
Terminating BKZ

Guillaume Hanrot, Xavier Pujol, and Damien Stehlé

Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France.

guillaume.hanrot,xavier.pujol,damien.stehle@ens-lyon.fr

Abstract. Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems.
Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been
several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner
[FCT’91] seems to achieve the best time/quality compromise in practice. However, no reasonable complexity
upper bound is known for BKZ, and Gama and Nguyen [Eurocrypt’08] observed experimentally that its prac-
tical runtime seems to grow exponentially with the lattice dimension. In this work, we show that BKZ can
be terminated long before its completion, while still providing bases of excellent quality. More precisely, we
show that if given as inputs a basis (bi)i≤n ∈ Qn×n of a lattice L and a block-size β, and if terminated after
Ω

“
n3

β2 (logn+ log log maxi ‖bi‖)
”
calls to a β-dimensional HKZ-reduction (or SVP) subroutine, then BKZ re-

turns a basis whose first vector has norm ≤ 2γ
n−1

2(β−1)+ 3
2

β · (detL)
1
n , where γβ ≤ β is the maximum of Hermite’s

constants in dimensions ≤ β. To obtain this result, we develop a completely new elementary technique based on
discrete-time affine dynamical systems, which could lead to the design of improved lattice reduction algorithms.
Keywords. Euclidean lattices, BKZ, lattice-based cryptanalysis.

1 Introduction

A (full-rank) n-dimensional lattice L ⊆ Rn is the set of integer linear combinations
∑n

i=1 xibi of some
linearly independent vectors (bi)i≤n. Such vectors are called a basis and we write L = L[(bi)i]. Since L is
discrete, it contains a shortest non-zero lattice vector, whose norm λ1(L) is called the lattice minimum.
Computing such a vector given a basis is referred to as the (computational) Shortest Vector Problem (SVP),
and is NP-hard under randomized reductions [1,12]. The complexities of the best known SVP solvers are no
less than exponential [22,23,2,15] (the record is held by the algorithm from [22], with complexity 22n+o(n) ·
Poly(log maxi ‖bi‖)). Finding a vector reaching λ1(L) is polynomial-time equivalent to computing a basis
of L that is reduced in the sense of Hermite-Korkine-Zolotarev (HKZ). The aforementioned SVP solvers can
all be used to compute HKZ-reduced bases, in exponential time. On the other hand, bases reduced in the
sense of Lenstra-Lenstra-Lovász (LLL) can be computed in polynomial time [16], but the first vector is only
guaranteed to satisfy the weaker inequality ‖b1‖ ≤ (4/3 + ε)

n−1
2 · λ1(L) (for an arbitrary ε > 0). In 1987,

Schnorr introduced time/quality trade-offs between LLL and HKZ [33]. In the present work, we propose
the first analysis of the BKZ algorithm [36,37], which is currently the most practical such trade-off [40,9].

Lattice reduction is a popular tool in cryptanalysis [27]. For many applications, such as Coppersmith’s
method for computing the small roots of polynomials [5], LLL-reduction suffices. However, reductions of
much higher quality seem required to break lattice-based cryptosystems. Lattice-based cryptography origi-
nated with Ajtai’s seminal hash function [1], and the GGH and NTRU encryption schemes [10,14]. Thanks
to its excellent asymptotic performance, provable security guarantees, and flexibility, it is currently attract-
ing wide interest and developing at a steady pace. We refer to [21,31] for recent surveys. A major obstacle to
the real-life deployment of lattice-based cryptography is the lack of a precise understanding of the limits of
the best practical attacks, whose main component is the computation of strongly reduced lattice bases. This
prevents from having a precise correspondence between specific security levels and practical parameters.
Our work is a step towards a clearer understanding of BKZ, and thus of the best known attacks.

Strong lattice reduction has been studied for about 25 years (see [33,37,34,7,32,9,8] among others). From
a theoretical perspective, the best known time/quality trade-off is due to Gama and Nguyen [8]. By building
upon the proof of Mordell’s inequality on Hermite’s constant, they devised the notion of slide reduction,

and proposed an algorithm computing slide-reduced bases: Given an arbitrary basis (bi)i≤n of a lattice L,
the slide-reduction algorithm finds a basis (ci)i≤n of L such that

‖c1‖ ≤ ((1 + ε)γβ)
n−β
β−1 · λ1(L), (1)

within τslide := O
(
n4

β·ε · log maxi ‖bi‖
)

calls1 to a β-dimensional HKZ-reduction algorithm and a β-
dimensional (computational-)SVP solver, where γβ ≈ β is the β-dimensional Hermite constant. If L ⊆ Qn,
the overall cost of the slide-reduction algorithm is ≤ Poly(n, size(B)) · CHKZ(β), where CHKZ(β) = 2O(β) is
the cost of HKZ-reducing in dimension β. The higher β, the lower the achieved SVP approximation factor,
but the higher the runtime. Slide reduction also provides a constructive variant of Minkowski’s inequality,
as (letting detL denote vol(Rn/L)):

‖c1‖ ≤ ((1 + ε)γβ)
n−1

2(β−1) · (detL)
1
n , (2)

From a practical perspective, however, slide reduction seems to be (significantly) outperformed by the
BKZ algorithm [9]. BKZ also relies on a β-dimensional HKZ-reduction algorithm (resp. SVP-solver). The
worst-case quality of the bases it returns has been studied in [34] and is comparable to that of the slide
reduction algorithm. The first vector of the output basis (ci)i≤n satisfies ‖c1‖ ≤ ((1 + ε)γβ)

n−1
β−1 · λ1(L).

Note that this bound essentially coincides with (1), except for large values of β. A bound similar to that
of (2) also holds.2 In practice, the quality of the computed bases seems much higher with BKZ than with
the slide-reduction algorithm [9]. With respect to run-time, no reasonable bound is known on the number
of calls to the β-dimensional HKZ reduction algorithm it needs to make before termination.3 In practice,
this number of calls does not seem to be polynomially bounded [9] and actually becomes huge when β ≥ 25.
Because of its large (and somewhat unpredictable) runtime, it is folklore practice to terminate BKZ before
the end of its execution, when the solution of the problem for which it is used for is already provided by
the current basis [38,24].

Our result. We show that if terminated within polynomially many calls to HKZ/SVP, a slightly modified
version of BKZ (see Section 3) returns bases whose first vectors satisfy a slightly weaker variant of (2).

Theorem 1. There exists4 C > 0 such that the following holds for all n and β. Let B = (bi)i≤n be a basis
of a lattice L, given as input to the modified BKZ algorithm of Section 3 with block-size β. If terminated
after τBKZ := C n3

β2

(
log n+ log log maxi

‖bi‖
(detL)1/n

)
calls to an HKZ-reduction (or SVP solver) in dimension β,

the output (ci)i≤n is a basis of L that satisfies (with γβ ≤ β defined as the maximum of Hermite’s constants
in dimensions ≤ β):

‖c1‖ ≤ 2(γβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

If L is a rational lattice, then the overall cost is ≤ Poly(n, size(B)) · CHKZ(β).

By using [18, p. 25], this provides an algorithm with runtime ≤ Poly(n, size(B)) · CHKZ(β) that returns

a basis whose first vector satisfies ‖c1‖ ≤ 4(γβ)
n−1
β−1

+3
· λ1(L), which is only slightly worse than (1). These

results indicate that BKZ can be used to achieve essentially the same quality guarantees as slide reduction,
within a number of calls to HKZ in dimension β that is no larger than that of slide reduction. Actually,
note that τBKZ is significantly smaller than τslide, in particular with a dependence with respect to maxi ‖bi‖

1 The component n4

β
of this upper bound is derived by adapting the results from [8] to our notations. A more thorough

analysis leads to a smaller term.
2 In [9], the bound ‖c1‖ ≤ (γβ)

n−1
2(β−1)+ 1

2 · (detL)
1
n is claimed to hold, but without proof nor reference. We prove a (slightly)

weaker bound, but we are able to improve on it if γn is replaced by any linear function. See appendix.
3 A bound (nβ)n is mentioned in [9]. For completeness, we give a proof of a similar result in appendix.
4 The constant C is used to absorb lower-order terms in n, and could be taken small.

2

that is exponentially smaller. It may be possible to obtain a similar bound for the slide-reduction algorithm
by adapting our analysis.

To achieve our result, we use a completely new approach for analyzing lattice reduction algorithms. The
classical approach to bound their runtimes was to introduce a quantity, sometimes called potential, involving
the current Gram-Schmidt norms ‖b∗i ‖, which always strictly decreases every time some elementary step
is performed. This technique was introduced by Lenstra, Lenstra and Lovász [16] for analyzing their LLL
algorithm, and is still used in all complexity analyzes of (variants of) LLL we are aware of. It was later
adapted to stronger lattice reduction algorithms [33,7,32,8]. We still measure progress with the ‖b∗i ‖’s, but
instead of considering a single scalar combining them all, we look at the full vector (‖b∗i ‖)i. More specifically,
we observe that each call to HKZ within BKZ has the effect of applying an affine transformation to the
vector (log ‖b∗i ‖)i: instead of providing a lower bound to the progress made on a “potential”, we are then
led to analyze a discrete-time dynamical affine system. Its fixed-points encode information on the output
quality of BKZ, whereas its speed of convergence provides an upper bound on the number of times BKZ
calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to essentially replace β consecutive
coefficients by their average. We formalize this intuition by making a specific assumption (see Section 4).
Under this assumption, the execution of BKZ exactly matches with a dynamical system that we explicit and
fully analyze. However, we cannot prove that this intuition is always correct (counter-examples can actually
be constructed). To circumvent this difficulty, we instead consider the vector µ = (1

i

∑i
j=1 log ‖b∗j‖)i≤n.

This amortization (also used in [11] for analyzing HKZ-reduced bases) allows us to rigorously bound the
evolution of µ by the orbit of a vector under another dynamical system. Since this new dynamical system
happens to be a modification of the dynamical system used in the idealized model, the analysis performed
for the idealized model can be adapted to the rigorous set-up.

This approach is likely to prove useful for analyzing other lattice reduction algorithms. As an illustration
of its power, we provide two new results on LLL. First, we show that the SVP approximation factor

√
4/3

n−1

can be reached in polynomial time using only Gauss reductions. This is closely related to the question
whether the “optimal LLL” (i.e., using LLL parameter δ = 1) terminates in polynomial time [3,17]. Second,
we give a LLL-reduction algorithm of bit-complexity Poly(n) · Õ(size(B)). Such a complexity bound was
only very recently achieved, with a completely different approach [29]. Note that close-by results on LLL
have been concurrently and independently obtained by Schnorr [35].

Practical aspects. Our result is a (maybe pessimistic) worst-case quality bound on BKZ with early
termination. In itself, this does not give a precise explanation of the practical behavior of BKZ. In particular,
it does not explain why it outperforms slide reduction, but only why it does not behave significantly worse.
However, this study illustrates the usefulness of early termination in BKZ: Much progress is done at the
beginning of the execution, and quickly the basis quality becomes excellent; the rest of the execution takes
much longer, for a significantly less dramatic quality improvement. This behavior is very clear in practice,
as illustrated by Figure 1 of Section 2. Since most of the work performed by BKZ is completed within the
first few calls to HKZ, it shows that the BKZ performance extrapolations used to estimate the hardness
of cryptographic instances should focus only on the cost of a single call to HKZ and on the achieved basis
quality after a few such calls. For instance, it indicates that the strategy (adopted, e.g., in [14,13]) consisting
in measuring the full run-time of BKZ might be reconsidered.

Additionally, parts of the analysis might prove useful to better understand BKZ and devise reduction
algorithms with improved practical time/quality trade-offs. In particular, the heuristic modelisation of BKZ
as a discrete-time affine dynamical system suggests that the block of vectors on which HKZ-reduction is
to be applied could be chosen adaptively, so that the system converges faster to its limit. It would not
improve the output quality for BKZ, but it is likely to accelerate its convergence. Also, the second phase
of BKZ, the one that takes longer but during which some little progress is still made, could be understood
by introducing some randomness in the model: most of the time, the norm of the first vector found by
the HKZ-reduction sub-routine is around its expected value (a constant factor smaller than its worst-case

3

bound), but it is significantly smaller every now and then. If such a model could predict the behavior of
BKZ during its second phase, then maybe it would explain why it outperforms slide reduction. It might give
indications on the optimal time for stopping BKZ with block-size β before switching to a larger block-size.

Notations. All vectors will be denoted in bold, and matrices in capital letters. If b ∈ Rn, the notation ‖b‖
will refer to its Euclidean norm. If B ∈ Rn×n, we define ‖B‖2 = max‖x‖=1 ‖B · x‖ and we denote the
spectral radius of B by ρ(B). If B is a rational matrix, we define size(B) as the sum of the bit-sizes of the
numerators and denominators of its entries. All complexity statements refer to elementary operations on
bits. We will use the Landau notations o(·), O(·), Õ(·) and Ω(·). The notations log(·) and ln(·) respectively
stand for the base 2 and natural logarithms.

2 Reminders

For an introduction to lattice reduction algorithms, we refer to [28].
Successive Minima. Let L be an n-dimensional lattice. Its i-th minimum λi(L) is defined as the minimal
radius r such that B(0, r) contains ≥ i linearly independent vectors of L.
Hermite’s constant. The n-dimensional Hermite constant γn is defined as the maximum taken over all
lattices L of dimension ≤ n of the quantity λ1(L)2

(detL)2/ dim(L) . (The usual definition restricts L to dimension n
instead of ≤ n. We use this modified definition to ensure that γn increases with n.) Very few values of γn
are known, but we have γn ≤ 1 + n

4 for all n (see [20, Re 2.7.5]).
Gram-Schmidt orthogonalisation. Let (bi)i≤n be a lattice basis. Its Gram-Schmidt orthogonalization
(b∗i)i≤n is defined recursively by b∗i = bi −

∑
j<i µi,jb

∗
j with µi,j = (b∗i , b

∗
j)/‖b∗j‖2 for i > j. The b∗i ’s are

mutually orthogonal. For i ≤ j, we define b(i)
j as the projection of bj orthogonally to Span(bk)k<i. Note

that if L is an n-dimensional lattice, then detL =
∏n
i=1 ‖b∗i ‖, for any basis (bi)i≤n of L.

A few notions of reduction. Given a basis (bi)i≤n, we say that it is size-reduced if the Gram-Schmidt
coefficients µi,j satisfy |µi,j | ≤ 1/2 for all j < i ≤ n. We say that (bi)i≤n is δ-LLL-reduced for δ ≤ 1
if it is size-reduced and the Lovász conditions δ‖b∗i ‖2 ≤ ‖b∗i+1‖2 + µ2

i+1,i‖b∗i ‖2 are satisfied for all i < n.
For any δ < 1, a δ-LLL-reduced basis of a rational lattice L can be computed in polynomial time, given
an arbitrary basis of L as input [16]. We say that (bi)i≤n is HKZ-reduced if it is size-reduced and for
all i < n, we have ‖b∗i ‖ = λ1(L[(b(i)

j)i≤j≤n]). An HKZ-reduced basis of a lattice L ⊆ Qn can be computed
in time 22n+o(n) · Poly(size(B)), given an arbitrary basis B of L as input [22]. The following is a direct
consequence of the definitions of the HKZ-reduction and Hermite constant.

Lemma 1. For any HKZ-reduced basis (bi)i≤n, we have: ∀i < n, ‖b∗i ‖ ≤
√
γn−i+1 · (

∏n
j=i ‖b∗j‖)

1
n−i+1 .

The BKZ algorithm. We recall the original BKZ algorithm from [37] in Algorithm 1. BKZ was originally
proposed as a mean of computing bases that are almost β-reduced. β-Reduction was proposed by Schnorr
in [33], but without an algorithm for achieving it. The BKZ algorithm proceeds by iterating tours consisting
of n − 1 calls to a β-dimensional SVP solver called on the lattices L[(b(k)

i)k≤i≤k+β−1]. Its execution stops
when no change occurs during a tour.

Input : A (LLL-reduced) basis (bi)i≤n, a blocksize β and a constant δ < 1.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− 1 do
Find b such that b(k) is a shortest non-zero vector of L[(b

(k)
i)k≤i≤min(k+β−1,n)];

if δ · ‖b∗
k‖ > ‖b‖ then

LLL-reduce(b1, . . . , bk−1, b, bk, . . . , bmin(k+β,n)).
else

LLL-reduce(b1, . . . , bmin(k+β,n)).
until no change occurs.

Algorithm 1: The Schnorr and Euchner BKZ algorithm.

4

3 Terminating BKZ

In this article, we will not analyze the original BKZ algorithm, but we will focus on a slightly modified variant
instead, which is given in Algorithm 2. It also performs BKZ tours, and during a tour it makes n−β+1 calls
to a β-dimensional HKZ-reduction algorithm. It fits more closely to what would be the simplest BKZ-style
algorithm, aiming at producing a basis (bi)i≤n such that the projected basis (b(k)

i)k≤i≤k+β−1 is HKZ-reduced
for all k ≤ n− β + 1.

Differences between the two variants of BKZ. The differences between the two algorithms are the
following:

• In Algorithm 2, the execution can be terminated at the end of any BKZ tour.
• In the classical BKZ algorithm, the vector b found by the SVP solver is kept only if ‖b(k)‖ is smaller

than δ · ‖b∗k‖. Such a factor δ < 1 does not appear in Algorithm 2. It is unnecessary for our analysis to
hold, complicates the algorithm, and leads to output bases of lesser quality.
• For each k within a tour, Algorithm 1 only requires an SVP solver while Algorithm 2 calls an HKZ-

reduction algorithm, which is more complex. We use HKZ-reductions for the ease of the analysis. Our
analysis would still hold if the loop was done for k from 1 to n − 1 and if the HKZ-reductions were
replaced by calls to any algorithm that returns bases whose first vector reaches the minimum (which
can be obtained by calling any SVP solver, putting the output vector in front of the input basis and
calling LLL to remove the linear dependency).
• Finally, to insert b in the current basis, Algorithm 1 performs an LLL-reduction. Applying LLL inside

the projected block (i.e., to b(k), b
(k)
k , . . . , b

(k)
k+β−1) would be sufficient to remove the linear dependency

while keeping b(k) in first position, but instead it runs LLL from the beginning of the basis until the end
of the next block to be considered (i.e., up to index min(k + β, n). This reduction is performed even if
the block is already reduced and no vector is inserted. Experimentally, this seems to improve the speed
of convergence of the algorithm by a small factor, but it does not seem easy to use our techniques to
analyze this effect.

Input : A basis (bi)i≤n and a blocksize β.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− β + 1 do
Modify (bi)k≤i≤k+β−1 so that (b

(k)
i)k≤i≤k+β−1 is HKZ-reduced;

Size-reduce(b1, . . . , bn).
until no change occurs or termination is requested.

Algorithm 2: BKZ’, the modified BKZ algorithm.

On the practical behavior of BKZ. In order to give an insight on the practical behavior of BKZ
and BKZ’, we give experimental results on the evolution of the quantity ‖b1‖

(detL)1/n
(the so-called Hermite

factor) during their executions. The experiment corresponding to Figure 1 is as follows: We generated 64
knapsack-like lattice bases [25] of dimension n = 108, with non-trivial entries of bit-length 100n; Each
was LLL-reduced using fplll [4] (with parameters δ = 0.99 and η = 0.51); Then for each we ran NTL’s
BKZ [40] and an implementation of BKZ’ in NTL, with blocksize 24. Figure 1 only shows the beginning
of the executions. For both algorithms, the executions of about half the samples consisted in ' 600 tours,
whereas the longest execution stopped after ' 1200 tours. The average value of ‖b1‖

(detL)1/n
at the end of the

executions was ' 1.012.

Cost of BKZ’. In order to bound the bit-complexities of BKZ and BKZ’, it is classical to consider several
cost components separately. In this article, we will focus on the number of tours. The number of calls to
an SVP solver (for BKZ) or an HKZ-reduction algorithm (in the case of BKZ’) is ≤ n times larger. A
tour consists of efficient operations (LLL, size-reductions, etc) and of the more costly calls to SVP/BKZ.
The cost of the SVP solver or the HKZ-reduction algorithm is often bounded in terms of the number of

5

 1.012

 1.013

 1.014

 1.015

 1.016

 1.017

 1.018

 1.019

 1.02

 1.021

 0 20 40 60 80 100
H

er
m

ite
 fa

ct
or

Number of tours

Quality of BKZ output

BKZ
BKZ’

Fig. 1. Evolution of the Hermite factor ‖b1‖
(detL)1/n

during the execution of BKZ and BKZ’.

arithmetic operations it performs: For all known algorithms, this quantity is (at least) exponential in the
block-size β. Finally, one should also take into account the bit-costs of the arithmetic operations performed
to prepare the calls to SVP/HKZ, during these calls, and after these calls (when applying the computed
transforms to the basis, and calling LLL or a size-reduction). These arithmetic costs are classically bounded
by considering the bit-sizes of the quantities involved. They can easily be shown to be polynomial in the
input bit-size, by relying on rational arithmetic and using standard tools from the analyses of LLL and
HKZ [16,15]. It is likely that these costs can be lowered further by relying on floating-point approximations
to these rational numbers, using the techniques from [26,30]. To conclude, the overall cost is upper bounded
by Poly(n, log ‖B‖) · 2O(β) · τ , where τ is the number of tours.

4 Analysis of BKZ’ in the Sandpile Model

In this section, we (rigorously) analyze a heuristic model of BKZ’. In the following section, we will show
how this analysis can be adapted to allow for a (rigorous) study of the genuine BKZ’ algorithm.

We first note that BKZ’ can be studied by looking at the way the vector x := (log ‖b∗i ‖)i changes during
the execution, rather than considering the whole basis (bi)i. This simplification is folklore in the analyzes
of lattice reduction algorithms, and allows for an interpretation in terms of sandpiles [19]. The study in the
present section is heuristic in the sense that we assume the effect of a call to HKZβ on x is determined by x
only, in a deterministic fashion.

4.1 The sandpile model and its dynamical system interpretation

Before describing the model, let us consider the shape of a β-dimensional HKZ-reduced basis. Let (bi)i≤β
be an HKZ-reduced basis, and xi = log ‖b∗i ‖. Then, by Lemma 1, we have:

∀i ≤ β, xi ≤
1
2

log γβ−i+1 +
1

β − i+ 1

β∑
j=i

xj . (3)

Our heuristic assumption consists in replacing these inequalities by equalities.

Heuristic Sandpile Model Assumption (SMA). We assume for any HKZ-reduced basis (bi)i≤β , we
have xi = 1

2 log γβ−i+1 + 1
β−i+1

∑β
j=i xj for all i ≤ β, with x = (log ‖b∗i ‖)i≤β .

Under SMA, once
∑

i xi (i.e., |det(bi)i|) is fixed, an x of an HKZ-reduced basis is uniquely determined.

Lemma 2. Let (bi)i≤β be HKZ-reduced, x = (log ‖b∗i ‖)i and E[x] =
∑

i≤β
xi
β . Then, under SMA, xβ =

E[x]− Γβ(β − 1) and:

6

∀i < β, xi = E[x]− (β − i+ 1)Γβ(i− 1) + (β − i)Γβ(i),

with Γn(k) =
∑n−1

i=n−k
log γi+1

2i for all 0 ≤ k < n.

Proof. SMA is equivalent to the following triangular system of linear equations:

∀i ≤ β, xi =
β − i+ 1
2(β − i)

log γβ−i+1 +
1

β − i

β∑
j=i+1

xj .

Let yi =
∑β

j=i xj , for i ≤ β. Then yβ = xβ and yi = β−i+1
β−i

(
yi+1 + 1

2 log γβ−i+1

)
for all i < β. By induction:

∀i ≤ β, yi = (β − i+ 1)
(
yβ +

β−i∑
j=1

log γj+1

2j

)
.

Taking i = 1 and noting that y1 = β · E[x] gives yβ = xβ = E[x]− Γβ(β − 1). Now:

∀i < β, yi = (β − i+ 1)
(

E[x]− Γβ(β − 1) +
β−i∑
j=1

log γj+1

2j

)
= (β − i+ 1) (E[x]− Γβ(i− 1)).

The result derives from the equality xi = yi − yi+1. ut

We now exploit SMA to interpret BKZ’ as a discrete-time linear dynamical system. Let (bi)i≤n be a
lattice basis and x = (log ‖b∗i ‖)i. Let β ≤ n be a block-size and α ≤ n − β + 1. When we apply an HKZ
reduction algorithm to the projected sublattice (b(α)

i)α≤i<α+β−1, we obtain a new basis (b′i)i≤n such that
(with x′ = (log ‖b′∗i ‖)i):

α+β−1∑
i=α

x′i =
α+β−1∑
i=α

xi and ∀i 6∈ [α, α+ β − 1], x′i = xi.

Under SMA, we also have:

∀i ∈ [α, α+ β − 1], x′i =
1
2

log γα+β−i +
1

α+ β − i

α+β−1∑
j=i

x′j .

By applying Lemma 2, we obtain x′ = A(α) · x+ g(α), with:

A(α) =

. . .
1

1
β · · ·

1
β (α)

...
. . .

...
1
β · · ·

1
β (α+β−1)

1
. . .

and g(α)
i =

0 if i < α

(β + α− i− 1)Γβ(i− α+ 1)− (β + α− i)Γβ(i− α)
if i ∈ [α, α+ β − 2]

−Γβ(β − 1) if i = α+ β − 1
0 if i ≥ α+ β.

We recall that a BKZ’ tour is the successive (n−β+1) applications of an HKZ-reduction algorithm with
α = 1, . . . , n− β + 1 (in this order). Under SMA, the effect of a BKZ’ tour on x is to replace it by Ax+ g

7

with g = g(n−β+1) +A(n−β+1) · (g(n−β) +A(n−β) · (. . .)) and:

A = A(n−β+1) · . . . ·A(1) =

(1) (β)

1
β · · · 1

β
β−1
β2 · · · β−1

β2
1
β

...
...

.
(β−1)n−β

βn−β+1 · · ·
(β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n−β+1)

...
...

...
...

(β−1)n−β

βn−β+1 · · ·
(β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n)

.

The rest of this section is devoted to studying the discrete-time dynamical system x ← A · x + g. Its
solutions and speed of convergence respectively provide information on the output quality and runtime of
BKZ’ (under SMA). Overall, we prove the following theorem.

Theorem 2. Under SMA, there exists C > 0 such that the following holds for all n and β. Let (bi)i≤n be
given as input to BKZ’β and L the lattice spanned by the bi’s. If terminated after C n2

β2 (log n+log log maxi
‖b∗i ‖

(detL)1/n
)

tours, then the output (ci)i≤n is a basis of L that satisfies ‖x−x∞‖2 ≤ 1, where xi = log ‖c∗i ‖
(detL)1/n

for all i
and x∞ is the unique solution of the equation x∞ = A · x∞ + g with E[x∞] = 0. This implies that:

‖c1‖ ≤ 2(γβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

If we replace γβ by a linear function that bounds it (e.g., γβ ≤ β), then the constant 3
2 above may be

replaced by 1−ln 2
2 + ε (with ε > 0 arbitrarily close to 0 and β sufficiently large).

4.2 Solutions of the dynamical system

Before studying the solutions of x = A · x+ g, we consider the associated homogeneous system.

Lemma 3. If A · x = x, then x ∈ span(1, . . . , 1)T .

Proof. Let x ∈ Rn such that A · x = x. Let i the largest index such that xi = maxj xj . We prove by
contradiction that i = n. Assume that i < n. We consider two cases, depending on whether i < β or i ≥ β.
Recall that applying A(α) to a vector y consists in replacing yα, . . . , yα+β−1 by their mean, and in leaving
the others constant. As a result, the maximum of the yi’s cannot increase.

Assume first that i < β. Let x′ = A(1) · x. By definition of i, we must have xi+1 < xi, and there-
fore maxj≤β x′j < maxj≤β xj . By choice of i, we also have maxj≤n x′j < maxj≤n xj . But x = A(n−β+1) · . . . ·
A(2)x′, which leads to the inequality maxj≤n xj ≤ maxj≤n x′j . We obtained a contradiction.

Now, assume that i ≥ β. Let x′ = A(i−β+1) · . . . ·A(1) · x and x′′ = A(i−β+2) · x′. We have maxj≤n x′j ≤
maxj≤n xj = xi. Moreover, we have x′i−β+1 = . . . = x′i ≤ xi and for all j > i, x′j = xj < xi. This implies
that maxi−β+2≤j≤n x

′′
j < xi. Since x = A(n−β+1) · . . . ·A(i−β+3) · x”, we obtain that maxi−β+2≤j≤n xj < xi.

In particular, we obtain the contradiction xi < xi.
So far, we have proven that xn = maxj≤n xj . Symmetrically, we could prove that xn = minj≤n xj , which

provides the result. ut

It thus suffices to find one solution to x = A · x+ g to obtain all the solutions. We define x as follows:

xi =

{
β

2(β−1) log γβ + 1
β−1

∑i+β−1
j=i+1 xj if i ≤ n− β

g
(n−β+1)
i if i > n− β

.

8

Lemma 4. We have x = A · x+ g.

Proof. Note first that for any α and any x, we have
∑n

i=1(A
(α) · x)i =

∑n
i=1 xi and

∑n
i=1 g

(α)
i = 0. This

implies that:
n∑
i=1

(A(α) · x+ g(α))i =
n∑
i=1

xi. (4)

Let x(0) = x and x(α) = A(α) · x(α−1) + g(α), for α ∈ [1, n− β + 1]. We prove by induction that:

α+β−1∑
i=α+1

x
(α)
i =

α+β−1∑
i=α+1

xi and x
(α)
i = xi if i 6∈ [α+ 1, α+ β − 1]. (∗)

This holds for α = 0 since x(0) = x. Let α ≥ 1. By the induction hypothesis and equality of the columns
α, . . . , α + β − 1 of A(α), we have A(α) · x(α−1) = A(α) · x and hence x(α) = A(α) · x + g(α). This directly
implies that x(α)

i = xi when i 6∈ [α, α+ β − 1]. Combining this with (4) gives:

α+β−1∑
i=α

x
(α)
i =

α+β−1∑
i=α

xi. (5)

Since x(α)
α = 1

2 log γβ + 1
β

∑α+β−1
j=α x

(α)
j , we obtain (using (5) and the definition of x):

x(α)
α =

1
2

log γβ +
1
β

α+β−1∑
j=α

xj = xα.

Combining this equality and (5) allows to complete the proof of (∗).
It remains to prove that x(n−β+1)

i = xi for i ≥ n− β + 2. For i ≥ n− β + 1, we have:

x
(n−β+1)
i =

1
2

log γn−i+1 +
1

n− i+ 1

n∑
j=i

x
(n−β+1)
j .

By Lemma 2 and the definition of g(n−β+1), this implies that x(n−β+1)
i = 1

β

∑n
j=n−β+1 x

(n−β+1)
j + g

(n−β+1)
i .

As a consequence (using (5) and the definition of x):

x
(n−β+1)
i =

1
β

n∑
j=n−β+1

xj + g
(n−β+1)
i =

1
β

n∑
j=n−β+1

g
(n−β+1)
j + g

(n−β+1)
i = g

(n−β+1)
i = xi.

Overall, we have proven that A · x+ g = x(n−β+1) = x. ut

Fact. Given Mk ∈ Rk×k, a, b ∈ Rk and c ∈ R, we define Mn ∈ Rn×n for n ≥ k, as follows:

Mn =

c · · · c · · · aT · · ·
...
. . .

...
...

c · · · c · · · aT · · ·
...

...
b · · · b Mk
...

...

Then, for any n ≥ k, we have χ(Mn)(t) = (n− k)tn−k−1 · χ(Mk+1)− (n− k − 1)tn−k · χ(Mk).

9

Proof of the fact. We prove the result by induction. It clearly holds for n = k and n = k + 1. Assume
now that n > k + 1. We have:

χ(Mn)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(t− c) −c · · · −c · · · −aT · · ·
−c (t− c) · · · −c · · · −aT · · ·
...

...
−c −c
...

... tIn−2 −Mn−2

−b −b
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2t −t 0
−t (t− c) · · · −c · · · −aT · · ·

...
−c

0
... tIn−2 −Mn−2

−b
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2t · χ(Mn−1)− t2 · χ(Mn−2).

The result follows by elementary calculations. ut

We now provide explicit lower and upper bounds for the coordinates of the solution x.

Lemma 5. For all i ≤ n− β + 1, we have
(
n−i
β−1 −

3
2

)
log γβ ≤ xi − xn−β+1 ≤ n−i

β−1 log γβ.

Proof. We prove these bounds by induction on i for i = n− β, . . . , 1. Recall that

∀i ≤ n− β, xi =
β

2(β − 1)
log γβ +

1
β − 1

i+β−1∑
j=i+1

xj .

We first consider the upper bound on xi − xn−β+1. Since we defined Hermite’s constant so that (γi)i is
increasing, we have xn−β+1 ≥ · · · ≥ xn. Therefore:

∀i > n− β, xi − xn−β+1 ≤ 0 ≤ n−i
β−1 log γβ .

Using the induction hypothesis, we obtain:

xi ≤
β

2(β − 1)
log γβ +

1
β − 1

i+β−1∑
j=i+1

(
n− j
β − 1

log γβ + xn−β+1

)
=
n− i
β − 1

log γβ + xn−β+1.

We now consider the lower bound on xi − xn−β+1. It clearly holds for i = n − β + 1. We now prove it
for i ∈ [n− 2(β − 1), n− β]. For that specific situation, we use the identity:

∀i ∈ [n− 2(β − 1), n− β], xi =
β

2(β − 1)
log γβ +

1
β − 1

(n−β∑
j=i+1

xj +
i+β−1∑

j=n−β+1

xj

)
. (6)

As (xj)j decreases, we have 1
i+2β−n−1

∑i+β−1
j=n−β+1 xj ≥

1
β−1

∑n
j=n−β+1 xj = xn−β+1 − 1

2 log γβ . This implies:

1
i+ 2β − n− 1

i+β−1∑
j=n−β+1

xj ≥ xn−β+1 +
log γβ

i+ 2β − n− 1

i+β−1∑
j=n−β+1

(
n− j
β − 1

− 3
2

)
. (7)

Using the induction hypothesis, we also have:

1
n− β − i

n−β∑
j=i+1

xj ≥ xn−β+1 +
log γβ

n− β − i

n−β∑
j=i+1

(
n− j
β − 1

− 3
2

)
. (8)

Now, plugging (7) and (8) into (6) gives:

10

xi ≥
β

2(β − 1)
log γβ + xn−β+1 +

log γβ
β − 1

i+β−1∑
j=i+1

(
n− j
β − 1

− 3
2

)
=
(
n− i
β − 1

− 3
2

)
log γβ + xn−β+1.

When i < n− 2(β − 1), the proof for the lower bound is similar to that of the upper bound. ut

As the set of solutions to x = A ·x+ g is x+ Span(1, . . . , 1)T , the value of x is only interesting up to a
constant vector, which is why we bound xi−xn−β+1 rather than xi. In other words, since x∞ of Theorem 1
is x− (E[x])i, the Lemma also applies to x∞. It is also worth noting that the difference between the upper
and lower bounds 3

2 log γβ is much smaller than the upper bound n−i
β−1 log γβ (for most values of i). If we

replace γβ by β, then, via a tedious function analysis, we can improve both bounds so that their difference
is lowered to 1

2 log β. In the special case β = 2, the expression of x is xi = xn + (n− i) log γ2.

4.3 Speed of convergence of the dynamical system

The classical approach to study the speed of convergence (with respect to k) of a discrete-time dynamical
system xk+1 := An · xk + gn (where An and gn are the n-dimensional values of A and g respectively)
consists in providing an upper bound to the largest eigenvalue of ATnAn. It is relatively easy to prove that it
is 1 (note that An is doubly stochastic). We are to show that the second largest singular value is < 1− β2

2n2 ,
and that this bound is sharp, up to changing the constant 1/2 and as long as n− β = Ω(n).

The asymptotic speed of convergence of the sequence (Akn ·x)k is in fact determined by the eigenvalue(s)
of An of largest module (this is the principle of the power iteration algorithm). However, this classical fact
provides no indication on the dependency with respect to x, which is crucial in the present situation. As
we use the bound ‖Akn · x‖ ≤ ‖An‖k2 · ‖x‖, we are led to studying the largest singular values of ATnAn.

We first explicit the characteristic polynomial χn of ATnAn. The following lemma shows that it satisfies
a second order recurrence formula.

Lemma 6. We have χβ(t) = tβ−1(t− 1), χβ+1(t) = tβ−1(t− 1)(t− 1
β2) and, for any n ≥ β:

χn+2(t) =
(2β(β − 1) + 1)t− 1

β2
· χn+1(t)−

(
β − 1
β

)2

t2 · χn(t).

Proof. We have ATβAβ = Aβ and dim ker(Aβ) = β − 1, thus tβ−1|χβ(t). Since Tr(Aβ) = 1 we have χβ(t) =
tβ(t− 1). The computation of ATβ+1Aβ+1 gives:

ATβ+1Aβ+1 =

...

β+(β−1)2

β3
β−1
β2

...
· · · β−1

β2 · · · 1
β

 .

If y1+· · ·+yβ = 0 and yβ+1 = 0, then ATβ+1Aβ+1·y = 0, hence dim ker(ATβ+1Aβ+1) ≥ β−1 and tβ−1|χβ+1(t).
It can be checked that ATβ+1Aβ+1 · (1, · · · , 1)T = (1, · · · , 1)T . Finally, since Tr(ATβ+1Aβ+1) = 1 + 1

β2 we
have χβ+1(t) = tβ−1(t− 1)(t− 1

β2).
For n ≥ 1, let Cn be the n×n bottom-right corner of ATn+β−1An+β−1. Note that for n, i, j > 1, we have

cnij = cn−1,i−1,j−1, which means that we can write Cn as:

Cn =

cn11 cn12 · · · cn1n

cn21
... Cn−1

cnn1

 .

11

Moreover, we have cn11 =
(
β−1
β

)2
cn22 + 1

β2 , cni1 = β−1
β cni2 and cn1i = β−1

β cn2i for all i > 1. Subtracting
β−1
β times the second column of tIn − Cn from the first column and subtracting β−1

β times the second row
from the first row gives:

χ(Cn)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

2β2−2β+1
β2 t− 1

β2 −β−1
β t 0 · · · 0

−β−1
β t

0
... tIn−1 − Cn−1

0

∣∣∣∣∣∣∣∣∣∣∣∣
.

By expansion on the first column and then on the first row we obtain:

χ(Cn)(t) =
(2β2 − 2β + 1)t− 1

β2
· χ(Cn−1)(t)−

(
β − 1
β

)2

t2 · χ(Cn−2)(t).

Since the β first columns (resp. rows) of ATn+β−1An+β−1 are identical, we obtain, by the previous Fact, that
χn+β−1(t) = βtβ−1 · χ(Cn)(t) − (β − 1)tβ · χ(Cn−1)(t). This implies that the χn’s satisfy the same second
order relation as the χ(Cn)’s. ut

We finally study the roots of χn(t). The proof of the following result relies on several changes of variables
to link the polynomials χn(t) to the Chebyshev polynomials of the second kind.

Lemma 7. For any n ≥ β ≥ 2, the largest root of χn(t)
t−1 is in

[
1− π2β2

(n−β)2
, 1− β2

2n2

]
.

Proof. Let χn(t) be the polynomial tnχn(1/t). Then, by Lemma 6, we have χβ(t) = 1 − t, χβ+1(t) =

(1− t)
(
1− t

β2

)
, and, for n ≥ β:

χn+2(t) = tn+2 (2β(β − 1) + 1) 1
t − 1

β2
· χn+1

(
1
t

)
− tn+2

(
β − 1
β

)2 1
t2
· χn

(
1
t

)
=

(2β(β − 1) + 1)− t
β2

· χn+1(t)−
(
β − 1
β

)2

· χn(t).

Let τ(t′) = 2β(β−1)(t′−1) and ψn(t′) =
(

β
β−1

)n−β
· χn(1−τ(t′))

τ(t′) . We have ψβ(t′) = 1, ψβ+1(t′) = 2t′− β−1
β

and, for n ≥ β:

ψn+2(t′) = 2t′
(

β

β − 1

)n+1−β
·
χn+1 (1− τ(t′))

τ(t′)
−
(

β

β − 1

)n−β
· χn (1− τ(t′))

τ(t′)
= 2t′ · ψn+1(t′)− ψn(t′).

As a consequence, the ψn’s are polynomials (in t′). Now, let (Un)n≥0 be the sequence of Chebyshev poly-
nomials of the second kind, i.e., U0 = 0, U1 = 1 and Un+2(t′) = 2t′ · Un+1(t′) − Un(t′) for n ≥ 0. These
polynomials satisfy the following property:

∀n ≥ 0, ∀x ∈ R \ {2kπ; k ∈ Z}, Un(cosx) =
sin(nx)
sinx

.

It can be proven by induction that ψn = Un−β+1 − β−1
β Un−β for all n ≥ β. By the Fact given below, this

implies that there exists t′0 ∈
[
cos π

n−β , cos π
2(n−β+1)

]
such that ψn(t′0) = 0 and ψn(t′) > 0 for all t′ ∈ (t′0, 1).

We have χn(1 − τ(t′0)) =
(
β−1
β

)n−β
τ(t′0)ψn(t

′
0) = 0, hence t0 = (1− τ(t′0))

−1 is a root of χn(t). Since

12

the image of (t′0, 1) by t′ 7→ (1 − τ(t′))−1 is (t0, 1), we obtain that t0 is the largest root of χn(t) smaller
than 1. We now compute bounds for t0. We have 2(n − β + 1) ≤ 2n so cos π

n−β ≤ t′0 ≤ cos π
2n . It can

be checked that for u ≤ π
4 , we have cosu ≤ 1 − 8

17u
2, so 1 − π2

(n−β)2
≤ t′0 ≤ 1 − 2π2

17n2 . This leads to

1 + π2β2

(n−β)2
≥ 1− τ(t′0) ≥ 1 + 2β(β − 1) 2π2

17n2 ≥ 1 + 2π2β2

17n2 , and thus 1− π2β2

(n−β)2
≤ t0 ≤ 1− 1

2
β2

n2 .

To conclude, let φn(t) be the polynomial χn(t)
t−1 . By using Lemma 6, it can be checked that φn(1) =(

β−1
β

)n−β
n
β , which implies that φn(1) 6= 0. This proves that 1 is never a multiple root of χn, which

completes the proof. ut

Fact. Let n ≥ 2 and f(x) = sin((n+1)x)
sinx − β−1

β ·
sin(nx)
sinx . The smallest positive root of f belongs to

[
π

2(n+1) ,
π
n

]
.

Proof of the fact. Since sin is an increasing function on
[
0, π2

]
, we have sin(nx) < sin ((n+ 1)x) for all

0 < x ≤ π
2(n+1) . This implies that f(x) > 0 on this interval. We also have f

(
π
n

)
= −1 < 0. The result

follows from the intermediate value theorem. ut

Proof of Theorem 2. The unicity and existence of x∞ come from Lemmata 3 and 4.

Let (b(k)
i)i≤n be the basis after k tours of BKZ’β and x(k)

i = log ‖b(k)∗
i ‖

(detL)1/n
. The definition of x∞ and

a simple induction imply that x(k) − x∞ = Ak(x(0) − x∞). Both x(0) and x∞ live in the subspace E :=
Span(1, . . . , 1)⊥, which is stabilized by A. Let us denote by AE the restriction of A to this subspace. Then
the largest eigenvalue of ATEAE is bounded in Lemma 7 by

(
1− β2

2n2

)
. Taking the norm in the previous

equation gives:

‖x(k) − x∞‖2 ≤ ‖AE‖k2 · ‖x(0) − x∞‖2 = ρ(ATEAE)
k/2 · ‖x(0) − x∞‖2 ≤

(
1− β2

2n2

)k/2
‖x(0) − x∞‖2.

The term ‖x(0) − x∞‖2 is bounded by ‖x(0)‖2 + ‖x∞‖2 ≤
(
log maxi

‖b∗i ‖
(detL)1/n

)
n + nO(1). Taking the

logarithm, we obtain log ‖x(0) − x∞‖2 = O(log n+ log log maxi
‖b∗i ‖

(detL)1/n
). This implies that there exists C

such that ‖x(k) − x∞‖2 ≤ 1 when k ≥ C n2

β2 (log n+ log log maxi
‖b∗i ‖

(detL)1/n
).

We now prove the last inequality of the theorem. By Lemma 5 and the fact that
∑n

i=n−β+1 x
∞
i =

β
(
x∞n−β+1 −

1
2 log γβ

)
≥ βx∞n−β+1 +

∑n
i=n−β+1

(
log γβ
β−1 (n− i)− 3

2 log γβ
)
, we have:

x∞1 = x∞1 −
n∑
j=1

x∞j
n
≤ (n− 1)

log γβ
β − 1

− 1
n

n∑
i=1

(
log γβ
β − 1

(n− i)− 3
2

log γβ

)
=
(

n− 1
2(β − 1)

+
3
2

)
log γβ .

Using the inequality x(k)
1 ≤ x∞1 + 1 and taking the exponential (in base 2) leads to the result. ut

5 Analysis of BKZ’

We now show how the heuristic analysis of the previous section can be made rigorous. The main difficulty
stems from the lack of control on the ‖b∗i ‖’s of an HKZ-reduced basis (bi)i≤β . More precisely, once the
determinant and ‖b∗β‖ are fixed, the ‖b∗i ‖’s are all below a specific curve (explicitly given in Lemma 2).
However, if only the determinant is fixed, the pattern of the ‖b∗i ‖’s can vary significantly: as an example,
taking orthogonal vectors of increasing norms shows that ‖b∗1‖ (resp. ‖b∗β‖) can be arbitrarily small (resp.
large). Unfortunately, when applying HKZ within BKZ’, it seems we only control the determinant of the
HKZ-reduced basis of the considered block, although we would prefer to have an upper bound for each
Gram-Schmidt norm individually. We circumvent this difficulty by amortizing the analysis over the ‖b∗i ‖’s:
as observed in [11], we have a sharp control on each average of the first ‖b∗i ‖’s. For an arbitrary basis B :=
(bi)i≤n, we define µ(B)

k = 1
k

∑
1≤i≤k log ‖b∗i ‖, for k ≤ n.

Lemma 8 ([11, Le. 3]). If B = (bi)i≤β is HKZ-reduced, then µ(B)
k ≤ β−k

k logΓβ(k) + µ
(B)
β for all k ≤ β.

13

5.1 A dynamical system for (genuine) BKZ’ tours

We now reformulate the results of the previous section with the µ(B)
i ’s instead of the log ‖b∗i ‖’s. This amounts

to a base change in the discrete-time dynamical system of Subsection 4.1. We define:

P =

1
1
2

1
2

1
3

1
3

1
3

...
. . .

1
n · · · 1

n

 , Ã = PAP−1 and g̃ = P · g.

Note that µ(B) = P · x(B), where x(B) = (log ‖b∗i ‖)i and µ(B) = (µ(B)
i)i.

Lemma 9. Let B′ be the basis obtained after a BKZ’ tour given an n-dimensional basis B as input. Then
µ(B′) ≤ Ã · µ(B) + g̃, where the inequality holds componentwise.

Proof. Let α ≤ n− β + 1. We define Ã(α) = PA(α)P−1 and g̃(α) = P · g(α). Let B(α) be the basis after the
first α calls to β-HKZ (starting with indices 1, . . . , α). We first prove that we have:

µ(B(α)) ≤ Ã(α) · µ(B(α−1)) + g̃(α). (9)

This vectorial inequality can be checked by making Ã(α) and g̃(α) explicit:

Ã
(α)
ij =

1 if i = j with i < α or i ≥ α+ β − 1
α−1
i

(
1− i−α+1

β

)
if i ∈ [α, α+ β − 2] and j = α− 1

(α+β−1)(i−α+1)
βi if i ∈ [α, α+ β − 2] and j = α+ β − 1

0 otherwise,

g̃
(α)
i =

{
β−i+α−1

i logΓβ(i− α+ 1) if i ∈ [α, α+ β − 2]
0 otherwise.

We provide more details on the proof of (9) in appendix.
Now, let ν(0) = µ(B(0)) = µ and ν(α) = Ã(α) · ν(α−1) + g̃(α). We prove by induction that µ(B(α)) ≤ ν(α).

For α ≥ 1, we have (successively using (9), the induction hypothesis and the fact that Ã(α) ≥ 0):

µ(B(α)) ≤ Ã(α) · µ(B(α−1)) + g̃(α) ≤ Ã(α) · ν(α−1) + g̃(α) = ν(α).

The result follows, by taking α = d− β + 1. ut

5.2 Analysis of the updated dynamical system

Similarly to the analysis of the previous section, it may be possible to obtain information on the speed
of convergence of BKZ’ by estimating the eigenvalues of ÃT · Ã. However, the latter eigenvalues seem
significantly less amenable to study than those of ATA. The following lemma shows how to short-circuit the
study of the modified dynamical system. For a basis B ∈ Rn×n given as input to BKZ’β , we define B[0] = B
and B[i] as the current basis after the i-th BKZ’ tour. We also define µ∞ = P · x∞.

Lemma 10. Let B ∈ Rn×n a basis given as input to BKZ’β. Wlog we assume that µ(B)
n = µ∞n (since

µ
(B)
n = 1

n log | detB|, this can be achieved by multiplying B by a scalar). We have:

∀k ≥ 0,∀i ≤ n, µ
(B[k])
i ≤ µ∞i + (1 + log n)1/2 ·

(
1− β2

2n2

)k/2
‖x(B[0]) − x∞‖2.

14

Proof. First, by using Lemma 9 and noting that Ã · µ∞ = µ∞ + g̃, it can be shown by induction that

µ(B[k]) − µ∞ ≤ Ãk · (µ(B[0]) − µ∞). (10)

Now, we have ‖Ãk · (µ(B[0]) − µ∞)‖2 = ‖PAkP−1 · (µ(B[0]) − µ∞)‖2 ≤ ‖P‖2 · ‖Ak · (x(B[0]) − x∞)‖2.
Thanks to the assumption on µ(B)

n , we know that x(B[0]) − x∞ ∈ Span(1, . . . , 1)⊥, which is stable under A.
As in theorem 2, we introduce the restriction AE of A to this subspace. By the results of Subsection 4.3,
we know that the largest eigenvalue of ATE ·AE is ≤ (1− β2

2n2). Therefore:

‖Ãk · (µ(B[0]) − µ∞)‖2 ≤ ‖P‖2 · ‖AkE · (x(B[0]) − x∞)‖2 ≤ ‖P‖2 · ‖AE‖k2 · ‖x(B[0]) − x∞‖2

≤ ρ(P TP)1/2 ·
(

1− β2

2n2

)k/2
· ‖x(B[0]) − x∞‖2,

where ρ denotes the spectral radius. Now, the sum of the coordinates of any row of P TP is ≤
∑n

i=1
1
i ≤

1 + lnn ≤ 1 + log n. This gives ρ(P TP) ≤ 1 + log n. The result follows. ut

Lemma 11. There exists C > 0 such that the following holds for all integers n ≥ β, and ε ∈ (0, 1].
Let (bi)i≤n be a basis of a lattice L, given as input to the modified BKZ’ algorithm of Section 2 with block-
size β. If terminated after C n3

β2 (log n
ε + log log maxi

‖b∗i ‖
(detL)1/n

) calls to an HKZ-reduction (resp. SVP solver)
in dimension β, the output (ci)i≤n is a basis of L that satisfies:

‖c1‖ ≤ (1 + ε)γβ
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

Proof. Wlog we assume that µn(B[0]) = µ∞n . The proof is similar to that of theorem 2. We know that:

µ∞1 − µ∞n = x∞1 −
1
n

(x∞1 + · · ·+ x∞n) ≤
(

n− 1
2(β − 1)

+
3
2

)
log γβ (11)

We have log
((1+logn)

1
2 ‖x(B[0])−x∞‖2
log(1+ε)

)
= O(log n

ε + log log maxi ‖bi‖) so there exists C ≥ 0 (independent

of β) such that for any k ≥ C n2

β2 (log n
ε + log log max ‖bi‖), we have:

(1 + log n)
1
2

(
1− β2

2n2

) k
2 ‖x(B[0])− x∞‖2 ≤ log(1 + ε).

This gives µ1(B[k]) ≤ µ∞1 + log(1 + ε) ≤
(
µn(B[0]) + n−1

2(β−1) + 3
2

)
log γβ + 1. Taking the exponential (in

base 2) leads to the result. ut

Theorem 1 corresponds to taking ε = 1 in Lemma 11. Also, when β = 2, plugging the explicit expression

of x∞ into (11) leads to the improved bound ‖c1‖ ≤ (1 + ε) · (γ2)
n−1

2 · (detL)
1
n .

6 Applications to LLL-Reduction

In this section, we investigate the relationship between BKZ’2 reduction and the notion of LLL-reduction [16].
Note that analogues of some of the results of this section have been concurrently and independently obtained
by Schnorr [35].
Reminders on the LLL algorithm. The LLL algorithm with parameter δ proceeds by successive loop
iterations. Each iteration has a corresponding index k, defined as the smallest such that (bi)i≤k is not δ-LLL-
reduced. The iteration consists in size-reducing (bi)i≤k and then checking Lovász’s condition δ‖b∗k−1‖2 ≤
‖b∗k‖2 + µ2

k,k−1‖b∗k−1‖2. If it is satisfied, then we proceed to the next loop iteration, and otherwise, we
swap the vectors bk and bk−1. Any such swap decreases the quantity Π((bi)i) =

∏n
i=1 ‖b∗i ‖2(n−i+1) by

15

a factor ≥ 1/δ whereas it remains unchanged during size-reductions. Since Π((bi)i) ≤ 2O(n2 size(B))) and
since for any integer basis Π((bi)i) is an integer, this allows to prove termination within O(n2 size(B)) loop
iterations when δ < 1. When δ = 1, we obtain the so-called optimal LLL algorithm. Termination can still
be proven by using different arguments, but with a much larger bound 2Poly(n) · Poly(size(B)) (see [3,17]).
An iterated version of BKZ’2. We consider the algorithm Iterated-BKZ’2 (described in Algorithm 3)
which given as input a basis (bi)i≤n successively applies BKZ’2 to the bases (bi)i≤n, (b(2)

i)2≤i≤n, . . . ,
(b(n−1)
i)n−1≤i≤n. By using a quasi-linear time Gauss reduction algorithm (see [39,42]) as the HKZ2 algorithm

within BKZ’2, Algorithm Iterated-BKZ’2 can be shown to run in quasi-linear time.

Input : A basis (bi)i≤n of a lattice L.
Output : A basis of L.
for k := 1 to n− 1 do

Apply BKZ’2 to the basis (b
(k)
i)k≤i≤n;

Let T be the corresponding transformation matrix;
Update (bi)i≤n by applying T to (bi)k≤i≤n.

Return (bi)i≤n.
Algorithm 3: Iterated-BKZ’2 Algorithm

Lemma 12. Let B be a basis of an n-dimensional lattice, and ε > 0 be arbitrary. Then, using Algo-
rithm Iterated-BKZ’2, one can compute, in time Poly(n) · Õ(size(B)), a basis (b′i)i≤n such that

∀i ≤ n, ‖b′i
∗‖ ≤ (1 + ε)

(
4
3

)n−i
2

·
(n∏
j=i

‖b′i
∗‖
) 1
n−i+1

. (12)

Proof. We first prove that (12) holds for the output of Iterated-BKZ’2. The remark at the end of Section 5
shows that (12) holds for i = 1 after the first step of the algorithm. The following steps do not modify the
first vector of the basis, nor do they modify the right hand side of (12), hence the inequality holds. Now,
Iterated-BKZ’2 starting from Step 2 is equivalent to applying Iterated-BKZ’2 to the basis (b(2)

i)2≤i≤n. It
follows from the case i = 1 and a direct induction that (12) holds for all i.

We turn to analyzing the complexity. First, note that HKZ in dimension 2, i.e., Gauss’ reduction, can be
performed in time Õ(size(C)) given basis C ∈ Q2×2 as input (see [39,42]). Standard techniques allow one to
bound the bit-sizes of all the vectors occurring during an execution of BKZ′2 (and hence Iterated-BKZ’2),
by a linear function of the bit-size of the input. This completes the proof. ut

A close analogue of the optimal LLL. Let B = (bi)i≤n an integral basis output by Iterated-BKZ’2.
For i ≤ n, we let pi, qi be coprime rational integers such that pi

qi
=
(

3
4

)(n−i+1)(n−i) · ‖bi
∗‖2(n−i+1)Qn
j=i ‖bj

∗‖2 . By (12), we

know that pi/qi ≤ (1+ε)n−i+1. Note that pi/qi is a rational number with denominator ≤ 2O(n2+size (B)). We
can thus find a constant c such that, for all i, the quantity |pi/qi− 1| is either 0 or ≥ 2−c(n

2+size (B)). Hence,
if we choose ε < 1

2n .2
−c(n2+size(B′)), all the inequalities from (12) must hold with ε = 0. Overall, we obtain,

in polynomial time and using only swaps and size-reductions, a basis for which (12) holds with ε = 0.

A quasi-linear time LLL-reduction algorithm. BKZ’2 can be used to obtain a variant of LLL which
given as input an integer basis (bi)i≤n and δ < 1 returns a δ-LLL-reduced basis of L[(bi)i≤n] in time Poly(n)·
Õ(size(B)). First, we apply the modification from [18, p. 25] to a terminated BKZ’2 so that the modified
algorithm, when given as input an integer basis (bi)i≤n and ε > 0, returns in time Poly(n) · Õ(size(B)) a
basis (b′i)i≤n of L[(bi)i≤n] such that ‖b′1‖ ≤ (1 + ε)2(4/3)n−1λ1(L). The complexity bound holds because
the transformation from [18, p. 25] applies BKZ’2 n times on bases whose bit-sizes are Poly(n) · Õ(size(B)).

We then iterate this algorithm n times on the projected lattices (b(k)
i)k≤i≤n so that the output ba-

sis (ci)i≤n of L[(bi)i≤n] satisfies:

∀i ≤ n, ‖ci∗‖ ≤ (1 + ε)2(4/3)n−iλ1(L[(b(i)
j)i≤j≤n]). (13)

16

It follows from inequalities and the size-reducedness of (ci)1≤i≤n that size(C) = Poly(n) · size(B).
We call δ-LLL’ the successive application of the above algorithm based on BKZ’2 and LLL with param-

eter δ. We are to prove that the number of loop iterations performed by δ-LLL is Poly(n).

Theorem 3. Given as inputs a basis B ∈ Zn×n of a lattice L and δ < 1, algorithm δ-LLL’ algorithm
outputs a δ-LLL-reduced basis of L within Poly(n) · Õ(size(B)) bit operations.

Proof. With the same notations as above, it suffices to prove that given (ci)i≤n as input, algorithm δ-LLL
terminates within Poly(n) · Õ(size(C)) bit operations. Let (c′i)i≤n be the output basis. As size-reductions
can be performed in time Poly(n) · Õ(size(C))), it suffices to show that the number of loop iterations
of δ-LLL given (ci)i≤n as input is Poly(n). To do this, it suffices to bound Π((ci)i≤n)

Π((c′i)i≤n)
by 2Poly(n).

First of all, we have λ1(L[(c(i)
j)i≤j≤n]) ≤ λi(L), for all i ≤ n. Indeed, let v1, . . . ,vi ∈ L be linearly

independent such that maxj≤i ‖vj‖ ≤ λi(L); at least one of them, say v1, remains non-zero when projected
orthogonally to Span(cj)j<i. We thus have λ1(L[(c(i)

j)i≤j≤n]) ≤ ‖v1‖ ≤ λi(L). Now, using (13), we obtain:

Π((ci)i≤n) =
n∏
i=1

‖ci∗‖2(n−i+1) ≤ 2O(n3)
n∏
i=1

λi(L)2(n−i+1).

On the other hand, we have (see [16, (1.7)]) λi(L) ≤ maxj≤i ‖c′j‖ ≤ (1√
δ−1/4

)i−1‖c′∗
i ‖, for all i ≤ n. As

a consequence, we have Π((c′i)i≤n) ≥ 2−O(n3) ·
∏n
i=1 λi(L)2(n−i+1). This completes the proof. ut

Acknowledgments We thank N. Gama and P. Nguyen for explaining to us their bound on the number
of tours of the original BKZ algorithm. We also thank C.-P. Schnorr for helpful discussions. The authors
were partly supported by the LaRedA ANR grant and an ARC Discovery Grant DP110100628.

References

1. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc. of STOC, pages 99–108. ACM,
1996.

2. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proc. of STOC,
pages 601–610. ACM, 2001.

3. A. Akhavi. Worst-case complexity of the optimal LLL algorithm. In Proceedings of the 2000 Latin American Theoretical
Informatics conference (LATIN 2000), volume 1776 of LNCS, pages 355–366. Springer, 2000.

4. D. Cadé, X. Pujol, and D. Stehlé. fplll-3.1, a floating-point LLL implementation. http://perso.ens-lyon.fr/damien.
stehle.

5. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology,
10(4):233–260, 1997.

6. S. Galbraith. Mathematics of Public Key Cryptography, Version 0.9. 2011. Available at http://www.math.auckland.ac.
nz/~sgal018/crypto-book/crypto-book.html.

7. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant and blockwise lattice reduction. In Proc.
of CRYPTO, number 4117 in LNCS, pages 112–130. Springer, 2006.

8. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In Proc. of STOC, pages 207–216.
ACM, 2008.

9. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages
31–51. Springer, 2008.

10. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Available at http://www.eccc.
uni-trier.de/, TR96-056., 1996.

11. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm (extended abstract). In Proc.
of CRYPTO, volume 4622 of LNCS, pages 170–186. Springer, 2007.

12. I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In
Proc. of STOC, pages 469–477. ACM, 2007.

13. P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte. Choosing NTRUEncrypt parameters in light of
combined lattice reduction and MITM approaches. In Proc. of ACNS, volume 5536 of LNCS, pages 437–455. Springer,
2009.

17

14. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public key cryptosystem. In Proc. of ANTS, volume
1423 of LNCS, pages 267–288. Springer, 1998.

15. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proc. of STOC, pages 99–108.
ACM, 1983.

16. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann, 261:515–534,
1982.

17. H. W. Lenstra, Jr. Flags and lattice basis reduction. In Proceedings of the third European congress of mathematics,
volume 1. Birkhäuser, 2001.

18. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM, 1986. CBMS-NSF Regional Conference
Series in Applied Mathematics.

19. M.G. Madritsch and B. Vallée. Modelling the LLL algorithm by sandpiles. In Proc. of LATIN, volume 6034 of LNCS,
pages 267–281. Springer, 2010.

20. J. Martinet. Perfect Lattices in Euclidean Spaces. Springer, 2002.
21. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann,

E. Dahmen (Eds), pages 147–191. Springer, 2009.
22. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice problems based on

Voronoi cell computations. In Proc. of STOC, pages 351–358. ACM, 2010.
23. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In Proc. of SODA.

ACM, 2010.
24. P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto ’97. In Proc. of CRYPTO,

volume 1666 of LNCS, pages 288–304. Springer, 1999.
25. P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. of ANTS, LNCS, pages 238–256. Springer, 2006.
26. P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J. Comput, 39(3):874–903, 2009.
27. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proceedings of the 2001 Cryptography and Lattices

Conference (CALC’01), volume 2146 of LNCS, pages 146–180. Springer, 2001.
28. P. Q. Nguyen and B. Vallée (editors). The LLL Algorithm: Survey and Applications. Information Security and Cryptog-

raphy. Springer, 2009.
29. A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-linear time complexity, 2011. To appear

in the proceedings of STOC. Available at http://prunel.ccsd.cnrs.fr/ensl-00534899/en.
30. X. Pujol and D. Stehlé. Rigorous and efficient short lattice vectors enumeration. In Proc. of ASIACRYPT, volume 5350

of LNCS, pages 390–405. Springer, 2008.
31. O. Regev. The learning with errors problem, 2010. Invited survey in CCC 2010, available at http://www.cs.tau.ac.il/

~odedr/.
32. C. P. Schnorr. Progress on LLL and lattice reduction. Chapter of [28].
33. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Science, 53:201–224, 1987.
34. C. P. Schnorr. Block reduced lattice bases and successive minima. Combinatorics, Probability and Computing, 3:507–533,

1994.
35. C. P. Schnorr. Accelerated slide- and LLL-reduction. Electronic Colloquium on Computational Complexity (ECCC),

11(50), 2011.
36. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems.

In Proceedings of the 1991 Symposium on the Fundamentals of Computation Theory (FCT’91), volume 529 of LNCS,
pages 68–85. Springer, 1991.

37. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems.
Mathematics of Programming, 66:181–199, 1994.

38. C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In Proc. of
Eurocrypt, volume 921 of LNCS, pages 1–12. Springer, 1995.

39. A. Schönhage. Fast reduction and composition of binary quadratic forms. In Proceedings of the 1991 International
Symposium on Symbolic and Algebraic Computation (ISSAC’91), pages 128–133. ACM, 1991.

40. V. Shoup. NTL, Number Theory C++ Library. http://www.shoup.net/ntl/.
41. S. Wu and L. Debnath. Inequalities for convex sequences and their applications. Computers & Mathematics with Appli-

cations, 54(4):525–534, 2007.
42. C. K. Yap. Fast unimodular reduction: planar integer lattices. In Proceedings of the 1992 Symposium on the Foundations

of Computer Science (FOCS 1992), pages 437–446. IEEE Computer Society Press, 1992.

A Bounding the number of tours in the original BKZ algorithm

A bound (nβ)n is claimed in [9]. The authors kindly explained to us how to prove a similar upper bound.
We give the proof, for the sake of completeness.

First, note that during the execution of BKZ (Algorithm 1), the basis (b(k)
i)k≤i≤min(k+β−1,n) given as

input to the SVP solver is always LLL-reduced. Now, we modify the call to LLL following the call to the

18

SVP, as follows. If the SVP solver did not find a sufficiently short vector (i.e., δ ·‖b∗k‖ ≤ ‖b‖ in Algorithm 1),
then we proceed as in Algorithm 1. Otherwise, we first call LLL on b, b(k), b

(k)
k , . . . , b

(k)
min(k+β−1,n) to remove

the linear dependency, we apply the appropriate transformation matrix to b1, . . . , bn, and then we call LLL
again on the vectors b1, . . . , bmin(k+β,n).

Suppose the call to the SVP solver is successful. The modification above ensures that the projected
basis b(k)

k , . . . , b
(k)
min(k+β−1,n) is reduced both before the call to the SVP solver and before the second call to

LLL. Furthermore, by a standard property of LLL, the vector found by the SVP solver is the first vector
of the basis before the second call to LLL. Overall, the effect on the ‖b∗i ‖’s of a call to the SVP solver and
the first call to LLL is as follows:

• ‖b∗k‖ decreases by a factor ≤ δ,
• ‖b∗j‖ remains constant if j 6∈ [k,min(k + β − 1, n)],
• ‖b∗j‖ does not increase by a factor ≥ 2β if j ∈ [k+1,min(k+β−1, n)] (because the former and new ‖b∗j‖’s

approximate the successive minima of L[(b(k)
i)k≤i≤min(k+β−1,n)] (see, e.g., [6, Th. 18.12.1]).

To conclude, consider the quantity
∏
i≤n ‖b∗i ‖

[3β
log(1/δ)

]n−i+1

. From the above, it always decreases by a
factor ≤ 1

2 during a successful call to the SVP solver followed by the first call to LLL. It also always
decreases during a LLL swap (see [16]). Finally, it never increases during the execution of BKZ. As the
input and output bases of BKZ are LLL-reduced, it always belongs to the interval∏

i≤n
(λi2−n)

[3β
log(1/δ)

]n−i+1

,
∏
i≤n

(λi2n)
[3β
log(1/δ)

]n−i+1

 ,
where the λi’s are the successive minima of the lattice under scope. This implies that the number of calls
to the SVP oracle is O(β)n. ut

B Improving the constant 3
2

in Theorems 1 and 2

Theorem 1 asserts the following bound on the output of the modified BKZ algorithm:

‖c1‖ ≤ 2(γβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

We show that that there exists a universal (and efficiently computable) constant K such that for sufficiently
large β and n ≥ β, we have:

‖c1‖ ≤ K · β
n−1

2(β−1)
+ 1−ln 2

2 · (detL)
1
n .

The base β of the power could be replaced by αβ (α < 1) provided that γβ < αβ holds for sufficiently
large β.

Proof. In the present work, we only used the facts that γn is an upper bound on the Hermite constant and
that γn ≤ γn+1. Since γn ≤ n, the proofs also hold with γn replaced by n.

Let y1 = 0 and yi+1 = 1
i

∑i
j=1 yj + i+1

2i log(i+ 1) for i ≥ 2. We have:

yi+1 − yi =
1
i

i−1∑
j=1

yj +
i+ 1
2i

log(i+ 1)− i− 1
i

yi

=
1
i

i−1∑
j=1

yj +
i+ 1
2i

log(i+ 1)− i− 1
i

 1
i− 1

i−1∑
j=1

yj +
i

2(i− 1)
log i

=
i+ 1
2i

log(i+ 1)− 1
2

log i

=
1
2
(log(i+ 1)− log i) +

1
2i

log(i+ 1).

19

Let (b1, . . . , bn) be an BKZ-reduced basis and xi = log ‖b∗i ‖. Wlog, we may assume that ‖b∗n‖ = 1.
Under the SMA, we have xi = yn−i+1 for all i ∈ [n − β + 1, n]. We proceed as for Lemma 5: we compute
upper and lower bounds for any fixed point (xi)i of the dynamical system x← A ·x+ g. It then suffices to
combine them, as in the proof of Theorem 2.

A lower bound on xi. We prove by induction on i = n− β + 1, . . . , 1 that we have:

∀i ∈ [1, n− β + 1], xi − xn−β+1 ≥
(
n− i
β − 1

− 1
)

log β.

This trivially holds for i = n−β+1. As in the proof of Lemma 5, we now consider i ∈ [n− 2(β− 1), n−β],
for which we have (Eq. (6)):

xi =
β

2(β − 1)
log β +

1
β − 1

(n−β∑
j=i+1

xj +
i+β−1∑

j=n−β+1

xj

)
. (14)

The following sequences are concave:

• (yk)1≤k≤β : It suffices to show that yk+1 − yk = 1
2(log(k + 1) − log k) + 1

2k log(k + 1) is non-increasing;
For k ≥ 3, both (log(k+1)− log k) and 1

2k log(k+1) are non-increasing; It can be checked by hand that
y4 − y3 ≤ y3 − y2 ≤ y2 − y1.
• (yβ−k+1)1≤k≤β : By symmetry.
•
(

1
k

∑k
j=1 yβ−j+1

)
1≤k≤β

: See [41, Le. 5] for example.

• (zk)k∈[1,β] defined by zk = 1
k

∑n−β+k
j=n−β+1 xj : This is a simple translation of indices.

Since (zk)k is concave, we obtain

zk ≥ z1 + (zβ − z1)
k − 1
β − 1

= xn−β+1 −
log β

2
· k − 1
β − 1

= xn−β+1 −
log β
k
·
k∑
j=1

j − 1
β − 1

. (15)

Using the previous equation with k = i+ 2β − n− 1 gives:

1
i+ 2β − n− 1

i+β−1∑
j=n−β+1

xj ≥ xn−β+1 +
log β

i+ 2β − n− 1

i+β−1∑
j=n−β+1

(
n− j
β − 1

− 1
)
. (16)

Using the induction hypothesis (on each xj for j ∈ [n− β + 1, i+ β − 1]), we also have:

1
n− β − i

n−β∑
j=i+1

xj ≥ xn−β+1 +
log β

n− β − i

n−β∑
j=i+1

(
n− j
β − 1

− 1
)
. (17)

Then, we plug (16) and (17) into (14). The end of the proof is similar to that of Lemma 5 (where the
constant 3

2 is replaced by 1).

An Upper bound on xi. Starting from the equation yi+1 − yi = 1
2(log(i + 1) − log i) + 1

2i log(i + 1), we
obtain:

yi =
1
2

log i+
i∑

j=2

log j
2(j − 1)

=
1
2

log i+
i∑

j=2

(
log j
2j

+
log j

2j(j − 1)

)

≤ 1
2

log i+
∫ i

x=1

log x
2x

dx+ C1

≤ ln 2
4

log2 i+
1
2

log i+ C2,

20

for some universal constants C1 and C2.
Let f(x) = ln 2

4 log2 x+ 1
2 log x. Let I = [exp(1), β]. As f is concave on I, we have f(x) ≤ f(β2)+f ′(β2)(x−

β
2) for all x ∈ I (for sufficiently large β). We have f(β2) ≤ f(β)− ln 2

2 log β +C3 and |f ′(β2)− log β
β−1 | ≤

C4
β for

some universal constants C3, C4. Since x 7→ log2 x is continuous and bounded on [1, exp(1)], we obtain, for
any x ∈ [1, β]:

f(x) ≤ f(β)− ln 2
2

log β +
log β
β − 1

(x− β

2
) + C5

= f(β) +
log β
β − 1

(x− β) +
1− ln 2

2
log β + C6,

for some universal constants C5, C6. The same holds for the yi’s (for i ≤ β), as yi ≤ f(i) + C2:

yi ≤ yβ +
log β
β − 1

(i− β) +
1− ln 2

2
log β + C7,

for some universal constant C7.
A change of variable gives the following inequality on the xi’s for i ≥ n− β + 1:

xi − xn−β+1 ≤
(
n− i
β − 1

− 1 + ln 2
2

)
log β +O(1).

It can be proved by induction that it also holds for all i ≤ n (as in the first part of the proof of
Lemma 5). ut

C Additional details for the proof of (9)

Using the following explicit value for P−1

P−1 =

1
−1 2
−2 3

.
−n+ 1 n

 ,

it can be checked that:

Ã
(α)
ij =

1 if i = j with i < α or i ≥ α+ β − 1
α−1
i

(
1− i−α+1

β

)
if i ∈ [α, α+ β − 2] and j = α− 1

(α+β−1)(i−α+1)
βi if i ∈ [α, α+ β − 2] and j = α+ β − 1

0 otherwise,

g̃
(α)
i =

{
β−i+α−1

i logΓβ(i− α+ 1) if i ∈ [α, α+ β − 2]
0 otherwise.

If i ≤ α− 1 or i ≥ α+ β − 1, then µ(B(α))
i = (Ã(α) ·µ(B(α−1)) + g̃(α))i = µ

(B(α−1))
i . If α ≤ i ≤ α+ β − 2,

we have (noting µ(B)
I = 1

|I|
∑

i∈I log ‖b∗i ‖ for any I ⊆ [1, n]):

iµ
(B(α))
i = (α− 1)µ(B(α))

α−1 + (i− α+ 1)µ(B(α))
[α,i]

≤ (α− 1)µ(B(α−1))
α−1 + (β − i+ α− 1) logΓβ(i− α+ 1) + (i− α+ 1)µ(B(α−1))

[α,α+β−1]

= (1− i− α+ 1
β

)(α− 1)µ(B(α−1))
α−1 + (β − i+ α− 1) logΓβ(i− α+ 1) +

(α+ β − 1)(i− α+ 1)
β

µ
(B(α−1))
α+β−1 .

This completes the proof of (9). ut

21

