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Abstract. This paper proposes new explicit formulae for the point dou-

bling, tripling and addition on ordinary Weierstrass elliptic curves with

a point of order 3 over finite fields of characteristic three. The cost of

basic point operations is lower than that of all previously proposed ones.

The new doubling, mixed addition and tripling formulae in projective

coordinates require 3M + 2C, 8M + 1C + 1D and 4M + 4C + 1D respec-

tively, where M , C and D is the cost of a field multiplication, a cubing

and a multiplication by a constant. We also provide the unified and com-

plete group laws. Finally, we present several examples of ordinary elliptic

curves in characteristic three for high security levels.
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1 Introduction

Elliptic curve cryptosystems which was discovered by Neal Koblitz [9] and Vic-

tor Miller [12] independently requires smaller key sizes than the other public

cryptosystems such as RSA at the same level of security. For example, a 160-bit

elliptic curve key is competitive with a 1024-bit RSA key at the AES 80-bit se-

curity level. Thus it may be advantageous to use elliptic curve cryptosystems in

resource-constrained environments, such as smart cards and embedded devices.
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Scalar multiplication is a central operation in elliptic curve cryptographic

schemes. There are numerous investigations of fast point multiplication on ellip-

tic curves over large prime fields or binary fields. We refer to [2, 6, 4] for the two

cases. However, elliptic curves in characteristic three could be preferred in cer-

tain cryptographic schemes. For example, the ηT pairing on supersingular curves

in characteristic three may offer the best possible performance for software and

hardware implementations [1]. Moreover, Koblitz implemented the Elliptic Curve

Digital Signature Algorithm (ECDSA) on a special family of supersingular ellip-

tic curves in characteristic three with great efficiency [10]. Compared to elliptic

curves on large prime fields or binary fields, Smart et al. pointed out that ordi-

nary elliptic curve in characteristic three can be an alternative for implementing

elliptic curve cryptosystems [15]. Further improved formulae are given in [13, 7].

The goal of the present work is to speed up scalar multiplication on ordinary

elliptic curves with a point of order 3 in characteristic three. We explore the

elliptic curve of the form Ea/F3m : y2 = x3 +x2− 1/a3 which is F3m -isomorphic

to the curve investigated by Smart et al. in [15]. The main contribution of this

paper is given as follows:

– A modified projective coordinate system is presented. It is named as A-

projective coordinate system since it is related with the key parameter a.

This offers better performance than the other projective coordinate system.

– The basic point operations of addition, doubling, and tripling are investi-

gated in the new coordinate system. The proposed formulae are faster than

the previous known results.

– The unified addition formulae are devised for resisting the side channel anal-

ysis. Furthermore, the complete group law of point operations is shown.

– Examples of ordinary elliptic curves over characteristic three are provided

for high security levels.

The rest of this paper is organized as follows. Section 2 introduces the basic

point operations on ordinary elliptic curves in characteristic three. Section 3

presents the new formulae for scalar multiplication. In section 4, the unified

and complete formulae are proposed on ordinary elliptic curves in characteristic

three. Section 5 gives the efficiency consideration and timing results. We draw

our conclusion in Section 6.
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2 Preliminaries

The focus of this paper will be with elliptic curves defined over fields F3m . For

the finite field F3m , the elliptic curves can be divided into two kinds: ordinary

elliptic curves and supersingular elliptic curves. Every ordinary elliptic curves

can be written in the Weierstrass form

E : y2 = x3 + ax2 + b

where a, b ∈ F3m and ab 6= 0.

The addition formulas for affine coordinates on E are given as follows. Let

P = (x1, y1), Q = (x2, y2) and P +Q = (x3, y3) be points on E(F3m). If P 6= ±Q
then

λ =
y2 − y1
x2 − x1

, x3 = λ2 − x1 − x2 − a, y3 = λ(x1 − x3)− y1, (1)

If P = Q then

λ =
ax1
y1

, x3 = λ2 + x1 − a, y3 = λ(x1 − x3)− y1, (2)

Let P = (x1, y1) and 3P = (x3, y3), then

x3 =
(x31 + b)3 − a3bx31

a2(x1 + b)2
, y3 =

y91 − a3y31(x31 + b)2

a3(x1 + b)3
. (3)

For efficiency, field inversions in group operations should be avoided, and

point operations can be preferred in projective coordinate systems. There are

some different types of projective coordinates which have the respective advan-

tages in efficiency. The relationship between (x, y) and (X,Y, Z) in different

coordinate systems are listed as follows.

– Ordinary projective coordinates: (x, y) = (X/Z, Y/Z),

– Jacobian projective coordinates: (x, y) = (X/Z2, Y/Z3),

– López Dahab projective coordinates [11]: (x, y) = (X/Z, Y/Z2),

– ML-projective coordinates (X,Y, Z, T ) [7]: (x, y) = (X/T, Y/Z3), T = Z2.

In the next section, we will explore a new modified projective coordinate systems

which offers competitive performance in basic point operations.
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3 Fast Arithmetic on Ordinary Weierstrass Elliptic

Curves in Characteristic Three

In this section, we show how to use a variant of Weierstrass elliptic curves over

finite fields of characteristic three to speed up basic point operations.

3.1 A New Variant of Ordinary Weierstrass Elliptic Curves in

Characteristic Three

Without loss of too much generality, we will mainly consider the ordinary elliptic

curve in characteristic three which has a point of order three. The following

lemma can be found in [15].

Lemma 1 ([15]) An ordinary elliptic curve over a field of characteristic 3 has

a point of order three if and only if it can be written in the form y2 = x3+x2+c.

The following lemma shows that the number of F3m -isomorphism classes of

the Weierstrass curves like the form y2 = x3 + x2 + c equals 3m − 1.

Lemma 2 Let E1 : y2 = x3 + x2 + a defined over F3m . Then E1 is F3m-

isomorphic to E2 : y2 = x3 + x2 + b if and only if a = b.

Proof. Assume that E1 is Fq-isomorphic to E2. Then there exists an admissible

change of variables (x, y)→ (u2x, u3y) with u ∈ F3m and u 6= 0 which transforms

E1 into E2. Hence u2 = 1 and a = u6b = b. ut

Note that for any curve y2 = x3 + x2 + c over F3m with c 6= 0, take a =

(−1
c )3

(m−1)

, then − 1
a3 = c3

m

= c. With loss of generality, from now on we will

only consider Weierstrass equations of the form

Ea : y2 = x3 + x2 − 1/a3

with a ∈ F3m and a 6= 0. Note that (1/a,±1/a) are points of order three on Ea.

3.2 Point Doubling

Here we define a new projective coordinate system, which we call A-projective

coordinate systems. The relationship between the projective coordinates and the

affine coordinates is given as follows

(X/aZ, Y/aZ)↔ (X,Y, aZ).
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Note that the projective equation of Ea is Y 2Z = X3 + X2Z − Z3/a3. If

P = (X1, Y1, aZ1) is a point on Ea in A-projective coordinates, then aY 2
1 Z1 =

X3
1 + aX2

1Z1 − Z3
1 .

Now we first consider the operation of point doubling in the modified co-

ordinate system. The following theorem will provide a new formulae for point

doubling.

Theorem 3 Let P = (X1, Y1, aZ1) be a point on Ea : Y 2Z = X3+X2Z−Z3/a3.

The doubling formulae on Ea are given by [2](X1, Y1, aZ1) = (X3, Y3, aZ3) where

X3 = X1Y
3
1 + Y1Z

3
1 −X3

1Y1,

Y3 = X4
1 − Y 4

1 −X1Z
3
1 ,

Z3 = Z1Y
3
1 .

(4)

Proof. Note that aY 2
1 Z1 = X3

1 + aX2
1Z1 − Z3

1 , from the affine doubling formula

(2) in Section 2, we can get that

X3 = a(X2
1Y1 − Y 3

1 )Z1 +X1Y
3
1 ,

Y3 = a(X1Y
2
1 −X3

1 )Z1 − Y 4
1 ,

Z3 = Z1Y
3
1 .

(5)

It will be sufficient to show that projective point representation (4) and (5)

give the same affine point. From (4), obviously

X3 = X1Y
3
1 −X3

1Y1 + Y1(X3
1 + aX2

1Z1 − aY 2
1 Z1) = aX2

1Y1Z1 − aY 3
1 Z1 +X1Y

3
1 ,

Y3 = X1(X3
1 − Z3

1 )− Y 4
1 = X1(aY 2

1 Z1 − aX2
1Z1)− Y 4

1 = a(X1Y
2
1 −X3

1 )Z1 − Y 4
1 ,

Z3 = Z1Y
3
1 .

This means that (4) and (5) gives the same affine point. ut

On the basis of Theorem 3, we obtain the following explicit formulae for point

doubling.

Doubling in A-projective coordinates 2(X1, Y1, aZ1) = (X3, Y3, aZ3)

A = X1 + Y1, B = X1 − Y1, D = (Z1 −A)3,

E = (B − Z1)3, F = B ·D, G = A · E, H = Z1 · (D + E),

X3 = F +G, Y3 = F −G, Z3 = H.

Let M , S, C, and D denote the cost of a multiplication, a squaring, a cubing

and a multiplication by a constant in the finite field of characteristic three,
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respectively. Then it is not hard to see that the above algorithm costs 3M + 2C.

We note that in the case of ternary finite field, a field addition and subtraction

can be negligible compared with a field multiplication, squaring or a cubing.

Furthermore, a cubing operation in the finite field with characteristic three is

faster than a multiplication and a squaring.

3.3 Point Tripling

When implementing scalar multiplication on elliptic curves over finite fields of

characteristic three, it is natural to choose a base three expansion for an exponent

k since the cubing operation in the finite field is cheaper than other operations.

Now point triping is considered in the following.

Theorem 4 Let P = (X1, Y1, aZ1) be a point on Ea : Y 2Z = X3+X2Z−Z3/a3.

The tripling formulae on Ea are given by [3](X1, Y1, aZ1) = (X3, Y3, aZ3) where

X3 = (X1 − Z1)3(X2
1 − Y 2

1 −X1Z1)3,

Y3 = Y 3
1 (X2

1 +X1Z1 + Z2
1 − Y 2

1 )3,

Z3 = (Z9
1 −X9

1 )/a.

(6)

Proof. Note that aY 2
1 Z1 = X3

1 + aX2
1Z1 − Z3

1 , from the affine tripling formula

(3) in Section 2, we can get that

X3 = (X3
1 − Z3

1 )(X9
1 − Z9

1 + a3X3
1Z

6
1 ),

Y3 = a3Y 3
1 Z

3
1 (Y 2

1 −X2
1 − Z2

1 −X1Z1)3,

Z3 = a2(X9
1Z

3
1 − Z12

1 ).

(7)

It will be sufficient to show that projective point representation (6) and (7)

give the same affine point. From (7), obviously

X3 = (X3
1 − Z3

1 )(X9
1 − Z9

1 + a3X3
1Z

6
1 )

= (X1 − Z1)3(a3Y 6
1 Z

3
1 − a3X6

1Z
3
1 + a3X3

1Z
6
1 )

= −a3Z3
1 · (X1 − Z1)3(X6

1 − Y 6
1 −X3

1Z
3
1 )

= −a3Z3
1 · (X1 − Z1)3(X2

1 − Y 2
1 −X1Z1)3,

Y3 = −a3Z3
1 · Y 3

1 (X2
1 +X1Z1 + Z2

1 − Y 2
1 )3,

Z3 = −a3Z3
1 · (Z9

1 −X9
1 )/a.

It means that in (6) and (7) are different only by a common factor, giving

the same affine point. ut
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Note that

X2
1 +X1Z1 +Z2

1 −Y 2
1 = X2

1 −2X1Z1 +Z2
1 −Y 2

1 = (X1−Z1 +Y1)(X1−Z1−Y1)

and

X2
1 − Y 2

1 −X1Z1 = (X2
1 +X1Z1 + Z2

1 − Y 2
1 ) +X1Z1 − Z2

1 .

Based on Theorem 4, we have the following point tripling formulae.

Tripling in A-projective coordinates 3(X1, Y1, aZ1) = (X3, Y3, aZ3).

A = X1 − Z1; B = (A+ Y1) · (A− Y1),

D = A · (B + Z1 ·A), E = (1/a)A9,

X3 = D3, Y3 = (Y1 ·B)3, Z3 = −E.

We can see that the cost for point tripling is 4M + 4C + 1D.

3.4 Point Addition

In this subsection, we consider how to add two points in the A-projective coor-

dinate systems. By the affine point addition formula (1), we can devise the point

addition formula in A-projective coordinates.

Let P = (X1, Y1, aZ1) and Q = (X2, Y2, aZ2) be two points on Y 2Z =

X3 +X2Z − Z3/a3. The addition formulae are given by P +Q = (X3, Y3, aZ3)

where

X3 = aZ1Z2(X2Z1 −X1Z2)((Y2Z1 − Y1Z2)2 − (X2Z1 −X1Z2)2)

−(X2Z1 −X1Z2)3(X2Z1 +X1Z2),

Y3 = −aZ1Z2(Y2Z1 − Y1Z2)((Y2Z1 − Y1Z2)2 − (X2Z1 −X1Z2)2)

+(X2Z1 −X1Z2)3(Y2Z1 + Y1Z2),

Z3 = Z1Z2(X2Z1 −X1Z2)3.

(8)

The above addition formulae costs 12M + 1C + 1D. Using a long and directly

calculation, we can get the following point addition formulae in A-projective

coordinates which do not depend on the curve constant a.

X3 = Z2(X2
1X2 +X1Y1Y2 +X2Y

2
1 )− Z1(X1X

2
2 + Y1X2Y2 +X1Y

2
2 ),

Y3 = Z2(X2
1Y2 +X1Y1X2 + Y2Y

2
1 )− Z1(Y1X

2
2 +X1X2Y2 + Y1Y

2
2 ),

Z3 = Z2
1 (X2 + Y2)(X2 − Y2)− Z2

2 (X1 + Y1)(X1 − Y1).

(9)
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Note that

(X2
1X2 +X1Y1Y2 +X2Y

2
1 ) = −(X2 + Y2)(X1 − Y1)2 − (X2 − Y2)(X1 + Y1)2,

(X2
1Y2 +X1Y1X2 + Y2Y

2
1 ) = −(X2 + Y2)(X1 − Y1)2 + (X2 − Y2)(X1 + Y1)2,

(X1X
2
2 + Y1X2Y2 +X1Y

2
2 ) = −(X1 + Y1)(X2 − Y2)2 − (X1 − Y1)(X2 + Y2)2,

(Y1X
2
2 +X1X2Y2 + Y1Y

2
2 ) = −(X1 + Y1)(X2 − Y2)2 + (X1 − Y1)(X2 + Y2)2.

Therefore, we have the following algorithm.

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = Z1 ·A2, E = Z1 ·B2, F = Z2 ·A, G = Z2 ·B,
H = A1 ·B2, I = A2 ·B1, X3 = G · I − E ·H,
Y3 = F ·H −D · I, Z3 = D · E − F ·G.

The algorithm cost 12M . Since

(Z1 −X1)3 = aZ1(X1 + Y1)(X1 − Y1),

Thus

Z1Z2 · (Z2
1 (X2 + Y2)(X2 − Y2)− Z2

2 (X1 + Y1)(X1 − Y1))

= (1/a)(Z3
1 (Z2 −X2)3 − Z3

2 (Z1 −X1)3) = (1/a)(X1Z2 −X2Z1)3.

Therefore, we can modify the point addition formula (X1, Y1, aZ1)+(X2, Y2, aZ2) =

(X3, Y3, aZ3) to the following formula.

Theorem 5 Let P = (X1, Y1, aZ1) and Q = (X2, Y2, aZ2) be two points on

Y 2Z = X3 + X2Z − Z3/a3. The addition formulae are given by P + Q =

(X3, Y3, aZ3), then

X3 = Z2Z
2
1 (X1X

2
2 + Y1X2Y2 +X1Y

2
2 )− Z1Z

2
2 (X2

1X2 +X1Y1Y2 +X2Y
2
1 ),

Y3 = Z2Z
2
1 (Y1X

2
2 +X1X2Y2 + Y1Y

2
2 )− Z1Z

2
2 (X2

1Y2 +X1Y1X2 + Y2Y
2
1 ),

Z3 = (1/a)(X2Z1 −X1Z2)3.

(10)

Note that

X3 = Z1(X2 + Y2)Z2
2 (X1 − Y1)2 + Z1(X2 − Y2)Z2

2 (X1 + Y1)2

−Z2(X1 + Y1)Z2
1 (X2 − Y2)2 − Z2(X1 − Y1)Z2

1 (X2 + Y2)2,

and

Y3 = Z1(X2 + Y2)Z2
2 (X1 − Y1)2 − Z1(X2 − Y2)Z2

2 (X1 + Y1)2

−Z2(X1 + Y1)Z2
1 (X2 − Y2)2 + Z2(X1 − Y1)Z2

1 (X2 + Y2)2.
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Therefore, we have the following algorithm.

Addition in A-projective coordinates (X1, Y1, aZ1)+(X2, Y2, aZ2) = (X3, Y3, aZ3).

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = B1 · Z2, E = A2 · Z1, F = A1 · Z2, G = B2 · Z1, H = D · E
I = F ·G, J = F · I, K = E ·H, X3 = D ·H + J −G · I −K,
Y3 = X3 + FI + EH, Z3 = (1/a)(D + F − E −G)3.

The costs for addition in A-projective coordinates will be 10M + 1C + 1D.

In the case of mixed addition, let P = (X1, Y1, a) and Q = (X2, Y2, aZ2) be

two points on Ea. Thus, the mixed addition takes 8M + 1C + 1D by setting

Z1 = 1 in the above algorithm.

4 Unified and Complete Addition Formulae

In this section, we study the unified and complete addition formulae. In generally,

the unified addition formulae work for all but finitely many pairs of points. The

complete addition formulae emphasize work for all inputs. We recall that the

affine addition formula (1) and projective formula (10) do not work to double

a point. Hereafter, we give an unified addition formulae for Ea. The unified

addition formula make the curve Ea interesting against side-channel attacks. We

present the unified addition formula for Ea : y2 = x3 +x2−1/a3 in A-projective

coordinates.

Theorem 6 Let P = (X1, Y1, aZ1) and Q = (X2, Y2, aZ2) be two points on

Y 2Z = X3 + X2Z − Z3/a3. The unified addition formulae on Ea are given

P +Q = (X3, Y3, aZ3) where

X3 = Z1Z2(Z2(X1 − Y1)− Z1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1Y2 +X2Y1),

Y3 = Z1Z2(Z2(X1 − Y1) + Z1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1X2 + Y1Y2),

Z3 = Z2(X1 − Y1)2(X2 − Y2)− Z1(X1 + Y1)(X2 + Y2)2.

(11)

These formulae also work for point doubling, i.e., they are unified addition for-

mulae.
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The proof of Theorem 6 is omitted here since it is a long straight calculation.

But we provide a magma code for checking the correctness of Theorem 6 in the

Appendix A.1.

Let P = (x1, y1) and Q = (x2, y2) be two points of y2 = x3 + x2 − 1/a3 in

affine coordinates, assume that P + Q = (x3, y3), then the affine version of the

above unified formula given by

x3 =
(1/a3)(x1 − y1 − x2 − y2) + (x1 + y1)(x2 − y2)(x1y2 + x2y1)

(x1 − y1)2(x2 − y2)− (x1 + y1)(x2 + y2)
,

y3 =
(1/a3)(x1 − y1 + x2 + y2) + (x1 + y1)(x2 − y2)(x1x2 + y1y2)

(x1 − y1)2(x2 − y2)− (x1 + y1)(x2 + y2)
.

(12)

Unified Addition in A-projective coordinates (X1, Y1, aZ1)+(X2, Y2, aZ2) =

(X3, Y3, aZ3).

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = A1 ·A2, E = B1 ·B2, F = Z1 · Z2, G = Z1 ·A2, H = A1 ·B2,

I = Z2 ·B1, X3 = F · (I −G) +H · (E −D),

Y3 = F · (I +G)−H · (E +D), Z3 = E · I −D ·G.

The algorithm costs 12M .

Now we study the exceptional cases of formulae (4), (6), (10) and (11).

Theorem 7 The doubling formulae (4) work for all input points on Ea : Y 2Z =

X3 +X2Z − Z3/a3.

Proof. Let P = (X1, Y1, aZ1) be a point on Ea : Y 2Z = X3 +X2Z−Z3/a3 such

that the doubling formulae (4) do not work for the input P , that is the formulae

(4) output

X3 = X1Y
3
1 + Y1Z

3
1 −X3

1Y1 = 0,

Y3 = X4
1 − Y 4

1 −X1Z
3
1 = 0,

Z3 = Z1Y
3
1 = 0.

Hence Z1 = 0 or Y1 = 0 by Z3 = 0. If Z1 = 0 then X1 = 0 and Y1 6= 0 implies

Y3 6= 0. If Y1 = 0 then Z1 6= 0 and X1 6= 0, one can get X1(X1 − Z1)3 = 0 by

Y3 = 0, thus X1 = Z1 implies X1 = Z1 = 0 which is a contradiction. ut

The following theorem shows that tripling formulae work for all inputs.
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Theorem 8 The tripling formulae (6) work for all input points on Ea : Y 2Z =

X3 +X2Z − Z3/a3.

Proof. Let P = (X1, Y1, aZ1) be a point on Ea : Y 2Z = X3 +X2Z−Z3/a3 such

that the doubling formulae (6) do not work for the input P , that is the formulae

(6) output

X3 = (X1 − Z1)3(X2
1 − Y 2

1 −X1Z1)3 = 0,

Y3 = Y 3
1 (X2

1 +X1Z1 + Z2
1 − Y 2

1 )3 = 0,

Z3 = (Z9
1 −X9

1 )/a = 0.

One can get X1 = Z1 by Z3 = 0, hence Y1 6= 0 implies X2
1 +X1Z1+Z2

1−Y 2
1 = 0.

Since X1 = Z1, hence Y1 = 0 which is a contradiction. ut

The following lemma describes the exceptional cases of addition formulae (10).

Lemma 9 Let P1 = (X1, Y1, aZ1) and P2 = (X2, Y2, aZ2) be two points on

Ea : Y 2Z = X3 +X2Z −Z3/a3. The addition formula (10) do not work for the

input P1 and P2 if and only if P1 − P2 = (0, 1, 0).

Proof. First, assume that addition formula (10) do not work for the input P1

and P2, that is, we have X3 = Y3 = Z3 = 0. If Z1 = 0 then X1 = 0 implies

Z3 = Z2
2Y

2
1 = 0 by formula (9), which means Z2 = 0. Similarly, If Z2 = 0

then Z1 = 0. Assume now that Z1Z2 6= 0. We can let Z1 = Z2 = 1, then

P1 = (X1, Y1, a) and P2 = (X2, Y2, a). Hence Z3 = (1/a)(X2 −X1)3 = 0 implies

X1 = X2. Thus X3 = X1(Y1 + Y2)(Y1 − Y2) = 0 and Y3 = Y1Y2(Y1 − Y2) = 0

by formula (9). If Y1 − Y2 6= 0 then Y1Y2 = 0. Since aY 2
1 = X3

1 + aX2
1 − 1 and

X1 = X2, thus aY 2
1 = aY 2

2 = −1 which is a contradiction, hence Y1 − Y2 = 0

then P1 = P1, thus P1 − P2 = (0, 1, 0). The other direction is clear. ut

The following lemma describes a special property of addition formulae (11).

Lemma 10 Let P1 = (X1, Y1, aZ1) and P2 = (X2, Y2, aZ2) be two points on

Ea : Y 2Z = X3 + X2Z − Z3/a3. Assume that the addition formulae (11) do

not work for the input P1 and P2, then the addition formulae (11) work for the

input P2 and P1.

Proof. Since the addition formulae (11) do not work for the input P1 and P2,

that is, we have X3 = Y3 = Z3 = 0. If Z1 = 0, then X1 = 0 and we can let Y1 = 1.

Thus, X3 = X2(X2 − Y2) = 0, Y3 = Y2(X2 − Y2) = 0, Z3 = Z2(X2 − Y2) = 0.
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If Z2 = 0 then X2 = 0 implies Y2 = 0 from Y3 = 0 which is a contradiction.

Hence Z2 6= 0, thus X2 = Y2 by Z3 = 0, hence aX2
2Z2 = X3

2 + aX2
2 − Z3

2

implies X2 = Z2. Therefore one get P2 = (1/a, 1/a, 1). The other direction, let

P1 = (1/a, 1/a, 1) = (1, 1, a) and P2 = (0, 1, 0), then X3 = Y3 = Z3 = 2.

Similarly, if Z2 = 0 one can get P1 = (1/a,−1/a, 1) = (1,−1, a) and P2 =

(0, 1, 0). The other direction, let P1 = (0, 1, 0) and P2 = (1,−1, a), then X3 =

Y3 = Z3 = 2.

Assume now Z1 6= 0 and Z2 6= 0. We write P1 = (X1, Y1, a) and P2 =

(X2, Y2, a). From X3 = Y3 = Z3 = 0, we have

(X1 − Y1)− (X2 + Y2) + (X1 + Y1)(X2 − Y2)(X1Y2 +X2Y1) = 0 (13)

(X1 − Y1) + (X2 + Y2) + (X1 + Y1)(X2 − Y2)(X1X2 + Y1Y2) = 0 (14)

(X1 − Y1)2(X2 − Y2)− (X1 + Y1)(X2 + Y2)2 = 0 (15)

Adding (13) + (14) yields (X1 − Y1) = (X1 + Y1)3(X2 − Y2)(X2 + Y2).

Putting this relation into the equation (15), we obtain the relation

(X1 + Y1)3(X2 − Y2)3 = 1⇒ (X1 + Y1)(X2 − Y2) = 1.

If the addition formulae (11) do not work for the input P2 and P1. Then, one

have

(X2 + Y2)(X1 − Y1) = 1

by the swapping the order of the points in the addition formulae (11). Therefore,

(X1+Y1)(X2−Y2)−(X2+Y2)(X1−Y1) = 0 implies X1Y2 = X2Y1. If X1 = 0 then

X2 = 0, then Y1+Y2 = 0 by (13) and Y2−Y1 = 0 by (14), thus Y1 = Y2 = 0 which

is a contradiction. Therefore, X1X2Y1Y2 6= 0 implies X1

X2
= Y1

Y2
, implies P1 = P2.

But putting this relation into the equation (15), one have X1 − Y1 = X1 + Y1

which is a contradiction. Therefore, the addition formulae (11) work for the input

P2 and P1. ut

Assume that the output of formulae (11) is (X3, Y3, Z3) when input points

P1 and P2, and assume that the output is (U3, V3,W3) when input points P2 and

P1. One can get, by the lemma 10, if (X3, Y3, Z3) = (0, 0, 0) then (U3, V3,W3) 6=
(0, 0, ), if (U3, V3,W3) = (0, 0, ) then (X3, Y3, Z3) 6= (0, 0, 0). Moreover, if both

items are not equal to (0, 0, 0), then (X3, Y3, Z3) = (U3, V3,W3) as the point on

Ea. We write it as the following theorem.
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Theorem 11 Let Ea : Y 2Z = X3 + X2 − Z3/a3 over F3m with a 6= 0. Fix

P1, P2 ∈ Ea(F3m). Write P1 = (X1, Y1, aZ1) and P2 = (X2, Y2, aZ2). Define

X3 = Z1Z2(Z2(X1 − Y1)− Z1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1Y2 +X2Y1),

Y3 = Z1Z2(Z2(X1 − Y1) + Z1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1X2 + Y1Y2),

Z3 = Z2(X2 − Y2)(X1 − Y1)2 − Z1(X1 + Y1)(X2 + Y2)2.

and

U3 = Z1Z2(Z1(X2 − Y2)− Z2(X1 + Y1)) + (X1 − Y1)(X2 + Y2)(X1Y2 +X2Y1),

V3 = Z1Z2(Z1(X2 − Y2) + Z2(X1 + Y1)) + (X1 − Y1(X2 + Y2))(X1X2 + Y1Y2),

W3 = Z1(X1 − Y1)(X2 − Y2)2 − Z2(X2 + Y2)(X1 + Y1)2.

Then X3W3 = U3Z3 and Y3W3 = V3Z3. Furthermore, at least one of the follow-

ing cases occurs: (X3, Y3, Z3) 6= (0, 0, 0) or (U3, V3,W3) 6= (0, 0, 0).

Now we study the exceptional cases of addition formulae (11).

Theorem 12 Let P1 and P2 be points on Ea : Y 2Z = X3 + X2 − Z3/a3.

Then the addition formulae (11) do not work for the input P1, P2 if and only if

P1 − P2 = (1,−1, a).

Proof. From lemma 10, we only need see Z1 6= 0 and Z2 6= 0. Without loss of

generality, we can let P1 = (X1, Y1, a) and P2 = (X2, Y2, a) be two points on

Ea : Y 2Z = X3 +X2Z −Z3/a3. Assume that the addition formulae (11) do not

work for the input P1 and P2, then X3 = Y3 = Z3 = 0. Similarly, we can assume

that P1 6= ±P2. Since (X1 +Y1)(X2−Y2) = 1 by lemma 10, Putting this relation

into the equation (15), we obtain the relation (X1 − Y1) = (X1 + Y1)(X2 + Y2),

hence one can get

X2 =
Y1 −X1 − 1

X1 + Y1
and Y2 =

Y1 −X1 + 1

X1 + Y1
.

Therefore, we can reach P1 − P2 = (1,−1, a) by calculation. For the other di-

rection, one only need see P1 = (X1, Y1, a) and P2 = (X2, Y2, a). If P1 − P2 =

(1,−1, a), then P2 = (Y1 − X1 − 1, Y1 − X1 + 1, a(X1 + Y1) which satisfy the

relation (X1 + Y1)(X2 − Y2) = 1 and (X1 − Y1) = (X1 + Y1)(X2 + Y2), which

mean X3 = Y3 = Z3 = 0. ut

A practical solution is now provided for prevent exceptional cases of formu-

lae (11).

Corollary 13 Let G be a subgroup of Ea(F3m) which is not containing point

(1,−1, a), Then the addition formula (11) work for all pairs of points in G.
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5 Efficiency Comparison and Timing Results

The efficiency of implementing elliptic curve cryptosystems depends on the speed

of basic point operations. In this section, we will compare the new formulae for

point operations with the previously known results.

5.1 Efficiency Comparison

We first recall the previous results on ordinary elliptic curves in characteristic

three. In [7], Kim et al. propose a type of projective coordinates(ML-coordinates)

which consist of four variables and the relationship between it and affine coor-

dinates is (X,Y, Z, T )↔ (X/T, Y/Z3), where T = Z2. In ML-coordinates, new

doubling, mixed addition and tripling formulae in projective coordinates require

5M+3S+3C, 8M+2C and 6M+6C respectively. It was noticed that a tripling

algorithm cost 5M + 5C + 1D using Jacobian projective coordinates in [13].

For convenience, we summarize all the results into the following Table 1. From

the table, we can see that the new proposed formulae are more efficient than all

previous formulae published for basic point operations on ordinary elliptic curves

in characteristic three.

Table 1. Costs of point operations for different systems on y2 = x3 + x2 + c

Coordinate System Mixed addition Doubling Tripling

Projective[15] 9M + 2S + 1C 6M + 3C 7M + 2S + 5C

Jacobian[15] 7M + 3S + 2C 6M + 2S + 3C 5M + 1S + 4C + 1D

López Dahab[15] 10M + 3S 7M + 4S + 2C 10M + 3S + 5C

Jacobian[13] 7M + 3S + 2C + 1D 5M +2S + 3C 3M + 2S + 5C + 1D

ML-coordinates [7] 8M + 2C 5M + 3S + 3C 6M + 6C

A-projective 8M + 1C + 1D 3M + 2C 4M + 4C + 1D

5.2 Timing Results

We provide timing results of the various algorithms. By using Magma online-

demo [3], we implement triple-and-add methods to compute point multiplication.
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We denote by E-97 the ordinary elliptic curve in Sec. 5 of [15]. According to

the methods in [14, 5], more ordinary curves over finite fields of characteristic

three for high security level are also generated. We name them as E-151, E-181,

E-263, E-331, and E-337 respectively. We denote by |k| the approximate bit

length of the random large integer k when computing scalar multiplication [k]P .

All timing results( in ms) are presented in Table 2.

Table 2. Timing Results for Different Coordinate Systems on Ordinary Curves in

Characteristic Three

Coordinate System E-97 E-151 E-181 E-263 E-331 E-337

|k| = 150 |k| = 230 |k| = 280 |k| = 410 |k| = 530 |k| = 530

Projective[15] 11 15 21 27 31 42

Jacobian[13] 2 11 18 23 26 36

A-projective 2 8 15 18 21 28

6 Conclusions

In this paper, a new point representation A-projective is introduced for Weier-

strass elliptic curves in characteristic three. We derive efficient basic group op-

erations and discuss the exceptional cases. We then compare their performance

to the previously best results for different coordinates systems. Our count shows

that the new formulae is faster than the previously known approach. It should

be pointed out that, in double-base chain representation for a scalar number,

the proposed point doubling and tripling may offer better performance.
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A.1 Magma Code for Unified Addition Formulae

We can use the following script for the magma computer algebra system

checks the formulae in theorem. Note that x3,y3,z3 in script equal to X3, Y3, Z3

respectively. And (u3,v3,w3) = P+Q from the affine addition formula in Section

2.

clear;

F:=GF(3);
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K<a,x1,x2,y1,y2>:=FieldOfFractions(PolynomialRing(F,5));

R<z1,z2>:=PolynomialRing(K,2);

S:=quo<R|y1^2*z1-(x1^3+x1^2*z1-z1^3/a^3),

y2^2*z2-(x2^3+x2^2*z2-z2^3/a^3)>;

A1:=x1+y1; B1:=x1-y1; C1:=z1/a;

A2:=x2+y2; B2:=x2-y2; C2:=z2/a;

D:=A1*A2; E:=B1*B2; F:=C1*C2;

G:=A2*C1; H:=A1*B2; I:=B1*C2;

x3:=F*(I-G)+H*(E-D);

y3:=F*(I+G)-H*(E+D);

z3:=a*(E*I-D*G);

A:=x1*z2; B:=x2*z1;

D:=y1*z2; E:=y2*z1;

F:=A+B; G:=A-B;H:=D+E; I:=D-E;

J:=z1*z2; K:=(I+G)*(I-G); L:=J*K;

u3:=G*L-G^3*F;

v3:=-I*L+G^3*H;

w3:=G^3*J;

S!(x3*w3-u3*z3);

S!(y3*w3-v3*z3);

A.2 Ordinary Elliptic Curves over Finite Fields with Characteristic

Three

The following table lists domain parameters for the ordinary elliptic curves

over the finite field with characteristic three for high security level. The following

parameters are given for each curve:

m The extension degree of the field F3m .

f(z) The reduction polynomial of degree m.

c The coefficients of the elliptic curve E : y2 = x3 + x2 + c.

r The prime order of the base point P .

h The cofactor, that is ]E(F3m) = hr.
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Table 3. Parameters for Ordinary Elliptic Curves in Characteristic Three

E-151: m = 151, f(z) = z151 + 2z2 + 1, h = 3

c = 0x1FC4865AFE00A9216B0B5FD32C6300C4BED0707AE4072A03E55299F157B;

r = 0x359BA2B98CA11D6864A331B45AE711875640BA8E1297230F9EB217FB8393.

E-181: m = 181, f(z) = z181 + 2z37 + 1, h = 3

c = 0x173CB756670960FD06D9438C9A55BE469574A995718B1786C9DAD40C45A7

AC68C208FC3;

r = 0x27367561CDDFD3AAFB8EA1FD4470B1171C349B993B5282BC17E661A1B1

DF65BCE845A035.

E-263: m = 263, f(z) = z263 + 2z69 + 1, h = 3

c = 0x1E47D9F0855EB0ADDCE5948A2A1E5AF24EBFCC3051D647877CFFB91F5

64568C5103A09F22B234CE422567E0629358A740B8944C;

r = 0x994BBF51A32F5E702E4A3FFB7539AC6AAEAAF9B49E4CCA1DE8CE23F9

79DDA476F721963D0BF18B1216F037A8877236007190FD2F.

E-331: m = 331, f(z) = z331 + 2z2 + 1, h = 3

c = 0x52056E6E1C557FC37DD4D21EFFE1D5CA8E1528695E4B13536CF990AE79

C9242B8602535C92522A4EBB87E522ABF5C1CEA952EE52B9F6EA7389304

02CA3713AA0;

r = 0x8361D3334042B3F713BEB5D2C7BFAE83C436C40B479A21A4D1BE815079

F3C07FF992C36206C4E5B5DC9C2206CFB7F1AC1BD0F98A64CAB13DB5

3403AC4007E4875E5.

E-337: m = 337, f(z) = z337 + 2z3 + 1, h = 3

c = 0x359059FA58F98216D63B1FA12F4C194A09FDCFAF27CEEC308FB55B26938

D4A1D2E73ED6E9A17CDF7A84D1FAEDB14E38FC212CD76E460C3C5BFF

688234724B3EC0921;

r = 0x17621926CF1FDF27A973A13C53AD0D7F539BFF4441EE5E9CE59477E3E2B

471F2C6735F0933BB1C1B7ECA1A64D72D8F8F9336B4EE7CCA98AE54623C

8C15D6EF02AC7395.


