Adaption of Pollard's kangaroo algorithm to the FACTOR problem

Mario Romsy
Fakultät für Informatik
Universität der Bundeswehr München
mario.romsy@unibw.de

Abstract

In BKT11 Baba, Kotyada and Teja introduced the FACTOR problem over non-abelian groups as base of an ElGamal-like cryptosystem. They conjectured that there is no better method than the naive one to solve the FACTOR problem in a general group. Shortly afterwards Stanek published an extension of the baby-step giant-step algorithm disproving this conjecture Sta11. Since baby-step giant-step methods are limited in practice because of memory requirements we present a modification of Pollard's kangaroo algorithm that solves the FACTOR problem requiring only negligible memory.

1 Introduction

Let $n \geq 2$ and (G, \cdot) be a non-abelian finite group with identity element e. Suppose $g_{1}, \ldots, g_{n} \in G$ with $\left\langle g_{1}, \ldots, g_{i}\right\rangle \cap\left\langle g_{i+1}\right\rangle=\{e\}$ for all $i \leq n-1$ and let $x_{1}, \ldots, x_{n} \in \mathbb{Z}$. Given an element

$$
h=g_{1}^{x_{1}} \cdot \ldots \cdot g_{n}^{x_{n}}
$$

we wish to determine $g_{1}^{x_{1}}, \ldots, g_{n}^{x_{n}}$ (we note that the conditions on g_{1}, \ldots, g_{n} imply the uniqueness of the solution). This is called generalized FACTOR problem or n-FACTOR problem. In case $n=2$ we also say FACTOR problem instead of 2-FACTOR problem.

The cryptosystems in BKT11 are based on the 2-FACTOR problem. Stanek's modification of Shank's baby-step giant-step algorithm solves this problem using time and memory $O\left(\sqrt{\operatorname{ord}\left(g_{1}\right) \operatorname{ord}\left(g_{2}\right)}\right)$. For practical purposes it is desirable to reduce at least the memory requirements. This can be achieved by a simple modification of Pollard's kangaroo method presented in the next section.

2 Kangaroos solving the FACTOR problem

The connection between the discrete logarithm problem (DLP) and the FACTOR problem was already brought up in BKT11. At least after Stanek's work it is natural to look at other generic DLP-algorithms for possible adaptability to the FACTOR problem. Since the iteration function in Pollard's rho method requires the calculation of powers of $h=g_{1}^{x_{1}} g_{2}^{x_{2}}$ we are stuck because of noncommutativity ${ }^{1}$. But we have better luck with Pollard's kangaroo algorithm. For a detailed description of the original kangaroo algorithm see [Pol78].

We now describe the modified version (where we have no additional information about the exponents x_{1} and x_{2}, see remarks below).

- Phase 0 - initialization:

Calculate $\operatorname{ord}\left(g_{1}\right)$ and $\operatorname{ord}\left(g_{2}\right)$, fix $s \in \mathbb{N}$ (in practice $s \approx 20$) and define (pseudorandom) partition functions

$$
p_{1}: G \rightarrow\{1, \ldots, s\}
$$

and

$$
p_{2}: G \rightarrow\{1, \ldots, s\}
$$

Choose random constants $u_{1}, \ldots, u_{s} \approx \sqrt{\operatorname{ord}\left(g_{1}\right)}$ and $v_{1}, \ldots, v_{s} \approx \sqrt{\operatorname{ord}\left(g_{2}\right)}$.

- Phase 1 - tame kangaroo:

Set $T=e=g_{1}^{0} g_{2}^{0}$ and $d_{1}^{t}=0, d_{2}^{t}=0$.
Repeat $\left\lceil\sqrt{\operatorname{ord}\left(g_{1}\right) \operatorname{ord}\left(g_{2}\right)}\right\rceil$ times:

1. $d_{1}^{t} \leftarrow d_{1}^{t}+u_{p_{1}(T)} \bmod \operatorname{ord}\left(g_{1}\right)$
2. $d_{2}^{t} \leftarrow d_{2}^{t}+v_{p_{2}(T)} \bmod \operatorname{ord}\left(g_{2}\right)$
3. $T \leftarrow g_{1}^{u_{p_{1}(T)}} \cdot T \cdot g_{2}^{v_{p_{2}(T)}}=g_{1}^{d_{1}^{t}} \cdot g_{2}^{d_{2}^{t}}$

- Phase 2 - wild kangaroo:

Set $W=h=g_{1}^{x_{1}} g_{2}^{x_{2}}$ and $d_{1}^{w}=0, d_{2}^{w}=0$.
While $W \neq T$ do

1. $d_{1}^{w} \leftarrow d_{1}^{w}+u_{p_{1}(W)} \bmod \operatorname{ord}\left(g_{1}\right)$
2. $d_{2}^{w} \leftarrow d_{2}^{w}+v_{p_{2}(W)} \bmod \operatorname{ord}\left(g_{2}\right)$
3. $W \leftarrow g_{1}^{u_{p_{1}(W)}} \cdot W \cdot g_{2}^{v_{p_{2}(W)}}=g_{1}^{d_{1}^{w}+x_{1}} \cdot g_{2}^{d_{2}^{w}+x_{2}}$

- Phase 3 - kangaroo collision:

If $T=W$ we have

$$
g_{1}^{d_{1}^{t}} \cdot g_{2}^{d_{2}^{t}}=T=W=g_{1}^{d_{1}^{w}+x_{1}} \cdot g_{2}^{d_{2}^{w}+x_{2}}
$$

Thus $x_{1}=d_{1}^{t}-d_{1}^{w}$ and $x_{2}=d_{2}^{t}-d_{2}^{w}$, so $g_{1}^{x_{1}}$ and $g_{2}^{x_{2}}$ are easily calculated.
Remark. - We note that the kangaroo method is a probabilistic algorithm. If there is no collision after e.g. $3\left\lceil\sqrt{ } \operatorname{ord}\left(g_{1}\right) \operatorname{ord}\left(g_{2}\right)\right\rceil$ steps in phase 2 , the attack should be restarted with different initialization values and/or a different starting value for T.

[^0]- The original kangaroo method solves the discrete logarithm problem $z=$ y^{β} in expected running time $O(\sqrt{\operatorname{ord}(y)})$ or even $O(\sqrt{\gamma-\alpha})$ if it is known that $\beta \in[\alpha, \gamma]$. The analysis of our modified version can be done as in Pol78 yielding an expected running time of $O\left(\sqrt{\operatorname{ord}\left(g_{1}\right) \operatorname{ord}\left(g_{2}\right)}\right)$, where the algorithm can be improved in an obvious way if it is known that $x_{1} \in\left[\alpha_{1}, \gamma_{1}\right]$ and/or $x_{2} \in\left[\alpha_{2}, \gamma_{2}\right]$.
- Revealing x_{1} and x_{2} the algorithm delivers more than we asked for ${ }^{2}$

Remark. In an earlier version of this paper we claimed that there is no direct way to extend both attacks, Stanek's and ours, to solve the general FACTOR problem. In fact this does not hold for the baby-step giant-step algorithm as the version of Bisson and Sutherland in BS11 shows. In the very same paper Bisson and Sutherland also present a Pollard-rho-like algorithm for finding short product representations in finite groups. The setting is as follows.

Let $S=\left(s_{1}, \ldots, s_{t}\right)$ be a (random) sequence of elements of a group G and let $z \in G$. If the sequence S satisfies $t \geq 2 \log _{2}|G|$ the Pollard-rho algorithm of Bisson and Sutherland finds a subsequence $\left(s_{i_{1}}, \ldots, s_{i_{r}}\right)$ of S with $z=s_{i_{1}} \cdot \ldots$. $s_{i_{r}}$ in expected running time $O\left(\sqrt{|G|} \log _{2}|G|\right)$ using negligible memory. This method can be applied to solve the general FACTOR problem if we choose S the following way:

- For all i assemble a sequence S_{i} from $g_{i}, g_{i}^{2}, \ldots g_{i}^{2^{b_{i}}}$ where $b_{i}=\left\lceil\log _{2}\left(\operatorname{ord}\left(g_{i}\right)\right)\right\rceil$ (to make sure that there is a solution) and sufficiently many random powers of g_{i}.
- For all i permute the elements of S_{i} in a random way.
- Build S by concatenation of S_{1}, \ldots, S_{n}.

Acknowledgements

Thanks to G. Bisson and A. Sutherland for pointing me to their work BS11.

References

[BS11] G. Bisson, A. Sutherland, A low-memory algorithm for finding short product representations in finite groups, to appear in Designs, Codes and Cryptography, available at http://www.springerlink.com/ content/4293k3621h3316j7
[BKT11] S. Baba, S. Kotyada, R. Teja, A Non-Abelian Factorization Problem and an Associated Cryptosystem, Cryptology ePrint Archive, Report 2011/048, 2011, http://eprint.iacr.org/2011/048
[Pol78] J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computation, Vol. 32, 1978.
[Sta11] M. Stanek, Extending Baby-step Giant-step algorithm for FACTOR problem, Cryptology ePrint Archive, Report 2011/059, 2011, http: //eprint.iacr.org/2011/059.

[^1]
[^0]: ${ }^{1}$ There is a Pollard-rho-like algorithm of Bisson and Sutherland that can be used to solve the FACTOR problem, see the remark at the end of this section.

[^1]: ${ }^{2}$ In fact the author is not aware of any algorithm that solves the FACTOR problem without giving x_{1} and x_{2}.

