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Abstract

Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO
’07), provides an alternative to randomized public-key encryption in various scenarios where the
latter exhibits inherent drawbacks. A deterministic encryption algorithm, however, cannot sat-
isfy any meaningful notion of security when the plaintext is distributed over a small set. Bellare
et al. addressed this difficulty by requiring semantic security to hold only when the plaintext has
high min-entropy from the adversary’s point of view.

In many applications, however, an adversary may obtain auxiliary information that is related
to the plaintext. Specifically, when deterministic encryption is used as a building block of a larger
system, it is rather likely that plaintexts do not have high min-entropy from the adversary’s point
of view. In such cases, the framework of Bellare et al. might fall short from providing robust
security guarantees.

We formalize a framework for studying the security of deterministic public-key encryption
schemes with respect to auxiliary inputs. Given the trivial requirement that the plaintext should
not be efficiently recoverable from the auxiliary input, we focus on hard-to-invert auxiliary inputs.
Within this framework, we propose two schemes: the first is based on the d-linear assumption for
any d ≥ 1 (including, in particular, the decisional Diffie-Hellman assumption), and the second
is based on a rather general class of subgroup indistinguishability assumptions (including, in
particular, the quadratic residuosity assumption and Paillier’s composite residuosity assumption).
Our schemes are secure with respect to any auxiliary input that is subexponentially hard to invert
(assuming the standard hardness of the underlying computational assumptions).

In addition, our first scheme is secure even in the multi-user setting where related plaintexts
may be encrypted under multiple public keys. Constructing a scheme that is secure in the multi-
user setting (even without considering auxiliary inputs) was identified by Bellare et al. as an
important open problem.
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1 Introduction

Public-key encryption is one of the most basic cryptographic tasks. A public-key encryption scheme
consists of three algorithms: a key-generation algorithm that produces a secret key and a corre-
sponding public key, an encryption algorithm that uses the public key for mapping plaintexts into
ciphertexts, and a decryption algorithm that uses the secret key for recovering plaintexts from ci-
phertexts. For modeling the security of public-key encryption schemes, the fundamental notion of
semantic security was introduced in the seminal work of Goldwasser and Micali [GM84]. Semantic
security asks that it should be infeasible to gain any effective information on the plaintext by seeing
the ciphertext and the public key. More specifically, whatever can be computed efficiently from the
ciphertext, the public key and possibly some auxiliary information, can essentially be computed
efficiently from the public key and the auxiliary information alone.

Together with its rigorous, robust, and meaningful modeling of security, semantic security in-
herently carries the requirement for a randomized encryption algorithm. In some cases, however,
a randomized encryption algorithm may suffer from various drawbacks. In terms of efficiency, ci-
phertexts are not length preserving (and might be significantly longer than their corresponding
plaintexts), and are in general not efficiently searchable. These properties severely limit the de-
ployment of public-key encryption schemes in applications involving, for example, massive data sets
where the ciphertext expansion ratio is crucial, or global deduplication-based storage systems where
searches are highly frequent (e.g., [ZLP08]). In addition, in terms of security, the security guaran-
tees provided by randomized public-key encryption, and by randomized cryptographic primitives in
general, are typically highly dependant on the availability of true and fresh random bits (see, for
example, [BBN+09] and the references therein).

Deterministic public-key encryption. For dealing with these kind of drawbacks, Bellare,
Boldyreva, and O’Neill [BBO07] initiated the study of deterministic public-key encryption schemes.
These are public-key encryption schemes in which the encryption algorithm is deterministic1. In
this setting, where full-fledged sematic security is out of reach, Bellare et al. put forward the goal
of formalizing a notion of security that captures semantic security as much as possible. An imme-
diate consequence of having a deterministic encryption algorithm, however, is that essentially no
meaningful notion of security can be satisfied if the plaintext is distributed over a set of polynomial
size. Indeed, in such a case an adversary who is given a public key pk and an encryption c of some
plaintext m under the public key pk, can simply encrypt all possible plaintexts, compare each of
them to the given ciphertext c, and thus recover the plaintext m.

Bellare et al. addressed this problem by requiring security to hold only when the plaintext is
sampled from a distribution of high min-entropy. Subject to this restriction, they adapted seman-
tic security to the setting of deterministic encryption: For any high-entropy plaintext distribution,
whatever can be computed efficiently from the ciphertext and the public key, can also be computed
efficiently from the public key alone. Constructions of deterministic public-key encryption schemes
satisfying this and similar notions of security were proposed in the random oracle model by Bel-
lare et al. [BBO07], and then in the standard model by Bellare, Fischlin, O’Neill, and Ristenpart
[BFO+08a], by Boldyreva, Fehr, and O’Neill [BFO08b], by Fuller, O’Neill and Reyzin [FOR12], by
Mironov, Pandey, Reingold and Segev [MPR+12], and by Wee [Wee12]. We refer the reader to
Sections 1.2 and 1.4 for an elaborated discussion of these constructions.

1Note that this is effectively a collection of injective trapdoor functions (assuming the decryption algorithm is
deterministic as well).
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Security with respect to auxiliary information. In typical applications, a deterministic
public-key encryption scheme is used as building block of a larger system. In such a setting, an
adversary usually has additional information that it can use when trying to break the security of
the scheme. This danger becomes even more critical when such additional information is related
to the encrypted plaintext. In general, security with respect to auxiliary information is essential
towards obtaining composable security (see, for example, [Can01] and the references therein). More
closely related to our approach are the studies of security with respect to auxiliary information in the
contexts of perfect one-way functions [Can97], program obfuscation [GK05], and leakage-resilient
encryption [DKL09, DGK+10, BG10].

For example, when using a deterministic public-key encryption scheme for enabling efficient
searches on encrypted databases, as suggested by Bellare et al. [BBO07], it is not unlikely that the
same plaintext belongs to more than one database, and is therefore encrypted under several public
keys; or that various statistics of the database are publicly available. A more acute example is when
using a deterministic public-key encryption scheme for a key-encapsulation mechanism that “hedges
against bad randomness” [BBN+09]. In such a case an adversary that observes the usage of the
encapsulated key (say, as a key to a symmetric-key encryption scheme) may in fact obtain a huge
amount of additional information on the encapsulated key.

In this light, the notion of security proposed by Bellare et al. [BBO07] might fall short of
capturing the likely case where auxiliary information is available. That is, although a plaintext
may be sampled from a distribution with high min-entropy to begin with, it might still have no
entropy, from the point of view of an adversary, in many realistic scenarios. We note that already
in the setting of deterministic symmetric-key encryption of high-entropy messages, Dodis and Smith
[DS05] observed that the main weakness of an approach that does not take into account auxiliary
information, is the lack of composable security. It is thus a highly desirable task to model and
to construct secure deterministic encryption schemes in the setting of auxiliary information, as a
crucial and essential step towards obtaining more realistic security guarantees.

1.1 Our Contributions

In this paper we introduce a framework for modeling the security of deterministic public-key en-
cryption schemes with respect to auxiliary inputs. Within this framework we propose constructions
that are based on standard cryptographic assumptions in the standard model (i.e., without random
oracles). Our framework is a generalization of the one formalized by Bellare et al. [BBO07] (and
further studied in [BFO+08a, BFO08b, FOR12, MPR+12]) to the auxiliary-input setting, in which
an adversary possibly obtains additional information that is related to the encrypted plaintext, and
might even fully determine the encrypted plaintext information theoretically.

Modeling auxiliary information. An immediate consequence of having a deterministic encryp-
tion algorithm is that no meaningful notion of security can be satisfied if the plaintext can be
recovered from the adversary’s auxiliary information (see Section 4 for a discussion of this inherent
constraint2). Thus, we focus our attention on the case of hard-to-invert auxiliary inputs, where the
source of hardness may be any combination of information-theoretic hardness (where the auxiliary-
input function is many-to-one) and computational hardness (where the auxiliary input function is
injective, but is hard to invert by efficient algorithms).

2This is somewhat similar to the observation that security is impossible to achieve when the plaintext is distributed
over a small set.
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Notions of security. Following [BBO07, BFO+08a, BFO08b] we formalize three notions of se-
curity with respect to auxiliary inputs, and prove that all three are equivalent. The first is a
simulation-based notion, capturing the intuitive meaning of semantic security: whatever can be
computed efficiently given a public key, an encryption of a message, and hard-to-invert auxiliary
input, can be computed efficiently given only the public key and the auxiliary input. The sec-
ond is a comparison-based notion, which essentially serves as an intermediate notion towards an
indistinguishability-based one that is somewhat easier to handle in proofs of security. The high-level
approach of the equivalence proofs is motivated by those of [BFO+08a, BFO08b], but the existence
of auxiliary inputs that may fully determine the encrypted messages introduces various difficulties
that our techniques overcome.

Constructions. We propose two constructions in the standard model satisfying our notions of
security. At a first glance, one might hope that the constructions proposed in [BBO07, BFO+08a,
BFO08b] can be naturally extended to the auxiliary-input setting by replacing the notion of sta-
tistical min-entropy with an appropriate notion of computational min-entropy. This, however, does
not seem to be the case (at least without relying on random oracles), as these constructions seem
to heavily rely on information-theoretic properties that might not have natural computational ana-
logues3.

Our first construction is based on the d-linear assumption for any d ≥ 1 (including, in particular,
the decisional Diffie-Hellman assumption), and our second construction is based on a rather general
class of subgroup indistinguishability assumptions as defined in [BG10] (including, in particular,
the quadratic residuosity assumption, and Paillier’s composite residuosity assumption [Pai99]). The
resulting schemes are secure with respect to any auxiliary input that is subexponentially hard to
invert4. Moreover, our first scheme is secure even in the multi-user setting where related messages
may be encrypted under multiple public keys. In this setting we obtain security (with respect to
auxiliary inputs) for any polynomial number of messages and users as long as the messages are
related by invertible linear transformations. Constructing a scheme that is secure is the multi-user
setting (even without considering auxiliary inputs) was identified as an important open problem by
Bellare et al. [BBO07].

Finally, we note that if we assume that the group under consideration is equipped with a bilinear
map, then our first scheme exhibits an interesting homomorphic property: it allows homomorphic
additions and one multiplication, in the spirit of [BGN05, GHV10]. This property may be found
especially useful in light of the possible applications of deterministic public-key encryption schemes
in database systems [BBO07].

1.2 Related Work

Exploiting the entropy of messages to prove otherwise-impossible security was first proposed by
Russell and Wang [RW06], followed by Dodis and Smith [DS05]. These works achieved information-
theoretic security for symmetric-key encryption with short keys.

In the setting of public-key encryption, deterministic encryption for high min-entropy messages
was proposed by Bellare, Boldyreva, and O’Neill [BBO07] who formalized a definitional framework,
which was later refined and extended by Bellare, Fischlin, O’Neill, and Ristenpart [BFO+08a], and
by Boldyreva, Fehr, and O’Neill [BFO08b]. Bellare et at. [BBO07] presented two constructions in

3A prime example is the generalized crooked leftover hash lemma [BFO08b], for which a computational analogue
may seem somewhat challenging to devise.

4We emphasize that in this paper we rely on standard computational assumptions (i.e., d-linear or quadratic
residuosity), and only the auxiliary inputs are assumed to have subexponential hardness.
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the random oracle model: The first relies on any semantically-secure public-key encryption scheme;
whereas the second relies on the RSA function (and is in fact length preserving). Constructions in
the standard model (i.e., without random oracles), were then first presented in [BFO+08a, BFO08b].
Bellare et al. [BFO+08a] presented a construction based on trapdoor permutations, which is secure
as long as the messages are (almost) uniformly distributed. Boldyreva et al. [BFO08b] presented a
construction based on lossy trapdoor functions, which is secure as long as its n-bit messages have
min-entropy at least nϵ for some constant 0 < ϵ < 1. These constructions, however, fall short in two
interesting cases: In the multi-message setting, where arbitrarily related messages are encrypted
under the same public key; and in the multi-user setting where the same message is encrypted
under several (independently chosen) public keys. Fuller, O’Neill and Reyzin [FOR12] made a step
towards addressing the former, by presenting a scheme that can securely encrypt any fixed number q
of messages, but whose parameters depend polynomially on q. The latter case remained unexplored
until this work. Additional progress in studying deterministic public-key encryption schemes was
recently made by Mironov, Pandey, Reingold and Segev [MPR+12] who constructed such schemes
with optimal incrementality: small changes in the plaintext translate into small changes in the
corresponding ciphertext.

Deterministic public-key encryption was used by Bellare et al. [BBN+09] who defined and con-
structed “hedged” public-key encryption schemes. These are schemes that are semantically secure in
the standard sense, and maintain a meaningful and realistic notion of security even when “corrupt”
randomness is used for the encryption, so long as the joint message-randomness pair has sufficient
min-entropy. The definition of security in the latter case takes after that of deterministic public-key
encryption.

The tools underlying our constructions in this paper are inspired by the line of research on
“encryption in the presence of auxiliary input”, initiated by Dodis, Kalai, and Lovett [DKL09] in
the context of symmetric-key encryption, and then extended in [DGK+10, BG10] to public-key
encryption. These works consider encryption schemes where the adversary may obtain a hard-to-
invert function of the secret key — extending the frameworks of “bounded leakage” [AGV09] and
“noisy leakage” [NS09].

Finally, we note that Wichs [Wic12] has recently proved a strong impossibility result for determin-
istic public-key encryption, showing that the strongest notion of security cannot be achieved based
on standard cryptographic assumptions while treating adversaries as black boxes. The strongest
notion of security considers the encryption of plaintexts which may be arbitrarily correlated. His
impossibility result does not apply to our constructions, where we do not allow arbitrary correlations
(see Section 3 for our definition of blockwise hard-to-invert auxiliary inputs).

1.3 Overview of Our Approach

In this section we provide a high-level overview of our approach and techniques. We begin with
a brief description of the notions of security that we consider in the auxiliary-input setting, and
then describe the main ideas underlying our two constructions. For simplicity, in what follows we
consider the case where one message is encrypted under one public key, and refer the reader to the
relevant sections for the more general case.

Defining security with respect to auxiliary inputs. Towards describing our notions of se-
curity, we first discuss our notion of hard-to-invert auxiliary inputs which follows the framework
of Dodis, Tauman Kalai, and Lovett [DKL09]. We consider any auxiliary input f(x) from which
it is hard to recover the input x. The source of hardness may be any combination of information-
theoretic hardness (where the function f is many-to-one), and computational hardness (where f(x)
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fully determines x, but x is hard to recover by efficient algorithms). Informally, we say that a
function f is ϵ-hard-to-invert with respect to a distribution D, if for every efficient algorithm A it
holds that A(f(x)) = x with probability at most ϵ, over the choice of x ← D and the internal coin
tosses of A.

As discussed in Section 1.1, we formalize three notions of security with respect to auxiliary inputs,
and prove that all three are equivalent. For concreteness we focus here on the simulation-based
definition, which captures the intuitive meaning of semantic security: Whatever can be computed
efficiently given a public key, an encryption of a message, and hard-to-invert auxiliary input, can
be computed efficiently given only the public key and the auxiliary input. A bit more formally, we
say that a scheme is secure with respect to ϵ-hard-to-invert auxiliary inputs if for any probabilistic
polynomial-time adversary A, and for any efficiently samplable plaintext distributionM, there exists
a probabilistic polynomial-time simulator S, such that for any efficiently computable function f that
is ϵ-hard-to-invert with respect to M, and for any efficiently computable function g ∈ {0, 1}∗ →
{0, 1}∗, the probabilities of the events A (pk,Encpk(m), f(m)) = g(m) and S (pk, f(m)) = g(m) are
negligibly close, where m←M. We note that the functions f and g may be arbitrary related5. This
is a generalization of the definitions considered in [BBO07, BFO+08a, BFO08b, FOR12, MPR+12].

The [BFO08b] scheme. Our starting point is the scheme of Boldyreva et al. [BFO08b] that is
based on lossy trapdoor functions. This is in fact the only known construction in the standard
model (i.e., without random oracles) that is secure for arbitrary plaintext distributions with high
(but not nearly full) min-entropy. In their construction, the public key consists of a function h that
is sampled from the injective mode of the collection of lossy trapdoor functions, and a pair-wise
independent permutation π. The secret key consists of the trapdoor for inverting h (we assume that
π is efficiently invertible). The encryption of a message m is defined as Encpk(m) = h(π(m)), and
decryption is naturally defined.

In a high level, the proof of security in [BFO08b] considers the joint distribution of the public
key and the ciphertext (pk,Encpk(m)), and argues that it is computationally indistinguishable from
a distribution that is independent of the plaintext m. This is done by considering a distribution of
malformed public keys, that is computationally indistinguishable from the real distribution. Specif-
ically, the injective function h is replaced with a lossy function h̃ to obtain an indistinguishable
public key p̃k. The next step is to show that the ciphertext c̃ = Enc

p̃k
(m) can be described by the

following two-step process. First, an analogue of a strong extractor is applied to m (where the seed

is the permutation π that lies in p̃k) to obtain v = ext
p̃k
(m). Then, the output of the extractor

is used to compute the ciphertext c̃ = g(p̃k, v). From this point of view, it is evident that so long
as the plaintext m is drawn from a distribution with high min-entropy, it holds that v = ext

p̃k
(m)

is statistically close to a uniform distribution (over some domain). This holds even given the mal-
formed public key, and does not depend on the distribution of m. This methodology of using an
analog of a strong extractor relies on the crooked leftover hash lemma of Dodis and Smith [DS05],
that enables basing the construction on any collection of lossy trapdoor functions.

Our constructions. In our setting, we wish to adapt this methodology to rely on computational
hardness instead of min-entropy. However, there is currently no known analog of the crooked leftover
hash lemma in the computational setting. This is an interesting open problem. We overcome this
difficulty by relying of specific collections of lossy trapdoor functions, for which we are in fact able

5In fact, the “target” function g is allowed to take as input also the randomness that is used for sampling m, and
any other public randomness – see Section 4.
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to extract pseudorandomness from computational hardness. We do this by replacing the strong
extractor component with a hard-core function of the message (with respect to the auxiliary input).
Specifically, our encryption algorithm (when using the malformed public key) can be interpreted as
taking an inner product between our message m (viewed as a vector of bits) and a public random
vector a, where the resulting ciphertext depends only on (a, ⟨m, a⟩). This is similar to the Goldreich-
Levin hard-core predicate [GL89], except that the vector a is not binary and the inner product is
performed over some large group (or, more accurately, over a Z-module) and not over the binary
field. We thus require the generalized Goldreich-Levin theorem of Dodis et al. [DGK+10] to obtain
that even given the auxiliary input, the distributions (a, ⟨m, a⟩) and (a, u) are computationally
indistinguishable, where u is uniformly distributed and does not depend on the distribution of m.

To be more concrete, let us consider our DDH-based scheme (formally presented in Section 6)
which is based on the lossy trapdoor functions of Freeman et al. [FGK+10]. The scheme is instan-
tiated by a DDH-hard group G of prime order q that is generated by g. The message space is
{0, 1}n (where n is polynomial in the security parameter) and the public key is gA, for a random
n × n matrix A over Zq.

6 Encryption is done by computing EncgA(m) = gA·m and decryption is
performed using sk = A−1 (note that such a matrix A is indeed invertible with high probability).

For analyzing the security of the scheme, we consider the joint distribution of the public key,
ciphertext and auxiliary input (pk,Encpk(m), f(m)) = (gA, gA·m, f(m)). The malformed distribu-

tion p̃k is obtained by taking A to be a random rank-1 matrix (rather than completely random).

DDH implies that pk and p̃k are computationally indistinguishabile. Such a low-rank matrix takes
the form A = r ·bT , and therefore A ·m = r ·bT ·m, for random vectors r and b. Thus, our cipher-
text depends only on (b, ⟨b,m⟩) which is indistinguishable from (b, u), for a uniformly random u,
even given f(m), by the generalized Goldreich-Levin theorem [DGK+10]. Our initial distribution

is therefore indistinguishable from the distribution (gr·b
T
, gr·u, f(m)) as required. Note that we

use the generalized Goldreich-Levin theorem for extracting an element of Zq, and this requires the
hardness of inverting the auxiliary input f to be roughly proportional to 1/q, which can be made
sub-exponential in the security parameter by choosing an appropriate message length (see Section
2.2 for more details).

In the multi-user setting, we observe that any polynomial number of public keys gA1 , . . . , gAℓ

are computationally indistinguishable, by DDH, from having joint rank-1. Namely, in this case the
distributions (gA1 , . . . , gAℓ) and (gr1·b

T
, . . . , grℓ·b

T
) are computationally indistinguishable, where the

same vector b is used for all keys. Encrypting a message m under all such ℓ public keys results in
a set of ciphertexts (gr1·b

T ·m, . . . , grℓ·b
T ·m), where all elements depend on (b, ⟨b,m⟩). This enables

applying the above approach, and we show that it in fact extends to linearly-related messages. More
specifically, we show that our notions of security are satisfied even when any polynomial number of
public keys are used for encrypting different messages, as long as there are publicly-known invertible
linear relation between the messages.

Our second scheme (based on subgroup indistinguishability assumptions) is analyzed quite sim-
ilarly. We rely on the lossy trapdoor functions of [HO09] and can again show that our public key
distribution is indistinguishable from one over rank-1 matrices. However, the groups under consid-
eration might be non-cyclic. This adds additional complications to the analysis. In addition, this
scheme does not seem to allow a “joint rank” argument as above, and we leave it as an open problem
to construct an analogous scheme that is secure in the multi-user setting.7

6We overload the notation gx to matrices as follows: for X ∈ Zk×n
q , we let gX ∈ Gk×n denote the matrix defined

as (gX)i,j = g(X)i,j .
7We remark that a similar issue came up in [BG10], and prevented them from achieving key-dependent message

security for an unbounded number of keys.
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1.4 Open Problems and Subsequent Work

Our work raises two natural open problems. The first problem is to construct deterministic public-
key encryption schemes that are secure with respect to any hard-to-invert auxiliary input (while,
of course, assuming the standard hardness of the underlying computational assumptions). In our
constructions, the assumption that the auxiliary input is subexponentially hard to invert seems
somewhat essential given that in our proofs of security we use a variant of the Goldreich-Levin
theorem for producing pseudorandom strings whose length is polynomially related to the security
parameter.

The second problem is to identify an even more general framework for designing deterministic
public-key encryption schemes that are secure with respect to hard-to-invert auxiliary inputs. Such
a framework can potentially unify our two constructions and lead to additional constructions based
on other computational assumptions. Significant progress in this aspect was recently made by
Wee [Wee12], who introduced the notion of dual projective hashing and showed that it provides
a simple construction of deterministic encryption schemes that are secure with respect to hard-to-
invert auxiliary inputs. In particular, Wee’s approach encompasses our two constructions and also
provides a new construction based the learning with errors assumption.

1.5 Paper Organization

In Section 2 we introduce some notation and preliminary tools. In Section 3 we formalize a general
notion for hard-to-invert auxiliary inputs that is considered in this paper. In Section 4 we introduce
a framework for modeling the security of deterministic public-key encryption schemes with respect
to auxiliary inputs, consisting of three main notions of security. In Section 5 we prove that these
three notions are in fact equivalent. In Section 6 we present a construction based on the d-linear
assumption, and in Section 7 we present a construction based on subgroup indistinguishability
assumptions.

2 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x← X the process of sampling a value x from the uniform

distribution over X . The min-entropy of a distribution X over a set X is defined as H∞(X)
def
= −

log (maxx∈X Pr[X = x]). The statistical distance (total variation distance) between X and Y is
denoted SD(X,Y ). A real function over the naturals is negligible if it vanishes faster than any
inverse polynomial, we use f(k) = negl(k) to denote that f is a negligible function. Two distribution
ensembles {Xk}k∈N, {Yk}k∈N are statistically indistinguishable if SD(Xk, Yk) = negl(k), we denote

this by X
s
≈ Y . They are computationally indistinguishable if for any polynomial time algorithm A,

it holds that
∣∣Prx←Xk

[A(1k, x) = 1]− Pry←Yk
[A(1k, y) = 1]

∣∣ is negligible, we denote this by X
c≈ Y .

All computational hardness in this work is stated with regards to non-uniform adversaries.
However, adapting to the uniform setting is immediate and in most cases requires no changes at all.

We denote scalars in plain lowercase letters (e.g., x ∈ {0, 1}). We use the term “vector” both in
the algebraic sense, where it indicates an element in a vector space and denoted by bold lowercase
letters (e.g., x ∈ {0, 1}k); and in the “combinatorial” sense, indicating an ordered set of elements
(not necessarily having any algebraic properties) for which we use the notation x⃗. We denote a com-
binatorial vector whose elements are algebraic vectors by x⃗, combinatorial vector of combinatorial
vectors by ⃗⃗x, and combinatorial vector of combinatorial vectors of algebraic vectors by ⃗⃗x. Matrices
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(always algebraic) are denoted in bold uppercase (e.g., X ∈ {0, 1}k×n). The k × k identity matrix
is denoted Ik. All vectors are column vectors by default, and a row vector is denoted by xT .

For a commutative multiplicative group G, and an isomorphic Z-module M,8 the isomorphism
M→ G is denoted by y←gx where y ∈ G and x ∈M. In a sense, g can be thought of as a symbolic
representation of a generating set of G. If G is cyclic then this isomorphism corresponds to actual
exponentiation, with g being a generator of G. In such case M = Zq where q is the order of G. We
overload the notation gx to matrices as follows: for X ∈Mk×n, we let gX ∈ Gk×n denote the matrix
defined as (gX)i,j = g(X)i,j .

2.1 Computational Assumptions

We now define the computational assumptions on which we based the security of our deterministic
encryption schemes.

The decisional Diffie-Hellman and d-linear assumptions. Let GroupGen be a probabilis-
tic polynomial-time algorithm that takes as input a security parameter 1k, and outputs a triplet
(G, q, g) where G is a group of prime order q that is generated by g ∈ G, and q is a k-bit prime
number. In this paper we rely on the following matrix form of the d-linear assumption due to
Naor and Segev [NS09] (generalizing [BHH+08]). For d = 1 this variant is equivalent to the DDH
assumption, and for d > 1 it is implied by the d-linear assumption (see [NS09]). We denote by
Rki(Za×b

q ) the set of all a × b matrices over Zq with rank i. The matrix form of the d-linear as-
sumption is that for any integers a and b, and for any d ≤ i < j ≤ min{a, b} the distributions
{(G, q, g, gX)}X←Rki(Za×b

q ),k∈N and {(G, q, g, gY)}Y←Rkj(Za×b
q ),k∈N are computationally indistinguish-

able, where (G, q, g)← GroupGen(1k).
A rather useful implication of the matrix form of the d-linear assumption is that the distributions

{(G, q, g, gX)}X←Za×b
q ,k∈N and {(G, q, g, gR·S)}R←Za×d

q ,S←Zd×b
q ,k∈N are computationally indistinguish-

able, where (G, q, g)← GroupGen(1k).9

Subgroup indistinguishability assumptions. We present the class of subgroup indistinguisha-
bility assumptions formalized by Brakerski and Goldwasser [BG10] together with its instantiations
based on the quadratic residuosity and composite residuosity assumptions.

Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a security parame-
ter 1k, and outputs a tuple (GU ,GM ,GL, h, T ) where GU = GM×GL is a commutative multiplicative
group, GM is a cyclic group of order M that is generated by h, GL is a group of order L (which is
not necessarily cyclic), gcd(M,L) = 1, M · L is a k-bit number, and T ≥ M · L. We require that
there exist efficient algorithms for performing group operations in GU , and for sampling uniformly
distributed elements from GM and GL.

The subgroup indistinguishability assumption is that a uniformly sampled element from GU is
computationally indistinguishable from a uniformly sampled element from GL. More formally, the
distributions {(GU ,GM ,GL, h, T, x) : x← GL}k∈N and {(GU ,GM ,GL, h, T, h · x) : x← GL}k∈N are
computationally indistinguishable, where (GU ,GM ,GL, h, T )← GroupGen(1k).

For proving the security of our schemes we rely on the following lemma:

8A Z-module is identical to an additive abelian group, only that in addition to the + operation, it formally allows
operations of the form k · x for k ∈ Z and x ∈ M (the multiplication is defined as repeated addition). Note that such
“multiplication by scalar” is undefined for groups.

9The equivalence follows by defining R̃ ← Rkd(Za×d
q ) and S̃ ← Rkd(Zd×b

q ) and noticing that since q is super-

polynomial then (S,R)
s
≈ (S̃, R̃), and that R̃ · S̃ is distributed uniformly in Rkd(Za×b

q ).
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Lemma 2.1 ([BG10]). Under the subgroup indistinguishability assumption, for any polynomial n =
n(k) it holds that {(

gw
T
, hIn · gr·wT

)}
k∈N

c
≈
{(

gw
T
, gr·w

T
)}

k∈N
,

where (GU ,GM ,GL, h, T )← GroupGen(1k), gw
T ← Gn

L, and r← [T 2]n.

For instantiating the subgroup indistinguishability assumption based on the quadratic residuosity
and composite residuosity assumptions, we consider a modulus N of the form N = pq, where p and
q are random k/2-bit odd primes (we do not require that p and q are “safe primes”).

• The quadratic residuosity assumption. Let JN denote the set of elements in Z∗N with
Jacobi symbol +1, and QRN denote the set of quadratic residues (squares) modulo N . Over-
loading notation, we denote by JN and QRN also the respective groups with the multiplication
operation modulo N . The groups JN and QRN have orders φ(N)/2 and φ(N)/4, respectively,
and we let N ′ = φ(N)/4. We require that N is a Blum integer, namely that p, q = 3 (mod 4).
In such case it holds that gcd(2, N ′) = 1 and that (−1) ∈ JN \QRN .

The quadratic residuosity assumption [GM84] is that a uniformly chosen quadratic residue is
computationally indistinguishable from a uniformly chosen quadratic non-residue (with Jacobi
symbol 1). it is obtained from the above subgroup indistinguishability assumption by setting
GU = JN , GM = {±1}, GL = QRN , h = (−1), and T = N ≥ 2N ′.

• The composite residuosity assumption. The composite residuosity assumption [Pai99]
is that a uniformly chosen element from Z∗N2 is computationally indistinguishable from a
uniformly chosen element from the subgroup of N th-residues {xN : x ∈ Z∗N2}. The group Z∗N2

can be written as a product of the group generated by 1 + N (which has order N) and the
group of N th residues (which has order φ(N)). This assumption is obtained from the above
subgroup indistinguishability assumption by setting GU = Z∗N2 , GM = {(1 + N)i : i ∈ [N ]},
GL = {xN : x ∈ Z∗N2}, h = (1 +N), and T = N2.

2.2 Hard Core Functions

Hard-core functions play a central tool in our approach for reducing a hard search problem (the
hardness of inverting the auxiliary input) into a decision problem (the hardness of distinguishing
encryptions of messages sampled from different distributions). We present two hard-core function
theorems, both are extensions of the well known Goldreich-Levin theorem [GL89]. Theorem 2.2
is essentially taken from [DGK+10], and Theorem 2.3 extends Theorem 2.2 to the case where the
domain under consideration is not a field, and appears, in a slightly less general form, in [BG10].

Theorem 2.2 ([DGK+10, Theorem 1]). There exists a uniform oracle machine B such that for all
n ∈ N, for any (possibly randomized) function f : {0, 1}n → {0, 1}∗, any distribution D over {0, 1}n,
any (nontrivial) finite field F = Fn and function A such that∣∣∣ Pr

x←D
[A(f(x), r, ⟨r, x⟩) = 1]− Pr[A(f(x), r, α) = 1]

∣∣∣ ≥ ϵ ,

where x← D ⊆ {0, 1}n ⊆ Fn, r ← Fn, α← F and the inner product is over F, it holds that BA runs
in polynomial time and

Pr[BA(1n, ⌈1/ϵ⌉ , f(x)) = x] ≥ ϵ3

512 · n · |F|2
.

Furthermore, B only needs to sample uniformly in F and to add two elements in F, and does not
use any other property of the field.
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Theorem 2.3 (Implicit in [BG10]). There exists a uniform oracle machine B such that for all
n ∈ N, for any (possibly randomized) function f : {0, 1}n → {0, 1}∗, any distribution D over {0, 1}n,
any (nontrivial) Z-module M = Mn and function A such that∣∣∣Pr[A(f(x), r, ⟨r, x⟩) = 1]− Pr[A(f(x), r, α) = 1]

∣∣∣ ≥ ϵ ,

where x← D ⊆ {0, 1}n ⊆ Zn, r ← Mn, α← M and the “inner product” is over the module, it holds
that BA runs in polynomial time and

Pr[BA(1n, ⌈1/ϵ⌉ , f(x)) = x] ≥ ϵ

8 · |M|1+log(8n/ϵ2)
.

Furthermore, B only needs to sample uniformly in M and to add two elements in M, and does not
use any other property of the module.

2.3 Deterministic Public-Key Encryption Scheme

A deterministic public-key encryption scheme over a message space ensembleM = {Mk} is a triplet
Π = (KeyGen,Enc,Dec) of polynomial-time algorithms with the following properties.

• The key-generation algorithm KeyGen is a randomized algorithm that takes the security pa-
rameter 1k as input and outputs a key pair (sk, pk)←KeyGen(1k) containing a secret key and
a public key.

• The encryption algorithm Enc is a deterministic algorithm that takes as input a public key
pk and a message m ∈ Mk (where k is the security parameter), and outputs a ciphertext
c = Encpk(m).

• The decryption algorithm is a possibly randomized algorithm that takes as input a secret key
sk and a ciphertext c and outputs a message m′←Decsk(c) such that m′ ∈Mk.

For simplicity in this paper we assume perfect decryption: For every k ∈ N and m ∈ Mk

it holds that Pr [Decsk(Encpk(m)) = m] = 1, where the probability is taken over the choice of
(sk, pk)←KeyGen(1k) (and also over the internal randomness of Dec if the latter algorithm is random-
ized). We note that although, in general, decryption algorithms may be randomized, all decryption
algorithms considered in this paper are in fact deterministic.

3 Hard-to-Invert Auxiliary Inputs

In this work we consider any auxiliary input f(x) from which it is hard to recover the input x,
following the framework of Dodis, Tauman Kalai, and Lovett [DKL09]. The source of hardness
may be any combination of information-theoretic hardness (where the function f is many-to-one)
and computational hardness (where f(x) fully determines x, but x is hard to recover by efficient
algorithms). Informally, we say that a function f is ϵ-hard-to-invert with respect to a distribution
D, if for every efficient algorithm A it holds that A(f(x)) = x with probability at most ϵ over the
choice of x← D and the internal coin tosses of A.

For our purposes, we formalize a slightly more general notion in which D is a distribution over
vectors of inputs x⃗ = (x1, . . . , xt), and for every i ∈ {1, . . . , t} it should be hard to efficiently recover
xi when given f(x⃗). In addition, we also consider a blockwise variant of this notion, in which it
should be hard to efficiently recover xi when given (x1, . . . , xi−1, f(x⃗)).
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Definition 3.1. An efficiently computable function F = {fk}k∈N is ϵ(k)-hard-to-invert with re-
spect to an efficiently samplable distribution D = {Dk}k∈N over vectors of t(k) inputs, if for every
probabilistic polynomial-time algorithm A and for every i ∈ {1, . . . , t(k)} it holds that

Pr
[
A
(
1k, fk(x⃗)

)
= xi

]
≤ ϵ(k) ,

for all sufficiently large k, where the probability is taken over the choice of x⃗ = (x1, . . . , xt(k))← Dk,
and over the internal coin tosses of A.

Definition 3.2. An efficiently computable function F = {fk}k∈N is ϵ(k)-blockwise-hard-to-invert
with respect to an efficiently samplable distribution D = {Dk}k∈N over vectors of t(k) inputs, if for
every probabilistic polynomial-time algorithm A and for every i ∈ {1, . . . , t(k)} it holds that

Pr
[
A
(
1k, x1, . . . , xi−1, fk(x⃗)

)
= xi

]
≤ ϵ(k) ,

for all sufficiently large k, where the probability is taken over the choice of x⃗ = (x1, . . . , xt(k))← Dk,
and over the internal coin tosses of A.

Note that any F which is ϵ-blockwise-hard-to-invert with respect to D is also ϵ-hard-to-invert
with respect to D, but the other direction does not always hold (for example, whenever all the xi’s
are identical). Definition 3.1 implies in particular that the distribution D is such that each xi has
min-entropy at least log(1/ϵ(k)). Furthermore, Definition 3.2 implies that the distribution D is a
block source in which each block xi has (average) min-entropy at least log(1/ϵ(k)) conditioned on
the previous blocks (x1, . . . , xi−1).

4 Modeling Security in the Auxiliary-Input Setting

In this section we present a framework for modeling the security of deterministic public-key en-
cryption schemes with respect to auxiliary inputs. Our framework is obtained as a generalization
of those considered in [BBO07, BFO+08a, BFO08b] to a setting in which the encrypted plaintexts
may be fully determined by some auxiliary information that is available to the adversary. Following
[BBO07, BFO+08a, BFO08b] we formalize three notions of security with respect to auxiliary in-
puts, and prove that all three are equivalent. The first is a simulation-based semantic security notion
(PRIV-SSS), capturing the intuitive meaning of semantic security: whatever can be computed given
an encryption of a message and auxiliary input, can also be computed given only the auxiliary input.
The second is a comparison-based semantic-security notion (PRIV-CSS), which essentially serves
as an intermediate notion towards an indistinguishability-based one (PRIV-IND) that is somewhat
easier to handle in proofs of security.

In the remainder of this paper we use the following notation. For a deterministic public-key en-
cryption scheme Π = (KeyGen,Enc,Dec), a public key pk, and a vector of messages m⃗ = (m1, . . . ,mt)
we denote by E⃗ncpk(m⃗) the vector (Encpk(m1), . . . ,Encpk(mt)). When considering a distributionM
over vectors of messages m⃗ = (m1, . . . ,mt) all of which are encrypted under the same public key,
then for the case of hard-to-invert auxiliary inputs we make in this paper the simplifying assumption
that mi ̸= mj for every i ̸= j (a bit more formally, one should require that all distributions have
identical equality patterns – see [BBO07]). In the case of blockwise-hard-to-invert auxiliary inputs
this assumption is not necessary. In addition, for simplicity we present our definitions for the case of
hard-to-invert auxiliary inputs, and note that they naturally extend to the case of blockwise-hard-
to-invert auxiliary inputs.
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Definition 4.1 (Simulation-based security). A deterministic public-key encryption scheme Π =
(KeyGen,Enc,Dec) is PRIV-SSS-secure with respect to ϵ-hard-to-invert auxiliary inputs if for any
probabilistic polynomial-time algorithm A and for any efficiently samplable distribution M =
{Mk}k∈N, there exists a probabilistic polynomial-time algorithm S, such that for any efficiently
computable function F = {fk}k∈N that is ϵ-hard-to-invert with respect toM, and for any efficiently
computable function g ∈ {0, 1}∗ → {0, 1}∗, there exists a negligible function ν(k) such that

AdvPRIV−SSSΠ,A,M,S,F ,g(k)
def
=
∣∣∣RealPRIV−SSSΠ,A,M,F ,g(k)− IdealPRIV−SSSΠ,S,M,F ,g(k)

∣∣∣ ≤ ν(k)

for all sufficiently large k, where

RealPRIV−SSSΠ,A,M,F ,g(k) = Pr
[
A
(
1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
IdealPRIV−SSSΠ,S,M,F ,g(k) = Pr

[
S
(
1k, fk(m⃗)

)
= g(m⃗)

]
,

and the probabilities are taken over the choices of m⃗ ←Mk, (sk, pk) ← KeyGen(1k), and over the
internal coin tosses of A and S.

Definition 4.2 (Comparison-based security). A deterministic public-key encryption scheme Π =
(KeyGen,Enc,Dec) is PRIV-CSS-secure with respect to ϵ-hard-to-invert auxiliary inputs if for any
probabilistic polynomial-time algorithm A, for any efficiently samplable distributionM = {Mk}k∈N,
for any efficiently computable function F = {fk}k∈N that is ϵ-hard-to-invert with respect toM, and
for any efficiently computable function g ∈ {0, 1}∗ → {0, 1}∗, there exists a negligible function ν(k)
such that

AdvPRIV−CSSΠ,A,M,F ,g(k)
def
=
∣∣∣AdvPRIV−CSSΠ,A,M,F ,g(k, 0)−AdvPRIV−CSSΠ,A,M,F ,g(k, 1)

∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−CSSΠ,A,M,F ,g(k, b) = Pr
[
A
(
1k, pk, E⃗ncpk(m⃗b), fk(m⃗0)

)
= g(m⃗0)

]
,

and the probability is taken over the choices of m⃗0 ←Mk, m⃗1 ←Mk, (sk, pk)← KeyGen(1k), and
over the internal coin tosses of A.

Definition 4.3 (Indistinguishability-based security). A deterministic public-key encryption scheme
Π = (KeyGen,Enc,Dec) is PRIV-IND-secure with respect to ϵ-hard-to-invert auxiliary inputs if
for any probabilistic polynomial-time algorithm A, for any two efficiently samplable distributions
M0 = {M0,k}k∈N and M1 = {M1,k}k∈N, and for any efficiently computable function F = {fk}k∈N
that is ϵ-hard-to-invert with respect to bothM0 andM1, there exists a negligible function ν(k) such
that

AdvPRIV−INDΠ,A,M0,M1,F (k)
def
=
∣∣∣AdvPRIV−IND

Π,A,M0,M1,F (k, 0)−AdvPRIV−IND
Π,A,M0,M1,F (k, 1)

∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−INDΠ,A,M0,M1,F (k, b) = Pr
[
A
(
1k, pk, E⃗ncpk(m⃗b), fk(m⃗0)

)
= 1
]

,

and the probability is taken over the choices of m⃗0 ← M0,k, m⃗1 ← M1,k, (sk, pk) ← KeyGen(1k),
and over the internal coin tosses of A.
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The hard-to-invert requirement. We emphasize that in the setting of deterministic public-key
encryption the requirement that the encrypted messages cannot be efficiently recovered from the
auxiliary input is essential (unlike in the setting of randomized encryption, where the notion of
semantic security takes into account any auxiliary input – see, for example, [Gol04, Ch. 5]). This is
easily observed using our indistinguishability-based formulation (Definition 4.3): an algorithm that
on input fk(m⃗0) (where m⃗0 = (m0,1, . . . ,m0,t(k))) can recover one of the m0,i values can then encrypt

this value under pk, compare the resulting ciphertext with the i-th component of E⃗ncpk(m⃗b), and
thus learn the bit b.

Relation to previous notions. We note that any constant function is ϵ-hard-to-invert with
respect to any message distribution of min-entropy at least log(1/ϵ). Thus, our notion of auxiliary-
input security strictly generalizes all previous security notions for deterministic public-key encryp-
tion, in which auxiliary input is not considered, and the message distributions need to have sufficient
min-entropy.

Access to the public key. As observed by Bellare et al. [BBO07] it is essential that the “target”
function g does not take the public key as input. Specifically, with a deterministic encryption
algorithm the ciphertext itself is a non-trivial information that it leaked about the plaintext, and
can clearly be computed efficiently using the public key. We refer the reader to [BBO07] for a more
elaborated discussion.

The randomness of sampling. For our notions of security we in fact allow the auxiliary-input
function f and the “target” function g to take as input not only the vector of message m⃗, but also
the random string r ∈ {0, 1}∗ that was used for sampling m⃗ from the distribution Dk. When this
aspect plays a significant role we explicitly include r as part of the input for f and g, and denote
by m⃗ ← Dk(r) the fact that m⃗ is sampled using the random string r. When this aspect does not
play a significant role we omit it for ease of readability (in particular, we omitted it from the above
definitions).

PRIV-CSS for balanced predicates. Whereas Definition 4.2 considers arbitrary efficiently
computable functions g : {0, 1}∗ → {0, 1}∗, we note that it is in fact equivalent to its seemingly
simpler variant that considers only efficiently computable δ-balanced predicates g : {0, 1}∗ → {0, 1}
(where we say that a predicate g is δ-balanced on a distribution M if |Pr [g(m⃗) = 1]− 1/2| ≤ δ).
Moreover, it even suffices to consider only the case δ = 1/4. The proof of this fact is identical to the
corresponding proof of Bellare et al. [BFO+08a], as the aspect of having an auxiliary input does not
play any role in this setting. We will rely on this fact in Section 5 when showing that PRIV-IND
implies PRIV-CSS.

PRIV1: focusing on a single message. As in [BFO08b] we also consider the PRIV1-variants
of our notion of security that focus on a single message (instead of vectors of any polynomial number
of messages). In Section 5.5 we then prove that security for a vector of messages with respect to a
blockwise-hard-to-invert auxiliary input is in fact equivalent to security for a single message with
respect to a hard-to-invert auxiliary input.

An even stronger notion of security. Note that in Definition 4.3 the algorithm A is given

as input the vector
(
1k, pk, E⃗ncpk(m⃗b), fk(m⃗0)

)
, and that a seemingly stronger definition would
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even consider
(
1k, pk, E⃗ncpk(m⃗b), E⃗ncpk(m⃗1−b), fk(m⃗0), fk(m⃗1)

)
as its input. As indicated by the

equivalence of our three definitions, such a stronger variant is not needed for capturing the intuitive
meaning of semantic security as in Definition 4.1. Nevertheless, our schemes in this paper in fact
satisfy this stronger variant. We refer to this notion as strong indistinguishability (PRIV-sIND),
formally defined as follows:

Definition 4.4. A deterministic public-key encryption scheme Π = (KeyGen,Enc,Dec) is PRIV-
sIND-secure with respect to ϵ-hard-to-invert auxiliary inputs if for any probabilistic polynomial-
time algorithm A, for any two efficiently samplable distributions M0 = {M0,k}k∈N and M1 =
{M1,k}k∈N, and for any efficiently computable function F = {fk}k∈N that is ϵ-hard-to-invert with
respect to bothM0 andM1, there exists a negligible function ν(k) such that

AdvPRIV−sINDΠ,A,M0,M1,F (k)
def
=
∣∣∣AdvPRIV−sINDΠ,A,M0,M1,F (k, 0)−AdvPRIV−sIND

Π,A,M0,M1,F (k, 1)
∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−sIND
Π,A,M0,M1,F (k, b) = Pr

[
A
(
1k, pk, E⃗ncpk(m⃗b), E⃗ncpk(m⃗1−b), fk(m⃗0), fk(m⃗1)

)
= 1
]

,

and the probability is taken over the choices of m⃗0 ← M0,k, m⃗1 ← M1,k, (sk, pk) ← KeyGen(1k),
and over the internal coin tosses of A.

The multi-user setting. So far our notions of security considered vectors of messages that are
encrypted under the same public key. We now present a natural generalization to the multi-user
setting, where there are multiple public keys, each of which is used for encrypting a vector of
messages. For simplicity we focus here on an indistinguishability-based definition, and note that
our equivalence proofs (see Section 5) easily extend to this more general setting.

For the following definition we fix integer functions ℓ(k) and t(k) of the security parameter
k, indicating the number of public keys and the number of messages encrypted under each key,
respectively. In addition we use the notation p⃗k = (pk1, . . . , pkℓ(k)), ⃗⃗m = (m⃗1, . . . , m⃗ℓ(k)) (where

each m⃗i is a vector of t(k) messages), and E⃗nc
p⃗k

(
⃗⃗m
)

= (E⃗ncpk1(m⃗1), . . . , E⃗ncpkℓ(k)(m⃗ℓ(k))). Note

that in the following definition the adversary receives ℓ(k) public keys and ℓ(k) · t(k) ciphertexts.

Definition 4.5. A deterministic public-key encryption scheme Π = (KeyGen,Enc,Dec) is PRIV-
IND-MU-secure setting with respect to ϵ-hard-to-invert auxiliary inputs if for any probabilistic
polynomial-time algorithm A, for any two efficiently samplable distributions M0 = {M0,k}k∈N and
M1 = {M1,k}k∈N, and for any efficiently computable function F = {fk}k∈N that is ϵ-hard-to-invert
with respect to bothM0 andM1, there exists a negligible function ν(k) such that

AdvPRIV−IND−MU
Π,A,M0,M1,F (k)

def
=
∣∣∣AdvPRIV−IND−MU

Π,A,M0,M1,F (k, 0)−AdvPRIV−IND−MU
Π,A,M0,M1,F (k, 1)

∣∣∣ ≤ ν(k)

for all sufficiently large k, where

AdvPRIV−IND−MU
Π,A,M0,M1,F (k, b) = Pr

[
A
(
1k, p⃗k, E⃗nc

p⃗k
( ⃗⃗mb), fk( ⃗⃗m0)

)
= 1
]

,

and the probability is taken over the choices of ⃗⃗m0 ←M0,k, ⃗⃗m1 ←M1,k, (ski, pki) ← KeyGen(1k)
for all i ∈ {1, . . . , ℓ(k)}, and over the internal coin tosses of A.
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5 Equivalences Between Our Notions of Security

In this section we prove that our simulation-based (PRIV-SSS), comparison-based (PRIV-CSS), and
indistinguishability-based (PRIV-IND) notions of security are equivalent. The high-level approach of
the equivalence proofs in this section is motivated by [BBO07, BFO+08a, BFO08b], but the existence
of auxiliary inputs introduces various additional difficulties that our proofs overcome. Specifically,
all proofs but one (PRIV-CSS =⇒ PRIV-IND) are quite natural extensions of the proofs given by
[BBO07, BFO+08a, BFO08b] to the auxiliary-input setting, and for the PRIV-CSS =⇒ PRIV-IND
proof we also included a high-level overview explaining the main difference.

As discussed in Section 4, our comparison-based notion serves essentially as an intermediate
notion between the two other notions: we first prove that PRIV-IND and PRIV-CSS are equivalent,
and then prove that PRIV-CSS and PRIV-SSS are equivalent. These proofs are presented in Sections
5.1 – 5.4, stated for hard-to-invert auxiliary inputs, and we note that they immediately extend to
blockwise-hard-to-invert auxiliary inputs. In Section 5.5 we then prove that for our notions of
security, security for a vector of messages with respect to a blockwise-hard-to-invert auxiliary input
is in fact equivalent to security for a single message with respect to a hard-to-invert auxiliary input.

5.1 PRIV-CSS =⇒ PRIV-IND

The following lemma shows that any scheme which is secure according to the comparison-based
definition (Definition 4.2) is also secure according to the indistinguishability-based one (Definition
4.3).

Lemma 5.1. Let Π be a deterministic public-key encryption scheme. Then, for any probabilistic
polynomial-time algorithm A, for any two efficiently samplable distributions M0 and M1, and for
any efficiently computable function F that is ϵ-hard-to-invert with respect to both M0 and M1,
there exist a probabilistic polynomial-time algorithm A′, an efficiently samplable distribution M,
an efficiently computable function F ′ that is ϵ-hard-to-invert with respect toM, and two efficiently
computable functions g, g′ ∈ {0, 1}∗ → {0, 1}, such that for any k ∈ N

AdvPRIV−INDΠ,A,M0,M1,F (k) ≤ AdvPRIV−CSSΠ,A,M0,F ,g(k) + 2 ·AdvPRIV−CSSΠ,A′,M,F ′,g′(k) .

Before providing the formal proof of Lemma 5.1 we first provide a high-level overview of its
structure. Given an adversary A, two distributions M0 and M1, and a function f that is hard-
to-invert with respect to both M0 and M1, we would like to upper bound the advantage of

A in distinguishing between the distributions D0 =
(
pk, E⃗ncpk(m⃗0), f(m⃗0)

)
m⃗0←M0

and D1 =(
pk, E⃗ncpk(m⃗1), f(m⃗0)

)
m⃗0←M0,m⃗1←M1

. The main idea underlying the proof is based on a hybrid

argument by considering the intermediate distribution D′ =
(
pk, E⃗ncpk(m⃗1), f(m⃗0)

)
m⃗0,m⃗1←M0

. We

first observe that the advantage of A in distinguishing between D0 and D′ is exactly AdvPRIV−CSSΠ,A,M0,F ,g,
where g is the constant function that evaluates to 1 on all inputs. Next, for bounding the advantage
of A in distinguishing between D′ and D1, note that in both distributions the ciphertext and the
auxiliary input that are given to A are independent (i.e., A is provided with auxiliary input for a
message that is chosen independently than the one encrypted). The proof in this case is essentially
identical to that of Bellare et al. [BFO+08a] by ignoring the auxiliary input.

Proof of Lemma 5.1. For any algorithm A, two distributions M0 and M1, and function F , it
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holds that

AdvPRIV−IND
Π,A,M0,M1,F (k) =

∣∣∣Prm⃗0←M0

[
A
(
1k, pk, E⃗ncpk(m⃗0), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
m⃗1←M1

[
A
(
1k, pk, E⃗ncpk(m⃗1), fk(m⃗0)

)
= 1
]∣∣∣∣

≤
∣∣∣Prm⃗0←M0

[
A
(
1k, pk, E⃗ncpk(m⃗0), fk(m⃗0)

)
= 1
]

(5.1)

−Pr m⃗0←M0
m⃗1←M0

[
A
(
1k, pk, E⃗ncpk(m⃗1), fk(m⃗0)

)
= 1
]∣∣∣∣

+

∣∣∣∣Pr m⃗0←M0
m⃗1←M0

[
A
(
1k, pk, E⃗ncpk(m⃗1), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
m⃗1←M1

[
A
(
1k, pk, E⃗ncpk(m⃗1), fk(m⃗0)

)
= 1
]∣∣∣∣

= AdvPRIV−CSSΠ,A,M0,F ,g(k)

+
∣∣∣Prm⃗1←M0

[
A′
(
1k, pk, E⃗ncpk(m⃗1)

)
= 1
]

(5.2)

−Prm⃗1←M1

[
A′
(
1k, pk, E⃗ncpk(m⃗1)

)
= 1
]∣∣∣ , (5.3)

where Eq. (5.1) follows by triangle inequality with Pr m⃗0←M0
m⃗1←M0

[
A
(
1k, pk, E⃗ncpk(m⃗1), fk(m⃗0)

)
= 1
]

and where g ≡ 1 (i.e., g is the function that evaluates to 1 on all inputs), and A′ is an algorithm
that on input (1k, pk, c⃗) samples m⃗0 ←M0 and invokes A on input (1k, pk, c⃗, fk(m⃗0)).

Note that the expressions in Equations (5.2) and (5.3) correspond to the advantage of A′ in
distinguishing between an encryption resulting from M0 and an encryption resulting from M1

without auxiliary input. For bounding this advantage, letM be the balanced convex combination
ofM0 andM1 (that is,M samples fromMb for a uniformly chosen b ∈ {0, 1}), and let g′ be the
indicator to whetherM samples fromM0 orM1. The assumption that F is ϵ-hard-to-invert with
respect to both M0 and M1 implies in particular that by letting F ′ be any constant function we
clearly have that F ′ is ϵ-hard-to-invert with respectM. In addition, it holds that

AdvPRIV−CSSΠ,A′,M,F ′,g′(k, 0) =
1

2
·
(
1− Prm⃗←M0

[
A′
(
1k, pk, E⃗ncpk(m⃗)

)
= 1
])

+
1

2
· Prm⃗←M1

[
A′
(
1k, pk, E⃗ncpk(m⃗)

)
= 1
]

, (5.4)

and

AdvPRIV−CSSΠ,A′,M,F ′,g′(k, 1) = Pr m⃗←M
m⃗′←M

[
A′
(
1k, pk, E⃗ncpk(m⃗′)

)
= g′(m⃗)

]
=

1

2
. (5.5)

Combining Equations (5.4) and (5.5) implies that

AdvPRIV−CSSΠ,A′,M,F ′,g′(k) =
1

2
·
∣∣∣Prm⃗←M0

[
A′
(
1k, pk, E⃗ncpk(m⃗)

)
= 1
]

−Prm⃗←M1

[
A′
(
1k, pk, E⃗ncpk(m⃗)

)
= 1
]∣∣∣ ,

and therefore AdvPRIV−INDΠ,A,M0,M1,F (k) ≤ AdvPRIV−CSSΠ,A,M0,F ,g(k) + 2 ·AdvPRIV−CSSΠ,A′,M,F ′,g′(k).
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5.2 PRIV-IND =⇒ PRIV-CSS

The following lemma shows that any scheme which is secure according to the indistinguishability-
based definition (Definition 4.3) is also secure according to the comparison-based one (Definition
4.2). The proof is obtained quite naturally by extending the proof of Bellare et al. [BFO+08a] to the
auxiliary-input setting. As discussed in Section 4, recall that for the comparison-based definition it
suffices to consider efficiently computable δ-balanced predicates g : {0, 1}∗ → {0, 1} for δ = 1/4.

Lemma 5.2. Let Π be a deterministic public-key encryption scheme. Then, for any probabilistic
polynomial-time algorithm A, for any efficiently samplable distribution M, for any efficiently com-
putable function F that is ϵ-hard-to-invert with respect toM, for any efficiently computable predicate
g : {0, 1}∗ → {0, 1} that is δ-balanced onM (where 0 < δ < 1/2), and for any polynomial p(k), there

exist two efficiently samplable distributions M0 and M1 for which F is
(

ϵ(k)
1/2−δ + (1/2 + δ)p(k)

)
-

hard-to-invert, such that for any k ∈ N

AdvPRIV−CSSΠ,A,M,F ,g(k) ≤ max
{
AdvPRIV−INDΠ,A,M0,M,F (k),Adv

PRIV−IND
Π,A,M1,M,F (k)

}
+

(
1

2
+ δ

)p(k)

.

Proof. Given a distributionM = {Mk}k∈N and a predicate g : {0, 1}∗ → {0, 1} that is δ-balanced
onM, we let

α0,k = Prm⃗←Mk
[g(m⃗) = 0]

α1,k = Prm⃗←Mk
[g(m⃗) = 1] ,

and denote by Mk|g=0 and Mk|g=1 the conditional distributions of Mk given that g(Mk) = 0
and g(Mk) = 1, respectively. Note that these conditional distributions are not always efficiently
samplable, and therefore we would like to approximate them by two efficiently samplable distribu-
tions to within a negligible statistical distance. For this purpose for each b ∈ {0, 1} we define the
distributionMb = {Mb,k}k∈N as the convex combination

Mb,k = α
p(k)
1−b,k · Mk +

(
1− α

p(k)
1−b,k

)
·Mk|g=b .

That is, the distributionMb,k samples fromMk with probability α
p(k)
1−b,k and samples fromMk|g=b

with probability (1 − α
p(k)
1−b,k). The definition of Mb,k directly implies that the statistical distance

between Mb,k and Mk|g=b is at most α
p(k)
1−b,k ≤ (1/2 + δ)p(k). In addition, the distribution Mb,k

is samplable by the following efficient algorithm: (1) sample m⃗1, . . . , m⃗p(k)+1 ← M, (2) if there
exists an index i ∈ {1, . . . , p(k)} such that g(m⃗i) = b then output m⃗i for the minimal such i, and
otherwise output m⃗p(k)+1. Finally, note that for any function F = {fk}k∈N that is ϵ-hard-to-invert
with respect toM, for any efficient algorithm I, and for any i ∈ {1, . . . , t(k)} it holds that

ϵ(k) ≥ Prx⃗←Mk

[
I
(
1k, fk(x⃗)

)
= xi

]
≥ αb,k · Prx⃗←Mk|g=b

[
I
(
1k, fk(x⃗)

)
= xi

]
≥ αb,k ·

(
Prx⃗←Mb,k

[
I
(
1k, fk(x⃗)

)
= xi

]
− SD (Mk|g=b,Mb,k)

)
,

and therefore

Prx⃗←Mb,k

[
I
(
1k, fk(x⃗)

)
= xi

]
≤ ϵ(k)

αb,k
+ SD (Mk|g=b,Mb,k)

≤ ϵ(k)

1/2− δ
+

(
1

2
+ δ

)p(k)

.
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That is, F is
(

ϵ(k)
1/2−δ +

(
1
2 + δ

)p(k))
-hard-to-invert with respect to M0 and M1. We conclude the

proof by observing that

AdvPRIV−CSSΠ,A,M,F ,g(k) =
∣∣∣Prm⃗←M [A(1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
−Pr m⃗←M

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= g(m⃗)

]∣∣∣∣
=
∣∣∣α0,k · Prm⃗←M|g=0

[
A
(
1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= 0
]

+α1,k · Prm⃗←M|g=1

[
A
(
1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= 1
]

−α0,k · Pr m⃗←M|g=0

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= 0
]

−α1,k · Pr m⃗←M|g=1

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= 1
]∣∣∣∣

≤ α0,k ·AdvPRIV−IND
Π,A,M|g=0,M,F (k) + α1,k ·AdvPRIV−IND

Π,A,M|g=1,M,F (k)

≤ α0,k ·

(
AdvPRIV−INDΠ,A,M0,M,F (k) +

(
1

2
+ δ

)p(k)
)

+α1,k ·

(
AdvPRIV−INDΠ,A,M1,M,F (k) +

(
1

2
+ δ

)p(k)
)

≤ max
{
AdvPRIV−IND

Π,A,M0,M,F (k),AdvPRIV−IND
Π,A,M1,M,F (k)

}
+

(
1

2
+ δ

)p(k)

.

5.3 PRIV-CSS =⇒ PRIV-SSS

The following lemma shows that any scheme which is secure according to the comparison-based
definition (Definition 4.2) is also secure according to the simulation-based one (Definition 4.1). The
proof is essentially identical to that of Bellare et al. [BFO+08a] as the auxiliary input can be easily
incorporated into their analysis.

Lemma 5.3. Let Π be a deterministic public-key encryption scheme. Then, for any probabilistic
polynomial-time algorithm A and for any efficiently samplable distribution M, there exists a prob-
abilistic polynomial-time algorithm S, such that for any efficiently computable function F that is
ϵ-hard-to-invert with respect to M, for any efficiently computable function g ∈ {0, 1}∗ → {0, 1}∗,
and for any k ∈ N it holds that

AdvPRIV−SSSΠ,A,M,S,F ,g(k) = AdvPRIV−CSSΠ,A,M,F ,g(k) .

Proof. Given an algorithm A and a distributionM as in the statement of the lemma, we define an
algorithm S that on input (1k, y) samples (sk, pk) ← KeyGen(1k) and m⃗′ ←Mk, and then invokes
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A on the input (1k, pk, E⃗ncpk(m⃗′), y). Then, for any F and g it holds that

AdvPRIV−SSSΠ,A,S,M,F ,g(k) =
∣∣∣Prm⃗←M [A(1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
− Prm⃗←M

[
S
(
1k, fk(m⃗)

)
= g(m⃗)

]∣∣∣
=
∣∣∣Prm⃗←M [A(1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
− Pr m⃗←M

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= g(m⃗)

]∣∣∣∣
= AdvPRIV−CSSΠ,A,M,F ,g(k) .

5.4 PRIV-SSS =⇒ PRIV-CSS

The following lemma shows that any scheme which is secure according to the simulation-based
definition (Definition 4.1) is also secure according to the comparison-based one (Definition 4.2).
The proof is essentially identical to that of Bellare et al. [BFO+08a] as the auxiliary input can be
easily incorporated into their analysis.

Lemma 5.4. Let Π be a deterministic public-key encryption scheme. Then, for any probabilis-
tic polynomial-time algorithm A, for any efficiently samplable distribution M, for any efficiently
computable function F that is ϵ-hard-to-invert with respect to M, for any efficiently computable
function g : {0, 1}∗ → {0, 1}∗, and for any probabilistic polynomial-time algorithm S, there exist
an efficiently computable function F ′ that is ϵ-hard-to-invert with respect to M, and an efficiently
computable function g′ : {0, 1}∗ → {0, 1}∗, such that for any k ∈ N

AdvPRIV−CSSΠ,A,M,F ,g(k) ≤ AdvPRIV−SSSΠ,A,M,S,F ,g(k) + AdvPRIV−SSSΠ,A,M,S,F ′,g′(k) .

Proof. For any algorithmA, distributionM, functions F and g, and algorithm S as in the statement
of the lemma, it holds that

AdvPRIV−CSSΠ,A,M,F ,g(k) =
∣∣∣Prm⃗←M [A(1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
− Pr m⃗←M

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= g(m⃗)

]∣∣∣∣
≤
∣∣∣Prm⃗←M [A(1k, pk, E⃗ncpk(m⃗), fk(m⃗)

)
= g(m⃗)

]
(5.6)

− Prm⃗←M

[
S
(
1k, fk(m⃗)

)
= g(m⃗)

]∣∣∣ (5.7)

+
∣∣∣Prm⃗←M [S (1k, fk(m⃗)

)
= g(m⃗)

]
(5.8)

− Pr m⃗←M
m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= g(m⃗)

]∣∣∣∣ (5.9)

Note that the expression in Equations (5.6) and (5.7) is exactly AdvPRIV−SSSΠ,A,M,S,F ,g(k). For upper
bounding the expression in Equations (5.8) and (5.9) we fix the vector of messages m⃗ in the support
ofM which maximizes this expression. That is, we define

m⃗∗ = argmaxm⃗

∣∣∣Pr [S (1k, fk(m⃗)
)
= g(m⃗)

]
− Pr

m⃗′←M

[
A
(
1k, pk, E⃗ncpk(m⃗′), fk(m⃗)

)
= g(m⃗)

]∣∣∣ .
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Then, we define the functions F ′ = {f ′k}k∈N and g′ as the constant functions f ′k(m⃗) := fk(m⃗
∗) and

g′(m⃗) := g(m⃗∗), respectively10. The function F ′ is clearly ϵ-hard-to-invert with respect toM, and
we obtain

AdvPRIV−CSSΠ,A,M,F ,g(k) ≤ AdvPRIV−SSSΠ,A,M,S,F ,g(k) + AdvPRIV−SSSΠ,A,M,S,F ′,g′(k) .

5.5 PRIV1-IND =⇒ PRIV-IND

We now prove that for the case of blockwise-hard-to-invert auxiliary inputs it is in fact sufficient to
consider a single message (the other direction clearly follows by definition). Recall that PRIV1-SSS,
PRIV1-CSS, and PRIV1-IND denote the notions of security when considering only distributions
over a single message in Definitions 4.1, 4.2, and 4.3, respectively. Our proofs of equivalence in
Sections 5.1 – 5.4 hold for any polynomial number t(k) of messages, and thus show that the notions
PRIV1-SSS, PRIV1-CSS, and PRIV1-IND are equivalent. Therefore, it suffices to prove that any
deterministic public-key encryption scheme that is PRIV1-IND-secure with respect to hard-to-invert
auxiliary inputs is also PRIV-IND with respect to blockwise-hard-to-invert inputs. The proof is
essentially identical to that of Boldyreva, Fehr, and O’Neill [BFO08b] as the auxiliary input can be
easily incorporated into their analysis.

Lemma 5.5. Let Π be a deterministic public-key encryption scheme. Then, for any probabilistic
polynomial-time algorithm A, for any two efficiently samplable distributionsM0 andM1 over vec-
tors of polynomial length t(k), and for any efficiently computable function F that is ϵ(k)-blockwise-
hard-to-invert with respect to bothM0 andM1, there exist probabilistic polynomial-time algorithms{
B

(i)
b

}
b∈{0,1}

i∈{1,...,t(k)}

, efficiently samplable distributions
{
M(i)

b ,M̃(i)
b

}
b∈{0,1}

i∈{1,...,t(k)}

, and efficiently com-

putable functions
{
F (i)
b

}
b∈{0,1}

i∈{1,...,t(k)}

such that each F (i)
b is ϵ(k)-hard-to-invert with respect to both

M(i)
b and M̃(i)

b , and for any k ∈ N it holds that

AdvPRIV−INDΠ,A,M0,M1,F (k) ≤
∑

b∈{0,1}
i∈{1,...,t(k)}

AdvPRIV1−IND

Π,B
(i)
b ,M(i)

b ,M̃(i)
b ,F(i)

b

(k) .

Proof. Let t = t(k), m⃗0 = (m0,1, . . . ,m0,t), m⃗1 = (m1,1, . . . ,m1,t). Consider the uniform distribu-
tion on the message space of the scheme Π and let U be the distribution that outputs t such uniform
messages: u⃗ = (u1, . . . , ut). Then for any algorithm A, distributionsM0 andM1, and function F ,

10We note that adapting the proof to the uniform setting is quite straightforward given that f ′k and g′ are allowed
to share a random string (as discussed in Section 4). Given such a shared string the message m⃗∗ can be sampled from
M instead of being fixed in a non-uniform manner, and the exact same argument goes through.
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as in the statement of the theorem, it holds that

AdvPRIV−IND
Π,A,M0,M1,F (k) =

∣∣∣Prm⃗0←M0

[
A
(
1k, pk,Encpk(m0,1), . . . ,Encpk(m0,t), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
m⃗1←M1

[
A
(
1k, pk,Encpk(m1,1), . . . ,Encpk(m1,t), fk(m⃗0)

)
= 1
]∣∣∣∣

≤
∣∣∣Prm⃗0←M0

[
A
(
1k, pk,Encpk(m0,1), . . . ,Encpk(m0,t), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
u⃗←U

[
A
(
1k, pk,Encpk(u1), . . . ,Encpk(ut), fk(m⃗0)

)
= 1
]∣∣∣

+
∣∣∣Pr m⃗0←M0

u⃗←U

[
A
(
1k, pk,Encpk(u1), . . . ,Encpk(ut), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
m⃗1←M1

[
A
(
1k, pk,Encpk(m1,1), . . . ,Encpk(m1,t), fk(m⃗0)

)
= 1
]∣∣∣∣

= AdvPRIV−INDΠ,A,M0,U ,F (k) + AdvPRIV−IND
Π,A′,U ,M1,F ′(k) ,

where A′ is an algorithm that on input (1k, pk, c1, . . . , ct) samples m⃗0 ←M0 and invokes A on input
(1k, pk, c1, . . . , ct, fk(m⃗0)), and F ′ is any constant function. In the remainder of the proof we bound
the terms AdvPRIV−IND

Π,A,M0,U ,F (k) and AdvPRIV−IND
Π,A′,U ,M1,F ′(k) separately.

We remark that while the use of the uniform distribution U might seem surprising at a first
glance, it is required for a technical reason that will be pointed out when it becomes relevant.

Bounding AdvPRIV−IND
Π,A,M0,U ,F(k). For every i ∈ {1, . . . , t + 1} denote by D(i)

0 the distribution
that samples m⃗0 = (m0,1, . . . ,m0,t) ← M0, u⃗ = (u1, . . . , ut) ← U , and then outputs the vector

of messages (m0,1, . . . ,m0,i−1, ui, . . . , ut). In addition, for every i ∈ {1, . . . , t} let F (i) =
{
f
(i)
k

}
be the function that takes as input the randomness used for sampling from D(i)

0 , and outputs

(m0,1, . . . ,m0,i−1, fk(m⃗0)). Then D(1)
0 = U , D(t+1)

0 =M0, and it holds that

AdvPRIV−IND
Π,A,M0,U ,F (k)

≤
t∑

i=1

∣∣∣Pr m⃗0←M0
u⃗←U

[
A
(
1k, pk,Encpk(m0,1), . . . ,Encpk(m0,i−1),Encpk(ui), . . . ,Encpk(ut), fk(m⃗0)

)
= 1
]

−Pr m⃗0←M0
u⃗←U

[
A
(
1k, pk,Encpk(m0,1), . . . ,Encpk(m0,i),Encpk(ui+1), . . . ,Encpk(ut), fk(m⃗0)

)
= 1
]∣∣∣

=
t∑

i=1

∣∣∣∣∣∣Pr m⃗′←D(i)
0 (r)

m⃗′=(m′1,...,m
′
t)

[
B

(i)
0

(
1k, pk,Encpk(m

′
i), f

(i)
k (m⃗′, r)

)
= 1
]

−Pr
m⃗′←D(i+1)

0 (r)

m⃗′=(m′1,...,m
′
t)

[
B

(i)
0

(
1k, pk,Encpk(m

′
i), f

(i)
k (m⃗′, r)

)
= 1
]∣∣∣∣∣∣ ,

=
t∑

i=1

AdvPRIV1−IND

Π,B
(i)
0 ,M(i)

0 ,M̃(i)
0 ,F(i)

0

(k) ,

where for every i ∈ {1, . . . , t}:

• M(i)
0 is a distribution that samples from D(i)

0 and then outputs the i-th component of the
latter.
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• M̃(i)
0 is a distribution that samples from D(i+1)

0 and then outputs the i-th component of the
latter.

• B
(i)
0 is an algorithm that on input (1k, pk, c, y⃗), where y⃗ = (m1, . . . ,mi−1, y), invokes A on

input (1k, pk,Encpk(m1), . . . ,Encpk(mi−1), c,Encpk(ui+1), . . . ,Encpk(ut), y) for independently
and uniformly chosen messages ui+1, . . . , ut.

Let us now explain the necessity of using the uniform distribution U , as opposed to using a hybrid
distribution that consists of M0 and M1: Given m1, . . . ,mi−1 that are sampled from M0, and
given that mi is sampled from either M0 or M1, it is not clear how to sample mi+1, . . . ,mt from
the distributionM1 conditioned on the first i values m1, . . . ,mi. When we use a hybrid distribution
that consists ofM0 and the uniform distribution U , however, sampling the values ui+1, . . . , ut from
U is trivial as these values are uniformly distributed, independently of the first i− 1 elements that
are sampled fromM0 and independently of whether the i-th element is sampled fromM0 or from
U . We note that the technique of using the uniform distribution U in this proof dates back to the
analogous proof of Boldyreva, Fehr, and O’Neill [BFO08b].

Finally, we observe that for every i ∈ {1, . . . , t} the function F (i) is clearly ϵ(k)-hard-to-invert

with respect to the distributionM(i)
0 : the distributionM(i)

0 outputs a uniformly distributed value
ui that is independent of the output (m0,1, . . . ,m0,i−1, fk(m⃗0)) of the function F (i). In addition,
the assumption that F is ϵ(k)-blockwise-hard-to-invert with respect to M0 implies that for ev-
ery i ∈ {1, . . . , t} the function F (i) is ϵ(k)-hard-to-invert also with respect to the distribution

M̃(i)
0 : the distribution M̃(i)

0 outputs the value m0,i, whereas the output of the function F (i) is
(m0,1, . . . ,m0,i−1, fk(m⃗0)).

Bounding AdvPRIV−IND
Π,A′,U ,M1,F ′(k). This is a specific case of the previous one since no auxiliary

input is available to the adversary (recall that F ′ is any constant function). Thus, the same analysis

shows that there exist probabilistic polynomial-time algorithms
{
B

(i)
1

}
i∈{1,...,t(k)}

, efficiently sam-

plable distributions
{
M(i)

1 ,M̃(i)
1

}
i∈{1,...,t(k)}

, and efficiently computable functions
{
F (i)
1

}
i∈{1,...,t(k)}

such that each F (i)
1 is ϵ(k)-hard-to-invert with respect to bothM(i)

1 and M̃(i)
1 , and it holds that

AdvPRIV−INDΠ,A′,U ,M1,F ′(k) ≤
t∑

i=1

AdvPRIV1−IND

Π,B
(i)
1 ,M(i)

1 ,M̃(i)
1 ,F(i)

1

(k) .

6 A Scheme Based on the d-Linear Assumption

In this section we present our d-linear-based deterministic encryption scheme. The scheme is pre-
sented in Section 6.1, where we also discuss its homomorphic properties. Security with respect
to auxiliary inputs in proved in Section 6.2, and a generalization to the multi-user is proved in
Section 6.3.

6.1 The Scheme ΠLin

We show that the d-linear-based lossy trapdoor function of Freeman et al. [FGK+10] is in fact a
deterministic public-key encryption that is secure with respect to hard-to-invert auxiliary inputs.
We note that the lossy trapdoor function of Freeman et al. [FGK+10] is a generalization of the one
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of Peikert and Waters [PW11], which was shown by Boldyreva, Fehr and O’Neill [BFO08b] to be a
secure deterministic public-key encryption scheme without auxiliary inputs.

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a
security parameter 1k, and outputs a triplet (G, q, g) where G is a group of prime order q that is
generated by g ∈ G, and q is a k-bit prime number. The scheme is parameterized by the security
parameter k and the message length n = n(k).

• Key generation. The algorithm KeyGen(1k) samples (G, q, g)←GroupGen(1k), and a matrix
A ← Zn×n

q . It then outputs pk = (G, q, g, gA) and sk = A−1 (note that A is invertible with
all but a negligible probability).

• Encryption. The algorithm Encpk(m), where m ∈ {0, 1}n
(
⊆ Zn

q

)
, outputs the ciphertext

gc = gA·m.

• Decryption. The algorithm Decsk(g
c), where gc ∈ Gn, first computes gm = gA

−1·c. Then,
note that if m ∈ {0, 1}n then it can be efficiently extracted from gm. In such case it outputs
m, and otherwise it outputs ⊥.

Correctness follows immediately as in [FGK+10].

Homomorphism. The scheme naturally exhibits homomorphic properties w.r.t. multiplication
by a scalar or addition of two ciphertexts over Zn

q . This follows from “arithmetics in the exponent”.
We stress, however, that the output of such homomorphic operations will be decryptable if it lies
in the message space of our scheme, {0, 1}n, which is a proper subset of the domain Zn

q on which
these operations are performed. More generally, decryption is possible as long as each entry of the
encrypted plaintext vector belongs to a predetermined set of logarithmic size.

In addition, if the underlying group G is associated with a bilinear map, then our scheme enjoys
an additional homomorphism w.r.t. one matrix multiplication. This is similar to the homomorphism
style achieved in [BGN05] and in [GHV10]. We stress that in such case we base the security of the
scheme on the d-linear assumption for d ≥ 2 (as the 1-linear, i.e. DDH, in general might not hold
in such a group without introducing additional assumptions). Formally, let G, q, and g be as
in the parameters of our scheme, and let GT be a (different) group of order q. A bilinear map
e : G × G → GT has the following properties. Bilinearity: for all x, y ∈ G, a, b ∈ Z it holds that

e(xa, yb) = e(x, y)ab; Non-degeneracy: e(g, g) ̸= 1. It follows that gT

def
=e(g, g) generates GT .

Homomorphic matrix multiplication, thus, is performed in our scheme as follows: Given two
ciphertexts gAm1 and gAm2 , one can compute e(g, g)Am1mT

2 AT
. This ciphertext can be decrypted

by multiplying by A−1 from the left (in the exponent) and A−T from the right (again, in the

exponent) to obtain e(g, g)m1·mT
2 . Since m1 and m2 are binary, m1 ·mT

2 is binary as well and can
be extracted from the exponent.

6.2 Proof of Security

We now prove that the scheme ΠLin is secure with respect to any blockwise-hard-to-invert auxiliary
input with subexponential hardness. As shown in Section 5.5, it suffices to show that PRIV1-IND-
security holds with respect to the same hardness. We prove the following theorem:

Theorem 6.1. Let d ∈ N be some integer. Then under the d-linear assumption, for any constant
0 < µ < 1 and for any sufficiently large message length n = n(k), the scheme ΠLin is PRIV1-IND-
secure with respect to 2−n

µ
-hard-to-invert auxiliary inputs.
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A corollary for blockwise-hard-to-invert auxiliary inputs then immediately follows.

Corollary 6.2. Let d ∈ N be some integer. Then under the d-linear assumption, for any constant
0 < µ < 1 and for any sufficiently large message length n = n(k), the scheme ΠLin is PRIV-IND-
secure with respect to 2−n

µ
-blockwise-hard-to-invert auxiliary inputs.

Before providing the formal proof of Theorem 6.1 we first describe the main ideas underlying
the security of the scheme. For simplicity, we focus here on the case d = 1 (i.e., we rely on the
DDH assumption). Given a distribution M over messages m ∈ {0, 1}n, and an auxiliary-input
function f that is sub-exponentially hard to invert with respect toM, we argue that an encryption
of a messages m sampled from the distributionM is computationally indistinguishable from being
completely independent of the public key pk and the auxiliary input f(m). More specifically, we

prove that (pk,Encpk(m), f(m))
c≈ (pk, gu, f(m)), for a uniformly chosen vector u. Transforming

this into either one of our notions of security from Section 4 is rather standard.
Consider the joint distribution (pk,Encpk(m), f(m)) = (gA, gA·m, f(m)) of the public key, the

ciphertext, and the auxiliary input. First, we replace the public key pk with a malformed, but

computationally indistinguishable, public key p̃k
c≈ pk: The DDH assumption implies that replac-

ing the uniformly chosen matrix A with a random matrix of rank 1 results in a computationally
indistinguishable distribution. Such a low-rank matrix can be written as A = r · bT , for random
vectors r and b, and therefore A ·m = r · bT ·m. However bT ·m = ⟨b,m⟩ is indistinguishable
from the uniform distribution, even given b and f(m), according to the generalized Goldreich-Levin
theorem from Section 2.2. Our initial distribution is thus indistinguishable from the distribution
(gr·b

T
, gr·α, f(m)).

Now, notice that the matrix [r · bT ∥r · α] ∈ Zn×(n+1)
q is essentially a random matrix of rank 1.

Relying on the DDH assumption once again, it can be replaced with a completely random matrix
while preserving computational indistinguishability. This yields the distribution (gA, gu, f(m)),
where A and u are chosen uniformly at random.

The following lemma is the main technical ingredient in the proof of Theorem 6.1.

Lemma 6.3. Let d ∈ N be some integer and let n = n(k) be a polynomial. Let D = {Dk} be
a distribution ensemble over {0, 1}n and let F = {fk : {0, 1}n → {0, 1}∗}k∈N be a collection of

ϵ-hard-to-invert functions with respect to D, for ϵ ≤ negl(k)
q2d

. Then under the d-linear assumption{
(gA, gAx, f(x))

}
k∈N

c≈
{
(gA, gu, f(x))

}
k∈N ,

where (G, q, g)←GroupGen(1k), A← Zn×n
q , x← Dk, and u← Zn

q .

Proof. We prove the lemma by a series of four hybrid distributions H0, . . . , H3, where the hybrids
H0 and H3 are the two distributions under consideration in the statement of the lemma. That is,

H0 = (gA, gAx, f(x))

H3 = (gA, gu, f(x))

The intermediate hybrids H1, H2, and H3 are defined as follows.

1. Hybrid H1 is obtained from hybrid H0 by replacing gA with gR·B, where R ← Zn×d
q and

B← Zd×n
q . That is,

H1 = (gR·B, gR·Bx, f(x)) ,

and computational indistinguishability of H0 and H1 follows directly from the d-linear as-
sumption.
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2. Hybrid H2 is obtained from hybrid H1 by replacing gR·Bx with gR·v, where v← Zd
q . That is,

H2 = (gR·B, gR·v, f(x)) .

Using Theorem 2.2 with the field F = GF(qd), we have

(B,B · x, f(x))
c
≈ (B,v, f(x)) ,

where v← Zd
q .

To see this, we consider an efficient isomorphism between GF(qd) and Zd
q : Thinking of GF(qd)

as an extension field over Zq, the elements of GF(qd) correspond to degree-(d−1) polynomials
over Zq. The coefficient vector of such polynomial is exactly a vector in Zd

q .

Since there is an (efficient) isomorphism between the columns of B and elements β1, . . . , βn ∈
GF(qd) such that B · x =

∑
i∈[n] xi · βi = ⟨x,β⟩. Therefore, H1 and H2 are computationally

indistinguishable.

3. Hybrid H3 is obtained from hybrid H2 by replacing gR·[B∥v] with g[A∥u], where A ← Zn×n
q

and u← Zn
q . That is,

H3 = (gA, gu, f(x)) ,

and computational indistinguishability of H2 and H3 follows by the d-linear assumption.

We can now go back to proving Theorem 6.1.

Proof of Theorem 6.1. Let d ∈ N be as in the theorem statement. Let µ > 0 be some constant.
Choosing n(k) ≥ kO(1/µ) = poly(k) results in having

2−n
µ ≤ negl(k)

q2d
.

We denote the latter term by ϵ and note that if a function ensemble is 2−n
µ
-hard-to-invert then it

is also ϵ-hard-to-invert.
Let F = {fk}k be ϵ-hard-to-invert with respect to distributions M0,k and M1,k over {0, 1}n,

and recall that pk = gA and Encpk(m) = gA·m for any message m. Letting m0 ← M0,k and
m1 ←M1,k, Lemma 6.3 asserts that there exists a distribution U that is independent of pk,M0,k,
andM1,k, such that

(pk,Encpk(m0), fk(m0))
c
≈ (pk, α, fk(m0))

(pk,Encpk(m1), fk(m1))
c≈ (pk, α, fk(m1)) ,

where α← U .11 A straightforward hybrid argument implies that

(pk,Encpk(m0),Encpk(m1), fk(m0), fk(m1))
c≈ (pk, α0,Encpk(m1), fk(m0), fk(m1))
c≈ (pk, α0, α1, fk(m0), fk(m1)) .

11Recall that the distribution U is an abbreviation for gu, where u← Zn
q .
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Where α0, α1 ← U . We now apply a symmetric argument to the above: Since α0, α1 are identically
distributed, it follows that

(pk,Encpk(m0),Encpk(m1), fk(m0), fk(m1))
c≈ (pk, α1, α0, fk(m0), fk(m1))
c≈ (pk, α1,Encpk(m0), fk(m0), fk(m1))
c
≈ (pk,Encpk(m1),Encpk(m0), fk(m0), fk(m1)) .

We have that for the scheme ΠLin

(pk,Encpk(m0),Encpk(m1), fk(m0), fk(m1))
c≈ (pk,Encpk(m1),Encpk(m0), fk(m0), fk(m1)) ,

which implies PRIV1-sIND security and thus PRIV1-IND security.

6.3 The Multi-User Setting

We now show that ΠLin is secure with respect to auxiliary inputs even in the multi-user setting (see
Definition 4.5). We allow any polynomial number of users, and for simplicity we assume that each
public key encrypts one message (this corresponds to ℓ(k) = poly(k) and t(k) = 1 in the discussion
preceding Definition 4.5 – which we denote by PRIV1-IND-MU). As in the single-user setting, this
naturally extends to the case where several messages are encrypted under each public key with
blockwise-hard-to-invert auxiliary input. In addition, we require that the messages to be encrypted
come from an affine distribution, a term we define below. Intuitively, this means that there are
publicly known invertible linear relations (over Zn

q ) between the messages.

Definition 6.4 (Affine message distributions). Let n = n(k) and ℓ = ℓ(k) be integer functions of the
security parameter, and letM = {Mk} ⊆ ({0, 1}n)ℓ be a distribution ensemble. ThenM is affine if
there exist invertible and efficiently computable (given k) matrices V2, . . . ,Vℓ ⊆ Zn×n

q and vectors
w2, . . . ,wℓ ∈ Zn

q , such that for all (m1, . . . ,mℓ) in the support of M and for all i ∈ {2, . . . , ℓ} it
holds that mi = Vi ·m1 +wi (where the arithmetic is over Zq).

Note that we require that messages are taken over the space {0, 1}n, and arithmetics is over Zq.
In particular, this captures the case of “broadcast encryption” where encrypting the same message
under many public keys. Furthermore, this also captures XORing with a constant vector over the
binary field, or permuting the coordinates of a binary vector (a tool used, e.g., in [BHH+08]). We
can now state the multi-user security of ΠLin.

Theorem 6.5. Let d ∈ N be some integer. Then under the d-linear assumption, for any constant
0 < µ < 1 and for any sufficiently large message length n = n(k), the scheme ΠLin is PRIV1-IND-
MU-secure with respect to 2−n

µ
-hard-to-invert auxiliary inputs.

The idea behind the proof here is an extension of the one from Theorem 6.1. Consider a case of
ℓ = ℓ(k) users, each with their own public key gAi . Consider encrypting linearly related messages
Vi ·x with these keys (for the sake of simplicity, we ignore the offsetswi in this intuitive explanation).

Then the sequence of keys and ciphertexts (gAi , gAi·Vi·x) can be written as (gBi·V−1
i , gBi·x), for

uniform Bi’s. This can be transformed, similarly to Lemma 6.2 (omitting some technical details),

into a distribution (gBi·V−1
i , gui), even given the auxiliary input. Thus, again, the ciphertexts of all

users become independent of all other variables which enables proving security. We next prove a
lemma that extends Lemma 6.3 and is used towards the formal proof, which follows.
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Lemma 6.6. Let d ∈ N be some integer and let n = n(k), ℓ = ℓ(k) be polynomials and letM be an

affine distribution ensemble. Let F = {fk} be a collection of ϵ =
(
negl(k)
q2d

)
-hard-to-invert functions

w.r.t.M. Then for A1, . . . ,Aℓ ← Zn×n
q , ⃗⃗m = (m1, . . . ,mℓ)←Mk, u1, . . . ,uℓ ← Zn

q , it holds that(
1k,
(
gA1 , gA1·m1

)
, . . . ,

(
gAℓ , gAℓ·mℓ

)
, fk( ⃗⃗m)

)
c≈
(
1k,
(
gA1 , gu1

)
, . . . ,

(
gAℓ , guℓ

)
, fk( ⃗⃗m)

)
.

Proof. We prove by a series of hybrids. The zeroth hybrid is, as expected

H0
def
=
(
1k,
(
gA1 , gA1·m1

)
, . . . ,

(
gAℓ , gAℓ·mℓ

)
, fk( ⃗⃗m)

)
.

As a first step, we will change our notation slightly. We define x
def
=m1, V1

def
=In, w1 = 0. Namely,

now for all i ∈ [ℓ] it holds that mi = Vi · x +wi. We define D to be the marginal distribution of

the first element in M. Namely x is distributed according to D. The vector ⃗⃗m can be efficiently
computed as a deterministic function of x (by computing all Vi’s and wi’s and using them to

compute the respective values). Thus we can consider F ′ = {f ′k}k where f ′k(x) first computes ⃗⃗m

and then outputs fk( ⃗⃗m). The collection F ′ is ϵ-hard-to-invert on the distribution D. Using this new
notation, we have that

H0 =

(
1k,
((

gAi , gAi·(Vi·x+wi)
))

i∈[ℓ]
, f ′k(x)

)
.

Our hybrid argument proceeds from here.

1. In the hybrid H1, we change the distribution of Ai, for all i ∈ [ℓ], into Ai
def
=Ri ·B ·V−1i , where

Ri ← Zn×n
q and B← Zn×n

q . This distribution is statistically close to the original one (it would
be identical if B was invertible, which happens with all but O(1/q) probability). We get that

H0
s≈ H1 where

H1
def
=

(
1k,
((

gRi·B·V−1
i , gRi·B·x+Ri·B·V−1

i ·wi

))
i∈[ℓ]

, f ′k(x)

)
.

2. We now use Lemma 6.3 from above to argue that the ϵ-hardness of f ′ on the distribution D
implies that

(gB, gB·x, f ′k(x))
c≈ (gB, gu, f ′k(x)) ,

for u← Zn
q . Plugging this into the previous hybrid, we get that H1

c≈ H2 where

H2
def
=

(
1k,
((

gRi·B·V−1
i , gRi·u+Ri·B·V−1

i ·wi

))
i∈[ℓ]

, f ′k(x)

)
.

3. Denote C = [B∥u] ∈ Zn×(n+1)
q and R = [RT

1 ∥ · · · ∥RT
ℓ ] ∈ Zn×nr

q . Note that both matrices are

uniform in their respective domains. For n ≥ d, The d-linear assumption implies that gR
T ·C

is computationally indistinguishable from uniform. Breaking the big matrix into blocks, we
have that (

(gRi·B, gRi·u)
)
i∈[ℓ]

c≈
(
(gSi , gti)

)
i∈[ℓ] ,

for Si ← Zn×n
q , ti ← Zn

q . Plugging this into H2, we get that H2
c≈ H3 where

H2
def
=

(
1k,
((

gSi·V−1
i , gti+Si·V−1

i ·wi

))
i∈[ℓ]

, f ′k(x)

)
.
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However, noticing that Si ·V−1i is uniform in Zn×n
q and that ti +Si ·V−1i ·wi is uniform in Zn

q , and

plugging back f ′k(x) = fk( ⃗⃗m), we get that H3 is identically distributed to(
1k,
(
gA1 , gu1

)
, . . . ,

(
gAℓ , guℓ

)
, fk( ⃗⃗m)

)
,

and the result follows.

Deriving Theorem 6.5 from Lemma 6.6 is now very similar to the derivation of Theorem 6.1 from
Lemma 6.3.

Proof of Theorem 6.5. Let d ∈ N be as in the theorem statement. Let 0 < µ < 1 be some
constant. Choosing n(k) ≥ kO(1/µ) = poly(k) results in having

2−n
µ ≤ negl(k)

q2d
.

We denote the latter term by ϵ and note that if a function ensemble is 2−n
µ
-hard-to-invert then it

is also ϵ-hard-to-invert.
Let F = {fk}k∈N be a class of functions that are ϵ-hard to invert for affine distributions

M0,k,M1,k ⊆
(
({0, 1}n)1

)ℓ
, where ϵ ≤ negl(k)/q2d and n(k), ℓ(k) are polynomials. Letting p⃗k

denote a vector of length ℓ(k) of properly distributed public keys for ΠLin, and letting ⃗⃗m0 ←M0,k,
⃗⃗m1 ← M1,k, Lemma 6.6 asserts that in there exists a distribution U ′ that is independent of

p⃗k,M0,M1 such that

(p⃗k, E⃗nc
p⃗k
( ⃗⃗m0), fk( ⃗⃗m0))

c≈ (p⃗k, α, fk( ⃗⃗m0))

(p⃗k, E⃗nc
p⃗k
( ⃗⃗m1), fk( ⃗⃗m1))

c≈ (p⃗k, α, fk( ⃗⃗m1)) ,

where α← U ′.12
It follows therefore that

(p⃗k, E⃗nc
p⃗k
( ⃗⃗m0), E⃗ncp⃗k(

⃗⃗m1), fk( ⃗⃗m0), fk( ⃗⃗m1))
c
≈ (p⃗k, α0, E⃗ncp⃗k(

⃗⃗m1), fk( ⃗⃗m0), fk( ⃗⃗m1))

c≈ (p⃗k, α0, α1, fk( ⃗⃗m0), fk( ⃗⃗m1)) .

Where α0, α1 ← U ′. Since α0, α1 are identically distributed, it follows that

(p⃗k, E⃗nc
p⃗k
( ⃗⃗m0), E⃗ncp⃗k(

⃗⃗m1), fk( ⃗⃗m0), fk( ⃗⃗m1))
c≈ (p⃗k, α1, α0, fk( ⃗⃗m0), fk( ⃗⃗m1))

c≈ (p⃗k, α1, E⃗ncp⃗k(
⃗⃗m0), fk( ⃗⃗m0), fk( ⃗⃗m1))

c≈ (p⃗k, E⃗nc
p⃗k
( ⃗⃗m1), E⃗ncp⃗k(

⃗⃗m0), fk( ⃗⃗m0), fk( ⃗⃗m1)) .

We have that for the scheme ΠLin

(p⃗k, E⃗nc
p⃗k
( ⃗⃗m0), E⃗ncp⃗k(

⃗⃗m1), fk( ⃗⃗m0), fk( ⃗⃗m1))
c≈ (p⃗k, E⃗nc

p⃗k
( ⃗⃗m1), E⃗ncp⃗k(

⃗⃗m0), fk( ⃗⃗m0), fk( ⃗⃗m1)) ,

which implies that Definition 4.5 holds (in fact it implies a stronger multi-user security, in the spirit
of Definition 4.4 for a single user).

12Recall that the distribution U ′ is an abbreviation for (gu1 , . . . , guℓ), where ui ← Zn
q .
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7 A Scheme Based on Subgroup Indistinguishability Assumptions

In this section we present our second deterministic public-key encryption scheme, which is based
on a rather general class of subgroup indistinguishability assumptions (including, in particular, the
quadratic residuosity assumption and Paillier’s composite residuosity assumption – see Section 2.1).
In Section 7.1 we describe the scheme, and in Section 7.2 we prove its security with respect to
hard-to-invert auxiliary inputs.

7.1 The Scheme ΠSGI

We show that a generalization of the QR-based lossy trapdoor function of Hemenway and Ostrovsky
[HO09], which can be based on subgroup indistinguishability, is in fact a deterministic public-key
encryption scheme that is secure against sub-exponentially hard-to-invert auxiliary inputs.

Let GroupGen be the generating algorithm from Section 2.1 which on input a security parameter
1k, outputs the tuple params = (GU ,GM ,GL, h, T ). We let y←gx denotes an application of an
isomorphism transforming an element x in the module MGL

into an element y in the group GL

(since we will never express elements in the module explicitly, we do not care which isomorphism
is used). We let ĝ denote the isomorphism between the group GU and the corresponding module,
such that the generating set that corresponds to ĝ is the same as that of g, appended with h. Our
scheme is parameterized by the security parameter k and the message length n = n(k).

• Key generation. The algorithm KeyGen(1k) samples params ← GroupGen(1k) (recall that

params = (GU ,GM ,GL, h, T )), a vector gw
T ← GL

n, and a vector r ←
(
[T 2]

)n
. It then

outputs pk = (params, gw
T
, hIn · gr·wT

) and sk = r.

The matrix dot product above refers to element-wise multiplication:(
hIn · gr·wT

)
i,j

=
(
hIn
)
i,j
·
(
gr·w

T
)
i,j

.

To be completely explicit, we emphasize that pk ∈ {0, 1}∗ ×GU
1×n ×GU

n×n and sk ∈ Nn.

• Encryption. The algorithm Encpk(m), where pk = (params, ĝw
T
, ĝT) and m ∈ {0, 1}n,

outputs the ciphertext c = (ĝw
T ·m, ĝT·m). We note that this computation can be performed

efficiently and that c ∈ GU ×GU
n.

For a legally generated public key pk = (params, gw
T
, hIn · gr·wT

) and sk = r, we get c =

(gw
T ·m, hm · gr·wT ·m).

• Decryption. The algorithm Decsk(c), where c = (ĝv, ĝy), first computes ĝ(y−r·v). If the
output is of the form hm, for m ∈ {0, 1}n, then it outputs m and otherwise it outputs ⊥.

Correctness follows immediately by definition.

7.2 Proof of Security

We now prove that the scheme ΠSGI is secure with respect to any blockwise-hard-to-invert auxiliary
input with subexponential hardness. As shown in Section 5.5, it suffices to show that PRIV1-IND-
security holds with respect to the same hardness. We prove the following theorem:

Theorem 7.1. Under the subgroup indistinguishability assumption, for any constant 0 < µ < 1 and
for any sufficiently message length n = n(k), the scheme ΠSGI is PRIV1-IND-secure with respect to
2−n

µ
-hard-to-invert auxiliary inputs.
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Using Lemma 5.5, we have:

Corollary 7.2. Under the subgroup indistinguishability assumption, for any constant 0 < µ < 1
and for any sufficiently large message length n = n(k), the scheme ΠSGI is PRIV-IND-secure with
respect to 2−n

µ
-blockwise-hard-to-invert auxiliary inputs.

In the proof we consider the joint distribution of the public key, the ciphertext, and the auxiliary
input (pk,Encpk(m), f(m)). Similarly to Section 6, we show that this distribution is indistinguish-
able from one where the ciphertext does not depend on m.

As a first step, we will modify the distribution of public keys. We consider a malformed, but

computationally indistinguishable, public key p̃k
c≈ pk. Specifically, while pk = (params, gw

T
, hIn ·

gr·w
T
), we switch to p̃k = (params, gw

T
, gr·w

T
), thus “losing” the h component of the public key.

Subgroup indistinguishability guarantees that the two keys are indistinguishable.13

We thus have that (pk,Encpk(m), f(m))
c≈ (p̃k,Enc

p̃k
(m), f(m)), where Enc

p̃k
(m) = (gw

T ·m,

gr·w
T ·m). We see that the only dependence of the ciphertext in m is via ⟨w,m⟩. We are thus able to

use a Goldreich-Levin like theorem to show that (w, ⟨w,m⟩, f(m))
c≈ (w, u, f(m)), for some u that

is distributed independently of m. We conclude, therefore, that (p̃k,Enc
p̃k
(m), f(m))

c
≈ (p̃k, (gu,

gr·u), f(m)), granted that f is hard enough. Namely, we showed that the ciphertext gives no
information on the message, beyond the auxiliary input. A formal proof follows.

Proof of Theorem 7.1. Let µ > 0 be some constant, and recall that L = |GL| ≤ 2poly(k). Choos-
ing n(k) ≥ kO(1/µ) = poly(k) results in having

2−n
µ ≤ negl(k)

L1+log(8n/negl(k))
.

We denote the latter term by ϵ and note that if a function ensemble is 2−n
µ
-hard-to-invert then it

is also ϵ-hard-to-invert.
Let M0 and M1 be distribution ensembles over {0, 1}n and let F = {fk} be a collection of

2−n
η
-hard-to-invert (and thus also ϵ-hard-to-invert) functions with respect to bothM0 andM1. In

addition, let pk ← (gw
T
, hIn ·gr·wT

) be a properly distributed public key for ΠSGI and letm0 ←M0,k,
m1 ←M1,k. The proof will follow by a series of hybrids. We begin with the distribution

H0 = (pk,Encpk(m0),Encpk(m1), fk(m0), fk(m1)) .

Our first step is replacing our public key with p̃k ← (params, gw
T
, gr·w

T
). This distribution is

computationally indistinguishable by Lemma 2.1. We thus get

H1 =
(
p̃k,Enc

p̃k
(m0),Encp̃k(m1), fk(m0), fk(m1)

)
.

Let us explicitly express Enc
p̃k
(m0), Encp̃k(m1) according to the definition of our encryption algo-

rithm. We have that

H1 =
(
(gw

T
, gr·w

T
), (gw

T ·m0 , gr·w
T ·m0), (gw

T ·m1 , gr·w
T ·m1), fk(m0), fk(m1)

)
.

13We remark that while pk is a sample from the injective branch of a [HO09]-like lossy trapdoor function family, p̃k
is a sample from the lossy branch.
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We can now use our hard-core Theorem 2.3 (twice) to conclude that since fk is ϵ-hard-to-invert
then

(wT ,wT ·m0,w
T ·m1, fk(m0), fk(m1)) (7.1)

c≈ (wT , u0,w
T ·m1, fk(m0), fk(m1)) (7.2)

c≈ (wT , u0, u1, fk(m0), fk(m1)) , (7.3)

where u0, u1 ←M (the module that corresponds to the GL group). Plugging this into our distribu-
tion, the next hybrid follows.

H2 =
(
(gw

T
, gr·w

T
), (gu0 , gr·u0), (gu1 , gr·u1), fk(m0), fk(m1)

)
.

However, since u0 and u1 are identically distributed, we can use Equations (7.1) – (7.3) when
switching the roles of u0 and u1 to obtain the next hybrid, that is identical to H1 except the change
of rolls between m0 and m1.

H3 =
(
(gw

T
, gr·w

T
), (gw

T ·m1 , gr·w
T ·m1), (gw

T ·m0 , gr·w
T ·m0), fk(m0), fk(m1)

)
.

Writing the latter in the form of encryptions with a malformed public key, we have that

H3 =
(
p̃k,Enc

p̃k
(m1),Encp̃k(m0), fk(m0), fk(m1)

)
.

Applying Lemma 2.1 again, to go back to the original public key yields the final hybrid

H4 = (pk,Encpk(m1),Encpk(m0), fk(m0), fk(m1)) .

Since H0
c≈ H4, it follows that

(pk,Encpk(m0),Encpk(m1), fk(m0), fk(m1))
c≈ (pk,Encpk(m1),Encpk(m0), fk(m0), fk(m1)) ,

and the strongest PRIV1-sIND security follows.
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