vector of B that one is missing. As for the IBE scheme, this property
makes simulating the extra randomizing subgroups unnecessary.
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B.1 A Simplified Composite Order Construction

We assume that identity vectors have components in ZN , and are encoded so that if an identity
vector (ID1, . . . , IDj) is not a prefix of another identity vector (ID′

1, . . . , ID
′
j′), then IDj does

not appear in the set {ID′
1, . . . , ID

′
j′}. We also assume that messages are elements of GT .

Setup(λ)→ PP,MSK The setup algorithm chooses a bilinear groupG of orderN = p1p2p3p4p5
(where p1, p2, p3, p4, and p5 are distinct primes). We let Gpi denote the subgroup of order pi
in G. It then chooses u1, g1, h1, v1 ∈ Gp1 , g2 ∈ Gp2 , and α ∈ ZN . The public parameters are
published as:

PP := {N, u1, g1, h1, v1, g2, e(g1, g1)α}.

The master secret key consists of α and a generator of Gp3 .

Encrypt(M,PP, (ID1, . . . , IDj))→ CT The encryption algorithm chooses s ∈ ZN randomly
and chooses a random ti ∈ ZN for each i from 1 to j. It also chooses random elements
Ri, R

′
i, R

′′
i ∈ Gp2 for each i. It creates the ciphertext as:

C0 =Me(g1, g1)
αs, C1,i = gs1v

ti
1 Ri, C2,i = gti1 R

′
i, C3,i = (uIDi

1 h1)
tiR′′

i ∀i.

KeyGen((ID1, . . . , IDj),MSK)→ SKID The key generation algorithm chooses random val-

ues y1, . . . , yj ∈ ZN , subject to the constraint that
∑j

i=1 yi = α. For each i from 1 to j, it also
chooses a random value ri ∈ ZN and random elements Wi,W

′
i ,W

′′
i ∈ Gp3 . It sets the key to be:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i.

Delegate(SKID,PP, IDj+1)→ SKID|IDj+1
Given a key {K1,i,K2,i,K3,i} for (ID1, . . . , IDj),

the delegation algorithm creates a key for (ID1, . . . , IDj+1) as follows. It chooses random values

y′i subject to the constraint that
∑j+1

i=1 y
′
i = 0, random values r′i ∈ ZN , and random elements

Ui, U
′
i , U

′′
i ∈ Gp3 . It creates the new key as:

K ′
1,i = K1,ig

y′i
1 Ui, K

′
2,i = K2,iv

y′i
1 (uIDi

1 h1)
r′iU ′

i , K
′
3,i = K3,ig

r′i
1 U

′′
i , ∀i ∈ [j + 1],

where we define K1,j+1,K2,j+1,K3,j+1 as the identity element. We note that the new key is
fully re-randomized.

Decryption(CT, SKID) → M If the identity vector (ID1, . . . , IDj) of the secret key is a
prefix of the identity vector of the ciphertext, the decryption algorithm computes the blinding
factor as:

B :=

j∏
i=1

e(C1,i,K1,i)e(C3,i,K3,i)/e(C2,i,K2,i).

The message is then computed as:

M = C0/B.
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Correctness When the identity vector (ID1, . . . , IDj) corresponding to the secret key is a
prefix of the identity vector corresponding to the ciphertext, then

B =

j∏
i=1

e(C1,i,K1,i)e(C3,i,K3,i)/e(C2,i,K2,i)

=

j∏
i=1

e(g1, g1)
syie(g1, v1)

yitie(g1, u1)
tiIDirie(g1, h1)

tiri/
(
e(g1, v1)

yitie(g1, u1)
tiIDirie(g1, h1)

tiri
)

=

j∏
i=1

e(g1, g1)
syi = e(g1, g1)

αs.

B.2 Proof of Security from Variants of the Subgroup Decision Assumption

Our proof of security will rely on the following assumptions. Except for Assumption 4, the rest
are instances of the general subgroup decision assumption discussed in Section 2.1. All of these
assumptions hold in the generic group model assuming that it is hard to find a non-trivial factor
of the group order N . This can be easily verified using the techniques in [24]. We will also use
this additional assumption about the hardness of factoring N explicitly in our proof.

Definition 15. Assumption 1. Given a group generator G, we define the following distribution:

G := (N = p1 · · · p5, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , g4

R←− Gp4 , T0
R←− Gp1 , T1

R←− Gp1p5
D := (G, g1, . . . , g4).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,T0) = 1]− P [A(D,T1) = 1]|

is negligible in the security parameter λ.

Definition 16. Assumption 2. Given a group generator G, we define the following distribution:

G := (N = p1 · · · p5, G,GT , e)
R←− G,

g1, Y1
R←− Gp1 , g2, X2

R←− Gp2 , g3
R←− Gp3 , g4

R←− Gp4 , X5, Y5
R←− Gp5 , T0

R←− Gp1p2 , T1
R←− Gp1p2p5

D := (G, g1, . . . , g4, X2X5, Y1Y5).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,T0) = 1]− P [A(D,T1) = 1]|

is negligible in the security parameter λ.

Definition 17. Assumption 3. Given a group generator G, we define the following distribution:

G := (N = p1 · · · p5, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3, Y3
R←− Gp3 , X4, Y4

R←− Gp4 , X5
R←− Gp5 , T0

R←− Gp3p5 , T1
R←− Gp3p4

D := (G, g1, . . . , g3, X4X5, Y3Y4).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,T0) = 1]− P [A(D,T1) = 1]|

is negligible in the security parameter λ.
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Definition 18. Assumption 4. Given a group generator G, we define the following distribution:

G := (N = p1 · · · p5, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , g4, X4, Y4

R←− Gp4 , a, b, c
R←− ZN , T0 := e(g1, g1)

abc, T1
R←− GT

D := (G, g1, . . . , g4, ga1 , gb1, gc1X4, g
ab
1 Y4).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,T0) = 1]− P [A(D,T1) = 1]|

is negligible in the security parameter λ.

We now prove:

Theorem 19. Under Assumptions 1 - 4 above and the assumption that it is hard to find a
non-trivial factor of N , our composite order unbounded HIBE construction is fully secure.

We first define the semi-functional and ephemeral semi-functional objects that will be used
in our proof. We define these objects by providing algorithms which generate them, however
we stress that these algorithms are used for definitional purposes, and are not part of the real
system. In particular, it is not necesssary for these algorithms to run efficiently when given only
the public parameters or MSK, etc. The subgroup Gp4 will play the role of the semi-functional
space, while the subgroup Gp5 will play the role of the ephemeral semi-functional space.

KeyGenSF The semi-functional key generation algorithm first produces a normal key,
{K ′

1,i,K
′
2,i,K

′
3,i ∀i = 1, . . . , j}, for an identity vector (ID1, . . . , IDj) as in the normal key

generation algorithm. It then chooses random elements R4,W4 ∈ Gp4 and defines the semi-
functional key as: K1,i = K ′

1,i,K2,i = K ′
2,i,K3,i = K ′

3,i for i from 1 to j− 1, K1,j = K ′
1,j ,K2,j =

K ′
2,jR4, and K3,j = K ′

3,jW4. In other words, a semi-functional key is distributed like a normal
key, except that there are additional random elements of Gp4 attached to K2,j and K3,j .

EncryptSF The semi-functional encryption algorithm first produces a normal ciphertext,
{C0, C

′
1,i, C

′
2,i, C

′
3,i ∀i = 1, . . . , j}, encrypted to an identity vector (ID1, . . . , IDj) as in the

normal encryption algorithm. It then chooses random elements Ri4,W
i
4, Z

i
4 ∈ Gp4 for each i

from 1 to j. It defines the semi-functional ciphertext as: C0, C1,i = C ′
1,iR

i
4, C2,i = C ′

2,iW
i
4, C3,i =

C ′
3,iZ

i
4 for all i from 1 to j. In other words, a semi-functional ciphertext is distributed like a

normal ciphertext, except that there are additional random elements of Gp4 attached to all
terms except C0.

KeyGenESF The ephemeral semi-functional key generation algorithm first produces a nor-
mal key, {K ′

1,i,K
′
2,i,K

′
3,i ∀i = 1, . . . , j}, for an identity vector (ID1, . . . , IDj) as in the nor-

mal key generation algorithm. It then chooses random elements R5,W5 ∈ Gp5 and defines
the semi-functional key as: K1,i = K ′

1,i,K2,i = K ′
2,i,K3,i = K ′

3,i for i from 1 to j − 1,
K1,j = K ′

1,j ,K2,j = K ′
2,jR5, and K3,j = K ′

3,jW5. In other words, an ephemeral semi-functional
key is distributed like a normal key, except that there are additional random elements of Gp5
attached to K2,j and K3,j .
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EncryptESF(ℓ) The ephemeral semi-functional encryption algorithm takes in an additional
parameter ℓ, which ranges from 0 to j, where j is the length of the identity vector being
encrypted under. To produce an ephemeral semi-functional ciphertext of type ℓ, the algorithm
first produces a normal ciphertext, {C0, C

′
1,i, C

′
2,i, C

′
3,i ∀i = 1, . . . , j}, encrypted to an identity

vector (ID1, . . . , IDj) as in the normal encryption algorithm. It then chooses random elements
Ri4,W

i
4, Z

i
4 ∈ Gp4 for each i from 1 to j and random elements Ri5,W

i
5, Z

i
5 ∈ Gp5 for each i from 1

to ℓ. It defines the semi-functional ciphertext as: C0, C1,i = C ′
1,iR

i
4R

i
5, C2,i = C ′

2,iW
i
4W

i
5, C3,i =

C ′
3,iZ

i
4Z

i
5 for all i from 1 to ℓ, and C1,i = C ′

1,iR
i
4, C2,i = C ′

2,iW
i
4, C3,i = C ′

3,iZ
i
4 for i from ℓ + 1

to j. In other words, an epehemeral semi-functional ciphertext of type ℓ is distributed like a
semi-functional ciphertext, except that there are additional random elements of Gp5 attached
to terms C1,i, C2,i, C3,i for i from 1 to ℓ.

Hybrid Organization We employ a hybrid argument over a sequence of games. GameReal
is the real security game. Game0 is like the real security game, except the ciphertext is now
semi-functional. In GameEk,ℓ

, the first k− 1 keys are semi-functional, key k is ephemeral semi-
functional, the remaining keys are normal, and the ciphertext is ephemeral semi-functional of
type ℓ. In GamePk,ℓ

, the first k keys are semi-functional, the remaining keys are normal, and the
ciphertext is ephemeral semi-functional of type ℓ. In GameFinal, the keys are all semi-functional
and the ciphertext is a semi-functional encryption of a random message.

The sequence of games proceeds as follows. We begin GameReal, then move to Game0. Next,
we move through the games GameE1,ℓ

as ℓ goes from 0 to the depth of the ciphertext. We then
proceed backwards through the games GameP1,ℓ

as ℓ decreases from the ciphertext depth to
0. We then go to GameE2,ℓ

, and do the loop again. When we arrive at GamePq,0 , where q is
the number of key queries, all keys are semi-functional, and the ciphertext is semi-functional.
We then conclude with GameFinal. We prove these games are indistinguishable in the following
lemmas.

Lemma 20. Suppose there exists a PPT attacker A such that GameRealAdvA−Game0AdvA = ϵ
for ϵ non-negligible. Then there exits a PPT algorithm B with non-negligible advantage in
breaking Assumption 1.

Proof. We invoke Assumption 1 with some of the roles of the primes interchanged. We assume
our algorithm B is given N, gp1 , gp2 , gp3 , gp5 and T , where T is either a random element of Gp2 or
a random element of Gp2p4 . B chooses a random α ∈ ZN , and random elements u1, v1, h1 ∈ Gp1 .
It sets g1 = gp1 and g2 = gp2 . It then gives the public parameters {N, u1, g1, h1, v1, g2, e(g1, g1)α}
to the attacker A. We note that B can form normal keys in response to A’s key queries by using
the key generation algorithm, since B knows the master secret key. At some point, A requests a
ciphertext for an identity (ID∗

1, . . . , ID
∗
j∗) and messagesM0,M1. B chooses β ∈ {0, 1} randomly

and also chooses random values s, ti, ai, bi, ci ∈ ZN for each i from 1 to j∗. It forms the challenge
ciphertext as:

C0 =Mβe(g1, g1)
αs, C1,i = gs1v

ti
1 T

ai , C2,i = gti1 T
bi , C3,i = (u

ID∗
i

1 h1)
tiT ci ∀i.

We note that the values of ai, bi, ci modulo p2 and modulo p4 are uncorrelated. So if T ∈ Gp2 ,
this is a properly distributed normal ciphertext. If T ∈ Gp2p4 , this is a properly distributed
semi-functional ciphertext. Hence, B has either simulated GameReal or Game0, depending on
the value of T , and so it can use A’s output to break Assumption 1.

Lemma 21. Suppose there exists a PPT attacker A such that GamePk−1,0
AdvA−GameEk,0

AdvA =
ϵ for some non-negligible ϵ. Then we can build a PPT algorithm B with non-negligible advantage
in breaking Assumption 1.
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Proof. Our algorithm B is given N, gp1 , gp2 , gp3 , gp4 , T . It chooses random values α, yu, yv, yh ∈
ZN and sets g1 = gp1 , g2 = gp2 , u1 = gyu1 , v1 = gyv1 , h1 = gyh1 . It gives the public parameters
{N, e(g1, g1)α, g1, g2, u1, v1, h1} to A. We note that B can make normal keys because it knows
the master secret key. To make the first i− 1 semi-functional keys, B proceeds as follows. For
each key request (ID1, . . . , IDj), B chooses random values y1, . . . , yj ∈ ZN such that their sum
is α, random values ri ∈ ZN , random elements Wi,W

′
i ,W

′′
i ∈ Gp3 for each i from 1 to j, and

random elements Z ′, Z ′′ ∈ Gp4 (note that B knows generators of Gp3 and Gp4). It sets:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 Wj , K2,j = v

yj
1 (u

IDj

1 h1)
rjW ′

jZ
′, K3,j = g

rj
1 W

′′
j Z

′′.

To make the kth requested key for some (ID1, . . . , IDj), B chooses random values y1, . . . , yj ∈
ZN such that their sum is α, random values ri ∈ ZN for i < j, and random elements
Wi,W

′
i ,W

′′
i ∈ Gp3 . It forms the key as:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 Wj , K2,j = v

yj
1 T

yuIDj+yhW ′
j , K3,j = TW ′′

j .

We note that if T ∈ Gp1 , this is a properly distributed normal key, with rj equal to the discrete
log of T base g1. If T ∈ Gp1p5 , this is a properly distributed ephemeral semi-functional key,
since the value of yuIDj + yh is randomly distributed modulo p5.

At some point, A requests a ciphertext for an identity (ID∗
1, . . . , ID

∗
j∗) and messagesM0,M1.

B chooses β ∈ {0, 1} randomly, along with random values s, ti ∈ ZN , random elementsRi, R
′
i, R

′′
i ∈

Gp2 , and random elements Zi, Z
′
i, Z

′′
i ∈ Gp4 for all i from to j∗ (note that B knows generators

of Gp2 and Gp4). It then forms the ciphertext as:

C0 =Mβe(g1, g1)
αs, C1,i = gs1v

ti
1 RiZi, C2,i = gti1 R

′
iZ

′
i, C3,i = (u

ID∗
i

1 h1)
tiR′′

i Z
′′
i ∀i.

If T ∈ Gp1 , B has properly simulated GamePk−1,0. If T ∈ Gp1p5 , then B has properly
simulated GameEk,0

. Hence, B can use the output of A to break Assumption 1.

Lemma 22. Suppose there exists a PPT attacker A such that GameEk,ℓ
AdvA−GameEk,ℓ+1

AdvA =
ϵ for some non-negligible ϵ. Then we can build a PPT algorithm B with non-negligible advantage
in breaking Assumption 2.

Proof. Our algorithm B is givenN, gp1 , gp2 , gp3 , gp4 , X2X5, Y1Y5, T . It chooses random exponents
α, yu, yv, yh ∈ ZN , and sets g1 = gp1 , g2 = gp2 , u1 = gyu1 , v1 = gyv1 , and h1 = gyh1 . It gives the
public parameters {N, g1, g2, u1, v1, h1, e(g1, g1)α} to A.
B responds to the first k − 1 key requests by making semi-functional keys, which it can

easily make because it knows the master secret key and a generator of Gp4 . When the attacker
requests the kth key for (ID1, . . . , IDj), B makes an ephemeral semi-functional key as follows.

It chooses random values yi ∈ ZN such that
∑j

i=1 yi = α, random values ri ∈ ZN for i from
1 to j − 1, a random r′j ∈ ZN , and random elements Wi,W

′
i ,W

′′
i ∈ Gp3 for i from 1 to j. It

creates the key as:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 Wj , K2,j = v

yj
1 (Y1Y5)

yuIDj+yhW ′
j , K3,j = (Y1Y5)W

′′
j .

We note that this is a properly distributed ephemeral semi-functional key, with rj equal to the
discrete log of Y1 base g1.
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At some point, A requests a ciphertext for an identity (ID∗
1, . . . , ID

∗
j∗) and messagesM0,M1.

B chooses β ∈ {0, 1} randomly, along with random values s, ti ∈ ZN for i ≤ j∗, i ̸= ℓ + 1, a
random value t′ℓ+1 ∈ ZN , random values ai, bi, ci ∈ ZN for i ≤ ℓ, random elements Ri, R

′
i, R

′′
i ∈

Gp2 for ℓ+ 1 < i ≤ j∗, and random elements Zi, Z
′
i, Z

′′
i ∈ Gp4 for i ≤ j∗. B forms the challenge

ciphertext as:

C0 =Mβe(g1, g1)
αs, C1,i = gs1v

ti
1 RiZi(X2X5)

ai , C2,i = gti1 Z
′
i(X2X5)

bi , C3,i = (u
ID∗

i
1 h1)

ti(X2X5)
ci ∀i ≤ ℓ,

C1,ℓ+1 = gs1T
t′ℓ+1yvZℓ+1, C2,ℓ+1 = T t

′
ℓ+1Z ′

ℓ+1, C3,ℓ+1 = T t
′
ℓ+1(yuID

∗
ℓ+1+yh)Z ′′

ℓ+1,

C1,i = gs1v
ti
1 RiZi, C2,i = gti1 R

′
iZ

′
i, C3,i = (u

ID∗
i

1 h1)
tiR′′

i Z
′′
i ∀i > ℓ+ 1.

We note that tℓ+1 is equal to t′ℓ+1 multiplied by the log base g1 of the Gp1 part of T .
We assume our identities have the property that (ID1, . . . , IDj) being unable to decrypt

a ciphertext for (ID∗
1, . . . , ID

∗
j∗) implies that IDj cannot be equal to any of ID∗

1, . . . , ID
∗
j∗ .

In this case, the values yuID
∗
ℓ+1 + yh and yuIDj + yh are randomly distribute modulo p5

in the attacker’s view, since yuID + yh is a pairwise independent function of ID. Here, we
are using the assumption that it is hard to find a non-trivial factor of N , which means that
the attacker cannot produce (with non-negligible probability) ID components in ZN which are
unequal modulo N but are equal modulo p5. Thus, if T ∈ Gp1p2 , the simulator has made a
properly distributed semi-functional ciphertext of type ℓ. If T ∈ Gp1p2p5 , the simulator has
made a properly distributed semi-functional ciphertext of type ℓ + 1. Hence, B can use the
output of A to break Assumption 2.

Lemma 23. Suppose there exists a PPT attacker A such that GameEk,j∗AdvA−GamePk,j∗AdvA =
ϵ, where j∗ is the depth of challenge ciphertext and ϵ is non-negligible. Then we can build a
PPT algorithm B with non-negligible advantage in breaking Assumption 3.

Proof. The algorithm B is givenN, gp1 , gp2 , gp3 , X4X5, Y3Y4, T . It chooses random values α, yu, yv, yh ∈
ZN and sets g1 = gp1 , g2 = gp2 , u1 = gyu1 , v1 = gyv1 , h1 = gyh1 . It gives the public parameters
{N, g1, g2, u1, v1, h1, e(g1, g1)α} to A.

We suppose A requests a key for (ID1, . . . , IDj) as one of the first k − 1 key requests.
Then B creates a semi-functional key as follows. B chooses random values yi ∈ ZN such
that

∑j
i=1 yi = α, random values ri ∈ ZN , random values a, b ∈ ZN , and random elements

Wi,W
′
i ,W

′′
i ∈ Gp3 for i from 1 to j. It creates the key as:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 Wj , K2,j = v

yj
1 (u

IDj

1 h1)
rjW ′

j(Y3Y4)
a, K3,j = g

rj
1 W

′′
j (Y3Y4)

b.

We note that this a properly distributed semi-functional key. For key requests after the kth key
request, the simulator can make normal keys because it knows the master secret key.

We suppose A requests the kth key for (ID1, . . . , IDj). Then B creates the key as follows.

B chooses random values yi ∈ ZN such that
∑j

i=1 yi = α, random values ri ∈ ZN , a random
value a ∈ ZN , and random elements Wi,W

′
i ,W

′′
i ∈ Gp3 for all i from 1 to j. It sets:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 Wj , K2,j = v

yj
1 (u

IDj

1 h1)
rjW ′

jT, K3,j = g
rj
1 W

′′
j T

a.

We note that if T ∈ Gp3p5 , this is a properly distributed ephemeral semi-functional key. If
T ∈ Gp3p4 , this is a properly distributed semi-functional key.
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At some point, A requests a ciphertext for an identity (ID∗
1, . . . , ID

∗
j∗) and messagesM0,M1.

B chooses β ∈ {0, 1} randomly, along with random values s, ti, ai, bi, ci ∈ ZN and random
elements Ri, R

′
i, R

′′
i ∈ Gp2 for i from 1 to j∗. It forms the challenge ciphertext as:

C0 =Mβe(g1, g1)
αs, C1,i = gs1v

ti
1 Ri(X4X5)

ai , C2,i = gti1 R
′
i(X4X5)

bi , C3,i = (u
ID∗

i
1 h1)

tiR′′
i (X4X5)

ci .

We note that this is a properly distributed semi-functional ciphertext of type j∗.
If T ∈ Gp3p5 , then B has properly simulated GameEk,j∗ . If T ∈ Gp3p4 , then B has properly

simulated GamePk,j∗ . Hence, B can use the output of A to break Assumption 3.

Lemma 24. Suppose there exists a PPT attacker A such that GamePk,ℓ
AdvA−GamePk,ℓ−1

AdvA =
ϵ for some non-negligible ϵ. Then we can build a PPT algorithm B with non-negligible advantage
in breaking Assumption 2.

Proof. The algorithm B is given N, gp1 , gp2 , gp3 , gp4 , X2X5, Y1Y5, T . It chooses random values
α, yu, yv, yh ∈ ZN and sets g1 = gp1 , g2 = gp2 , u1 = gyu1 , v1 = gyv1 , h1 = gyh1 . It gives the public
parameters {N, g1, g2, u1, v1, h1, e(g1, g1)α} to A.

We note that the simulator can easily make both normal and semi-functional keys since it
knows the master secret key and a generator of Gp4 . This allows it to respond to all key queries
from A.

At some point, A requests a ciphertext for an identity (ID∗
1, . . . , ID

∗
j∗) and messagesM0,M1.

B chooses β ∈ {0, 1} randomly, along with random values s, ti ∈ ZN for i ≤ j∗, i ̸= ℓ, a random
value t′ℓ ∈ ZN , random values ai, bi, ci ∈ ZN for i < ℓ, random elements Ri, R

′
i, R

′′
i ∈ Gp2 for

i ≤ j∗, i ̸= ℓ, and random elements Zi, Z
′
i, Z

′′
i ∈ Gp4 for i ≤ j∗. B forms the challenge ciphertext

as:

C0 =Mβe(g1, g1)
αs, C1,i = gs1v

ti
1 RiZi(X2X5)

ai , C2,i = gti1 Z
′
i(X2X5)

bi , C3,i = (u
ID∗

i
1 h1)

ti(X2X5)
ci ∀i < ℓ,

C1,ℓ = gs1T
t′ℓyvZℓ, C2,ℓ = T t

′
ℓZ ′

ℓ, C3,ℓ = T t
′
ℓ(yuID

∗
ℓ+yh)Z ′′

ℓ ,

C1,i = gs1v
ti
1 RiZi, C2,i = gti1 R

′
iZ

′
i, C3,i = (u

ID∗
i

1 h1)
tiR′′

i Z
′′
i ∀i > ℓ.

We note that tℓ is equal to t
′
ℓ multiplied by the log base g1 of the Gp1 part of T .

If T ∈ Gp1p2 , the simulator has made a properly distributed ephemeral semi-functional
ciphertext of type ℓ − 1. If T ∈ Gp1p2p5 , the simulator has made a properly distributed semi-
functional ciphertext of type ℓ. Hence, B can use the output of A to break Assumption 2.

Lemma 25. Suppose there exists a PPT attacker A such that GamePq,0AdvA−GameFinalAdvA =
ϵ, where q is number of key queries and ϵ is non-negligible. Then we can build a PPT algorithm
B with non-negligible advantage in breaking Assumption 4.

Proof. The simulator B is given N, gp1 , gp2 , gp3 , gp4 , g
a
p1 , g

b
p1 , g

c
p1X4, g

ab
p1Y4, T . It chooses random

values yu, yh ∈ ZN and sets g1 = gp1 , g2 = gp2 , u1 = gyu1 , and h1 = gyh1 . It sets v1 =
gbp1 . It implicitly sets α = a by setting e(g1, g1)

α = e(g1, g
a
1). It gives the public parameters

{N, g1, g2, u1, v1, h1, e(g1, g1)α} to A.
To respond to a key request for (ID1, . . . , IDj), B chooses random values yi ∈ ZN such that∑j
i=1 yi = 0, random values ri ∈ ZN , random elements Wi,W

′
i ,W

′′
i ∈ Gp3 for all i from 1 to j,

and random elements Z4, Z
′
4 ∈ Gp4 . It creates the key as:

K1,i = gyi1 Wi, K2,i = vyi1 (uIDi
1 h1)

riW ′
i , K3,i = gri1 W

′′
i ∀i < j,

K1,j = g
yj
1 g

a
1Wj , K2,jv

yj
1 g

ab
1 Y4(u

IDj

1 h1)
rjW ′

jZ4, K3,j = g
rj
1 W

′′
j Z

′
4.
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We note that this is a properly distributed semi-functional key.
At some point, A requests a ciphertext for an identity (ID∗

1, . . . , ID
∗
j∗) and messagesM0,M1.

B chooses β ∈ {0, 1} randomly, as well as random values t′i ∈ ZN , random elements Ri, R
′
i, R

′′
i ∈

Gp2 , and random elements Ui, U
′
i , U

′′
i ∈ Gp4 for all i from 1 to j∗. It will implicitly set s = −bc

and ti = c+ t′i. It forms the ciphertext as:

C0 =MβT
−1, C1,i = (gb1)

t′iRiUi, C2,i = g
t′i
1 (g

c
1X4)R

′
iU

′
i , C3,i = (u

ID∗
i

1 h1)
t′i(gc1X4)

yuID∗
i +yhR′′

i U
′′
i .

If T = e(g1, g1)
abc, this is a properly distributed semi-functional encryption of Mβ. If T is

a random element of GT , this is a properly distributed semi-functional encryption of a random
message. Hence, B can use the output of A to break Assumption 4.

This completes the proof of Theorem 19.

B.3 The Prime Order Translation

To design our prime order translation of the composite order scheme above, we proceed very
similarly to our IBE translation. We do one thing differently - instead of attaching the α term
to a basis vector that also plays a separate role, we expand α to be a 2-dimensional entity and to
have its own separate space. This results in a scheme that may be slightly larger in dimension
than necessary, but it allows us to make the final stage of our proof more clear. As a result,
our normal space will be covered by the first 6 vectors of D,D∗, while the next 2 vectors serve
as the semi-functional space and the final two vectors serve as the ephemeral semi-functional
space (we work with a 10-dimensional space in total).

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and chooses a
bilinear group G of sufficiently large prime order p. We let e : G×G→ GT denote the bilinear

map. We set n = 10. The algorithm samples random dual orthonormal bases, (D,D∗)
R←−

Dual(Znp ). We let d⃗1, . . . , d⃗n denote the elements of D and d⃗∗1, . . . , d⃗
∗
n denote the elements of D∗.

It also chooses random exponents α1, α2, θ, σ, γ, ξ ∈ Zp. The public parameters are

PP := {G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6},

and the master secret key is

MSK := {G, p, α1, α2, g
d⃗∗1 , gd⃗

∗
2 , gγd⃗

∗
1 , gξd⃗

∗
2 , gθd⃗

∗
3 , gθd⃗

∗
4 , gσd⃗

∗
5 , gσd⃗

∗
6}.

KeyGen(MSK, (ID1, . . . , IDj))→ SKID The key generation algorithm chooses random val-
ues ri1, r

i
2 ∈ Zp for each i from 1 to j. It also chooses random values y1, . . . , yj ∈ Zp and

w1, . . . , wj ∈ Zp up to the constraints that y1 + y2 + · · ·+ yj = α1 and w1 +w2 + · · ·+wj = α2.
For each i from 1 to j, it computes:

Ki := gyid⃗
∗
1+wid⃗

∗
2+r

i
1IDiθd⃗

∗
3−ri1θd⃗∗4+ri2IDiσd⃗

∗
5−ri2σd⃗∗6 .

The secret key is formed as:

SKID := {gγd⃗∗1 , gξd⃗∗2 , gθd⃗∗3 , gθd⃗∗4 , gσd⃗∗5 , gσd⃗∗6 ,K1, . . . ,Kj}.
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Delegate(SKID, IDj+1)→ SKID|IDj+1
The delegation algorithm chooses random values ωi1, ω

i
2 ∈

Zp for each i from 1 to j+1. It also chooses random values y′1, . . . , y
′
j+1, w

′
1, . . . , w

′
j+1 ∈ Zp subject

to the constraint that y′1+· · · y′j+1 = 0 = w′
1+· · ·w′

j+1. Letting g
γd⃗∗1 , gξd⃗

∗
2 , gθd⃗

∗
3 , gθd⃗

∗
4 , gσd⃗

∗
5 , gσd⃗

∗
6 ,K1, . . . ,Kj

denote the elements of SKID, SKID|IDj+1
is formed as:

SKID|IDj+1
:= {gγd⃗∗1 , gξd⃗∗2 , gθd⃗∗3 , gθd⃗∗4 , gσd⃗∗5 , gσd⃗∗6 ,

K1 · gy
′
1γd⃗

∗
1+w

′
1ξd⃗

∗
2+ω

1
1ID1θd⃗∗3−ω1

1θd⃗
∗
4+ω

1
2ID1σd⃗∗5−ω1

2σd⃗
∗
6 ,

. . . ,Kj · gy
′
jγd⃗

∗
1+w

′
jξd⃗

∗
2+ω

j
1ID1θd⃗∗3−ω

j
1θd⃗

∗
4+ω

j
2ID1σd⃗∗5−ω

j
2σd⃗

∗
6 ,

gy
′
j+1γd⃗

∗
1+w

′
j+1ξd⃗

∗
2+ω

j+1
1 IDj+1θd⃗

∗
3−ω

j+1
1 θd⃗∗4+ω

j+1
2 IDj+1σd⃗

∗
5−ω

j+1
2 σd⃗∗6}.

We note that y1 + γy′1, . . . , yj + γy′j , γy
′
j+1 are randomly distributed up to the constraint that

their sum is α1, and similarly w1 + ξw′
1, . . . , wj + ξw′

j , ξw
′
j+1 are randomly distributed up to

the constraint that their sum is α2. Also, r
i
1 + ωi1 and ri2 + ωi2 are uniformly random for each i.

The delegation process therefore produces a secret key which is identically distributed to one
obtained from calling the key generation algorithm directly.

Encrypt(PP,M, (ID1, . . . , IDj)) → CT The encryption algorithm chooses random values
s1, s2 ∈ Zp, as well as random values ti1, t

i
2 for each i from 1 to j. It computes

C0 :=Me(g, g)α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2 ,

as well as

Ci := gs1d⃗1+s2d⃗2+t
i
1d⃗3+IDit

i
1d⃗4+t

i
2d⃗5+IDit

i
2d⃗6

for each i from 1 to j. The ciphertext is CT := {C0, C1, . . . , Cj}.

Decrypt(CT, SKID) → M When the identity vector (ID1, . . . , IDj) corresponding to the
secret key is a prefix of the identity vector corresponding to the ciphertext, the decryption
algorithm computes

B :=

j∏
i=1

en(Ci,Ki)

and computes the message as:

M = C0/B.

B.3.1 Correctness

To verify the correctness of our scheme, we observe that when the identity vector (ID1, . . . , IDj)
corresponding to the secret key is a prefix of the identity vector corresponding to the ciphertext:

j∏
i=1

en(Ci,Ki) =

j∏
i=1

e(g, g)(s1yi+s2wi+t
i
1r

i
1IDi−ti1ri1IDi+t

i
2r

i
2IDi−ti2ri2IDi)ψ

= e(g, g)(s1(y1+···+yj)+s2(w1+···+wj))ψ = e(g, g)(α1s1+α2s2)ψ.

Here, ψ denotes d⃗i · d⃗∗i , which is the same for all i.
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B.4 Semi-functional Algorithms

We formally define semi-functional and ephemeral semi-functional keys and ciphertexts to be
the distributions produced by the following algorithms.

KeyGenSF To generate a semi-functional key for (ID1, . . . , IDj), the semi-functional key
generation algorithm chooses random values z7, z8 ∈ Zp, random values ri1, r

i
2 ∈ Zp for each i

from 1 to j as well as random values y1, . . . , yj ∈ Zp such that y1 + · · · + yj = α1 and random
values w1, . . . , wj ∈ Zp such that w1 + · · ·+ wj = α2. It forms the secret key as:

Ki := gyid⃗
∗
1+wid⃗

∗
2+r

i
1IDiθd⃗

∗
3−ri1θd⃗∗4+ri2IDiσd⃗

∗
5−ri2σd⃗∗6

for each i from 1 to j − 1 and

Kj := gyj d⃗
∗
1+wj d⃗

∗
2+r

j
1IDjθd⃗

∗
3−r

j
1θd⃗

∗
4+r

j
2IDjσd⃗

∗
5−r

j
2σd⃗

∗
6+z7d⃗

∗
7+z8d⃗

∗
8

The other elements of the secret key (which are only used for delegation) are defined exactly
as in the normal key generation algorithm. In summary, a semi-functional key is distributed
like a normal key with additional random multiples of d⃗∗7 and d⃗∗8 added in the exponent of Kj .

EncryptSF To generate a semi-functional ciphertext for (ID1, . . . , IDj), the semi-functional
encryption algorithm chooses random values ti1, t

i
2, v

i
7, v

i
8 ∈ Zp for each i from 1 to j as well as

random values s1, s2 ∈ Zp. It forms the ciphertext as:

C0 :=Me(g, g)α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2 ,

Ci := gs1d⃗1+s2d⃗2+t
i
1d⃗3+IDit

i
1d⃗4+t

i
2d⃗5+IDit

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8

for all i from 1 to j. This is distributed like a normal ciphertext with additional random
multiples of d⃗7 and d⃗8 added in the exponents.

KeyGenESF To generate an ephemeral semi-functional key for (ID1, . . . , IDj), the ephemeral
semi-functional key generation algorithm chooses random values z9, z10 ∈ Zp, random val-
ues ri1, r

i
2 ∈ Zp for each i from 1 to j as well as random values y1, . . . , yj ∈ Zp such that

y1 + · · · + yj = α1 and random values w1, . . . , wj ∈ Zp such that w1 + · · · + wj = α2. It forms
the secret key as:

Ki := gyid⃗
∗
1+wid⃗

∗
2+r

i
1IDiθd⃗

∗
3−ri1θd⃗∗4+ri2IDiσd⃗

∗
5−ri2σd⃗∗6

for each i from 1 to j − 1 and

Kj := gyj d⃗
∗
1+wj d⃗

∗
2+r

j
1IDjθd⃗

∗
3−r

j
1θd⃗

∗
4+r

j
2IDjσd⃗

∗
5−r

j
2σd⃗

∗
6+z9d⃗

∗
9+z10d⃗

∗
10 .

The other elements of the secret key (which are only used for delegation) are defined exactly
as in the normal key generation algorithm. In summary, an ephemeral semi-functional key is
distributed like a normal key with additional random multiples of d⃗∗9 and d⃗∗10 added in the
exponent of Kj .
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EncryptESF(ℓ) To generate an ephemeral semi-functional ciphertext of type ℓ for (ID1, . . . , IDj),
the ephemeral semi-functional encryption algorithm chooses random values ti1, t

i
2, v

i
7, v

i
8, v

i
9, v

i
10 ∈

Zp for each i from 1 to ℓ, random values ti1, t
i
2, v

i
7, v

i
8 ∈ Zp for each i from ℓ+ 1 to j, as well as

random values s1, s2 ∈ Zp. It forms the ciphertext as:

C0 :=Me(g, g)α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2 ,

Ci := gs1d⃗1+s2d⃗2+t
i
1d⃗3+IDit

i
1d⃗4+t

i
2d⃗5+IDit

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8+v

i
9d⃗9+v

i
10d⃗10

for i from 1 to ℓ and

Ci := gs1d⃗1+s2d⃗2+t
i
1d⃗3+IDit

i
1d⃗4+t

i
2d⃗5+IDit

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8

for i from ℓ+ 1 and j.
This is distributed like a normal ciphertext with additional random multiples of d⃗7, d⃗8, d⃗9,

d⃗10 added in the exponents for C1, . . . , Cℓ and random multiples of d⃗7, d⃗8 added in the exponents
for Cℓ+1, . . . , Cj .

B.5 Security Proof

We now prove the following theorem:

Theorem 26. Under the decisional linear assumption, the HIBE scheme presented in Section
B.3 is fully secure.

We prove this using a hybrid argument over a sequence of games. This precisely follows the
structure of the security proof for the composite order system. GameReal is the real security
game. Game0 is like the real security game, except with a semi-functional ciphertext. In
GameEm,ℓ

, the first m − 1 keys are semi-functional, key m is ephemeral semi-functional, the
remaining keys are normal, and the ciphertext is semi-functional of type ℓ. In GamePm,ℓ

, the
first m keys are semi-functional, the remaining keys are normal, and the ciphertext is semi-
functional of type ℓ. In GameFinal, the ciphertext is an encryption of a random message. We
will describe the GameFinal more completely later.

The sequence of games proceeds as follows. We begin with GameReal, then move to Game0.
Next, we move through the games GameE1,ℓ

as ℓ goes from 0 to the depth of the ciphertext,
which we denote by j∗. We then proceed backwards through the games GameP1,ℓ

as ℓ decreases
from j∗ to 0. We then go to GameE2,ℓ

, and do the loop again. When we arrive at GamePq,0 ,
where q is the number of key queries, all keys are semi-functional, and the ciphertext is semi-
functional. We then conclude with GameFinal. We prove these games are indistinguishable in
the following lemmas.

Lemma 27. If there exists a PPT algorithm A such that AdvrealA −Adv0A is non-negligible, then
there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 2 and n = 10.

We will prove this lemma via a hybrid argument over the length of the identity vector for
the challenge ciphertext. We let j denote this length. For ℓ from 0 to j, we define Game0,ℓ to
be the same as GameReal, except that C1, . . . , Cℓ in the challenge ciphertext are distributed as
in a semi-functional ciphertext and Cℓ+1, . . . , Cj are distributed as in a normal ciphertext. In

other words, C1, . . . , Cℓ have random multiples of d⃗6, d⃗7 attached to them, while the rest of the
Ci’s do not. We note that Game0,0 = GameReal and Game0,j = Game0. Lemma 27 is then
implied by the following:
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Lemma 28. For each ℓ from 0 to j∗ − 1, if there exists a PPT algorithm A that achieves a
non-negligible difference in advantage between Game0,ℓ and Game0,ℓ+1, then there exists a PPT
algorithm B with non-negligible advantage against the subspace assumption, with k = 2 and
n = 10.

Proof. We suppose that such an A exists for some fixed ℓ. We create B as follows. B is given:

D =
(
gb⃗1 , . . . , gb⃗4 , gb⃗7 , . . . , gb⃗10 , gηb⃗

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , . . . , gb⃗

∗
10

)
,

along with T1, T2. It is B’s task to decide whether T1, T2 are distributed as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4

or as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 .

We define dual orthonormal bases F,F∗ by:

f⃗1 = b⃗∗9, f⃗2 = b⃗∗10 f⃗3 = η⃗b∗1, f⃗4 = η⃗b∗2, f⃗5 = βb⃗∗3, f⃗6 = βb⃗∗4, f⃗7 = b⃗∗5, f⃗8 = b⃗∗6, f⃗9 = b⃗∗7, f⃗10 = b⃗∗8,

f⃗∗1 = b⃗9, f⃗
∗
2 = b⃗10, f⃗

∗
3 = η−1⃗b1, f⃗

∗
4 = η−1⃗b2, f⃗

∗
5 = β−1⃗b3, f⃗

∗
6 = β−1⃗b4, f⃗

∗
7 = b⃗5, f⃗

∗
8 = b⃗6, f⃗

∗
9 = b⃗7, f⃗

∗
10 = b⃗8.

B chooses a random matrix A ∈ Z2×2
p . With all but negligible probability, A is invertible. B

implicitly sets D = FA and D∗ = F∗
A, where A is applied as a change of basis matrix to f⃗7 and f⃗8

(and (A−1)t is applied to f⃗∗7 , f⃗
∗
8 ). We note that D and D∗ are properly distributed, and reveal

no information about A.
B chooses random values α1, α2, γ, ξ, θ

′, σ′ ∈ Zp and implicitly sets θ = θ′η, σ = σ′β. We

note that B can then produce gd⃗1 , . . . , gd⃗10 as well as gd⃗
∗
1 , gd⃗

∗
2 , gγd⃗

∗
1 , gξd⃗

∗
2 , gθd⃗

∗
3 , gθd⃗

∗
4 , gσd⃗

∗
5 , gσd⃗

∗
6 .

Thus, B knows the public parameters as well as the master secret key. B gives PP to A, and
responds to A’s key requests by producing normal secret keys via the normal key generation
algorithm.

At some point, A specifies an identity vector (ID∗
1, . . . , ID

∗
j∗) and two messages M0,M1 for

the challenge ciphertext. B chooses a random b ∈ {0, 1} and encrypts Mb as follows. It chooses
a random s1, s2 ∈ Zp and computes

C0 =Mbe(g, g)
α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2 .

For i from to 1 to ℓ, it chooses random values ti1, t
i
2, v

i
7, v

i
8 ∈ Zp. It sets:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8 .

These ciphertext pieces are distributed as in a semi-functional ciphertext.
For ℓ+ 1, B implicitly sets tℓ+1

1 = τ1 and tℓ+1
2 = τ2. It forms Cℓ+1 as:

Cℓ+1 = gs1d⃗1+s2d⃗2T1(T2)
ID∗

ℓ+1 .

For each i from ℓ+ 2 to j∗, B chooses random values ti1, t
i
2 ∈ Zp and sets:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6 .

These ciphertext pieces are distributed as in a normal ciphertext.

If T1, T2 are equal to g
τ1η⃗b∗1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4 , then Cℓ+1 is distributed as in a normal cipher-

text, and B has properly simulated Game0,ℓ. If T1, T2 are equal to g
τ1η⃗b∗1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1η⃗b

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 ,

then Cℓ+1 includes a linear combination of d⃗7 and d⃗8. The coefficients of this combination are
the coordinates of the vector

τ3A
−1(1, ID∗

ℓ1)
t.
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Since A is random and independent of everything else given to A, this vector is uniformly
random in A’s view. Thus, B has properly simulated Game0,ℓ+1 in this case. This allows B
to use A’s non-negligible difference in advantage between these two games in order to obtain a
non-negligible advantage against our subspace assumption.

Lemma 29. For each m from 1 to q, if there exists a PPT algorithm A such that A achieves a
non-negligible difference in advantage between GameP (m−1,0) and GameE(m,0), then there exists
a PPT algorithm B with non-negligible advantage against the subspace assumption, with k = 2
and n = 10.

Proof. We suppose that such an A exists for some fixed m. We create B as follows. B is given:

D =
(
gb⃗1 , . . . , gb⃗4 , gb⃗7 , . . . , gb⃗10 , gηb⃗

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , . . . , gb⃗

∗
10

)
,

along with T1, T2. It is B’s task to decide whether T1, T2 are distributed as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4

or as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 .

We define dual orthonormal bases F,F∗ by:

f⃗1 = b⃗9, f⃗2 = b⃗10, f⃗3 = b⃗1, f⃗4 = b⃗2, f⃗5 = b⃗3, f⃗6 = b⃗4, f⃗7 = b⃗7, f⃗8 = b⃗8, f⃗9 = b⃗5, f⃗10 = b⃗6,

f⃗∗1 = b⃗∗9, f⃗
∗
2 = b⃗∗10, f⃗

∗
3 = b⃗∗1, f⃗

∗
4 = b⃗∗2, f⃗

∗
5 = b⃗∗3, f⃗

∗
6 = b⃗∗4, f⃗

∗
7 = b⃗∗7, f⃗

∗
8 = b⃗∗8, f⃗

∗
9 = b⃗∗5, f⃗

∗
10 = b⃗∗6.

B chooses a random matrix A ∈ Z2×2
p . With all but negligible probability, A is invertible. B

implicitly sets D = FA and D∗ = F∗
A, where A is applied as a change of basis matrix to f9, f10,

and (A−1)t is applied to f∗9 , f
∗
10. We observe that D and D∗ are properly distributed, and reveal

no information about A.
B chooses α1, α2 ∈ Zp randomly. This allows it to compute e(g, g)α1d⃗1·d⃗∗1 as en(g

b⃗9 , gb⃗
∗
9)α1

and e(g, g)α2d⃗2·d⃗∗2 = en(g
b⃗10 , gb⃗

∗
10)α2 . This allows B to give A the pubic parameters:

PP =
{
G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6

}
.

B random chooses γ, ξ ∈ Zp and implicitly sets θ = η and σ = β. We observe that B knows the

MSK, since gθd⃗
∗
3 = gηb⃗

∗
1 , gθd⃗

∗
4 = gη⃗b

∗
2 , gσd⃗

∗
5 = gβb⃗

∗
3 , gσd⃗

∗
6 = gβb⃗

∗
4 .

For the first m− 1 key requests A makes, B will respond by making a semi-functional key.
B can do this by creating a normal key via the normal key generation algorithm and then
appending random multiples of d⃗∗7 = b⃗∗7 and d⃗∗8 = b⃗∗8 to the exponent of Kj (since B knows

gb⃗
∗
7 , gb⃗

∗
8 .

To make the mth key for identity vector (ID1, . . . , IDj), B makes K1, . . . ,Kj−1 as in the

normal key generation algorithm. To make Kj , it implicitly sets rj1 = τ1 and rj2 = τ2. It
computes:

Kj = gyj d⃗
∗
1+wj d⃗

∗
2 · T IDj

1 · T2.

If T1, T2 are equal to gτ1η⃗b
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4 , then this exponent has no multiples of d⃗∗7, . . . , d⃗

∗
10

and is distributed as in a normal key. If T1, T2 are equal to gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 ,

then this exponent includes a linear combination of d⃗∗9 and d⃗∗10. The coefficients of this com-
bination are equal to the entries of the vector τ3A

t(IDj ,−1)t. These coefficients are uniformly
random in A’s view, since everything else the attacker is given is distributed independently of
the matrix A. Hence, in this case, B produces a well-distributed ephemeral semi-functional key.

For the remaining key requests, B responds by creating normal keys via the normal key
generation algorithm. B can also produce a well-distributed semi-functional ciphertext, since
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it knows the public parameters as well as gd⃗7 = gb⃗7 and gd⃗8 = gb⃗8 . In summary, B properly
simulates either GameP (m−1,0) or GameE(m,0), depending on the values of T1, T2. Thus, it
can leverage A’s non-negligible difference in advantage between these games to achieve a non-
negligible advantage against the subspace assumption.

Lemma 30. For each m from 1 to q and each ℓ from 1 to j∗, if there exists a PPT algorithm
A such that A achieves a non-negligible difference in advantage between GameE(m,ℓ−1) and
GameE(m,ℓ), then there exists a PPT algorithm B with non-negligible advantage against the
subspace assumption, with k = 2 and n = 10.

Proof. We suppose that there exists such an A for some fixed m and ℓ. We create B as follows.
B is given:

D =
(
gb⃗1 , . . . , gb⃗4 , gb⃗7 , . . . , gb⃗10 , gηb⃗

∗
1 , gηb⃗

∗
2 , gβb⃗

∗
3 , gβb⃗

∗
4 , gb⃗

∗
5 , . . . , gb⃗

∗
10

)
,

along with T1, T2. It is B’s task to decide whether T1, T2 are distributed as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4

or as gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 .

We define dual orthonormal bases F,F∗ by:

f⃗1 = b⃗∗9, f⃗2 = b⃗∗10, f⃗3 = η⃗b∗1, f⃗4 = η⃗b∗2, f⃗5 = βb⃗∗3, f⃗6 = βb⃗∗4, f⃗7 = b⃗∗7, f⃗8 = b⃗∗8, f⃗9 = b⃗∗5, f⃗10 = b⃗∗6,

f⃗∗1 = b⃗9, f⃗
∗
2 = b⃗10, f⃗

∗
3 = η−1⃗b1, f⃗

∗
4 = η−1⃗b2, f⃗

∗
5 = β−1⃗b3, f⃗

∗
6 = β−1⃗b4, f⃗

∗
7 = b⃗7, f⃗

∗
8 = b⃗8, f⃗

∗
9 = b⃗5, f⃗

∗
10 = b⃗6.

B chooses a random matrix A ∈ Z2×2
p . With all but negligible probability, A is invertible. It

sets D = FA and D∗ = F∗
A, where A is applied as a change of basis matrix to f⃗9, f⃗10, and (A−1)t

is applied as a change of basis matrix to f⃗∗9 , f⃗
∗
10. We note that D,D∗ are properly distributed,

and reveal no information about A.
B chooses random values α1, α2 ∈ Zp. This allows it to compute e(g, g)α1d⃗1·d⃗∗1 as en(g

b⃗9 , gb⃗
∗
9)α1 ,

and e(g, g)α2d⃗2·d⃗∗2 can be computed similarly. Since B has gd⃗1 = gb⃗
∗
9 , gd⃗2 = gb⃗

∗
10 , gd⃗3 = gηb⃗

∗
1 , . . .,

gd⃗6 = gβb⃗
∗
4 , B is able to produce the public parameters

PP =
{
G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6

}
and gives them to A. It also chooses random values γ, ξ, θ′, σ′ ∈ Zp. It implicitly sets θ = ηθ′

and σ = βσ′. This allows it to create the terms gγd⃗
∗
1 = (gb⃗9)γ , gξd⃗

∗
2 = (gb⃗10)ξ, gθd⃗

∗
3 = (gb⃗1)θ

′
,

. . . , gσd⃗
∗
6 = (gb⃗4)σ

′
for the secret keys. We note that B knows the MSK, as well gd⃗

∗
7 = gb⃗7 and

gd⃗
∗
8 = gb⃗8 .
For the first m − 1 key requests, B responds by creating normal keys using the normal

key generation algorithm, and then multiplying the resulting Kj by random powers of gd⃗
∗
7 , gd⃗

∗
8 .

This produces properly distributed semi-functional keys. To respond to the mth key request
for an identity vector (ID1, . . . , IDj), B makes K1, . . . ,Kj−1 as in the normal key generation

algorithm. It implicitly sets rj1 = µ1(θ
′)−1 and rj2 = µ2(σ

′)−1. It sets:

Kj = gyj d⃗
∗
1+wj d⃗

∗
2 · U IDj

1 · (U2)
−1.

This produces an ephemeral semi-functional key, where the coefficients of gd⃗
∗
9 and gd⃗

∗
10 are the

entries of the vector

µ3A
t(IDj ,−1).
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To respond to the remaining key requests, B creates normal keys using the normal key generation
algorithm.

At some point, A specifies an identity vector (ID∗
1, . . . , ID

∗
j∗) for the challenge ciphertext

and messagesM0,M1. B chooses a random bit b ∈ {0, 1} and encryptsMb as follows. It chooses
random values s1, s2 ∈ Zp and sets

C0 =Mb

(
e(g, g)α1d⃗1·d⃗∗1

)s1 (
e(g, g)α2d⃗2·d⃗∗2

)s2
.

For i from to 1 to ℓ− 1, it chooses random values ti1, t
i
2, v

i
7, v

i
8, v

i
9, v

i
10 ∈ Zp. It forms:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8+v

i
9d⃗9+v

i
10d⃗10

= (gb⃗
∗
9)s1 · (gb⃗∗10)s2 · (gηb⃗∗1)ti1 · (gηb⃗∗2)ID∗

i t
i
1 · (gβb⃗∗3)ti2 · (gβb⃗∗4)ID∗

i t
2
i · (gb⃗∗7)vi7 · (gb⃗∗8)vi8 · (gb⃗∗5)vi9 · (gb⃗∗6)vi10 .

These terms have both semi-functional and ephemeral semi-functional components.
For ℓ, B chooses random values vℓ7, v

ℓ
8 ∈ Zp and implicitly sets tℓ1 = τ1 and tℓ2 = τ2. It

computes:

Cℓ = gs1d⃗1+s2d⃗2 · T1 · T
ID∗

ℓ
2 · gvℓ7d⃗7+vℓ8d⃗8 .

For i > ℓ, B chooses random values ti1, t
i
2, v

i
7, v

i
8 ∈ Zp and sets:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8 .

If T1, T2 are equal to gτ1η⃗b
∗
1+τ2βb⃗

∗
3 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4 , then Cℓ has no multiples of d⃗9, d⃗10 in its

exponent. Hence, the ciphertext is distributed as in GameE(m,ℓ−1). If T1, T2 are equal to

gτ1ηb⃗
∗
1+τ2βb⃗

∗
3+τ3b⃗

∗
5 , gτ1ηb⃗

∗
2+τ2βb⃗

∗
4+τ3b⃗

∗
6 , then the exponent of Cℓ does include a linear combination

of d⃗9, d⃗10 in the exponent. The coefficients of this combination are equal to the entries of the
vector

τ3A
−1(1, ID∗

ℓ ).

Since we have guaranteed by our encoding of identity vectors that ID∗
ℓ ̸= IDj , we may

invoke Lemma 4 to conclude that the Kj term of the mth key and the Cℓ term of the ciphertext
have coefficients in the ephemeral semi-functional space that are uniformly random in A’s view.
Hence, in this case, B has properly simulated GameE(m,ℓ). Thus, B can leverage the non-
negligible difference in advantage achieved by A to achieve a non-negligible advantage against
the subspace assumption.

Lemma 31. For each m from 1 to q, if there exists a PPT algorithm A achieving a non-
negligible difference in advantage between GameE(m,j∗) and GameP (m,j∗), then there exists a
PPT algorithm B with non-negligible advantage against the subspace assumption, with k = 1
and n = 10.

Proof. We will prove this lemma in two steps. We define an intermediary game, denoted
GameEP (m,j∗), in which the Kj term of the mth key has random multiples of all of d⃗∗7, d⃗

∗
8, d⃗

∗
9, d⃗

∗
10

in its exponent (both ephemeral semi-functional and regular semi-functional terms). In other
respects, GameEP (m,j∗) is identical to GameE(m,j∗) and GameP (m,j∗).

We first suppose there exists a PPT attacker A achieving a non-negligible difference in
advantage between GameE(m,j∗) and GameEP (m,j∗) for some m. We create a PPT algorithm B
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achieving non-negligible advantage against the subspace assumption with k = 1 and n = 10. B
is given

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗10 , gηb⃗

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , . . . , gb⃗

∗
10 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

We define dual orthonormal bases F,F∗ as:

f⃗1 = b⃗4, f⃗2 = b⃗5, f⃗3 = b⃗6, f⃗4 = b⃗7, f⃗5 = b⃗8, f⃗6 = b⃗9, f⃗7 = b⃗10, f⃗8 = b⃗3, f⃗9 = b⃗2, f⃗10 = b⃗1,

f⃗∗1 = b⃗∗4, f⃗
∗
2 = b⃗∗5, f⃗

∗
3 = b⃗∗6, f⃗

∗
4 = b⃗∗7, f⃗

∗
5 = b⃗∗8, f⃗

∗
6 = b⃗∗9, f⃗

∗
7 = b⃗∗10, f⃗

∗
8 = b⃗∗3, f⃗

∗
9 = b⃗∗2, f⃗

∗
10 = b⃗∗1.

B chooses a random matrix A ∈ Z2×2
p . With all but negligible probability, A is invertible. B

implicitly sets D = FA and D∗ = F∗
A, where A is applied as a change of basis matrix to f⃗7, f⃗8

and (A−1)t is applied as a change of basis matrix to f⃗∗7 , f⃗
∗
8 . We note that D,D∗ are properly

distributed, and reveal no information about A.
B chooses α1, α2, θ, σ, γ, ξ ∈ Zp for itself, which enables it to produce the public parameters

and the master secret key. It gives the public parameters to A. To answer A’s first m− 1 key
requests, B first produces a normal key using the normal key generation algorithm (it can run
this because it knows the master secret key). Now, it chooses random values z, x ∈ Zp and

multiplies the final key element Kj by (gb⃗
∗
10)z(gb⃗

∗
3)x. We note that applying the change of basis

matrix (A−1)t does not change that the span of d⃗∗7, d⃗
∗
8 is equal to the span of b⃗∗10, b⃗

∗
3. Hence, this

is distributed as a random linear combination of d⃗∗7, d⃗
∗
8 and so the resulting key is a properly

distributed semi-functional key.
To create the mth key for (ID1, . . . , IDj), B first creates a normal key by running the

normal key generation algorithm. It then multiplies Kj by T1. If T1 = gτ1η⃗b
∗
1+τ2βb⃗

∗
2 , then this

adds a random linear combination of d⃗∗9, d⃗
∗
10 to the exponent of Kj . In this case, the key is

properly distributed as in GameE(m,j∗). If T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 , then this adds a random

linear combination of d⃗∗9, d⃗
∗
10 as well as τ3⃗b

∗
3. Because we have employed the random change of

basis matrix (A−1)t, b⃗∗3 is itself a random linear combination of d⃗∗7, d⃗
∗
8. Therefore, the key is

properly distributed as in GameEP (m,j∗) in this case. (We note that this is the only place where
we will use the randomness of A: everything else will be distributed independently of A.)

When A declares (ID∗
1, . . . , ID

∗
j∗) andM0,M1, B creates the challenge ciphertext as follows.

It chooses a random bit b ∈ {0, 1}, random values s1, s2 ∈ Zp, as well as random values
ti1, t

i
2, ν

i
7, ν

i
8, ν

i
9, ν

i
10 ∈ Zp for each i from 1 to j∗. It computes:

C0 =Mb(en(g
b⃗4 , gb⃗

∗
4))α1s1(en(g

b⃗5 , gb⃗
∗
5))α2s2 =Mbe(g, g)

α1s1d⃗1·d⃗∗2e(g, g)α2s2d⃗2·d⃗∗2

Ci = (gb⃗4)s1 · (gb⃗5)s2 · (gb⃗6)ti1 · (gb⃗7)ID∗
i t

i
1 · (gb⃗8)ti2 · (gb⃗9)ID∗

i t
i
2 · (gb⃗10)νi7 · Uν

i
8

1 · (g
b⃗2)ν

i
9 · (gb⃗1)νi10

for each i from to 1 to j∗. We observe that the exponent of Ci is equal to s1d⃗1 + s2d⃗2 + ti1d⃗3 +

ID∗
i t
i
1d⃗4 + ti2d⃗5 + ID∗

i t
i
2d⃗6 plus a linear combination of d⃗7, d⃗8, d⃗9, d⃗10. The coefficients of d⃗7 and

d⃗8 here are equal to the entries of the vector A−1(νi7, µ3ν
i
8), which are uniformly random because

νi7 and νi8 are random (note that these are distributed independently of A−1). The coefficients

of d⃗9 = b⃗2 and d⃗10 = b⃗1 here are µ2+ ν
i
9 and µ1+ ν

i
10, which are also uniformly random because

νi9 and νi10 are uniformly random. Hence the ciphertext is properly distributed.
In summary, B has properly simulated either GameE(m,j∗) or GameEP (m,j∗), depending on

the value of T1. This allows it to leverage the non-negligible difference in A’s advantage between
these games to achieve non-negligible advantage against the subspace assumption.
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An analogous argument can be used to transition from GameEP (m,j∗) to GameP (m,j∗). The

only difference is that one now sets f⃗7 = b⃗1, f⃗8 = b⃗2, and f⃗9 = b⃗3. One then applies a random
change of basis matrix A to f⃗9, f⃗10. Now T1 is multiplied by the Kj term of the mth key so that

when the exponent of T1 is in the span of b⃗∗1, b⃗
∗
2, the key will only have components in the regular

semi-functional space, and no appearance of d⃗9, d⃗10 terms. When the exponent of T1 includes a
multiple of b⃗∗3, then the key will have random components in both the regular semi-functional
and ephemeral semi-functional spaces.

Lemma 32. For each m from 1 to q and each ℓ from 1 to j∗, if there exists a PPT algorithm A
achieving a non-negligible difference in advantage between GameP (m,ℓ) and GameP (m,ℓ−1), then
there exists a PPT algorithm B with non-negligible advantage against the subspace assumption,
with k = 2 and n = 10.

Proof. This is identical to the proof of Lemma 30, except that the mth key is now made to be
semi-functional, just as the first m− 1 keys. In this case, the argument that the coefficients of
d⃗9, d⃗10 on Cℓ are well-distributed when they are present is simpler (does not require pairwise
independence), since there are no appearances of d⃗∗9, d⃗

∗
10 in any of the keys.

Finally, we transition to a GameFinal in which the ciphertext encrypts a random message.
Thus, the bit b will be completely hidden from the attacker, and it follows that any attacker
has 0 advantage. We prove this in a few stages. First, we expand the final Kj of each key to

additionally include a multiple of d⃗∗10 in the exponent. This multiple will be the same for every

key. Next, we expand all of C1, . . . , Cj∗ to include random multiples of d⃗10 in the exponent
(these multiples will differ). Finally, we move from an encryption of Mb to an encryption of a
random message by one last application of the subspace assumption. In this last step, we will
(roughly) set d⃗∗1, d⃗

∗
2 to be b⃗1, b⃗2 and d⃗1, d⃗2 to be b⃗∗1, b⃗

∗
2 (this will be true up to scalar adjustments).

We will set d⃗∗10 = b⃗3 and d⃗10 = b⃗∗3. This allows us to implicitly set α1d⃗
∗
1+α2d⃗

∗
2 to be µ1⃗b1+µ2⃗b2,

which the subspace assumption only gives us attached to µ3⃗b3. We implicitly set s1d⃗1+ s2d⃗2 to
be τ1η⃗b

∗
1+ τ2βb⃗

∗
2, which we may receive alone in the exponent, or attached to τ3⃗b

∗
3. We compute

the blinding factor as en(U1, T1). If T1 = gτ1η⃗b
∗
1+τ2βb⃗

∗
2 , then this is computing (α1s1 + α2s2)ψ

in the exponent, which is the proper blinding factor. However, if T1 additionally includes gτ3b⃗
∗
3 ,

then we get an extra contribution of µ3τ3 in the exponent - this will look random, since we
can hide the value of τ3 by inserting additional random multiples of b⃗∗3 in the exponents of the
ciphertext elements. In this case, we have a random blinding factor, which is equivalent to
encrypting a random message.

More formally, we define the following additional games:

GameSFK+ This game is like GameP (q,0) (all keys and ciphertext are semi-functional), except

that for each key, the final Kj exponent also includes a multiple of d⃗∗10. This multiple is the
same for every key.

GameSFCT+ This game is like GameSFK+ except that each of C1, . . . , Cj∗ in the ciphertext

includes a fresh random multiple of d⃗10 in its exponent.

GameFinal This game is like GameSKCT+ except that the message being encrypted is now a
random element of GT , independent of the bit b.

Lemma 33. If there exists a PPT algorithm A achieving a non-negligible difference in ad-
vantage between GameP (q,0) and GameSFK+, then there exists a PPT algorithm B with non-
negligible advantage against the subspace assumption, with k = 1 and n = 10.
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Proof. B is given

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗10 , gηb⃗

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , . . . , gb⃗

∗
10 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

B implicitly sets:

d⃗1 = b⃗1, d⃗2 = b⃗2, d⃗3 = b⃗4, . . . , d⃗9 = b⃗10, d⃗10 = b⃗3,

d⃗∗1 = b⃗∗1, d⃗
∗
2 = b⃗∗2, d⃗

∗
3 = b⃗∗4, . . . , d⃗

∗
9 = b⃗∗10, d⃗

∗
10 = b⃗∗3.

We note that D,D∗ are properly distributed.
B implicitly defines α1 = τ1η and α2 = τ2β. We note that B does not know α1, α2, but it

can compute e(g, g)α1d⃗1·d⃗∗1 as:

e(g, g)α1d⃗1·d⃗∗1 = en(T1, g
b⃗1),

and can similarly compute e(g, g)α2d⃗2·d⃗∗2 as en(T1, g
b⃗2). This allows B to produce the public

parameters:

PP =
{
G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6

}
.

It gives these to A.
To create secret keys, B chooses random exponents θ, σ ∈ Zp and implicitly sets γ = η

and ξ = β. When A requests a key for an identity vector (ID1, . . . , IDj), B creates a key as
follows. It chooses random values ri1, r

i
2 ∈ Zp for each i from 1 to j, as well as random values

y′1, . . . , y
′
j ∈ Zp, w′

1, . . . , w
′
j ∈ Zp subject to the constraints y′1+ · · ·+y′j = 0 = w1+ · · ·+w′

j . For
each i from 1 to j − 1, it will implicitly set yi = y′iη and wi = w′

iβ. For j, it sets yj = y′jη + τ1η
and wj = w′

jβ + τ2β. We note that y1, . . . , yj are distributed as random elements of Zp up to
the constraint that y1 + · · ·+ yj = α1, and w1, . . . , wj are distributed as random elements of Zp
up to the constraint that w1 + · · ·+ wj = α2. B computes:

Ki = gyid⃗
∗
1+wid⃗

∗
2+r

i
1IDiθd⃗

∗
3−ri1θd⃗∗4+ri2IDiσd⃗

∗
5−ri2σd⃗∗6

= (gη⃗b
∗
1)y

′
i · (gβb⃗∗2)w′

i · (gb⃗∗4)ri1IDiθ · (gb⃗∗5)−ri1θ · (gb⃗∗6)ri2IDiσ · (gb⃗∗7)−ri2σ.

It also chooses random z7, z8 ∈ Zp and computes:

Kj = T1 · (gη⃗b
∗
1)y

′
j · (gβb⃗∗2)w

′
j · (gb⃗∗4)ri1IDiθ · (gb⃗∗5)−ri1θ · (gb⃗∗6)ri2IDiσ · (gb⃗∗7)−ri2σ · (gb⃗∗8)z7 · (gb⃗∗9)z8 .

If T1 = gτ1η⃗b
∗
1+τ2βb⃗

∗
2 , then

Kj = gyj d⃗
∗
1+wj d⃗

∗
2+r

j
1IDjθd⃗

∗
3−r

j
1θd⃗

∗
4+r

j
2IDjσd⃗

∗
5−r

j
2σd⃗

∗
6+z7d⃗

∗
7+z8d⃗

∗
8 .

In this case, B produces keys that are distributed as in GameP (q,0). If T1 additionally has τ3⃗b
∗
3

in its exponent, then every Kj will have τ3d⃗
∗
10 in its exponent. In this case, B produces keys

that are distributed as in GameSFK+.
At some point, A declares a challenge identity vector (ID∗

1, . . . , ID
∗
j∗) and two messages

M0,M1. B chooses a random bit b ∈ {0, 1} and produces a semi-functional encryption of Mb

as follows. B chooses random values s1, s2 ∈ Zp and random values ti1, t
i
2, v

i
7, v

i
8 ∈ Zp for each i

from 1 to j∗. It computes:

C0 =Mb

(
e(g, g)α1d⃗1·d⃗∗1

)s1 (
e(g, g)α2d⃗2·d⃗∗2

)s2
,
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and for each i from 1 to j∗:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8

= (gb⃗1)s1 · (gb⃗2)s2 · (gb⃗4)ti1 · (gb⃗5)ID∗
i t

i
1 · (gb⃗6)ti2 · (gb⃗7)ID∗

i t
i
2 · (gb⃗8)vi7 · (gb⃗9)vi8 .

This is a properly distributed semi-functional ciphertext.

If T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2 , then B has properly simulated GameP (q,0). If T1 = gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 ,

then B has properly simulated GameSFK+. Hence, B can leverage A’s non-negligible difference
in advantage between these games to achieve a non-negligible advantage against the subspace
assumption.

Lemma 34. If there exists a PPT algorithm A achieving a non-negligible difference in ad-
vantage between GameSFK+ and GameSFCT+, then there exists a PPT algorithm B with non-
negligible advantage against the subspace assumption, with k = 1 and n = 10.

Proof. We assume such a A exists, and we create B as follows. B is given

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗10 , gηb⃗

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , . . . , gb⃗

∗
10 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

B implicitly sets:

d⃗1 = b⃗∗4, d⃗2 = b⃗∗5, d⃗3 = b⃗∗6, d⃗4 = b⃗∗7, d⃗5 = b⃗∗8, d⃗6 = b⃗∗9, d⃗7 = b⃗∗1, d⃗8 = b⃗∗2, d⃗9 = b⃗∗10, d⃗10 = b⃗∗3,

d⃗∗1 = b⃗4, d⃗
∗
2 = b⃗5, d⃗

∗
3 = b⃗6, d⃗

∗
4 = b⃗7, d⃗

∗
5 = b⃗8, d⃗

∗
6 = b⃗9, d⃗

∗
7 = b⃗1, d⃗

∗
8 = b⃗2, d⃗

∗
9 = b⃗10, d⃗

∗
10 = b⃗3.

We note that D,D∗ are properly distributed.
B chooses random values α1, α2, θ, σ, γ, ξ ∈ Zp. This allows it to produce the public param-

eters:

PP =
{
G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6

}
.

We observe that B also knows the MSK and can produce gγd⃗
∗
1 , gξd⃗

∗
2 , gθd⃗

∗
3 , gθd⃗

∗
4 , gσd⃗

∗
5 , gσd⃗

∗
6 for the

secret keys.
WhenA requests a key for an identity vector (ID1, . . . , IDj), B createsK1, . . . ,Kj as follows.

First, it creates K1, . . . ,Kj−1,K
′
j as in the normal key generation algorithm. It then chooses

random values z7, z8 ∈ Zp and sets:

Kj = K ′
j · U1 · (gb⃗1)z7 · (gb⃗2)z8 .

This results in Kj values whose exponents include uniformly random linear combinations of

d⃗∗7 = b⃗1 and d⃗∗8 = b⃗2 as well as µ3d⃗
∗
10 = µ3⃗b3, where this coefficient µ3 is the same for all keys.

This produces keys which are properly distributed for either GameSFK+ or GameSFCT+.
When A specifies (ID∗

1, . . . , ID
∗
j∗) and M0,M1 for the challenge ciphertext, B chooses a

random bit b ∈ {0, 1}. It first computes a normal ciphertext C0, C
′
1, . . . , C

′
j∗ encrypting Mb

using the normal encryption algorithm. It then chooses random values νi7, ν
i
8, ν

i
10 ∈ Zp for each

i from 1 to j∗. For each i, it sets:

Ci = C ′
i · (T1)ν

i
10 · (gηb⃗∗1)νi7 · (gβb⃗∗2)νi8 .

If the exponent of T1 is a linear combination of b⃗∗1 = d⃗7 and b⃗∗2 = d⃗8, then each Ci will

have a random linear combination of d⃗7, d⃗8 in its exponent, making it properly distributed for
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GameSFK+. If the exponent of T1 is a linear combination of b⃗∗1 = d⃗7, b⃗
∗
2 = d⃗8, and b⃗∗3 = d⃗10, then

each Ci will have a random linear combination of d⃗7, d⃗8, and d⃗10, making it properly distributed
for GameSFCT+.

Therefore, B has properly simulated either GameSFK+ or GameSFCT+, depending on the
value of T1. B can thus leverage the non-negligible difference in A’s advantage between two
games to achieve a non-negligible advantage against the subspace assumption.

Lemma 35. If there exists a PPT algorithm A achieving a non-negligible difference in ad-
vantage between GameSKCT+ and GameFinal, then there exists a PPT algorithm B with non-
negligible advantage against the subspace assumption, with k = 1 and n = 10.

Proof. B is given

D =
(
gb⃗1 , gb⃗2 , gb⃗4 , . . . , gb⃗10 , gηb⃗

∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , . . . , gb⃗

∗
10 , U1, µ3

)
,

along with T1. It is B’s task to decide whether T1 is distributed as gτ1η⃗b
∗
1+τ2βb⃗

∗
2 or as gτ1ηb⃗

∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 .

B implicitly sets:

d⃗1 = η⃗b∗1, d⃗2 = βd⃗∗2, d⃗3 = b⃗∗4, . . . , d⃗9 = b⃗∗10, d⃗10 = b⃗∗3,

d⃗∗1 = η−1⃗b1, d⃗
∗
2 = β−1⃗b2, d⃗

∗
3 = b⃗4, . . . , d⃗

∗
9 = b⃗10, d⃗

∗
10 = b⃗3.

We note that D,D∗ are properly distributed and that B can produce gd⃗1 , . . . , gd⃗6 for the public
parameters.

B implicitly sets α1 = ηµ1 and α2 = βµ2. It can then compute e(g, g)α1d⃗1·d⃗∗1 as:

e(g, g)α1d⃗1·d⃗∗1 = en(U1, g
η⃗b∗1).

It similarly computes e(g, g)α2d⃗2·d⃗∗2 = en(U1, g
βb⃗∗2). It provides A with the public parameters,

PP =
{
G, p, e(g, g)α1d⃗1·d⃗∗1 , e(g, g)α2d⃗2·d⃗∗2 , gd⃗1 , . . . , gd⃗6

}
.

B chooses random values θ, σ, γ′, ξ′ ∈ Zp and sets γ = η−1γ′ and ξ = β−1ξ′. It can then form

gγd⃗
∗
1 = (gb⃗1)γ

′
, gξd⃗

∗
2 = (gb⃗2)ξ

′
, gθd⃗

∗
3 = (gb⃗4)θ, gθd⃗

∗
4 = (gb⃗5)θ, gσd⃗

∗
5 = (gb⃗6)σ, and gσd⃗

∗
6 = (gb⃗7)σ.

When A requests a key for an identity vector (ID1, . . . , IDj), B computes the additional
key elements as follows. It chooses random values ri1, r

i
2 ∈ Zp for each i from 1 to j, random

values z7, z8 ∈ Zp, and random values y′1, . . . , y
′
j , w

′
1, . . . , w

′
j ∈ Zp subject to the constraint that

y′1 + · · · + y′j = w′
1 + · · · + w′

j = 0. It implicitly sets yi = ηy′i, wi = βw′
i for each i from 1 to

j − 1, and yj = ηy′j + ηµ1, wj = βw′
j + βµ2. We note that y1, . . . , yj are randomly distributed

up to the constraint that y1 + · · ·+ yj = α1, and w1, . . . , wj are randomly distributed up to the
constraint that w1 + · · ·+ wj = α2. B can then compute:

Ki = gyid⃗
∗
1+wid⃗

∗
2+r

i
1IDiθd⃗

∗
3−ri1θd⃗∗4+ri2IDiσd⃗

∗
5−ri2σd⃗∗6

= (gb⃗1)y
′
i · (gb⃗2)w′

i · (gb⃗4)ri1IDiθ · (gb⃗5)−ri1θ · (gb⃗6)ri2IDiσ · (gb⃗7)−ri2σ

for all i from 1 to j − 1, and

Kj = gyj d⃗
∗
1+wj d⃗

∗
2+r

j
1IDjθd⃗

∗
3−r

j
1θd⃗

∗
4+r

j
2IDjσd⃗

∗
5−r

j
2σd⃗

∗
6+z7d⃗

∗
7+z8d⃗

∗
8+µ3d⃗

∗
10

= U1 · (gb⃗1)y
′
j · (gb⃗2)w

′
j · (gb⃗4)r

j
1IDjθ · (gb⃗5)−r

j
1θ · (gb⃗6)r

j
2IDjσ · (gb⃗7)−r

j
2σ · (gb⃗8)z7 · (gb⃗9)z8 .
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The keys that B produces are properly distributed for GameSFCT+ and GameFinal.
At some point, A declares an identity vector (ID∗

1, . . . , ID
∗
j∗) and messages M0,M1 for the

challenge ciphertext. B chooses a random bit b ∈ {0, 1} and creates a ciphertext which is either
an encryption of Mb or an encryption of a random message, depending on the value of T1. To
do this, it implicitly sets s1 = τ1 and s2 = τ2. It chooses random values ti1, t

i
2, v

i
7, v

i
8, ν

i
10 ∈ Zp

for each i from 1 to j∗. It computes:

C0 =Mben(U1, T1),

and for each i from 1 to j∗:

Ci = gs1d⃗1+s2d⃗2+t
i
1d⃗3+ID

∗
i t

i
1d⃗4+t

i
2d⃗5+ID

∗
i t

i
2d⃗6+v

i
7d⃗7+v

i
8d⃗8+v

i
10d⃗10

= T1 · (gb⃗
∗
4)t

i
1 · (gb⃗∗5)ID∗

i t
i
1 · (gb⃗∗6)ti2 · (gb⃗∗7)ID∗

i t
i
2 · (gb⃗∗8)vi7 · (gb⃗∗9)vi8 · (gb⃗∗3)νi10 .

We note that the value of each vi10 here depends on the nature of T1.

Now, if T1 = gτ1ηb⃗
∗
1+τ2βb⃗

∗
2 , then C0 = Mbe(g, g)

α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2 . In this case, the
ciphertext is a properly distributed encryption of Mb, as required in GameSFCT+. However, if

T1 = gτ1η⃗b
∗
1+τ2βb⃗

∗
2+τ3b⃗

∗
3 , then

C0 =Mbe(g, g)
α1s1d⃗1·d⃗∗1e(g, g)α2s2d⃗2·d⃗∗2e(g, g)τ3µ3ψ,

where ψ = b⃗i · b⃗∗i . Here, τ3 is uniformly random. To see this, observe that the coefficient

of d⃗10 = b⃗∗3 in each Ci is equal to νi10 + τ3 in this case, which does not reveal τ3 because
each νi10 is random. Thus, the ciphertext is distributed as an encryption of a random message,
independent ofMb, as required in GameFinal. Hence, B can leverageA’s non-negligible difference
in advantage between these games to achieve a non-negligible advantage against the subspace
assumption.
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