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Abstract. ECHO-256 is a second-round candidate of the SHA-3 competition. It is an AES-
based hash function that has attracted a lot of interest and analysis. Up to now, the best
known attacks were a distinguisher on the full internal permutation and a collision on
four rounds of its compression function. The latter was the best known analysis on the
compression function as well as the one on the largest number of rounds so far. In this
paper, we extend the compression function results to get a distinguisher on 7 out of 8
rounds using rebound techniques. We also present the �rst 5-round collision attack on the
ECHO-256 hash function.
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1 Introduction

ECHO-256 [1] is the 256-bit version of one of the second-round candidates of the SHA-3
competition. It is an AES-based hash function that has been the subject of many studies.
Currently, the best known analysis of ECHO-256 are a distinguisher on the full 8-round
internal permutation proposed in [13] and improved in [10]. Furthermore, a 4-round colli-
sion attack of the compression function has been presented in [4]. A previous analysis due
to Schlä�er in [14] has been shown to be incorrect in [4], but it introduced an alternative
description of the ECHO round-function, which has then been reused in several analyses,
including this paper. The best results of this paper are a collision attack on the hash
function reduced to 5 rounds and a distinguisher of the compression function on 7 rounds.
Additionally, we cover two more attacks in the Appendix. The complexities of previous
results and our proposed attacks are reported in Table 1.

Apart from the improved attacks on ECHO-256, this paper also covers a number of new
techniques. The merging process of multiple inbound phases has been improved to �nd
solutions also for the hash function, where much less freedom is available in the chaining
input. For the hash function collision attack on 5 rounds, we use subspace di�erences
which collide with a high probability at the output of the hash function. Additionally,
we use multiple phases also in the outbound part to reduce the overall complexity of the
attacks. For the 7 round compression function distinguisher, we use the new techniques
and algorithms introduced in [10,11].

Outline. The paper is organized as follows. In Section 2, we describe the 256-bit
version of the ECHO hash function and detail an alternative view that has already been used
in several analysis [4,14]. In particular, we emphasize the SuperMixColumns and SuperSBox
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Table 1: Best known cryptanalysis results on ECHO-256.

Rounds Time Memory Generic Type Reference

8 2182 237 2256 Internal Permutation Distinguisher [13]

8 2151 267 2256 Internal Permutation Distinguisher [10]

4 252 216 2256 Compression Function Collision [4]

4 264 264 2128 Hash Function Collision Section B

5 2112 285.3 2128 Hash Function Collision Section 3

6∗ 2160 2128 2256 Compression Function Collision Section A

6 2193 2128 2256 Compression Function Collision Section 4

7∗ 2160 2128 2240 Compression Function Distinguisher Section A

7 2193 2128 2240 Compression Function Distinguisher Section 4
∗ with chosen salt

transformations that ease the analysis. In Section 3, we provide a collision attack on this
hash function reduced to 5 rounds and a distinguisher of the 7-round compression function
in Section 4.

2 ECHO-256 description

ECHO is an iterated hash function and the compression function of ECHO updates an
internal state described by a 16×16 matrix of GF

(
28
)
elements, which can also be viewed

as a 4 × 4 matrix of 16 AES states. Transformations on this large 2048-bit state are
very similar to the one of the AES, the main di�erence being the equivalent S-Box called
BigSubWords, which consists in two AES rounds. The di�usion of the AES states in ECHO
is ensured by two big transformations: BigShiftRows and BigMixColumns (Figure 1).
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Figure 1: One round of the ECHO permutation. Each of the 16 cells is an AES state.

At the end of the permutation, the BigFinal operation adds the current state to the
initial one (feed-forward) and, in the case of ECHO-256, adds its four columns together
to produce the new chaining value. In this paper, we only focus on ECHO-256 and refer
to the original publication [1] for more details on both ECHO-256 and ECHO-512 versions.
Note that the keys used in the two AES rounds are an internal counter and the salt,
respectively: they are mainly introduced to break the existing symmetries of the AES
unkeyed permutation [6]. Since we are not using any property relying on symmetry and
adding constants does not change di�erences, we omit these steps in the following.

Two versions of the hash function ECHO have been submitted to the SHA-3 contest:
ECHO-256 and ECHO-512, which share the same state size and round function, but inject
messages of size 1536 or 1024 bits respectively in the compression function. Note that
the message is padded by adding a single 1 followed by zeros to �ll up the last message
block. The last 18 bytes of the last message block always contain the 2-byte hash output



size, followed by the 16-byte message length. Focusing on ECHO-256 and denoting f its
compression function, Hi the i-th output chaining value, Mi = M0

i ||M1
i ||M2

i the i-th

message block composed of three chunks of 512 bits each M j
i and S = [C0C1C2C3] the

four 512-bit ECHO-columns constituting state S, we have (H0 = IV ):

C0 ← Hi−1, C1 ←M0
i , C2 ←M1

i , C3 ←M2
i .

AES. We recall that one round, among the ten ones, of the AES-128 permutation is the
succession of four transformations: SubBytes (SB), ShiftRows (SR), MixColumns (MC)
and AddRoundKey (AK). We refer to the original publication [15] for further details.

Notations. We consider each state in the ECHO internal permutation, namely after each
elementary transformations. We start with S0, where the IV and the message are combined
and end the �rst round after eight transformations in S8. To refer to the AES-state at row
i and column j of a particular ECHO-state Sn, we use the notation Sn[i, j]. Additionally,
we introduce column-slice to refer to a thin column of size 16× 1 of the ECHO state. The
process of merging two lists L1 and L2 into a new list L is denoted L = L1 ./ L2. In
the event that the merging should be done under some relation t, we use the operator
./|t|, where |t| represents the size of the constraint to be veri�ed in bits. Finally, in an
AES-state, we consider four diagonals (from 0 to 3): diagonal j ∈ [0, 3] will be the four
elements (i, i+ j (mod 4)), with i ∈ [0, 3].

2.1 Alternative description

For an easier description of some of the following attacks, we use an equivalent description
of one round of the ECHO permutation. First, we swap the BigShiftRows transformation
with the MixColumns transformation of the second AES round. Second, we swap SubBytes
with ShiftRows of the �rst AES round. Swapping these operations does not change the
computational result of ECHO and similar alternative descriptions have already been used
in the analysis of AES. Hence, one round of ECHO results in the two transformations
SuperSBox (SB-MC-SB) and SuperMixColumns (MC-BMC), which are separated just by
byte-shu�ing operation. The SuperSBox has �rst been analyzed by Daemen and Rijmen in
[2] to study two rounds of AES and has been independently used by Lamberger et al. in [5]
and Gilbert and Peyrin in [12] to analyze AES-based hash functions. The SuperMixColumns
has been �rst introduced by Schlä�er in [14] and reused in [4]. We refer to those articles
for further details as well.

3 Attack on the 5-round ECHO-256 Hash Function

In this section, we use a sparse truncated di�erential path and the properties of SuperMixColumns
to get a collision attack on 5 rounds of the ECHO-256 hash function. The resulting complex-
ity is 2112 with memory requirements of 285.3. We �rst describe the truncated di�erential
path (a truncated di�erential path only considers whether a byte of the state is active or
not) and show how to �nd conforming input pairs. Due to the sparse truncated di�erential
path, we are able to apply a rebound attack with multiple inbound phases to ECHO. Since
at most one fourth of each ECHO state is active, we have enough freedom for two inbound
phases and are also able to fully control the chaining input of the hash function.



3.1 The Truncated Di�erential Path

In the attack, we use two message blocks where the �rst block does not contain di�erences.
For the second message block, we use the truncated di�erential path given in Figure 2. We
use colors (red, yellow, green, blue, cyan) to describe di�erent phases of the attack and to
denote their resulting solutions. Active bytes are denoted by black color, and active AES
states contain at least one active byte. Hence, the sequence of active AES states for each
round of ECHO is as follows:

5
r1−→ 16

r2−→ 4
r3−→ 1

r4−→ 4
r5−→ 16.

Note that in this path, we keep the number of active bytes low, except for the beginning
and end. Therefore, we have enough freedom to �nd many solutions. We do not allow
di�erences in the chaining input (blue) and in the padding (cyan). The last 16 bytes
of the padding contain the message length and the two bytes above contain size of the
hash function output. Note that the AES states containing the chaining values (blue) and
padding (cyan) do not get mixed with other AES states until the �rst BigMixColumns
transformation. Since the lower half of the state (row 2 and 3) is truncated to compute
the �nal hash value, we force all di�erences to be in the lower half of the message: the
feed-forward will then preserve that property.

3.2 Colliding Subspace Di�erences

In the following, we show that the resulting output di�erences after 5 rounds lie in a vector
space of reduced dimension. This can be used to construct a distinguisher for 5 rounds
of the ECHO-256 hash function. However, due to the low dimension of the output vector
space, we can even extend this subspace distinguisher to get a collision attack on 5 rounds
of the ECHO-256 hash function.

First, we need to determine the dimension of the vector space at the output of the hash
function. In general, the dimension of the output vector space is de�ned by the number of
active bytes prior to the linear transformations in the last round (16 active bytes after the
last SubBytes), combined with the number of active bytes at the input due to the feed-
forward (0 active bytes in our case). This would results in a vector space dimension of
(16+0)×8 = 128. However, a weakness in the combined transformations SuperMixColumns,
BigFinal and the output truncation reduces the vector space to a dimension of 64 at the
output of the hash function for the truncated di�erential path in Figure 2.

We can move the BigFinal function prior to SuperMixColumns, since BigFinal is a lin-
ear transformation and the same linear transformation MSMC is applied to all columns
in SuperMixColumns. Then, we get 4 active bytes at the same position in each AES
state of the 4 resulting column-slices. To each active column-slice C16, we �rst apply
the SuperMixColumns multiplication with MSMC and then, a matrix multiplication using
Mtrunc = [I8 | 08] which truncates the lower 8 rows. Since only 4 bytes are active in C16,
these transformations can be combined into a transformation using a reduced 4×8 matrix
Mcomb applied to the reduced input C4, which contains only the 4 active bytes of C16:

Mtrunc ·MSMC ·C16 = Mcomb ·C4,

The multiplication with zero di�erences of C16 removes 12 columns of MSMC while the
truncation removes 8 rows ofMSMC. For example, considering the �rst active column-slice
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leads to:

Mtrunc ·MSMC ·
[
a 0 0 0 b 0 0 0 c 0 0 0 d 0 0 0

]T
=

 4 6 2 2 6 5 3 3

2 3 1 1 4 6 2 2

2 3 1 1 2 3 1 1

6 5 3 3 2 3 1 1


T

︸ ︷︷ ︸
Mcomb

·
[
a b c d

]T

Analyzing the resulting matrix Mcomb for all four active column-slices shows that in
each case, the rank ofMcomb is two, and not four. This reduces the dimension of the vector
space in each active column-slice from 32 to 16. Since we have four active columns, the
total dimension of the vector space at the output of the hash function is 64. Furthermore,
column i ∈ {0, 1, 2, 3} of the output hash value depends only on columns 4i of state S38.
It follows that the output di�erence in the �rst column i = 0 of the output hash value
depends only on the four active di�erences in columns 0, 4, 8 and 12 of state S38, which we
denote by a, b, c and d. To get a collision in the �rst column of the hash function output,
we get the following linear system of equations:

Mcomb ·
[
a b c d

]T
=
[
0 0 0 0 0 0 0 0

]T
.

Since we cannot control the di�erences a, b, c and d in the following attack, we need
to �nd a solution for this system of equations by brute-force. However, the brute-force
complexity is less than expected due to the reduced rank of the given matrix. Since the rank
is two, 216 solutions exist and a random di�erence results in a collision with a probability
of 2−16 instead of 2−32 for the �rst output column. Since the rank of all four output column
matrices is two, we get a collision at the output of the hash function with a probability of
2−16×4 = 2−64 for the given truncated di�erential path.

3.3 High-Level Outline of the Attack

To �nd input pairs according to the truncated di�erential path given in Figure 2, we use
a rebound attack [8] with multiple inbound phases [5,7]. The main advantage of multiple
inbound phases is that we can �rst �nd pairs for each inbound phase independently and
then, connect (or merge) the results. Furthermore, we also use multiple outbound phases
and separate the merging process into three di�erent parts which can be solved mostly
independently:

1. First Inbound between S16 and S24: �nd 296 partial pairs (yellow and black bytes)
with a complexity of 296 in time and 264 memory.

2. First Outbound between S24 and S31: �lter the previous solutions to get 1 partial
pair (green, yellow and black bytes) with a complexity of 296 in time and 264 memory.

3. Second Inbound between S7 and S14: �nd 232 partial pairs (red and black) for
each of the �rst three BigColumns and 264 partial pairs for the last BigColumn of state
S7 with a total complexity of 264 in time and memory.

4. First Part in Merging the Inbound Phases: combine the 2160 solutions of the
previous phases according to the 128-bit SuperMixColumns condition given in [4]. We
get 232 partial pairs (black, red, yellow and green bytes between state S7 and S31) with
complexity 296 in time and 264 memory.

5. Merge Chaining Input: repeat from Step 1 for 216 times to get 248 solutions for
the previous phases. Compute 2112 chaining values (blue) using 2112 random �rst mes-
sage blocks. Merge these solutions according to the overlapping 20 bytes (red with
blue/cyan) in state S7 to get 248 × 2112 × 2−160 = 1 partial pair with complexity 2112

in time and 248 memory.



6. Second Part in Merging the Inbound Phases: �nd one partial solution for the
�rst two columns of state S7 according to the 128-bit condition at SuperMixColumns
between S14 and S16 with complexity 264 in time and memory.

7. Third Part in Merging the Inbound Phases: �nd one solution for all remaining
bytes (last two columns of state S7) by ful�lling the resulting 192-bit condition using
a generalized birthday attack with 4 lists. The complexity is 264 in time and memory
to �nd one solution, and 285.3 in time and memory to �nd 264 solutions [16].

8. Second Outbound Phase to get Collisions: in a �nal outbound phase, the result-
ing di�erences at the output of the hash function collide with a probability of 2−64

and we get one collision among the 264 solutions of the previous step.

The total time complexity of the attack is 2112 and determined by Step 5; the memory
complexity is 285.3 and determined by Step 7.

3.4 Details of the Attack

In this section, we describe the each phase of the collision attack on 5 rounds of ECHO-256
in detail. Note that some phases are also reused in the attacks on the compression function
of Section 4.

First Inbound between S16 and S24. We �rst search for internal state pairs con-
forming to the truncated di�erential path in round 3 (yellow and black bytes). We start
the attack by choosing di�erences for the active bytes in state S16 such that the truncated
di�erential path of SuperMixColumns between state S14 and S16 is ful�lled (Section 2.1).
We compute this di�erence forward to state S17 through the linear layers.

We continue with randomly chosen di�erences of state S24 and compute backwards to
state S20, the output of the SuperSBoxes. Since we have 64 active S-boxes in this state, the
probability of a di�erential is about 2−1×64. Hence, we need 264 starting di�erences but get
264 solutions for the inbound phase in round 3 (see [8]). We determine the right pairs for
each of the 16 SuperSBox between state S17 and S20 independently. Using the Di�erential
Distribution Table of the SuperSBoxes, we can �nd one right pair with average complexity
one. In total, we compute 296 solutions for this inbound phase with time complexity 296

and memory complexity of at most 264. For each of these pairs, di�erences and values of
all yellow and black bytes in round 3 are determined.

Second Outbound between S24 and S31. In the outbound phase, we ensure the
propagation in round 4 of the truncated di�erential path by propagating the right pairs
of the previous inbound phase forwards to state S31. With a probability of 2−96, we get
four active bytes after MixColumns in state S31 (green) conforming to the truncated path.
Hence, among the 296 right pairs of the inbound phase between S16 and S24 we expect to
�nd one such right pair.

The total complexity to �nd this partial pair between S16 and S31 is then 296. Note that
for this pair, the values and di�erences of the yellow, green and black bytes between states
S16 and S31 can be determined. Furthermore, note that for any choice of the remaining
bytes, the truncated di�erential path between state S31 and state S40 is ful�lled.

Second Inbound between S7 and S14. Here, we search for many pairs of inter-
nal states conforming to the truncated di�erential path between states S7 and S14. Note
that we can independently search for pairs of each BigColumn of state S7, since the four



BigColumns stay independent until they are mixed by the following BigMixColumns trans-
formation between states S15 and S16. For each BigColumn, four SuperSBoxes are active
and we need at least 216 starting di�erentials for each one to �nd the �rst right pair.

The di�erence in S14 is already �xed due to the yellow inbound phase but we can
still choose at least 232 di�erences for each active AES state in S7. Using the rebound
technique, we can �nd one pair on average for each starting di�erence in the inbound
phase. Then, we independently iterate through all 232 starting di�erences for the �rst,
second and third column and through all 264 starting di�erences for the fourth column of
state S7. We get 232 right pairs for each of the �rst three columns and 264 pairs for the
fourth column. The complexity to �nd all these pairs is 264 in time and memory.

For each resulting right pair, the values and di�erences of the red and black bytes
between states S7 and S14 can be computed. Furthermore, the truncated di�erential path
in backward direction, except for two cyan bytes in the �rst states, is ful�lled. In the next
phase, we partially merge the right pairs of the yellow and red inbound phase. But �rst,
we recall the conditions for this merge.

First Part in Merging the Inbound Phases. For each pair of the previous two
phases, the values of the red, yellow and black bytes of state S14 and S16 are �xed. These
two states are separated by the linear SuperMixColumns transformation: taking the �rst
column-slice as an example, we get

MSMC · [A0 x0 x1 x2 A1 x3 x4 x5 A2 x6 x7 x8 A3 x9 x10 x11]
T

= [B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]
T,

where MSMC is the SuperMixColumns transformation matrix, Ai the input bytes deter-
mined by the red inbound phase and Bi the output bytes determined by the yellow inbound
phase. All bytes xi and yi are free to choose. As shown by Jean and Fouque [4], we only get
a solution with probability 2−8 for each column-slice due to the low rank of theMSMC ma-
trix. In [4] (Appendix A), the 8-bit condition for that particular column-slice that ensures
the system to have solutions has been derived and is given as follows:

2 ·A0 + 3 ·A1 +A2 +A3 = 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (1)

Similar 8-bit conditions exist for all 16 column-slices. In total, each right pair of the two
(independent) inbound phases results in a 128-bit condition on the whole SuperMixColumns
transformation between states S14 and S16.

Remember that we have constructed one pair for the yellow inbound phase and in
total, 232 × 232 × 232 × 264 = 2160 pairs for the red inbound phase. Among these 2160

pairs, we expect to �nd 232 right pairs which also satisfy the 128-bit condition of the
SuperMixColumns between states S14 and S16. In the following, we show how to �nd all
these 232 pairs with a complexity of 296.

First, we combine the 232 × 232 = 264 pairs determined by the two �rst BigColumns of
state S7 in a list L1 and the 232 × 264 = 296 pairs determined by the last two BigColumns
of state S7 in a list L2. Note that the pairs in these two lists are independent. Then, we
separate Equation (1) into terms determined by L1 and terms determined by L2:

2 ·A0 + 3 ·A1 = A2 +A3 + 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (2)

We apply the left-hand side to the elements of L1 and the right-hand side to elements of
L2 and sort L1 according to the bytes to be matched.



Then, we can simply merge (join) these lists to �nd those pairs which satisfy the 128-bit
condition imposed by the SuperMixColumns and store these results in list L12 = L1 ./128
L2. This way, we get 2

64×296×2−128 = 232 right pairs with a total complexity of 296. We
note that the memory requirements can be reduced to 264 if we do not store the elements
of L2 but compute them online. The resulting 232 solutions are partial right pairs for the
black, red, yellow and green bytes between state S7 and S31.

Merge Chaining Input. Next, we need to merge the 232 results of the previous phases
with the chaining input (blue) and the bytes �xed by the padding (cyan). The chaining
input and padding overlap with the red inbound phase in state S7 on 5 × 4 = 20 bytes.
This results in a 160-bit condition on the overlapping blue/cyan/red bytes. To �nd a pair
verifying this condition, we �rst generate 2112 random �rst message blocks, compute the
blue bytes of state S7 and store the results in a list L3.

Additionally, we repeat 216 times from the yellow inbound phase but with other starting
points4 in state S24. This way, we get 2

16×232 = 248 right pairs for the combined yellow and
red inbound phases, which also satisfy the 128-bit condition of SuperMixColumns between
states S14 and S16. The complexity is 216× 296 = 2112. We store the resulting 248 pairs in
list L12.

Next, we merge the lists according to the overlapping 160-bits (L12 ./160 L3) and get
248 × 2112 × 2−160 = 1 right pair. If we compute the 2112 message blocks of list L3 online,
the time complexity of this merging step is 2112 with memory requirements of 248. For the
resulting pair, all di�erences between states S4 and S33 and all colored byte values (blue,
cyan, red, yellow, green and black) between states S0 and S31 can be determined.
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Figure 3: States used to merge the two inbound phases with the chaining values. The merge inbound
phase consists of three parts. Brown bytes show values already determined (�rst part) and gray values are
chosen at random (second part). Green, blue, yellow and red bytes show independent values used in the
generalized birthday attack (third part) and cyan bytes represent values with the target conditions.

Second Part in Merging Inbound Phases. To completely merge the two inbound
phases, we need to �nd according values for the white bytes. We use Figure 3 to illustrate
the second and third part of the merge inbound phase. In this �gure, we only consider
values and therefore, do not show active bytes (black). Furthermore, all brown and cyan
bytes have already been chosen in one of the previous steps. In the second part of the
merge inbound phase, we only choose values for the gray and light-gray bytes. All other
colored bytes show steps of the following merging phase.

We �rst choose random values for all remaining bytes of the two �rst columns in state
S7 (gray and light-gray) and independently compute the columns forward to state S14.
Note that we need to try 22×8+1 values for AES state S7[2, 1] to also match the 2-byte
(cyan) and 1-bit padding at the input in AES state S0[2, 3]. Then, all gray, light-gray,

4Until now, we have chosen only 296 out of 2128 di�erences for this state.



cyan and brown bytes have already been determined either by an inbound phase, chaining
value, padding or just by choosing random values for the remaining free bytes of the two
�rst columns of S7. However, all white, red, green, yellow and blue bytes are still free to
choose.

By considering the linear SuperMixColumns transformation, we observe that in each
column-slice, 14 out of 32 input/output bytes are already �xed and 2 bytes are still free
to choose. Hence, we expect to get 216 solutions for this linear system of equations. Unfor-
tunately, also for the given position of already determined 14 bytes, the linear system of
equations does not have a full rank. Again, we can determine the resulting system using
the matrix MSMC of SuperMixColumns. As an example, for the �rst column-slice, the
system is given as follows:

MSMC · [A0 L0 L1 L2 A1 L
′
0 L
′
1 L
′
2 A2 x6 x7 x8 A3 x9 x10 x11]

T

= [B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]
T.

The free variables in this system are x6, . . . , x11 (green). The values A0, A1, A2, A3, B0, B1,
B2, B3 (brown) have been determined by the �rst or second inbound phase and the values
L0, L1, L2 (light-gray) and L′0, L

′
1, L

′
2 (gray) are determined by the choice of arbitrary

values in state S7. We proceed as before and determine the linear system of equations
which needs to have a solution: 3 1 1 3 1 1

2 3 1 2 3 1

1 2 3 1 2 3

1 1 2 1 1 2

 · [x6 x7 x8 x9 x10 x11 ]T =
[
c0 c1 c2 c3

]T
. (3)

The resulting linear 8-bit equation to get a solution for this system can be separated
into terms depending on values of Li and on L′i, and we get f1(Li)+f2(L

′
i)+f3(ai, bi) = 0,

where f1, f2 and f3 are linear functions. For all other 16 column-slices and �xed positions
of gray bytes, we get matrices of rank three as well. In total, we get 16 8-bit conditions
and the probability to �nd a solution for a given choice of gray and light-gray values in
states S14 and S16 is 2

−128. However, we can �nd a solution to these linear equations using
the birthday e�ect and a meet-in-the-middle attack with a complexity of 264 in time and
memory.

We start by choosing 264 values for each of the �rst (gray) and second (light-gray)
BigColumns in state S7. We compute these values independently forward to state S14 and
store them in two lists L and L′. We also separate all equations of the 128-bit condition
into parts depending only on values of L and L′. We apply the resulting functions f1, f2, f3
to the elements of lists Li and L

′
i, and merge two lists L ./128 L

′ using the birthday e�ect.

Third part in Merging Inbound Phases. We continue with a generalized birthday
match to �nd values for all remaining bytes of the state (blue, red, green, yellow, cyan and
white of Figure 3). For each column in state S14, we independently choose 264 values for
the green, blue, yellow and red columns, and compute them independently backward to
S8. We need to match the values of the cyan bytes of state S7, which results in a condition
on 24 bytes or 192 bits. Since we have four independent lists with 264 values in state S8,
we can use the generalized birthday attack [16] to �nd one solution with a complexity of
2192/3 = 264 in time and memory.

In more detail, we need to match values after the BigMixColumns transformation in
the backward direction. Hence, we �rst multiply each byte of the four independent lists
by the four multipliers of the InvMixColumns transformation. Then, we get 24 equations



containing only XOR conditions on bytes between the target value and elements of the
four independent lists, which can be solved using a generalized birthday attack.

To improve the average complexity of this generalized birthday attack, we can start
with larger lists for the green, blue, yellow and red columns in state S14. Since we need
to match a 192-bit condition, we can get 23 ·x × 2−192 = 2x solutions with a time and
memory complexity of max{264, 2x} (see [16] for more details). Note that we can even
�nd solutions with an average complexity of 1 using lists of size 296. Each solutions of
the generalized birthday match results in a valid pair conforming to the whole 5-round
truncated di�erential path.

Second Outbound Phase to get Collisions. For the collision attack on 5 rounds,
we start the generalized birthday attack of the previous phase with lists of size 285.3. This
results in 23 · 85.3 × 2−192 = 264 solutions with a time and memory complexity of 285.3, or
with an average complexity of 221.3 per solution. These solutions are propagated outwards
in a second, independent outbound phase. Since the di�erences at the output collide with
a probability of 2−64, we expect to �nd one pair which collides at the output of the
hash function. The time complexity is determined by merging the chaining input and the
memory requirements by the generalized birthday attack. To summarize, the complexity
to �nd a collision for 5 rounds of the ECHO-256 hash function is given by about 2112

compression function evaluations with memory requirements of 285.3.

4 Distinguisher on the 7-round ECHO-256 Compression Function

In this section, we detail our distinguisher on 7 rounds in the known-salt model. First, we
show how to obtain partial solutions that verify the path from the state S6 to S23 with
an average complexity of 264 in time, as we obtain 264 solutions with a cost of 2128. These
partial solutions determine also the values of the blue bytes (in Figure 4). Next, we show
how to do the same for the yellow part of the path from S30 to S47. Finally, we explain
how to merge these partial solutions for �nding one that veri�es the whole path.

4.1 Finding pairs between S6 and S23

We explain here how to �nd 264 solutions for the blue part with a cost of 2128 in time
and 264 in memory. This is done with a stop-in-the-middle algorithm similar to the one
presented in [11] for improving the time complexity of the ECHO-256 distinguisher. This
algorithm has to be adapted to this particular situation, where all the active states belong
to the same BigColumn.

We start by �xing the di�erence in S8 to a chosen value, so that the transition between
S6 and S8 is veri�ed. We �x the di�erence in the active diagonals of the two AES-states
S23[0, 0] and S23[3, 1] to a chosen value.

From state S8 to S13, we have four di�erent SuperSBox groups involved in the active
part. From states S16 to S22, we have 4× 4 SuperSBox groups involved (4 per active AES
state). Those 16 groups, as well as the 4 previous ones, are completely independent from
S16 to S22 (respectively from S8 to S13). From the known di�erence in S8, we build four
lists of values and di�erences in S13: each list corresponds to one of the four SuperSBox
groups. Each list is of size 232 because once we know the input di�erence, we try all the
possible 232 possible values and then we can compute the values and di�erences in S13 (as
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Figure 4: Di�erential path for the seven-round distinguisher.

we said, the four groups are independent in this part of the path). In the sequel, those
lists are denoted L0

A, L
1
A, L

2
A and L3

A.

There are 64 bits of di�erences not yet �xed in S23. Each active diagonal only a�ects
the AES state where it is in, so we can independently consider 232 possible di�erences for
one diagonal and 232 di�erences for the other. We can now build the 16 lists corresponding
to the 16 SuperSBox groups as we did before, but considering that: the 8 lists corresponding
to 8 groups of the two AES states S16[0, 0] and S16[3, 0], as they have their di�erences in
S22 already �xed, have a size of 232 (corresponding to the possible values for each group).
These are the lists Li

0,0 and Li
3,0, with i ∈ [0, 3] that represents the ith diagonal of the



state. But the lists Li
1,0, L

i
2,0, with i ∈ [0, 3], as they do not have yet the di�erence �xed,

have a size of 232+32 each, as we can consider the 232 possible di�erences for each not �xed
diagonal independently. Next, we go through the 264 possible di�erences of the two �rst
diagonals (diagonals 0 and 1) of the active AES state in S15. For each one of these 264

possible di�erences:

� The associated di�erences in the two same diagonals in the four active AES states of
S16 can be computed. Consequently, we can check in the previously computed ordered
lists Li

j,0 with j ∈ [0, 3] and i ∈ [0, 1] where we �nd this di�erence5. For j ∈ {0, 3},
on average, we obtain one match on each one of the lists L0

0,0, L
1
0,0, L

0
3,0 and L1

3,0.

For j ∈ {1, 2}, we obtain 232 matches, one for each of the 232 possible di�erences in
the associated diagonals in S23. That is 2

32 matches for L0
1,0 and L

1
1,0, where a pair of

values formed by one element of each list is only valid if they were generated from the
same di�erence in S23. Consequently, we can construct the list L0,1

1,0 of size 232 where
we store the values and di�erences of those two diagonals in the AES state S16[1, 0] as
well as the di�erence in S23 from which they were generated. Repeating the process for
L0
2,0 and L1

2,0, we construct the list L
0,1
2,0 of size 232. We can merge the lists L0,1

1,0, L
0,1
2,0

and the four �xed values for di�erences and values obtained from the matches in the
lists L0

0,0, L
1
0,0, L

0
3,0 and L1

3,0, corresponding to the AES states S16[0, 0] and S16[3, 0].

This generates the list L0,1 of size 264. Each element of this list contains the values
and di�erences of the two diagonals 0 and 1 of the four active AES states in S16. As
we have all the values for the two �rst diagonals in the four AES states, for each one
of these elements, we compute the values in the two �rst diagonals of the active state
in S15 by applying the inverse of BigMixColumns. We order them according to these
values.

� Next, we go through the 264 possible di�erences of the two next diagonals (diagonals
2 and 3) of the active AES state in S15. For each one of these 264 possible di�erences:
• All the di�erences in the AES state S13[0, 0] are determined. We check in the lists
L0
A, L

1
A, L

2
A and L3

A if we �nd a match for the di�erences. We expect to �nd one in
each list and this determines the values for the whole state S15[0, 0] (as the elements
in these lists are formed by di�erences and values). This means that the value of
the active AES state in S15 is also completely determined. This way, we can check
in the previously generated list L0,1 if the correct value for the two diagonals 0 and
1 appears. We expect to �nd it once.
• As we have just found a valid element from L0,1, it determines the di�erences in the
AES states S23[1, 0] and S23[2, 0] that were not �xed yet. Now, we need to check if,
for those di�erences in S23, the corresponding elements in the four lists Li

1,0, L
i
2,0

for i ∈ [2, 3] that match with the di�erences �xed in the diagonals 2 and 3 of S15
6, satisfy the values in S15 that were also determined by the lists Li

A. This occurs
with probability 2−64.

All in all, the time complexity of this algorithm is 264 · (264+264) = 2129 with a memory re-
quirement of 264. The resulting expected number of valid pairs is 264 · 264 · 264 · 2−64 · 2−64 =
264.

4.2 Finding pairs between S30 and S47

In quite the same way as the previous section, we can �nd solutions for the yellow part
with an average cost of 264. To do so, we take into account the fact that the MixColumns

5 i is either 0 or 1 because we are just considering the two �rst diagonals.
6 We expect one match per list.



and BigMixColumns transformations commute. So, if we exchange their positions between
states S39 and S40, we only have one active AES state in S39. We �x the di�erences in S47
and in two AES states, say S32[0, 0] and S32[1, 1], and we still have 232 possible di�erences
for each of the two remaining active AES states in S32. Then, the lists L

i
A are generated

from the end and contain values and di�erences from S40. Similarly, the lists Li
j,j contain

values and di�erences from S38. We can apply the same algorithm as before and obtain
264 solutions with a cost of 2128 in time and 264 in memory.

4.3 Merging solutions

In this section, we explain how to get a solution for the whole path. As explained in our
Section 4.1, we can �nd 264 solutions for the blue part, that have the same di�erence for
the active AES states of columns 0 and 1 in S23. We obtain 264 solutions from a �xed
value for the di�erences in S8 and the AES states S23[0, 0] and S23[3, 1]. Repeating this
process for the 232 possible di�erences in S8, we obtain in total 296 solutions for the blue
part with the same di�erences in the columns 0 and 1 in S23. The cost of this step is 2160

in time and 296 in memory.

The same way, using the algorithm explained in Section 4.2, we can also �nd 296

solutions for the yellow part, that have the same di�erence value for the AES active states
of columns 0 and 1 in S32 (we �x the di�erence value of this two columns in S32, and we
try all the 232 possible values for the di�erence in S47). The cost of this step is also 2160

in time and 296 in memory.

Now, from the partial solutions obtained in the previous steps, we want to �nd a
solution that veri�es the whole di�erential path. For this, we want to merge the solutions
from S23 with the solutions from S32. We know that the di�erences of the columns 0,1
of S24 and S31 are �xed. Hence, from S24 to S31, there are four AES states for which we
know the input di�erence and the output di�erence, as they are �xed7. We can then apply
a variant of the SuperSBox [3, 5] technique in these four AES states: it �xes the possible
values for the active diagonals of those states.

The di�erences in the other four AES states in S24 that are �xed are associated to other
di�erences that are not �xed 8. There are 264 possible di�erences, each one associated to
232 solutions for S32-S47 given by the solutions that we found in the second step. For each
one of these 264 possible di�erences, one possible value is associated by the SuperSBox.
When computing backwards these values to state S24, as we have also the values for the
other four AES states of the columns 0 and 1 that are also �xed (in the third step), we
can compute the values for these two columns in S23, and we need 32×2 bit conditions to
be veri�ed on the values. So for each one of the 264 possible di�erences in S31, we obtain
296−64 = 232 that verify the conditions on S23. In total, we have 264+32 = 296 possible
partial matches.

For each of the 264 possible di�erences in S31, its associated 232 possible partial matches
also need to verify the 128-bit condition in S30-S32 at the SuperMixColumns layer [4] and the
remaining 2× 32 bit conditions on the values of S23. Since for each of the 264 di�erences
we have 232 possible associated values in S32, the probability of �nding a good pair is
296−128−64+32 = 2−64.

If we repeat this merging procedure 264 times, namely for 232 di�erences in the columns
0 and 1 of S23 and for 232 di�erences in the columns 0 and 1 of S32, we should �nd a
solution. We then repeat the procedure for the cross product of the 232 solutions for each

7 S24[0, 0], S24[0, 1], S24[1, 1], S24[3, 0] correspond to S31[0, 0], S31[0, 1], S31[1, 0], S31[3, 1], respectively.
8 S24[1, 0], S24[2, 0], S24[2, 1], S24[3, 1] correspond to S31[1, 3], S31[2, 2], S31[2, 3], S31[3, 2].



side. As we do not want to compute them each time that we use them, as it would increase
the time complexity, we can just store the 264+32+32 = 2128 solutions for the �rst part and
use the corresponding ones when needed, while the second part is computed in sequence.
The complexity would be: 2192 + 2192 + 296+64 in time and 2128 in memory. So far, we
have found a partial solution for the di�erential part for rounds from S6 to S48. We still
have the passive bytes to determine and the condition to pass from S50 to S51 to verify.
This can be done exactly as in the second and third part of the merge inbound phase of
Section 3.4 with no additional cost.

Moreover, since we can �nd x solutions with complexity max{x, 296} in time and 296

memory for the (independent) merge inbound phase, we can get x < 2193 solutions with
time complexity 2193 + max{x, 296} ∼ 2193 and 2128 memory. We need only 296 of these
solutions to pass the probabilistic propagation in the last round from S50 to S51. Hence,
we can �nd a complete solution for the whole path with a cost of about 2193 in time and
2128 in memory. Furthermore, with a probability of 2−128, the input and output di�erences
in S0 and S48 collide in the feed-forward and BigFinal transformation. Therefore, we can
also generate free-start collisions for 6 rounds of the compression function with a time
complexity of 2193 + 2128 ∼ 2193 and 2128 memory.

5 Conclusions

In this work, we have presented new results on the second-round candidate of the SHA-3
competition ECHO-256 that improve considerably the previous published cryptanalysis.
Our analysis are based on multi-inbound rebound attacks and are summarized in Table 1.
The main results are a 5-round collision of the hash function and a 7-round distinguisher
of its compression function. All of our results take into account the condition observed
in [4], which is needed to merge the results of multiple inbound phases, and satisfy it. The
7-round distinguisher on the compression function uses the stop-in-the-middle algorithms
proposed in [10].
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A Chosen-Salt Attacks on the ECHO Compression Function

In this section, we show how to get a collision attack for 6 rounds and a subspace distin-
guisher for 7 rounds of the ECHO-256 compression function in the chosen-salt model. For
both attacks, we get a complexity of 2160 compression function evaluations with memory
requirements of 2128.

The attacks on the hash functions of ECHO can be extended to the compression function
in a straightforward way. In this case, instead of the chaining value, a 512-bit value of
another inbound phase is merged with the �rst inbound phase. In fact, we can continue
with a similar 3-round path in backward direction as we have in the hash function case in
forward direction. Then, the full active ECHO state is located in the middle round and we
can construct attacks for up to 7 rounds for the compression functions of ECHO-256 (see
Figure 5).

A.1 The Truncated Di�erential Path

We use the 7-round truncated di�erential path given in Figure 5. Black bytes are active and
colored bytes show the di�erent inbound and outbound phases. Since this path is sparse,
we are able to �nd many right pairs conforming to the path. We can already compute
the expected number of right pairs by considering the MixColumns and SuperMixColumns
transformations. At the input, we can freely choose the 256-byte values, the 16-byte dif-
ference between the values and the 16-byte salt. We get a reduction of pairs at the �rst
MC and SMC of round 1, the second MC of round 3, the �rst MC and SMC of round 4,
the BMC of round 5 and the second MC of round 6. The di�erential probability (in base-2
logarithm) for the path is given as follows:

8× (−12− 3− 48− 48− 12− 48− 12) = −8× 183.

To summarize, the expected number of pairs conforming to this 7-round truncated di�er-
ential path is

28×(256+16+16) × 2−8×183 = 2800,

which corresponds to 800 degrees of freedom. Note that this is much more than for the
paths given in [9] and [12].

http://eprint.iacr.org/
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
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Figure 5: The truncated di�erential path to get collisions for 6 rounds and near-collisions for 7 rounds
of the ECHO-256 compression function. Black bytes are active, red bytes are values computed in the �rst
inbound phase, yellow bytes in the second, blue bytes in the third and green bytes in the fourth inbound
or second outbound phase, and cyan bytes in the third outbound phase. Purple bytes are determined in
the �rst outbound phase and gray bytes are chosen in the merge inbound phase.

A.2 Outline of the Attack

The main idea of the attack is to �nd solutions for the forward and backward parts
independently for �xed di�erences at the same layer between states S30 and S32. For the
yellow/purple part, we can �nd 2128 pairs with a complexity of 2128 by choosing the salt
value. For the green/blue/red part, we detail how to �nd 2128 pairs as well, but with a



complexity of 2160 by constructing the salt. Then, we just need to match the 128-bit salt
values of the forward and backward parts and ful�ll the 128-bit condition on the input
(red) and output (yellow) values of SuperMixColumnsfor the merge to be possible. Since
we get 2128 independent pairs for both the forward and backward parts, we can ful�ll the
resulting 256-bit condition by merging the two resulting lists.

A.3 Finding Right Pairs for Sparse Paths of the Permutation

In this section, we show how to �nd a pair for the �rst 6 rounds of the 7-round truncated
di�erential path of Figure 5. We detail how to �nd such a right pair in time 2160 with 2128

memory. We use this path in the chosen-salt model to get a collision for 6 rounds and a
distinguisher for 7 rounds of the ECHO-256 compression function.

Inbound between S30 and S40. We choose a di�erence for state S32 such that the
truncated di�erential path of SuperMixColumns between state S30 and S32 is ful�lled.
Then, for each of the 2128 di�erences in state S40, we perform an inbound phase between
states S32 and S40. In average, we get one solution with average complexity one: we can
then compute 2128 pairs for the yellow inbound phase with complexity 2128. We store these
pairs sorted by their di�erence in state S40 in list L1.

Outbound between S40 and S47. We continue to �nd pairs which also satisfy the
truncated di�erential path until state S47. We choose 2128 random pairs for the AES state
in S47 (according to the given truncated di�erential path) and compute backwards to state
S40. For each resulting di�erence in S40, we lookup the matching di�erence in list L1. To
match also the values, we can construct the 128-bit salt value accordingly. Thus, we get
2128 pairs with complexity 2128 according to the truncated di�erential path from state S32
to state S48.

Inbound between S23 and S30. The red inbound phase is the same as in the hash
function attack: we start with the di�erence between states S30 and S32, which has been
chosen in the yellow inbound phase. Then, we do four independent inbound phases for each
BigColumn in state S23. Since we can start with at least 232 di�erences for each column in
state S23, we also get 232 pairs for each column with a time complexity of 232.

Inbound between S15 and S23. Independently from the previous step, in the blue
inbound phase, we start with a �xed di�erence in state S15 and compute this di�erence
forward to state S17. Again, we can choose all 232 di�erences for each BigColumn of state
S23 and perform the blue inbound phases independently for each active AES state in the
backward direction. For each column, we get 232 pairs with a complexity of 232.

Merge Inbounds. When merging the solutions of the blue and red inbound phases,
we want to get one pair with average complexity one. Note that for each inbound phase
and each column of state S23, we have 232 right pairs. Moreover, we are allowed to set
the salt value. We then start by matching the di�erences in the overlapping four bytes of
each BigColumn. Since we have 232 solutions for each of the blue and the red part, we get
232 × 232 × 2−32 = 232 pairs with matching di�erences but non-matching values.

To match also these 4-byte values, we only set the four diagonal bytes of the salt value.
For each of the 232 pairs with matching di�erences, we compute the diagonal bytes of the



salt such that the values also match. We sort the resulting list according to the 4-byte
salt value and repeat the same for all four BigColumns of state S23. Then, we just need
to iterate through all four lists and search for matching salt values. Note that for some
salt values, we will get no solution, but for some we will get more than one solution. On
average, we expect to get 232 matching pairs with a complexity of 232 with chosen diagonal
bytes of the salt.

Inbound between S6 and S15. To �nd a pair of states conforming to the green part,
we �rst choose a di�erence verifying the truncated di�erential path between state S6 and
state S8. The second starting point for the green inbound phase is the di�erence in state
S15, which has been chosen in the blue inbound phase. Again, we get one pair on average
for each starting di�erential. This pair needs to be connected with the solutions of the
blue inbound phase. To do so, we �rst match the values in the diagonal bytes of state
S15. Remember that in the previous phases, we have constructed 232 pairs for a single
di�erence in state S15. Among these pairs, we expect to �nd one such that the diagonal
4-byte values between the green and blue inbound phase match. To connect the other
12 bytes, we can simply set the remaining 12 bytes of the salt value. Hence, we get one
solution for the combined green, blue and red part with an average complexity of 232.

First Part in Merging Inbound Phases. To merge the inbound phases, we �rst
compute 2128 pairs for the yellow/purple part with a time and memory complexity of 2128

and store these pairs in a list L2. Similarly, we compute 2128 pairs for the green/blue/red
part. Since the complexity to compute one solution for this part is 232, the time complexity
to compute all 2128 pairs is 2160. To connect the resulting pairs between states S30 and
S32, we need to satisfy two 128-bit conditions. First, we need to verify the linear 128-
bit SuperMixColumns condition observed by Jean and Fouque in [4]. Second, since each
solution of the yellow/purple and green/blue/red part has also a di�erent salt value, we
need to match the 128-bit salt as well. In the end, this leads to a 256-bit condition, which
we can be satis�ed by merging the two lists L1 and L2 under that condition to produce
2128 × 2128 × 2−256 = 1 right pair, which satis�es the whole 6-round truncated di�erential
path. The time complexity of this step is 2160 with memory requirements of 2128.

Second Part in Merging Inbound Phases. In the second part of the merge inbound
phase, we need to �nd values for the two �rst columns of Figure 3. This part of the attack
is the same as in the hash function attack on ECHO-256 (see Section 3.4).

Third Part in Merging Inbound Phases. The only di�erence in the third part of
the merge inbound phase is that we change the time-memory trade-o� slightly to get an
average complexity of 1 for each solution. Again, we do a generalized birthday attack but
this time, we start with 296 independent values for each column of state S30 (Figure 3).
Since we have a 192-bit condition in state S23, we get 2

3×96×2−192 = 296 solutions with a
complexity of 296 in time and memory, or with an average complexity of 1 per solution [16].
It follows that we can �nd up to 2160 right pairs for the 6-round truncated di�erential path
with a total complexity of 2160 and memory requirements of 2128.

A.4 Chosen-Salt Collision Attack for 6 Rounds

To get a collision for 6 rounds of the 512-bit compression function of ECHO-256 in the
chosen-salt, we need to ensure that the di�erences in the feed-forward cancel the output



di�erences of the permutation: this happens with a probability of 2−128. Since we can �nd
2160 pairs for the truncated di�erential path with a complexity of 2160, we expect to �nd
232 collisions at the output of the 6-round compression function with a time complexity
of 2160 and memory requirements of 2128.

A.5 Chosen-Salt Distinguisher for 7 Rounds

To get a chosen-salt distinguisher for 7 rounds of the compression function of ECHO-256,
we use the whole truncated di�erential path given in Figure 5. Note that the last round
of this truncated di�erential path is veri�ed with a probability of 2−96. Furthermore, with
an additional 32-bit condition on the active bytes in state S52, we can �x the di�erence
at the output of the permutation, prior to the feed-forward. In this case, only the 16-byte
di�erences in the diagonal bytes of the output of the compression function change for
each additional found pair. In other words, the di�erence vector space at the output of
the compression function reduces to a dimension of 128. We use a third outbound phase
to satisfy these conditions in the last round. Since we can �nd one solution for the white
bytes of the 6-round path with an average complexity one, we can �nd one pair which
also satis�es the conditions in the last round with a time and memory complexity 2128.
Note that we can �nd up to 232 such pairs with a total complexity of 2160 in time and
2128 memory.

Again, we use [5, Equation 19] to compute the complexity of a generic distinguishing
attack on the ECHO-256 compression function. We get the parameters N = 512 (com-
pression function output size), n = 128 (dimension of output di�erence vector space) and
t = 232 (number of outputs in vector space) for the subspace distinguisher. Then, the
generic complexity to construct 232 elements in a vector space of dimension 128 is about
2207.8 compression function evaluations. All in all, we get a chosen-salt distinguisher for 7
rounds of the ECHO-256 compression function with a complexity of 2160 in time and 2128

memory.
Note that we can use almost the same attack to construct 232 near-collisions with a

zero di�erence in the same 320 bits. Again, we need to satisfy the 96-bit condition in
the cyan bytes in the last round. However, we now require that the overlapping 4-byte
di�erences in the feed-forward cancel each other. This 32-bit condition ensures that we
get only 4 × 6 = 24 active bytes at the output of the compression function for 232 pairs
with a total complexity of 2160 in time and 2128 memory in the chosen-salt model.

B Collision Attack on the 4-round ECHO-256 Hash Function

In this section, we describe a way to extend the compression function collision attack
presented in [4] into a collision attack on the 4-round hash function ECHO-256 with a time
and memory complexity of 264. That published attack �nds a message pair (M1,M

′
1) and

a chaining value h such that f(h,M1) = f(h,M ′1), where f is the ECHO-256 compression
function. To get a collision in the hash function, the di�erence then consists in �nding
a message block M0 which veri�es f(IV,M0) = h. This way, the collision in the hash
function is the result of an internal collision in the compression function: consequently,
we do not need to take care of the padding in that scenario. For any message M , we
would have: ECHO4R(IV,M0||M1||M) = ECHO4R(IV,M0||M ′1||M), where || denotes the
concatenation of messages and ECHO4R the 4-round ECHO-256 hash function.

Description of the attack. As in the other attacks suggested in this paper, we use the
rebound technique with multiple inbound phases to �nd a valid message pair. The path
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used here is depicted in Figure 6. The �rst inbound is located in the second round between
states S7 and S14 and can be done in parallel on the four BigColumns and the second one
is in the third round between states S16 and S24. We extend the latter by a probabilistic
outbound phase to �lter out some of its valid pairs in order to reduce the number of active
bytes in the �nal fourth round. In the sequel, we consider the alternative description of
the permutation (see 2.1).

At �rst, we precompute and store the Di�erential Distribution Table∆ of the SuperSBox
in time and memory 264. Then, we randomize the di�erences around the merging point:
the SuperMixColumns at the end of the second round. Using ∆, we �nd a pair of internal
states conforming to the second inbound and the outbound phase. This can be done in
the same way as in [4] in less than 264. We then �nd a valid pair of BigColumns for the
�rst BigColumn in the �rst inbound: this �xes the value of diag(S7[0, 0]) overlapping with
an AES state directly coming from the previous chaining value yet to be determined.

By generating 264 message M0, we obtain a list L of 232 chaining values sharing
the same value on diag(S7[0, 0]). We now generate all the 232 possible BigColumns pairs
for the second BigColumn in the �rst inbound. For each pair, we compute the value of
diag(S7[3, 1]): we expect one element of L to share this value because L contains 232 ele-
ments. Consequently, we can update L by completing each of its entry by the associated
pair for the second BigColumn and get 232 pairs for L again. For the third BigColumn, we
compute 264 pairs conforming to the path among the 296 possible ones. With the same ar-
gument, for any element of L, we expect to �nd 232 pairs where the value of diag(S7[2, 2])
matches the one dictated by that particular chaining value. We link each of the 232 ele-
ments of L with a set E of 232 valid pairs for the third BigColumn. In other words, we get
264 pairs where the three �rst BigColumns match the respective chaining value.

At this point, each of the 232 entries of L consists of a chaining value h = f(IV,M0),
a pair of BigColumns for the two �rst BigColumns and a set E of 232 valid pairs for the
third BigColumn, all conforming to the �rst inbound. As demonstrated in [4], the 128-bit
condition to merge the two inbound phases is deported to the fourth BigColumn in the
�rst inbound. More precisely, once we know a pair for each of the three �rst BigColumns,
we can deduce the fourth one so that the merge around the SuperMixColumns layer is
possible. For each entry in L and for each associated set E, we are in that case so that we
can deduce the pair for the fourth BigColumn. Finally, we check if the truncated path is
veri�ed for that BigColumn and if the value in diag(S7[3, 1]) matches the expected one. The
two events occur with probability 2−64 but since we can repeat the check 232 × 232 = 264

times, we should �nd one M0 and one pair for each of the four BigColumns.

Finally, we can �nish the attack as in [4] by ensuring that the di�erences cancel out
in the feed-forward and by merging the two partial solutions. We note that the merging
is slightly di�erent since we need to take care of the known AES states in S7 but is still
feasible in time 264.
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